wo 2014/150806 A1 |11 1] 10O 000 A OO A

(43) International Publication Date
25 September 2014 (25.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/150806 A1

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

International Patent Classification:
GO6F 9/06 (2006.01) GO6F 9/30 (2006.01)

International Application Number:
PCT/US2014/024276

International Filing Date:
12 March 2014 (12.03.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/799,006 15 March 2013 (15.03.2013) US

Applicant (for all designated States except US): SOFT
MACHINES, INC. [US/US]; 3211 Scott Blvd., Ste. 202,
Santa Clara, CA 95054 (US).

Inventor; and
Applicant (for US only): ABDALLAH, Mohammad
[US/US]; 3868 Suncrest Avenue, San Jose, CA 95132

(US).
Agent: BARNES, Glenn D.; Murabito Hao & Barnes

LLP, Two North Market Street, 3rd Floor, San Jose, CA
95113 (US).

(84)

(81) Designated States (uniess otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Bz, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: A METHOD FOR POPULATING REGISTER VIEW DATA STRUCTURE BY USING REGISTER TEMPLATE
SNAPSHOTS

Register view entries populated by register
templates

Register view
R0 R9 R8 R7 R

RS R4 R3 R2 R1 RO

Block F register
template snap shot

Register template
snap shot

Block F i i i i |

— y. .Yy Yy ¥y Yy Y Yy Y Y Y. Y
R2
R8
R10

Fig. 12

(57) Abstract: A method for populating a register view data
structure by using register template snapshots. The method
includes receiving an incoming instruction sequence using a
global front end; grouping the instructions to form instruction
blocks; using a plurality of register templates to track instruc-
tion destinations and instruction sources by populating the re-
gister template with block numbers corresponding to the in-
struction blocks, wherein the block numbers corresponding to
the instruction blocks indicate interdependencies among the
blocks of instructions; populating a register view data struc-
ture, wherein the register view data structure stores destina-
tions corresponding to the instruction blocks as recorded by
the plurality of register templates; and using the register view
data structure to track a machine state in accordance with the
execution of the plurality of instruction blocks.

WO 2014/150806 A1 WAL 00T 000 T OO

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2014/150806 PCT/US2014/024276

A METHOD FOR POPULATING REGISTER VIEW DATA STRUCTURE BY USING
REGISTER TEMPLATE SNAPSHOTS

This application claims the benefit co-pending commonly assigned US Provisional Patent
Application serial number 61/799,006, titled “A METHOD FOR POPULATING REGISTER VIEW
DATA STRUCTURE BY USING REGISTER TEMPLATE SNAPSHOTS” by Mohammad A.
Abdallah, filed on March 15, 2013, and which is incorporated herein in its entirety.

CROSS REFERENCE TO RELATED APPLICATION

This application is related to co-pending commonly assigned US Patent Application serial number
2009/0113170, titled “APPARATUS AND METHOD FOR PROCESSING AN INSTRUCTION
MATRIX SPECIFYING PARALLEL INDEPENDENT OPERATIONS” by Mohammad A.
Abdallah, filed on April 12, 2007, and which is incorporated herein in its entirety.

This application is related to co-pending commonly assigned US Patent Application serial number
2010/0161948, titled “APPARATUS AND METHOD FOR PROCESSING COMPLEX
INSTRUCTION FORMATS IN A MULTITHREADED ARCHITECTURE SUPPORTING
VARIOUS CONTEXT SWITCH MODES AND VIRTUALIZATION SCHEMES” by Mohammad
A. Abdallah, filed on November 14, 2007, and which is incorporated herein in its entirety.

FIELD OF THE INVENTION

[001] The present invention is generally related to digital computer systems, more

particularly, to a system and method for sclecting instructions comprising an instruction sequence.

BACKGROUND OF THE INVENTION

[002] Processors are required to handle multiple tasks that are either dependent or totally
independent. The internal state of such processors usually consists of registers that might hold
different values at cach particular instant of program execution. At cach instant of program

execution, the internal state image is called the architecture state of the processor.

WO 2014/150806 PCT/US2014/024276

[003] When code execution is switched to run another function (e.g., another thread,
process or program), then the state of the machine/processor has to be saved so that the new function
can utilize the internal registers to build its new state. Once the new function is terminated then its
state can be discarded and the state of the previous context will be restored and execution resumes.
Such a switch process is called a context switch and usually includes 10's or hundreds of cycles
especially with modern architectures that employ large number of registers (e.g., 64, 128, 256)

and/or out of order execution.

[004] In thread-aware hardware architectures, it is normal for the hardware to support
multiple context states for a limited number of hardware-supported threads. In this case, the
hardware duplicates all architecture state elements for each supported thread. This eliminates the
need for context switch when executing a new thread. However, this still has multiple draw backs,
namely the arca, power and complexity of duplicating all architecture state elements (i.c., registers)
for cach additional thread supported in hardware. In addition, if the number of software threads
exceeds the number of explicitly supported hardware threads, then the context switch must still be

performed.

[005] This becomes common as parallelism is needed on a fine granularity basis requiring a
large number of threads. The hardware thread-aware architectures with duplicate context-state
hardware storage do not help non-threaded software code and only reduces the number of context
switches for software that is threaded. However, those threads are usually constructed for coarse
grain parallelism, and result in heavy software overhead for initiating and synchronizing, leaving
fine grain parallelism, such as function calls and loops parallel execution, without efficient threading
initiations/auto generation. Such described overheads are accompanied with the difficulty of auto
parallelization of such codes using sate of the art compiler or user parallelization techniques for non-

explicitly/easily parallelized/threaded software codes.

SUMMARY OF THE INVENTION

[006] In one embodiment, the present invention is implemented as a method for populating
a register view data structure by using register template snapshots. The method includes receiving

an incoming instruction sequence using a global front end; grouping the instructions to form

WO 2014/150806 PCT/US2014/024276

instruction blocks; using a plurality of register templates to track instruction destinations and
instruction sources by populating the register template with block numbers corresponding to the
instruction blocks, wherein the block numbers corresponding to the instruction blocks indicate
interdependencies among the blocks of instructions; populating a register view data structure,
wherein the register view data structure stores destinations corresponding to the instruction blocks as
recorded by the plurality of register templates; and using the register view data structure to track a

machine state in accordance with the execution of the plurality of instruction blocks.

[007] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive
features, and advantages of the present invention, as defined solely by the claims, will become

apparent in the non-limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] The present invention is illustrated by way of example, and not by way of limitation,
in the figures of the accompanying drawings and in which like reference numerals refer to similar

elements.

[009] Figure 1 shows an overview diagram of a process for grouping instructions into a

block and tracking dependencies among the instructions by using a register template.

[010] Figure 2 shows an overview diagram of a register view, a source view, and an

instruction view in accordance with one embodiment of the present invention.

[011] Figure 3 shows a diagram that illustrates an exemplary register template and how the
source view is populated by information from the register template in accordance with one

embodiment of the present invention.

[012] Figure 4 shows a diagram illustrating a first embodiment for dependency

broadcasting within source view. In this embodiment, cach column comprises an instruction block.

WO 2014/150806 PCT/US2014/024276

[013] Figure 5 shows a diagram illustrating a second embodiment for dependency

broadcasting within source view.

[014] Figure 6 shows a diagram illustrating the sclection of ready blocks for dispatch
starting from the commit pointer and broadcasting the corresponding port assignments in accordance

with one embodiment of the present invention.

[015] Figure 7 shows an adder tree structure that is used to implement the selector array

described in Figure 6 in accordance with one embodiment of the present invention.
[016] Figure 8 shows exemplary logic of a selector array adder tree in greater detail.

[017] Figure 9 shows a parallel implementation of the adder tree for implementing a

selector array in accordance with one embodiment of the present invention.

[018] Figure 10 shows an exemplary diagram illustrating how adder X from Figure 9 can
be implemented by using carry save adders in accordance with one embodiment of the present

invention.

[019] Figure 11 shows a masking embodiment for masking ready bits for scheduling
starting from the commit pointer and using the sclector array adders in accordance with of the

present invention.

[020] Figure 12 shows an overview diagram of how register view entries are populated by

register templates in accordance with one embodiment of the present invention.

[021] Figure 13 shows a first embodiment for reduced register view footprint in accordance

with one embodiment of the present invention.

[022] Figure 14 shows a second embodiment for reduced register footprint in accordance

with one embodiment of the present invention.

[023] Figure 15 shows an exemplary format of the delta between snapshots in accordance

with one embodiment of the present invention.

WO 2014/150806 PCT/US2014/024276

[024] Figure 16 shows a diagram of a process for creating register template snapshots upon

allocations of blocks of instructions in accordance with one embodiment of the present invention.

[025] Figure 17 shows another diagram of a process for creating register template snapshots
upon allocations of blocks of instructions in accordance with one embodiment of the present

invention.

[026] Figure 18 shows an overview diagram of hardware for implementing the serial
implementation of creating a subsequent register template from a previous register template in

accordance with one embodiment of the present invention.

[027] Figure 19 shows an overview diagram of hardware for implementing a parallel
implementation of creating a subsequent register template from a previous register template in

accordance with one embodiment of the present invention.

[028] Figure 20 shows an overview diagram of the hardware for instruction block-based
execution and how it works with the source view, the instruction view, the register templates, and

the register view in accordance with one embodiment of the present invention.

[029] Figure 21 shows an example of a chunking architecture in accordance with one

embodiment of the present invention.

[030] Figure 22 shows a depiction of how threads are allocated in accordance with their

block numbers and thread ID in accordance with one embodiment of the present invention.

[031] Figure 23 shows an implementation of a scheduler using thread pointer maps that
point to physical storage locations in order to manage multithreaded execution in accordance with

onc embodiment of the present invention.

[032] Figure 24 shows another implementation of a scheduler using thread based pointer

maps in accordance with one embodiment of the present invention.

[033] Figure 25 shows a diagram of a dynamic calendar-based allocation of execution

resources to threads in accordance with one embodiment of the present invention.

WO 2014/150806 PCT/US2014/024276

[034] Figure 26 diagrams a dual dispatch process in accordance with one embodiment of

the present invention.

[035] Figure 27 diagrams a dual dispatch transient multiply-accumulate in accordance with

onc embodiment of the present invention.

[036] Figure 28 diagrams a dual dispatch architecturally visible state multiply-add in

accordance with one embodiment of the present invention.

[037] Figure 29 shows an overview diagram of a fetch and formation of instruction blocks
for execution on grouped execution units process in accordance with one embodiment of the present

invention.

[038] Figure 30 shows an exemplary diagram of instruction grouping in accordance with
onc embodiment of the present invention. In the Figure 30 embodiment two instructions arec shown

with a third auxiliary operation.

[039] Figure 31 shows how half block pairs within a block stack maps onto the execution

block units in accordance with one embodiment of the present invention.

[040] Figure 32 shows a diagram depicting intermediate block results storage as a first level

register file in accordance with one embodiment of the present invention.

[041] Figure 33 shows an odd/even ports scheduler in accordance with one embodiment of

the present invention.

[042] Figure 34 shows a more detailed version of Figure 33 where four execution units are
shown receiving results from the scheduler array and writing outputs to a temporary register file

segment.

[043] Figure 35 shows a diagram depicting guest flag architecture emulation in accordance

with one embodiment of the present invention.

WO 2014/150806 PCT/US2014/024276

[044] Figure 36 shows a diagram illustrating the front end of the machine the scheduler and
the execution units and a centralized flag register in accordance with one embodiment of the present

invention.

[045] Figure 37 shows a diagram of a centralized flag register emulation process as

implemented by embodiments of the present invention.

[046] Figure 38 shows a flowchart of the steps of a process 3800 of emulating centralized

flag register behavior in a guest setting.

DETAILED DESCRIPTION OF THE INVENTION

[047] Although the present invention has been described in connection with one
embodiment, the invention is not intended to be limited to the specific forms set forth herein. On the
contrary, it is intended to cover such alternatives, modifications, and equivalents as can be

reasonably included within the scope of the invention as defined by the appended claims.

[048] In the following detailed description, numerous specific details such as specific
method orders, structures, elements, and connections have been set forth, It is to be understood
however that these and other specific details need not be utilized to practice embodiments of the
present invention. In other circumstances, well-known structures, elements, or connections have
been omitted, or have not been described in particular detail in order to avoid unnecessarily

obscuring this description.

[049] References within the specification to "one embodiment" or "an embodiment"” are
intended to indicate that a particular feature, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment of the present invention. The appearance of
the phrase "in one embodiment" in various places within the specification are not necessarily all
referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive
of other embodiments. Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodiments.

WO 2014/150806 PCT/US2014/024276

[050] Some portions of the detailed descriptions, which follow, are presented in terms of
procedures, steps, logic blocks, processing, and other symbolic representations of operations on data
bits within a computer memory. These descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey the substance of their work to others
skilled in the art. A procedure, computer executed step, logic block, process, ctc., is here, and
generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired
result. The steps are those requiring physical manipulations of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical or magnetic signals of a computer
readable storage medium and are capable of being stored, transferred, combined, compared, and
otherwise manipulated in a computer system. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters,

terms, numbers, or the like.

[051] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise as apparent from the following discussions, it is
appreciated that throughout the present invention, discussions utilizing terms such as "processing" or
"accessing" or "writing" or "storing" or "replicating" or the like, refer to the action and processes of
a computer system, or similar electronic computing device that manipulates and transforms data
represented as physical (electronic) quantities within the computer system's registers and memories
and other computer readable media into other data similarly represented as physical quantitics
within the computer system memories or registers or other such information storage, transmission or

display devices.

[052] Figure 1 shows an overview diagram of a process for grouping instructions into a

block and tracking dependencies among the instructions by using a register template.

[053] Figure 1 shows an instruction block having a header and a body. The block is created
from a group of instructions. The block comprises an entity that encapsulates the group of
instructions. In the present embodiment of the microprocessor, the level of abstraction is raised to
blocks instead of individual instructions. Blocks are processed for dispatch instead of individual

instructions. Each block is labeled with a block number. The machine’s out of order management

WO 2014/150806 PCT/US2014/024276

job is thereby greatly simplified. One key feature is to find a way to manage a larger number of

instructions being processed without greatly increasing the management overhead of the machine.

[054] Embodiments of the present invention achiceves this objective by implementing
instruction blocks, register templates and inheritance vectors. In the block shown in Figure 1, the
header of the block lists and encapsulates all the sources and destinations of the instructions of the
block and where those sources come from (e.g., from which blocks). The header includes the
destinations that update the register template. The sources included in the header will be

concatenated with the block numbers stored in the register template.

[055] The number of instructions that are processed out of order determines the
management complexity of the out of order machine. More out of order instructions leads to greater
complexity. Sources need to compare against destinations of prior instructions in the out of order

dispatch window of the processor.

[056] As shown in Figure 1, the register template has fields for cach register from RO to
R63. Blocks write their respective block numbers into the register template fields that correspond to
the block destinations. Each block reads the register fields that represent its register sources from
the register template. When a block retires and writes its destination register contents into the
register file, its number is erased from the register template. This means that those registers can be

read as sources from the register file itself.

[057] In the present embodiment, the register template is updated cach cycle of the machine
whenever a block is allocated. As new template updates are generated, prior snapshots of the
register templates are stored into an array (c.g., the register view shown in Figure 2), one per block.
This information is retained until the corresponding block is retired. This allows the machine to
recover from miss-predictions and flushes very quickly (e.g., by obtaining the last known

dependency state).

[058] In one embodiment, the register templates stored in the register view can be
compressed (thereby saving storage space) by storing only the delta between successive snapshots

(incremental changes between snapshots). In this manner the machine obtains a shrunk register

WO 2014/150806 PCT/US2014/024276

view. Further compression can be obtained by only storing templates for blocks that have a branch

instruction.

[059] If arecovery point is needed other than a branch miss-prediction, then a recovery is
first obtained at the branch recovery point, then state can be rebuilt out of allocating instructions (but

not executing them) until the machine reaches the sought after recovery point.

[060] It should be noted that in one embodiment, the term "register template” as used
herein is synonymous with the term "inheritance vectors" as described in the carlier filed commonly
assigned patent application “EXECUTING INSTRUCTION SEQUENCE CODE BLOCKS BY
USING VIRTUAL CORES INSTANTIATED BY PARTITIONABLE ENGINES” by Mohammad
Abdallah, filed on March 23, 2012, serial number 13428440, which is incorporated herein in its

entirety.

[061] Figure 2 shows an overview diagram of a register view, a source view, and an
instruction view in accordance with one embodiment of the present invention. This figure shows
onc embodiment of a scheduler architecture (e.g., having a source view, instruction view, register
view, etc.). Other implementations of a scheduler architecture that achieves the same functionality

by combining or splitting one or more of the above cited structures are possible.

[062] Figure 2 diagrams the functional entities supporting the operation of the register
templates and retention of the machine state. The left-hand side of Figure 2 shows register
templates TO through T4, with the arrows indicating the inheritance of information from one register
template/inheritance vector to the next. The register view, source view, and instruction view cach
comprise data structures for storing information which relates to the blocks of instructions. Figure 2
also shows an exemplary instruction block having a header and how the instruction block includes
both sources and destinations for the registers of the machine. Information about the registers
referred to by the blocks is stored in the register view data structure. Information about the sources
referred to by the blocks is stored in the source view data structure. Information about the
instructions themselves referred to by the blocks is stored in the instruction view data structure. The
register templates/inheritance vectors themselves comprise data structures storing dependency and

inheritance information referred to by the blocks.

10

WO 2014/150806 PCT/US2014/024276

[063] Figure 3 shows a diagram that illustrates an exemplary register template and how the
source view is populated by information from the register template in accordance with one

embodiment of the present invention.

[064] In the present embodiment, it should be noted that the goal of the source view is to
determine when particular blocks can be dispatched. When a block is dispatched it broadcasts its
block number to all remaining blocks. Any matches for sources of the other blocks (e.g., a compare)
causes a ready bit (e.g., or some other type of indicator) to be set. When all ready bits are set (e.g.,
AND gate) the block is ready to be dispatched. Blocks are dispatched based on the readiness of
other blocks they depend on.

[065] When multiple blocks are ready for dispatch, the oldest block is chosen for dispatch
ahead of younger blocks. For example, in one embodiment a find first circuit can be used to find the
oldest block based on proximity to a commit pointer and subsequent blocks based on relative

proximity to the commit pointer (¢.g., working on cach block’s ready bit).

[066] Referring still to Figure 3, in this example, the register template snapshot created at
the arrival of block 20 is being examined. As described above, the register template has fields for
cach register from R0 to R63. Blocks write their respective block numbers into the register template
ficlds that correspond to the block destinations. Each block reads the register fields that represent its
register sources from the register template. The first number is the block that wrote to the register

and the second number is the destination number of that block.

[067] For example, when block 20 arrives, it reads the snapshot of the register template and
looks up its own register sources in the register template to determine the latest block that wrote to
cach of its sources and populate the source view according to the updates that its destinations make
to the previous register template snapshot Subsequent blocks , will update the register template with
their own destinations. This is shown in the bottom left of Figure 3, where block 20 populates its

sources : source 1, source 2, source 3, all the way to source 8.

[068] Figure 4 shows a diagram illustrating a first embodiment for dependency
broadcasting within source view. In this embodiment, cach column comprises an instruction block.

When a block is allocated it marks (¢.g., by writing 0) in all the block’s columns where ever its

11

WO 2014/150806 PCT/US2014/024276

sources have dependency on those blocks. When any other block is dispatched its number is
broadcasted across the exact column that relates to that block. It should be noted that writing a 1 is

the default value indicating that there is no dependency on that block.

[069] When all ready bits in a block are ready, that block is dispatched and its number is
broadcast back to all the remaining blocks. The block number compares against all the numbers
stored in the sources of the other blocks. If there is a match, the ready bit for that source is set. For

example, if the block number broadcasted on source 1 equals 11 then the ready bit for source 1 of

block 20 will be set.

[070] Figure 5 shows a diagram illustrating a second embodiment for dependency
broadcasting within source view. This embodiment is organized by sources as opposed to being
organized by blocks. This is shown by the sources S1 through S8 across the source view data
structure. In a manner similar to as described with Figure 4 above, in the Figure 5 embodiment,
when all ready bits in a block are ready, that block is dispatched and its number is broadcast back to
all the remaining blocks. The block number compares against all the numbers stored in the sources
of the other blocks. If there is a match, the ready bit for that source is set. For example, if the block

number broadcasted on source 1 equals 11 then the ready bit for source 1 of block 20 will be set.

[071] The Figure 5 embodiment also shows how the compares are only enabled on the

blocks between the commit pointer and the allocate pointer. All other blocks are invalid.

[072] Figure 6 shows a diagram illustrating the sclection of ready blocks for dispatch
starting from the commit pointer and broadcasting the corresponding port assignments in accordance
with one embodiment of the present invention. The source view data structure is shown on the left-
hand side of Figure 6. The instruction view data structure is shown on the right-hand side of Figure
6. A selector array is shown between the source view and the instruction view. In this embodiment,

the selector array dispatches four blocks per cycle via the four dispatch ports P1 through P4.

[073] As described above, blocks are sclected for dispatch from the commit pointer
wrapping around to allocate pointer (e.g., trying to honor dispatching older blocks first). The

selector array is used to find the first 4 ready blocks starting from the commit pointer. It is desired

12

WO 2014/150806 PCT/US2014/024276

to dispatch the oldest ready blocks. In one embodiment, the selector array can be implemented by

using an adder tree structure. This will be described in Figure 7 below.

[074] Figure 6 also shows how the sclector array is coupled to each of the four ports that
passed through the entries in the instruction view. In this embodiment, the port couplings as port
enables, and enable one of the four ports to be activated and for that instruction view entry to pass
through down to the dispatch port and on to the execution units. Additionally, as described above,
dispatched blocks are broadcast back through the source view. The block numbers of selected
blocks for dispatch are broadcast back (up to 4). This is shown on the far right-hand side of Figure
6.

[075] Figure 7 shows an adder tree structure that is used to implement the selector array
described in Figure 6 in accordance with one embodiment of the present invention. The depicted
adder tree implements the functionality of the selector array. The adder tree picks the first four
ready blocks and mounts them to the four available ports for dispatch (e.g., read port 1 through read
port 4). No arbitration is used. The actual logic that is used to specifically enable a specific port is
explicitly shown in entry number 1. For the sake of clarity, the logic is not specifically show in the
other entries. In this manner, Figure 7 shows one specific embodiment of how the direct selection of
cach particular port for block dispatch is implemented. It should be noted however, that

alternatively, an embodiment that uses priority encoders can be implemented.

[076] Figure 8 shows exemplary logic of a selector array adder tree in greater detail. In the
Figure 8 embodiment, logic is shown for a range exceed bit. The range exceed bit ensures that no
more than four blocks will be selected for dispatch if a fifth block is ready the range exceed bit will
not allow it to be dispatched if the first four also ready. It should be noted that the sum bits are S 0
to S 3 are both used to enable the dispatch port as well as propagation to the next adder stage in the

serial implementation.

[077] Figure 9 shows a parallel implementation of the adder tree for implementing a
selector array in accordance with one embodiment of the present invention. The parallel
implementation does not forward the sum from cach adder to the next. In the parallel

implementation, cach adder uses all its necessary inputs directly using a multiple input addition

13

WO 2014/150806 PCT/US2014/024276

implementation, such as multi-input carry save adder trees. For example, the adder “X” sums all of
the previous inputs. This parallel implementation is desirable in order to execute faster compute

times (e.g., single cycle).

[078] Figure 10 shows an exemplary diagram illustrating how adder X from Figure 9 can
be implemented by using carry save adders in accordance with one embodiment of the present
invention. Figure 10 shows a structure that can add 32 inputs in a single cycle. The structure is put

together using 4-by-2 carry save adders.

[079] Figure 11 shows a masking embodiment for masking ready bits for scheduling
starting from the commit pointer and using the sclector array adders in accordance with of the
present invention. In this implementation, the selector array adders are trying to select first 4 ready
blocks to dispatch starting from the commit pointer potentially wrapping around to the allocate
pointer. In this implementation, multi-input parallel adders are used. Additionally, in this

implementation a source of these circular buffer is utilized.

[080] Figure 11 shows how the ready bits are ANDed together with each of the two masks
(individually or separately) and applied to the two adder trees in parallel. The first four are selected
by using the two adder trees and comparing against the threshold of four. The “X” marks denote
“exclude from the selection array for that adder tree” thus the “X” value is zero. On the other hand
the “Y” marks denote “do include in the selection array for that adder tree” thus the “Y” value is

one.

[081] Figure 12 shows an overview diagram of how register view entries are populated by

register templates in accordance with one embodiment of the present invention.

[082] As described above, register view entries are populated by register templates. The
register view stores snapshots of register templates for each block in sequence. When a speculation
is not valid (e.g., a branch miss-prediction), the register view has a latest valid snapshot before the
invalid speculation point. The machine can roll back its state to the last valid snapshot by reading
that register view entry and loading it into the base of the register template. Each entry of register

view shows all of the register inheritance states. For example in the Figure 12 embodiment, if the

14

WO 2014/150806 PCT/US2014/024276

register view for block F is invalid, the machine state can be rolled back to an earlier last valid

register template snapshot.

[083] Figure 13 shows a first embodiment for reduced register view footprint in accordance
with one embodiment of the present invention. The amount of memory needed to store the register
view entries can be reduced by only storing those register view template snapshots that contain
branch instructions. When an exception occurs (¢.g., a speculation is not valid, a branch miss-
prediction, etc.), the last valid snapshot can be rebuilt from the branch instruction that occurred prior
to the exception. Instructions are fetched from the branch prior to the exception down to the
exception in order to build the last valid snapshot. The instructions are fetched but they are not
executed. As shown in Figure 13, only those snapshots that include branch instructions are saved in
the reduced register view. This greatly reduces the amount of memory needed to store the register

template snapshots.

[084] Figure 14 shows a second embodiment for reduced register footprint in accordance
with one embodiment of the present invention. The amount of memory needed to store the register
view entries can be reduced by only storing a sequential subset of the snapshots (e.g., one out of
every four snapshots). The change between successive snapshots can be stored as a “delta” from an
original snapshot using a comparatively smaller amount of memory than full successive snapshots.
When an exception occurs (e.g., a speculation is not valid, a branch miss-prediction, etc.), the last
valid snapshot can be rebuilt from the original snapshot that occurred prior to the exception. The
“delta” from the original snapshot that occurred prior to the exception and the successive snapshots
arc used to rebuild the last valid snapshot. The initial original state can accumulate deltas to arrive

to the state of the required snapshot.

[085] Figure 15 shows an exemplary format of the delta between snapshots in accordance
with one embodiment of the present invention. Figure 15 shows an original snapshot and two
deltas. In one delta, R5 and R6 are the only registers being updated by B3. The rest of the entries
are not changed. In another Delta, R1 and R7 are the only registers being updated by B2. The rest

of the entries are not changed.

15

WO 2014/150806 PCT/US2014/024276

[086] Figure 16 shows a diagram of a process for creating register template snapshots upon
allocations of blocks of instructions in accordance with one embodiment of the present invention. In
this embodiment, the left-hand side of Figure 16 shows two de-multiplexers and at the top of Figure
16 is a snapshot register template. Figure 16 shows a diagram for creating a subsequent register

template from a previous register template (e.g., a serial implementation).

[087] This serial implementation shows how register template snapshots are created upon
allocation of blocks of instructions. Those snapshots serves to capture the latest register
architectural states update that are used for dependency tracking (e.g., as described in Figures 1
through 4) as well as updating the register view for handling miss-predictions/exceptions (¢.g., as

described in Figures 12 through 15).

[088] The de-mux functions by selecting which incoming source is passed on. For
example, register R2 will de-mux to a 1 at the second output, while R8 will de-mux to a 1 at the

seventh output, and so on.

[089] Figure 17 shows another diagram of a process for creating register template snapshots
upon allocations of blocks of instructions in accordance with one embodiment of the present
invention. The Figure 17 embodiment also shows the creating of a subsequent register template
from a previous register template. The Figure 17 embodiment also shows an example of register
template block inheritance. This Figure shows an example of how the register template is updated
from allocated block numbers. For example, block Bf updates R2, R8, and R10. Bg updates R1 and
R9. The dotted arrows indicate that the values are inherited from the prior snapshot. This process
proceeds all the way down to block Bi. Thus, for example, since no snapshot updated register R7,

its original value Bb will have propagated all the way down.

[090] Figure 18 shows an overview diagram of hardware for implementing the serial
implementation of creating a subsequent register template from a previous register template in
accordance with one embodiment of the present invention. The de-multiplexer is used to control a
series of two input multiplexers which of two block numbers will be propagated down to the next

stage. It can either be the block number from the previous stage or the current block number.

16

WO 2014/150806 PCT/US2014/024276

[091] Figure 19 shows an overview diagram of hardware for implementing a parallel
implementation of creating a subsequent register template from a previous register template in
accordance with one embodiment of the present invention. This Parallel implementation uses
special encoded multiplexer controls to create a subsequent register template from a previous

register template.

[092] Figure 20 shows an overview diagram of the hardware for instruction block-based
execution and how it works with the source view, the instruction view, the register templates, and

the register view in accordance with one embodiment of the present invention.

[093] In this implementation, the allocator scheduler in dispatcher receives instructions
fetched by the machine's front end. These instructions go through block formation in the manner we
described carlier. As described earlier the blocks yield register templates and these register
templates are used to populate the register view. From the source view the sources are transferred to
the register file hierarchy and there are broadcasts back to the source view in the manner described
above. The instruction view transfers instructions to the execution units. The instructions are
executed by the execution units as the sources needed by the instructions coming from the register
file hierarchy. These executed instructions are then transferred out of the execution unit and back

into the register file hicrarchy.

[094] Figure 21 shows an example of a chunking architecture in accordance with one
embodiment of the present invention. The importance of chunking is that it reduces the number of
write ports into each scheduler entry from 4 to 1 by using the four multiplexers shown, while still

denscly packing all the entries without forming bubbles.

[095] The importance of chunking can be seen by the following example (e.g., noting that
allocation of blocks in each cycle starts at the top position, in this case B0). Assuming in cycle 1,
three blocks of instructions are to be allocated to the scheduler entries (e.g., the three blocks will
occupy the first 3 entries in the scheduler). In the next cycle (e.g., cycle 2) another two blocks of
instructions are to be allocated. In order to avoid creating bubbles in the scheduler array entries, the
scheduler array entries have to be built with support for four write ports. This is expensive in terms

of power consumption, timing, area, and the like. The chunking structure above simplifies all

17

WO 2014/150806 PCT/US2014/024276

scheduler arrays to only have one write port by using the multiplexing structure before allocating to
the arrays. In the above example, the B0 in cycle two will be selected by the last mux while B1 in

cycle two will be selected by the first mux (e.g., going from left to right).

[096] In this manner, cach for entry chunk only needs one write port per entry and four read
ports per entry. There is a trade-off in cost because the multiplexers must be implemented, however
that cost is made up many times over in the savings from not having to implement four write ports

per entry, as there can be very many entries.

[097] Figure 21 also shows an intermediate allocation buffer. If the scheduler arrays cannot
accept all the chunks sent to them, then they can be stored temporarily in the intermediate allocation
buffer. When the scheduler arrays have free space, the chunks will be transferred from the

intermediate allocation buffer to the scheduler arrays.

[098] Figure 22 shows a depiction of how threads are allocated in accordance with their
block numbers and thread ID in accordance with one embodiment of the present invention. Blocks
are allocated to the scheduler array via a chunking implementation as described above. Each of the
thread blocks maintain a sequential order among themselves using the block number. The blocks
from different threads can be interleaved (e.g., Blocks for thread Th1 and blocks for thread Th2 are
interleaved in the scheduler array. In this manner, blocks from different threads are present within

the scheduler array.

[099] Figure 23 shows an implementation of a scheduler using thread pointer maps that
point to physical storage locations in order to manage multithreaded execution in accordance with
onc embodiment of the present invention. In this embodiment, management of the threads is
implemented through the control of the thread maps. For example here Figure 23 shows thread 1
map and thread 2 map. The maps track the location of the blocks of the individual thread. The
entries in the map .2 physical storage locations the entries in the map are allocated to blocks
belonging to that thread. In this implementation, cach thread has an allocation counter that counts
for both threads. The overall count cannot exceed N divided by 2 (e.g., exceeding space available).

The allocation counters have adjustable thresholds in order to implement fairness in the allocation of

18

WO 2014/150806 PCT/US2014/024276

the total entries from the pool. The allocation counters can prevent one thread from using all of the

available space.

[0100] Figure 24 shows another implementation of a scheduler using thread based pointer
maps in accordance with one embodiment of the present invention. Figure 24 shows a relationship
between the commit pointer and the allocation pointer. As shown, cach thread has a commit pointer
and an allocate pointer the arrow shows how reality pointer for thread 2 can wrap around the
physical storage allocating blocks B1 and B2, but it cannot allocate block B9 until the commit
pointer for thread 2 moves down. This is shown by the position of the commit pointer of thread 2
and the strikethrough. The right-hand side of Figure 24 shows a relationship between the allocation

of blocks and the commit pointer as it moves around counterclockwise.

[0101] Figure 25 shows a diagram of a dynamic calendar-based allocation of execution
resources to threads in accordance with one embodiment of the present invention. Fairness can be
dynamically controlled using the allocate counters based on the forward progress of cach thread. If
both threads are making substantial forward progress, then both allocation counters are set to the
same threshold (c.g., 9). However if one thread makes slow forward progress, such as suffering
from an L2 cache miss or such events, then the ratio of the threshold counters can be adjusted in the
favor of the thread that is still making substantial forward progress. If one thread is stalled or
suspended (e.g., is in wait or spin state waiting on an OS or IO response) the ratio can be completely
adjusted to the other thread with the exception of a single return entry that is reserved for the

suspended thread to signal the release of the wait state.

[0102] In one embodiment, the process starts off with a ratio of 50%: 50%. Upon the L2
cache miss detection on block 22, the front end of the pipeline stalls any further fetch into the
pipeline or allocation into the scheduler of thread 2 blocks. Upon retirement of thread 2 blocks from
the scheduler, those entries will be made available for thread 1 allocation until the point where the
new dynamic ratio of thread allocation is achieved. For example, 3 out the recently retired thread 2
blocks will be returned to the pool for allocation to thread 1 instead of thread 2, making the thread 1
to thread 2 ratio 75% : 25%.

19

WO 2014/150806 PCT/US2014/024276

[0103] It should be noted that a stall of thread 2 blocks in the front of the pipeline might
require flushing those blocks from the front of the pipeline if there is no hardware mechanism to

bypass them (e¢.g., by thread 1 blocks by passing the stalled thread 2 blocks).

[0104] Figure 26 diagrams a dual dispatch process in accordance with one embodiment of
the present invention. Multi- dispatch generally encompasses dispatching a block (having multiple
instruction within) multiple times such that different instructions with the block can execute on each
pass through the execution units. One example would be a dispatch of an address calculation
instruction followed by a subsequent dispatch that consumes the resulting data. Another example
would be a floating point operation, where the first part is executed as fixed point operation and the
second part is executed to complete the operation by performing rounding, flag
generation/calculation, exponent adjustment or the like. Blocks are allocated, committed and retired

atomically as a single entity.

[0105] A main benefit of multi-dispatch is that it avoids allocating multiple separate blocks
into the machine window, thereby making the machine window effectively larger. A larger machine

window means more opportunitics for optimization and reordering.

[0106] Looking at the bottom left the Figure 26, there is an instruction block depicted. This
block cannot be dispatched in a single cycle because there is latency between the load address
calculation and the load returning data from the caches/memory. So this block is first dispatched
with its intermediate result being held as a transient state (its result is being delivered on the fly to
the second dispatch without being visible to the architectural state). The first dispatch sends the two
components 1 and 2 that are used in the address calculation and the dispatch of the LA. The second
dispatch sends components 3 and 4 which are the execution parts of the load data upon the load

returning data from the caches/memory.

[0107] Looking at the bottom right of Figure 26 there is a floating point multiply accumulate
operation depicted. In the case where the hardware does not have sufficient bandwidth of incoming
sources to dispatch the operation in a single phase, then dual dispatch is used, as the multiply

accumulate figure shows. The first dispatch is a fixed point multiply as shown. The second

20

WO 2014/150806 PCT/US2014/024276

dispatch is a floating point addition rounding as shown. When both of these dispatched instructions

execute, they effectively perform the floating point multiply/accumulate.

[0108] Figure 27 diagrams a dual dispatch transient multiply-accumulate in accordance with
onc embodiment of the present invention. As shown in Figure 27, the first dispatch is the integer 32
bit multiply, and the second dispatch is the integer accumulate add. State communicated between
the first dispatch and the second dispatch (the result of the multiply) is transient and not
architecturally visible. The transient storage in one implementation can hold results of more than
onc multiplier and can tag them to identify the corresponding multiply accumulate pair, thercby
allowing intermix of multiple multiply accumulate pairs being dispatch in an arbitrary fashion (e.g.,

interleaved, etc.).

[0109] Note that other instructions can use this same hardware for their implementation

(c.g., floating point, ctc.).

[0110] Figure 28 diagrams a dual dispatch architecturally visible state multiply-add in
accordance with one embodiment of the present invention. The first dispatch is the single precision
multiply, and the second dispatch is the single precision add. In this implementation, state
information communicated between the first dispatch and the second dispatch (e.g., the result of the

multiply) is architecturally visible since this storage is an architecture state register.

[0111] Figure 29 shows an overview diagram of a fetch and formation of instruction blocks
for execution on grouped execution units process in accordance with one embodiment of the present
invention. Embodiments of the present invention utilize a process whereby instructions are fetched
and formed as blocks by the hardware or dynamic converter/JIT. The instructions in the blocks are
organized such that a result of an early instruction in the block feeds a source of a subsequent
instruction in the block. This is shown by the dotted arrows in the block of instructions. This
property enables the block to execute efficiently on the stacked execution units of the execution
block. Instructions can also be grouped even if they can execute in parallel, such as if they share the

same source (not shown explicitly in this figure).

[0112] One alternative to forming the blocks in hardware is to form them in software

(statically or at runtime) where instruction pairs, triplets, quads, etc., are formed.

21

WO 2014/150806 PCT/US2014/024276

[0113] Other implementations of instruction grouping functionality can be found in

commonly assigned US patent 8,327,115.

[0114] Figure 30 shows an exemplary diagram of instruction grouping in accordance with
onc embodiment of the present invention. In the Figure 30 embodiment two instructions arec shown
with a third auxiliary operation. The left-hand side of Figure 31 instruction block comprising an
upper half block/1 slot and a lower half block/1 slot. The vertical arrows coming down from the top
indicates sources coming into the block while the vertical arrows going down from the bottom
indicate destinations going back to memory. Proceeding from the left-hand side of Figure 3 towards
the right-hand side, different instruction combinations that are possible are illustrated. In this
implementation, cach half block can receive three sources and can pass on two destinations. OP1
and OP2 are normal operations. AuxiliaryOPs are auxiliary operations such as a logical, a shift, a
move, a sign extend, a branch, etc. The benefit of dividing the block into two halves is to allow the
benefit of having each half dispatch on its own independently or otherwise together as one block
dynamically (either for port utilization or because of resource constrains) based on dependency
resolution, thus having better utilization of execution times, at the same time having the 2 halves
correspond to one block allows the machine to abstract the complexity of 2 half blocks to be

managed like one block(i.c. at allocate and retirement).

[0115] Figure 31 shows how half block pairs within a block stack maps onto the execution
block units in accordance with one embodiment of the present invention. As shown in the execution
block, each execution block has two slots, slot 1 and slot 2. The objective is to s map the block onto
the execution units such that the first half block executes on slot 1 and the second half block
executes on slot 2. The objective is to allow the 2 half blocks to dispatch independently if the
instruction group of each half block does not depend on the other half. The paired arrows coming
into the execution block from the top are two 32-bit words of a source. The paired arrows leaving
the execution block going down are two 32-bit words of a destination. Going from left to right of
Figure 31, different exemplary combinations of instructions are shown that are capable of being

stacked onto the execution block units.

[0116] The top of Figure 31 summarizes how the pairs of half blocks execute in a full block
context or any half block context. Each of the s Execution blocks have two slots/half blocks and

22

WO 2014/150806 PCT/US2014/024276

cach one of the half bocks/execution slots executes either a single, paired or triplet grouped
operations. There are four types of block execution types. The first is parallel halves (which allows
cach half block to independently execute once its own sources are ready but the 2 half blocks can
still execute as one block on one execution unit if both halves are ready at the same time. The
second is atomic parallel halves (which refers to half blocks that can execute in parallel because
there is no dependency between the 2 halves but they are forced to execute together as one block
because the resource sharing between the 2 halves make it preferred or necessary for the two halves
to execute together atomically within the constraint of the resources available in each execution
block). The third type is atomic serial halves s (which requires the first half to forward data to the
second half, through transient forwarding with or without internal storage). The fourth type is
sequential halves (as in dual dispatch) where the 2™ half depend on the first half and is dispatched
on a later cycle than the first one and forwards the data through external storage that are tracked for

dependency resolution, similar to the dual dispatch case..

[0117] Figure 32 shows a diagram depicting intermediate block results storage as a first level
register file in accordance with one embodiment of the present invention. Each group of registers
represent a block of instructions (representing two half blocks) in which both 32 bit results as well
as 64 bits results can be supported by using two 32 bit registers to support one 64 bit register. The
storage per block assumes a virtual block storage, which means two half blocks from different
blocks can write into the same virtual block storage. Combined results’ storage of two half blocks

that make up one virtual block storage.

[0118] Figure 33 shows an odd/even ports scheduler in accordance with one embodiment of
the present invention. In this implementation, the result storage is asymmetrical. Some of the result
storage is three 64 bit result registers per half block while others are one 64 bit result register per
half block, however alternative implementation can use symmetrical storage per half block and
additionally could also employ 64-bit and 32-bit partition as described in Figure 32. In these
embodiments, storage is assigned per half block, as opposed to per block. This implementation

reduces the number of ports needed for dispatch by using them as odd or even.

[0119] Figure 34 shows a more detailed version of Figure 33 where four execution units are

shown receiving results from the scheduler array and writing outputs to a temporary register file

23

WO 2014/150806 PCT/US2014/024276

segment. The ports are attached at even and odd intervals. The left side of the scheduling array

shows block numbers and the right side shows half block numbers.

[0120] Each core has even and odd ports into the scheduling array, where each port is
connected to an odd or even half block position. In one implementation, the even ports and their
corresponding half blocks can reside in a different core than the odd ports and their corresponding
half blocks. In another implementation, the odd and even ports will be distributed across multiple
different cores as shown in this figure. As described in the prior earlier filed commonly assigned
patent application “EXECUTING INSTRUCTION SEQUENCE CODE BLOCKS BY USING
VIRTUAL CORES INSTANTIATED BY PARTITIONABLE ENGINES” by Mohammad
Abdallah, filed on March 23, 2012, serial number 13428440, which is incorporated herein in its

entirety, the cores can be physical cores or virtual cores.

[0121] In certain types of blocks, one half of a block can be dispatched independently from
the other half of the block. In other types of blocks, both halves of a block need to be dispatched
simultancously to the same execution block units. In still other types of blocks, the two halves of a

block need to be dispatched sequentially (the second half after the first half).

[0122] Figure 35 shows a diagram depicting guest flag architecture emulation in accordance
with one embodiment of the present invention. The left-hand side of Figure 35 shows a centralized
flag register having five flags. The right-hand side of Figure 35 shows a distributed flag architecture

having distributed flag registers wherein the flags are distributed amongst registers themselves.

[0123] During architecture emulation, it is necessary for the distributed flag architecture to
emulate the behavior of the centralized guest flag architecture. Distributed flag architecture can also
be implemented by using multiple independent flag registers as opposed to a flag ficld associated
with a data register. For example, data registers can be implemented as R0 to R15 while
independent flag registers can be implemented as FO to F3. Those flag registers in this case are not

associated directly with the data registers.

[0124] Figure 36 shows a diagram illustrating the front end of the machine the scheduler and
the execution units and a centralized flag register in accordance with one embodiment of the present

invention. In this implementation, the front end categorizes incoming instructions based on the

24

WO 2014/150806 PCT/US2014/024276

manner in which they update guest instruction flags. In one embodiment, the guest instructions are
categorized into 4 native instruction types, T1, T2, T3, and T4. T1-T4 arc instruction types that
indicate which flag ficlds that each guest instruction type updates. Guest instruction types update
different guest instruction flags, based on their type. For example, logical guest instructions update

T1 native instructions.

[0125] Figure 37 shows a diagram of a centralized flag register emulation process as
implemented by embodiments of the present invention. The actors in Figure 37 comprise a latest
update type table, a renaming table extension, physical registers, and distributed flag registers.

Figure 37 is now described by the flowchart of Figure 38.

[0126] Figure 38 shows a flowchart of the steps of a process 3800 of emulating centralized

flag register behavior in a guest setting.

[0127] In step 3801, the front end/dynamic converter (hardware or software) categorizes
incoming instructions based on the manner in which they update guest instruction flags. In one
embodiment, the guest instructions are categorized into four flag architectural types, T1, T2, T3, and
T4. T1-T4 are instruction types that indicate which flag ficlds that each guest instruction type
updates. Guest instruction types update different guest flags, based on their type. For example,
logical guest instructions update T1 type flags, shift guest instructions update T2 type flags,
arithmetic guest instructions update T3 type flags, and special guest instructions update type T4
flags. It should be noted that guest instructions can be architectural instruction representation while
native can be what the machine internally executes (e.g., microcode). Alternatively, guest

instructions can be instructions from an emulated architecture (e.g., x86, java, ARM code, etc.).

[0128] In step 3802, the order in which those instruction types update their respective guest
flags is recorded in a latest update type table data structure. In one embodiment, this action is

performed by the front end of the machine.

[0129] In step 3803, when those instruction types reach the Scheduler (the in-order part of
the allocation/renaming stage), the scheduler assigns an implicit physical destination that
corresponds to the architectural type and records that assignment in a renaming/mapping table data

structure.

25

WO 2014/150806 PCT/US2014/024276

[0130] And in step 3804, when a subsequent guest instruction reaches the
allocation/renaming stage in the scheduler, and that instruction wants to read guest flag fields, (a)
the machine determines which flag architectural types need to be accessed to perform the read. (b)
if all needed flags are found in the same latest update flag type (c.g., as determined by the latest
update type table), then the corresponding physical register (e.g., that maps to that latest flag type) is
read to obtain the needed flags. (c) if all needed flags cannot be found in a same latest update flag
type, then cach flag needs to be read from the corresponding physical register that maps to the
individual latest update flag type.

[0131] And in step 3805, cach flag is being read individually from the physical register that
holds its latest value that was lastly updated, as tracked by the latest update flag type table.

[0132] It should be noted that if a latest update type is inclusive of another type then all then

all subset types have to map to the same physical registers of the super set type.

[0133] At retirement, that destination flag ficlds are merged with a cloned centralized/guest
flag architecture register. It should be noted that the cloning is performed due to the fact that the
native architecture utilizes a distributed flag architecture as opposed to a single register centralized

flag architecture.
[0134] Examples of instructions that update certain flag types:
[0135] CF,OF,SF,ZR — arithmetic instruction and load/write flags instructions
[0136] SF, ZF and conditional CF — logicals and shifts
[0137] SF, ZF — moves/loads, EXTR, some multiplics
[0138] ZF — POPCNT and STREX]P]
[0139] GE — SIMD instructions ???
[0140] Examples of conditions/predications that read certain flags:

[0141] 0000 EQ Equal Z==

26

WO 2014/150806 PCT/US2014/024276

[0142] 0001 NE Not equal, or Unordered Z==10

[0143] 0010 CS b Carry set, Greater than or equal, or Unordered C==1
[0144] 0011 CC ¢ Carry clear, Less than C==

[0145] 0100 MI Minus, negative, Less than N ==

[0146] 0101 PL Plus, Positive or zero, Greater than or equal to, Unordered N ==00110 VS
Overflow, Unordered V ==

[0147] 0111 VC No overflow, Not unordered V ==0

[0148] 1000 HI Unsigned higher, Greater than, Unordered C==1and Z==0

[0149] 1001 LS Unsigned lower or same, Less than or equal ==0orZ==

[0150] 1010 GE Signed greater than or equal, Greater than or equal N ==V

[0151] 1011 LT Signed less than, Less than, Unordered N !=V

[0152] 1100 GT Signed greater than, Greater than Z==0and N==V

[0153] 1101 LE Signed less than or equal, Less than or equal, Unordered Z==1orN!=V

[0154] 1110 None (AL), Always (unconditional), Any flag sct to any value.

[0155] The foregoing description, for the purpose of explanation, has been described with
reference to specific embodiments. However, the illustrated discussions above are not intended to
be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and
variations are possible in view of the above teachings. Embodiments were chosen and described in
order to best explain the principles of the invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and various embodiments with various

modifications as may be suited to the particular use contemplated.

27

10

15

20

25

30

WO 2014/150806 PCT/US2014/024276

CLAIMS

What is claimed is:

1. A method for populating a register view data structure by using register template
snapshots, comprising:

receiving an incoming instruction sequence using a global front end;

grouping the instructions to form instruction blocks;

using a plurality of register templates to track instruction destinations and instruction sources
by populating the register template with block numbers corresponding to the instruction blocks,
wherein the block numbers corresponding to the instruction blocks indicate interdependencies
among the blocks of instructions;

populating a register view data structure, wherein the register view data structure stores
destinations corresponding to the instruction blocks as recorded by the plurality of register
templates; and

using the register view data structure to track a machine state in accordance with the

execution of the plurality of instruction blocks.

2. The method of claim 1, wherein the register view data structure comprises a scheduler

architecture.

3. The method of claim 1, wherein information about registers referred to by the blocks is

stored in the register view data structure.

4. The method of claim 1, wherein information about sources referred to by the blocks is

stored in a source view data structure.

5. The method of claim 1, wherein information about instructions referred to by the blocks

is stored in an instruction view data structure.

28

10

15

20

25

30

WO 2014/150806 PCT/US2014/024276

6. The method of claim 1, wherein register templates comprise inheritance vectors that
further comprise data structures storing dependency and inheritance information referred to by the

blocks.

7. A non-transitory computer readable media having computer readable code which when
executed by a computer system causes the computer system to perform a method for populating a
register view data structure by using register template snapshots, comprising:

receiving an incoming instruction sequence using a global front end,

grouping the instructions to form instruction blocks;

using a plurality of register templates to track instruction destinations and instruction sources
by populating the register template with block numbers corresponding to the instruction blocks,
wherein the block numbers corresponding to the instruction blocks indicate interdependencics
among the blocks of instructions;

populating a register view data structure, wherein the register view data structure stores
destinations corresponding to the instruction blocks as recorded by the plurality of register
templates; and

using the register view data structure to track a machine state in accordance with the

execution of the plurality of instruction blocks.

8. The computer readable media of claim 7, wherein the register view data structure

comprises a scheduler architecture.

9. The computer readable media of claim 7, wherein information about registers referred to

by the blocks is stored in the register view data structure.

10. The computer readable media of claim 7, wherein information about sources referred to

by the blocks is stored in a source view data structure.

11. The computer readable media of claim 7, wherein information about instructions

referred to by the blocks is stored in an instruction view data structure.

29

10

15

20

25

30

WO 2014/150806 PCT/US2014/024276

12. The computer readable media of claim 7, wherein register templates comprise
inheritance vectors that further comprise data structures storing dependency and inheritance

information referred to by the blocks.

13. computer system having a processor coupled to a memory, the memory having computer
readable code which when executed by the computer system causes the computer system to perform
a method for populating a register view data structure by using register template snapshots,
comprising:

receiving an incoming instruction sequence using a global front end,

grouping the instructions to form instruction blocks;

using a plurality of register templates to track instruction destinations and instruction sources
by populating the register template with block numbers corresponding to the instruction blocks,
wherein the block numbers corresponding to the instruction blocks indicate interdependencics
among the blocks of instructions;

populating a register view data structure, wherein the register view data structure stores
destinations corresponding to the instruction blocks as recorded by the plurality of register
templates; and

using the register view data structure to track a machine state in accordance with the

execution of the plurality of instruction blocks.

14. The computer system of claim 13, wherein the register view data structure comprises a

scheduler architecture.

15. The computer system of claim 13, wherein information about registers referred to by the

blocks is stored in the register view data structure.

16. The computer system of claim 13, wherein information about sources referred to by the

blocks is stored in a source view data structure.

17. The computer system of claim 13, wherein information about instructions referred to by

the blocks is stored in an instruction view data structure.

30

10

15

WO 2014/150806 PCT/US2014/024276

18. The computer system of claim 13, wherein register templates comprise inheritance
vectors that further comprise data structures storing dependency and inheritance information

referred to by the blocks.

19. A method for populating a source view data structure by using register template
snapshots, comprising:

receiving an incoming instruction sequence using a global front end,

grouping the instructions to form instruction blocks;

using a plurality of register templates to track instruction destinations and instruction sources
by populating the register template with block numbers corresponding to the instruction blocks,
wherein the block numbers corresponding to the instruction blocks indicate interdependencics
among the blocks of instructions;

populating a source view data structure, wherein the source view data structure stores
sources corresponding to the instruction blocks as recorded by the plurality of register templates;
and

determining which of the plurality of instruction blocks are ready for dispatch by using the

populated source view data structure.

31

WO 2014/150806

RO R1T RZ2 RS

1/38

PCT/US2014/024276

Block/group formation

Header

Body

R5

R7

R63

1 2 7 11
z‘l\

12

11

Block number ofj

the block that
wrote latest to this
register

F:

Register template

PCT/US2014/024276
2/38

WO 2014/150806

AL

10}O9A BOUBIIBYLI
jeye|duisy 19siBay

4

J0199A gouelIayUL
jorejdwioy Joisifoy

101994 BoUBIHBYUL
/eyeidwisy isisibay

i

101084 BoUBIIBYUI
/ore|dwiey IaysiBay

i

10}09A BoueIBYUI
Joyejduwioy Joisiboy

M3IA uolondisul MBSIA 80JN0S
suoljeussp
[T T T T T T T T T T T T T T T I T T T T 1
|
| i
1
, Xiyew I
| x 1 882IN0s
W uoljonJysulpoolg/dnod uononisuy
1
[|
[
b]
Japeasy

MaIn Ja)sibay

PCT/US2014/024276

WO 2014/150806

3/38

¢ b4

tu gu cu Lu
o_ﬁmc_ﬁwwm_ oneunss oneunssd oneunsaq
| | |

€H'ed: ¢ uanonds|
Sy £ uonpnasul
LY'GY z uononasuj
gy /d | uonongsul

. .

¥00ig

aje|dwsy
1915165y

¥ uoleunssq ¢ uoneunseq g uoneunsed | uope

P uooniIsul: > €y

€ uononiisul = 8y

cuomnisul > /o

| UDganASUl >0y

L1 X909

9d

1Z do0|g
L L ESH ey pe iz bigk T2 (2L
€ |84 oyl py Iy o | oy | oy |0OFOH
61 o0|g
g1 soolg
3 A 9 S 4 ¢ 4 l
Q o o o ° 5]] Q
al o) | feX | ol al al al 2l
n n n n n n n n
Q o) 0 (o] o] [o] [o] [¢]
S S S S S S S S
19181681 s1Y) 0] 15918]
8)0IM ey} Y00|q
\ oy} Jo Joquinu o0|g
: &
\\\\\\ LiGL zi10 Lzl e mLbl ¢r v Lyl
gy/ 24 Gd v ey 2d 1Y 0¥
0¢ YM90Iq jo

|eAlse ay) e Joysdeus
aje|dwa} Jojsibay

paje|indod sI MaIA 821N0S
oyl moy pue a)e|dwa) Ja)sibay

PCT/US2014/024276

WO 2014/150806

4/38

 "Bi4

/9 89 .19 zi9 ¢

>>>>>>>>>>>>>>>>>>>>>>

(Juawipoqua }s11}) MBIA 821n0Ss UIyiIM Buijseopeaolq Aouspuada(]

ceolg
L€ %00I9

0 d01d

820id
23901
990|9
S 20|19
P 300id
€3901g9
¢ 20id
| ¥20/19

WO 2014/150806 PCT/US2014/024276
5/38

Dependency broadcasting within source view (Second embodiment)

Dispatch Broadcasting

YYvvyvyvyy

S§2 83 S4 S5 S6 S7 S8

Block 1

Block 2

Commit pointer
» Block 3

Block 4

B2 B1 B3 | B1
Block 5

Block 6

Block 7

Block 8

The compares are only enabled on the
blocks between the commit pointer and the I
allocate pointer. All other blocks are

invalid. *

R7 | R2 | R5
Block 20 12| 7.2 |12:1 \ \

11:4

Allocate pointer
» Block 31

y

Block 32

Fig. 5

PCT/US2014/024276

WO 2014/150806

6/38

S}iun UoHNoBXS

A

spod yoyedsiq

A A A

9 ‘b4

84 7
m 1
L& -
1q
* Apeey
-
7 Ocd na
Apeoy
_ Aelie
_ J0108j93
A
£4d Flle]
Kpeoy
za |- B - -
g ———————— 1q
A
o peay
d ed zd 1d

MaIA LoloNISU|

88 IS 9S8 S8 S €8 ¢85 IS

Bunseopeolg yojedsiq

cg olg

1€ 3001

Qc xo0I1d

8 ¥o0Ig
£ %009
9>poig
G y0|g

¥ 1ooig

£ 39019 ¢
Jsyuod pwwion

¢ g

I >oolg

WO 2014/150806 PCT/US2014/024276

7/38
Read Read Read Read
Port 1 Port 2 Port3 Port4
| L |
Ready bit > I ! | |
Y L N Lo
* | l l | Entry O
| | I | |
| | | |
| | (| |
Portread: ¥ 1] 1
enable I
Ready bit > 72@3—F Port read I I I
T ! enable ! I l
* I I Portread I I Entry 1
1 o enable
I ! ! ! Portread l
! ! ! enable I
1 I I i
Ready bit >] | | |
O . | L |
I I I I Entry 2
| | | |
| | | |
| | I I
Re%bn“h - | | | !
. ! | I I
| | | | Entry 3
| | I | |
| | I |
| | | |
Ready bit | | | |
+ l I I l Entry 4
I | | I
| | | |
| | | |
. | | | |
Ready hit
. | | | |
+ | | | | Entry 5
| | I |
I ! I I
1 | 1 1
3] 1 |]
Ready bit I I I I
| | | |
: I I I I Entry 6
| | I |
| | I |
| [| [: §
1 1 | 1
Ready bit > | | I |
-, | 1
l | | l Entry 7
| | | |
| | I |
| | | |
by

Fig. 7

WO 2014/150806 PCT/US2014/024276
8/38

Direct selection of each particular
port with Range Exceed Bit

Selector array Range exceed bit

e

e

t
Ready bit : AL—FD Port 1
sg
oLl s |]|
t
t
t

Port 2

t s

53
Sum 03 ,
l & |
|
I

Port:3

Port 4

Ready bit

- | >

Ready bit P/ZD
- o s L e

Ready bit

v]

X

THOT o AT A

Fig. 8

WO 2014/150806 PCT/US2014/024276
9/38

Parallel implementation of the
adder tree

Adder X

Fig. 9

WO 2014/150806 PCT/US2014/024276
10/38

Carry save adder parallel
implementation of an exemplary
adder (x)

Fig. 10

WO 2014/150806

Allocate pointer (next to
allocate)

PCT/US2014/024276
11/38

Masking ready bits for scheduling starting
from the commit pointer using the selector
array adders

Commit pointer (next to
commit)

Mask all Mask all
RAybils o ater comit
! X * Y +
0 X * Y +
1 X * Y +
0 0 + 0 +
0 0 + 0, +
Source View 0 v - x|+
Circular Buffer] y . . .
0 Y + X ¥
1 Y * X +
0 Y + X ¥
1 Y + X +
I

Fig. 11

WO 2014/150806 PCT/US2014/024276
12/38

Register view entries populated by register
templates

Register view

R10 RO R8 R7 Ré6 R5 R4 R3 R2 R1 RO

Block F register

template snap shot

10 1 0
K J H G E D o B A Register template
snhap shot
Block F
y # L/ Yy Vv v # v

e F | J F L H | B | El ol F |l B | A
R8
R10

Fig. 12

WO 2014/150806

13/38

Reduced register view first embodiment

Register view

PCT/US2014/024276

R10 ¢ R7” R6 R5 R4 R3 R2 RI RO
\\1 ﬁl\ Br
| |
\‘ \‘ Reduced register view
° \ \ R7 R6 R5 R4 R3 Rz R RO
\ \ \ B \ \
. a0
l‘ \\ Br \l Ik
1 L
\
ol |
L
L
L
Br \ \
L
10 0
Register template
: : I : : I A snap shot
Block F
v :
R2
R8 F J F H G J A
R10

Fig. 13

WO 2014/150806
14/38

Reduced register view second embodiment

Register view

PCT/US2014/024276

R10 <-ommes R7 Re R5 R4 RZ R2 Ri RO
\ \
\ \ o
\ Reduced register view
\y R” R6 R5 R4 R3 R2 Rl RO
| ! | \ } I 1
‘ !) i | | |
\ \ £ Delta
| \ T |
} q £\ Delte
\ \ I \ | \ |
\‘ »: 2 pet
| | o T i
\ \ 22 Delt
\ \
10 1
K 3 H G E b c B A Register template
snap shot
Block F

y # y \ 4 ‘

R2 F J F H G I E D F B A

R8

R10

Fig. 14

PCT/US2014/024276

WO 2014/150806

15/38

pabueyo jou ale
saLus 8y} joisal 8yl ‘€d
Aq pajepdn Buleq sisisibal
Ajuo sy ale gy pue Gy

Gl ‘B4

0d Ly 2y oY v od o

Joysdeus [eubuo

€9

pabueyo jou ale
saLjus 8y} joisal 8yl ‘zg
Aq paepdn buleq sisisibal
Ajuo sy ate /Y pue |y

sjoysdeus usamiaq elsp sy 10 1eW.Io

WO 2014/150806

PCT/US2014/024276

16/38

Creating register template snapshots
upon allocation of blocks of

instructions

—

Bnap shot register template

Block number

/ 4 4 y
2:1 2.1 2:1 2:1 21 e >
. B
e ’ \ i i i i
R2 > 5
v 1
o e
R10 : mux 2
3
4
,,, >
Block humber
4 L A A 4
2:1 2:1 2:1 2:1 2:1]
2 1
bits
R2 3
input 1
R8 ——® =
R10 a mux 2
3
4
,,, >

Fig. 16

PCT/US2014/024276

WO 2014/150806

17/38

JANNIE

g ig
>0l 'g
A A A A A A A A A >y
ugd ug
ug
A A # A A # A A A 4 A 3o
|
bg bg
>ed| P8
A A A A A A A A A N
|
g iq ig
>0Ly E
S8y
A » # A A A A A A >z
i |
pd ed | od qg | od | sg | og g¢ - pg | da | eg
0d 1y Y €Y vd sd4 94 yy g4 6d oLy

WO 2014/150806 PCT/US2014/024276
18/38

Serial implementation

Snapshot from previous stage

B#
Rx o——1 21 | :
Rb 3
4
Ro| Dmux |®
N
10 ‘1 21

Snapshotto the next stage

Fig. 18

PCT/US2014/024276

WO 2014/150806

19/38

ug

-

ol

oo E > x

ol

oo E > x

-0l
>9d

>6d
->c¢d

ug

ol

oo E > x

->6d
-1y

bg

ol

oo E > x

-0l
->8yd
->c¢d

¥d

joysdeus snoirsld

vy € ¢

3

#3001d

PCT/US2014/024276

WO 2014/150806

20/38

ALE

MOIA Jolsiboy

AT
QL

sajejdwasy 19)s1

uonewlo} 3o0|

1
1
S)UN UoNooxy | !
!
_
i
MBIA UONONIISU|
$82IN0S
suooNASU|
¢ syo0ig
N
\
\
1
I
Aupieliay W
oy} iaysibay \,
\
7
\\
IN02IN0OS
S$824n0S siseopeolg

uonNo8xa Paseq o0|g

yolo4

WA B

uonis
[OBa y 9ZIs Jo syunyo Ja|npayos y PO\ % JolNq 20|

WO 2014/150806

22/38

PCT/US2014/024276

Depiction of how threads are allocated in accordance
with their block numbers and thread 1D

Fetch

Block Formation

Register View

Fig.

Bx: Th1

By:

Bz

- Tht

: Th2

- Tht

:Th2

- Tht

22

Scheduler Array

PCT/US2014/024276

WO 2014/150806

23/38

AL

dew g peayyl

8
g

o /

0

abeloig |edisAyd

dew | peasyyl

€g
cd

33

€g
cd

33

suoleoo| abeuo)s |eoisAyd o] juiod jey) sdew
Jajuiod pealy) bBuisn 1ainpayos Jo uonejuswasdwi suQ

'z Aq pepinlp
N paaoxa jouued spealy
U}0g 10} SI8jun09 8}ed0||y

7 2yl 48IUN0y 21B00|Y

7 LY.L JoUno5 91800y

sdew pealy} sy}
Jo [o53u0D 8y} ybnouyy pajuswsidwi
S| speaJy} ayj Jo Juswabeuepy

PCT/US2014/024276

WO 2014/150806

24/38

e

LYL Jejuiod puiwod

{ 0l8 eyl

69 ¢yl

84 ¢yl

82Ul

LY Jayuiod ajeooly

949 ¢yl

Jajuiod ywwod

Gg ¢yl

¥4 eyl

£d cyul

ZuL Jeuod ywwod

—

c8cHt

abeloig [eoIsAyd

sjuiod Jajulod paseq

oglyL .
ZuL Jeuiod sjecoly

qa' Lyl

‘gle ale

$J8}UN0D Y0 ‘soue)isul sy}

$9:LUL Ul ‘6 pe39X8 JOUURD Spesi)

. 410g 10} SISUNOD B8}BJ0|Y
cd'lulL

7 CY.L 49UN05 91e00(ly

7 LY.L Jounog 91800l

peaJy) Buisn Jajnpayos Jo uonejuswsjdwi sauQ

PCT/US2014/024276

WO 2014/150806

25/38

Ge "bi-

Z peaiyL

| peaiyL

\\rpmmw_‘w_‘vw.‘

7 ZUL 181unog) ajedofy

\\I\|¢ L
SSIW 8YOED 27

7 Y.L J81UnoD 81200y

vg

cg uoled

s

Ld
| peady_ Jejuiod puiwon

e

SpeaJy) 0} S92IN0Ssal
UOIND8Xa JO UONEDO||. JIe} PaSE(Jajunod dlWeuA(

PCT/US2014/024276

WO 2014/150806

26/38

-
yojedsip puodsg

Buipunod

9¢

b1

puE Uonippe
juiod Buiyeo|y

-

\/

Ajdnjnuu

BNINDoe
JAdnini
uiod buneoiy

yojedsip puoosg

juiod paxiy

yoredsip isii4

sayoeo /11

yonnosxs
Juonelsush sssippy

ol 1e1siboy

J
A\\\ Nwm_u UNOl_ \
abeloys dwa | H \

yoyedsip 1siid

abeuoys dws H \

uonelado Buipunoy

Adninw juiod paxiq

A|\\ SS8.Ippe peo

yoyedsiqg [eng

(7)

()

GY ‘P ang 5 oY

dweli gl +d

[5o ‘ex] peo1 > vy

(z) Wo'ed] v1->dws] v

(1)

241" ANV > ¢4

30019

Kidninpy
Juiog buneol4

eled
peo

WO 2014/150806 PCT/US2014/024276
27/38

Dual dispatch transient Multiply-Accumulate

First dispatch Second dispatch

EXE 32 32

Multiply

Transient 64
storage

Fig. 27

WO 2014/150806 PCT/US2014/024276
28/38

Dual dispatch architecturally visible state

Multiply-Add
First dispatch Second dispatch
32 bit 32 bit 32 bit
(A*B+C)

Architecture state register ‘ !
32 32
I

32% 32% EXE 32 | 32
| SPAdder
| Single
precision
3 Multipy
32

Fig. 28

PCT/US2014/024276

WO 2014/150806

29/38

Jun uopnoaxg

Jun uopnoaxg

jun uonnoexg

Jun uopnoaxg

%00|q UOIIN28XT

6¢ ‘b1

Wit 2 $lus > 8y

24 ‘9 PPV > 2

WLl ‘€ PPY > 9

24 1d PPY > €Y

suonoNJsul Jo %00ig

syun uonnoaxa padnolb uo uoIINO8Xa 10}
S)00|g UOoIONISUI JO UOIBWIO) pue Yoja) ay |

PCT/US2014/024276
30/38

WO 2014/150806

0¢ "6

(Butpooua 1s8(/0ig) uoneunseq p, € : suoneunsepg
O)e ‘paieys ‘sjeipawiwl Si 9IS i : S82INO0S ¢

>

dOAelixny
1dO

A ¢dO
LdO ¢do . dOAselxn
OAselIxny +dO é ;

ISR RIS Y RS R Y s B et BTSN A Y §) m\w‘“a} sy’ \..,mxm 4

% 4 ek I IR LS EW] Y8 Gored b Y geck 48 %% %, ocl] 4

WG LA et LAATILARE AL A
" “ “errs ‘)

dnoib uonoanasy

PCT/US2014/024276

WO 2014/150806

31/38

]

dO Aeljixny

I

dO Aejjixny

1

:ao am___ﬁw

I

dO AJeyjixny

A

A _A\s\
H 7/

N

LdO

11 11 7

A cdO
2dO v dO Aelixny

. |
] ,\\

(QQ) seAjeH [equanbag
obelols ou/Buipiemio) Juaisuell) (Jelas) SeAey OIWOLY i€
(ureslsuod 8ainosal) (|a|esed) saAey o1WOLY 2

(po1noaxa Ajjuspuadapul) seAjey |9|eled : |
} :S8dA] UOINO8Xg Yo0|g
1o|du/paJied/s|buls s| yoes ‘ s300|q jey/siols g : Sio|S

JIX9JU0D ¥20][(%, 10 ¥00|g U[Siled

PCT/US2014/024276

WO 2014/150806

32/38

AME

I

I

M

I

RS

el epate et e e e e et b
R

aAlle|noads aq ued os|e Asy |
9|1} 1818188y |9A8| 15|/ S} NS84 YO0|g 8leIpaw.lalu|
abelo}s 300|q |enuIA BUO

dn exew 1ey) s00(q Jley oy
10 abelols S)Nsel pauIguIoD

PCT/US2014/024276

WO 2014/150806

33/38

\N\\\v\\\“\ e

e et

ﬁ\\M\\\\\\\\\\\\\\x\\\\\

\\\\\\\ \\\\ L

G

e G
G x\x.v\\.@\\\\\\\\\\\\\%\\xx
AT A A A A A A

; \\\\\ \\\\\\\\\\\\\\\\\\\\

\\Y\Y\VY\Y\\Y\

AL

R P A
B A

e
B]

B S]
T A P

7
A P A A e e
R A A A A A e

\v

SY00[d JleH

e i s i
G iy

A A A A A A SRR,
S

\\

e e
G

\\\
\\\\\\@\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

SRR

o

[eouswWwAse |4y

UsAa

13|npayos suod

PPO

PCT/US2014/024276

WO 2014/150806

34/38

juswbag
oli4 1eisibey Alelodwis |

Juswbag
olid Je1sibay Aresoduis |

X

0 X

X

X

X

Jequinu

M

\/

y

\

\

y

spod spod g od SMOdspod spod spad spod
uang

;

usA3 pPO yeng P

PO usAg ppo

PPO

Jaquinu
33019

WO 2014/150806 PCT/US2014/024276
35/38

Guest flag architecture emulation

Centralized flag architecture Distributed flag architecture

Distributed
Flag
Registers

Centralized Flag Register } FO RO
1 |

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

\/ \/
F15 R15

Fig. 35

PCT/US2014/024276

WO 2014/150806

36/38

o¢ b1

SHUM uolnoaxg

la|npayos

pu3g juoi4

L)

o)

0

N

J91s160y Be|d pazijenusd

PCT/US2014/024276

WO 2014/150806

37/38

S Sld

,,,,,,,,,,,,,77,,,,,,,,,>

———————,——————

Ld

od

04

s1918108Yy
Bel4
penquisiq

s1eys1bal [eoisAyd

Bunjoes Gey
N0} IYOIY

/€ "bi-

AT

-
SN EN

jARs]

€1y

¢ld

(AR]

leoishud unjosiyoIy

uaisusix3 a|qe Buiweuay

Al X

gl X X
bl

z1 X

1L

gL Tl Ll

s|qe] edA] syepdn issie

(@nis) 39

L suononiysu| [enads

el suoneladQ onaLLLY 9] 9 N Z
AR SHIUS o il <

1L s|ealfon N 7

EE—
1s8ng
=) (0] 0 N z

Jsigibay Bejd pazijealsd

WO 2014/150806

38/38

The front end/dynamic converter (hardware
or software) categorizes incoming
instructions based on the manner in which
they update guest instruction flags.

3802

The order in which those instruction types
update their respective guest flags is
recorded in a latest update type table data
structure

When those instruction types reach the =

scheduler (the in-order part of the allocation/
renaming stage), the scheduler assigns an
implicit physical destination that
corresponds to the architectural type and
records that assignment in a renaming/
mapping table data structure

|

3804
When a subsequent guest instruction
reaches the allocation/renaming stage in the
scheduler, and that instruction wants to read
guest flag fields, the machine determines
which flag architectural types need to be
accessed to perform the read

3805

Read each flag individually from the physical
register that holds its latest value that was
lastly updated, as tracked by the latest
update flag type table

PCT/US2014/024276

Fig. 38

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/024276

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 9/06(2006.01)i, GO6F 9/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GOGF 9/06; GO6F 12/16; GOGF 9/24; GOGF 12/00; GO6F 9/30

Minimum documentation searched (classification system followed by classification symbols)

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KTPO internal) & Keywords: register, view, structure, source

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract; claims 1-20; and figure 7.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2010-0280996 A1 (GROSS, IV JESSE ERNEST et al.) 04 November 2010 1-19
See abstract; claims 1-10; and figures 3, 4.
A US 2012-0023318 Al (XING BIN C. et al.) 26 January 2012 1-19
See abstract; claims 1-7; and figure 2.
A US 2009-0307450 A1 (LEE KENT) 10 December 2009 1-19
See abstract, claims 1-7; and figures 2, 3.
A US 2006-0230243 A1 (ROBERT COCHRAN et al.) 12 October 2006 1-19

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priotity ¢claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, nse, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory undetlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search

31 July 2014 (31.07.2014)

Date of mailing of the international search report

31 July 2014 (31.07.2014)

Name and mailing address of the [ISA/KR
International Application Division
« Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No, +82-42-472-7140

Authorized officer e
\\\\\\\\

LEE, Seok Hyung

Telephone No. +82-42-481-5983

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/024276

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0280996 Al 04/11/2010 None

US 2012-0023318 Al 26/01/2012 CN 103119564 A 22/05/2013
EP 2596423 A2 29/05/2013
JP 05-540155 B2 02/07/2014
JP 2013-532864 A 19/08/2013
KR 10-1407835 B1 16/06/2014
KR 10-2013-0070627 A 27/06/2013
TW 201224918 A 16/06/2012
US 8312258 B2 13/11/2012
WO 2012-012218 A2 26/01/2012
WO 2012-012218 A3 12/04/2012

US 2009-0307450 Al 10/12/2009 US 2008-0256141 Al 16/10/2008
US 2008-0256311 Al 16/10/2008
US 7716183 B2 11/05/2010
US 7975115 B2 05/07/2011
US 8656123 B2 18/02/2014
WO 2008-127831 Al 23/10/2008

US 2006-0230243 Al 12/10/2006 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report

