
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0121024A1

Hill et al.

US 2003O121024A1

(43) Pub. Date: Jun. 26, 2003

(54)

(75)

(73)

(21)

(22)

(60)

SYSTEMAND METHOD FOR BUILDING A
RUNTIME IMAGE FROM COMPONENTS OF
A SOFTWARE PROGRAM

Inventors: Timothy J. Hill, Woodinville, WA
(US); Bruce J. Beachman,
Woodinville, WA (US)

Correspondence Address:
LEYDIG VOIT & MAYER, LTD
TWO PRUDENTIAL PLAZA, SUITE 4900
180 NORTH STETSON AVENUE
CHICAGO, IL 60601-6780 (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Appl. No.: 10/108,963

Filed: Mar. 28, 2002

Related U.S. Application Data

Provisional application No. 60/341,511, filed on Dec.
13, 2001.

152

| User interface
Tool

150
N! Component 250

Management
interface

Publication Classification

(51) Int. Cl." ... G06F 9/44
(52) U.S. Cl. 717/107; 717/115; 717/120

(57) ABSTRACT
A System and method for generating run-time images of a
Software program, Such as an operating System, builds a
run-time image from a plurality of Selected Software pro
gram components, each of which is a discrete packet of
functionality. Each component not only Specifies its prop
erties and resources but also provides Script for its own build
behavior. To build the run-time image, a configuration is
constructed to include instances of Selected components, and
the Scripts of the instances are invoked Such that each
component instance builds itself into the run-time image. A
general framework is provided for managing the compo
nents and the build process. A prototyping Scheme is pro
Vided for a component to inherit its properties, resources,
and Script from other components. Each component may
also specify dependency data in terms of component inclu
Sion in the run-time image and the orders in which the
components are built into the run-time image. A versioning
Scheme facilitates the tracking of various revisions and
upgrades of components.

(Configuration Object
Resources
Properties

Script (from platform)

instance of Components
NJ; Properties, Resources

M :

instance of Component T
- s

{ Properties, Resources

N Instance of Component U
- x

Properties, Resources

Patent Application Publication Jun. 26, 2003 Sheet 1 of 7 US 2003/0121024 A1

2O

SYSEMMEMORY 22 PERSONAL COMPUTER

ROM 48
() 24 2.

BIOS
2s

(RAM) 25 ROCESSING WDEO
UN AAER

OPERANG 53
SYSTM

m----

AppCAON NETWORK
ROGRAM INTERFACE |

32
OR 46
ROGRAM HARD DSK MAG SK OTICAL DISK / MODULES

37 RWE DRIVE DRIVE FEE
INERFACE NTERFACE INTERFACE

| PROGRAM
ATA r s -- 38 hard disk -

drive Magnetic disk Optical drive
drive

30

27

29
Keyboard

Mouse

| | 42 40

OpERAING AppCATION pirm PROGRAM
system PROGRAMS SSGS DATA 49

5 3. 7 38
3 s 3. REMOTE COMPUTER

Figure 1

AppCATION
PROGRAMS

Patent Application Publication

78 Header

82

90- Extended Properties
92 -- ReSources

124

80
Niversion Info: r
N-VSGUID; VIGUID; Version: 2.0; Revision: 3
J Prototype. (GUID of prototype component)

--1 E----- Sss-- N
N

Component 1

Component 2

74

? Component N
Name: Foo
Description 84

- - - - - - - - - - - - - - -

Resource AA: Resource Type: (t)

Dependency info.

/ Component 96

72

FIG 2

Jun. 26, 2003 Sheet 2 of 7 US 2003/0121024 A1

Run-Time
Image

7O

A

Resource Type Obj.
GUID: (rt)

Patent Application Publication Jun. 26, 2003 Sheet 3 of 7 US 2003/0121024 A1

152 O 18O
100 | User interface 1.
Na too

-

102

Component Management Interface

r

Platform Component | Group
Object Object Object

V
162 164 166 168 170

Resource Resource Corsion Object Object || Object

176

140
Configuration

Carrier Escape // script / 10 (e. Files
106 Binary N

Files

146

128

172
i4arize -132 Component Database Repositories ?

72

112

r - - - - - -

116 F.G. 3 S70

Run-Time
Image

Patent Application Publication Jun. 26, 2003 Sheet 4 of 7 US 2003/0121024 A1

Instance Object for
Component A - 190

Merged Properties
(P1, P2, P3, P4)

- d

Merged Resources \ S

VSGUID (component A) \ \
WSGUID (component B) - A
VSGUID (default prototype
Component) |

196
192 194 \ Default Prototype

| Component A | | | | Component B \ Component
Properties (P1, P2) | Properties (P2, P3) Properties (P3, P4)

f w

Resources I Resources Resources

- - -
Pir X, y, Z Sub Foo

--> Sub FOO For Each . .
- - - - - - - - - - - --> cmiSuper. Foo ------------ --> End Sub

End Sub

Y--
— A - \ -- - 198 2OO 2O2

Patent Application Publication Jun. 26, 2003 Sheet 5 of 7 US 2003/0121024A1

220

|- Foo Component v1.0

WSGUID: (aa)
VIGUID:(bb)
Revision: 1

Prototv1GUID: (cc)

Revision

Foo Component v1.1

WSGUID: (aa)
WIGUID:(bb)
Revision: 2

PrototWIGUID: (cc)

Upgrade

Foo Component v2.0 224

VSGUID: (dd)
VIGUID:(bb)
Revision: 3

PrototWIGUID: (cc)

F.G. 5

Patent Application Publication Jun. 26, 2003. Sheet 6 of 7 US 2003/0121024 A1

(EOL) Foo Component v1.0
232

VSGUID: (aa)
VIGUID:(vy)
Revision: 100,000

234 PrototWIGUID: (cc)

Branch: (ff) MinRevision 5
240

Branch: (dd) Minrevision 0

New Foo Component v4.0

236 WSGUID: (bb)
VIGUID:(dd)
Revision: 7

PrototWIGUID: (cc)

242 Bar Component v1.0

WSGUID: (ee)
VIGUID:(ff)
Revision: 11

PrototWIGUID: (cc)

FIG. 6

Patent Application Publication Jun. 26, 2003 Sheet 7 of 7 US 2003/0121024 A1

152
/1

User interface
Tool

Wu 150
N. Component 250

Management
interface Configuration Object

Properties
DOBuild Resources

Script (from platform) DOBuild

252
instance of Component S

N. Properties, Resources
I script
T

254

N instance of Component T
E Properties, Resources
-script

256

FG. 7

US 2003/O121024 A1

SYSTEMAND METHOD FOR BUILDING A
RUNTIME IMAGE FROM COMPONENTS OF A

SOFTWARE PROGRAM

TECHNICAL FIELD OF THE INVENTION

0001. This invention relates generally to the development
of Software programs, and more particularly to the genera
tion of run-time images of Software programs, Such as
operating Systems.

BACKGROUND OF THE INVENTION

0002 Operating systems are at the heart of all computer
Systems or computerized devices. An operating System
provides an environment in which Software applications are
designed to operate. To that end, the operating System
manages and Schedules the resources of the computer or
device it resides in, and provides various function modules
and interfaces that can be used by the applications to
accomplish their taskS.
0.003 Over the last two decades, computer operating
Systems, especially those for use on personal computers,
have become increasingly Sophisticated and powerful. Every
new released version of an operating System tends to be a
major Step over the previous one, with the addition of
numerous new features and functions. AS operating Systems
become more powerful, they also grow tremendously in
terms of Size and complexity. For instance, the popular
MicroSoft DOS operating System of nearly two decades ago
could fit on a few floppy disks. In contrast, the recent
versions of the Microsoft Windows operating systems typi
cally require tens of megabytes of Storage and operation
Space and contain thousands of files, library functions, and
program interfaces. AS an operating System becomes bigger
and more complicated, it is also more difficult for its
developers to keep track of all the different modules and files
of the operating System to ensure that they will work
properly individually and together.
0004. The difficulty of grappling with the complexity of
a modern operating System is especially acute in the case of
developing “embedded operating Systems.” The term
“embedded operating System” is commonly used to refer to
a run-time image of an operating System that Supports only
a Subset of functions and features of a full-fledged operating
System developed for use on a regular computer. Embedded
operating Systems are needed for many different types of
computerized devices, Such as Set-top boxes and information
appliances. Those devices are typically fixed-function
devices with limited resources. They do not need and also
cannot Support the rich functionality and flexibility of a
regular operating System. By incorporating only those func
tions and resources needed by the fixed-function device on
which it will run, the amount of storage, both persistent (e.g.,
Flash ROM or hard disk) and temporary (RAM), of an
embedded operating System can be made much Smaller than
that of a regular operating System.
0005 The conventional approach of developing embed
ded operating Systems is to construct them using the binary
modules or libraries of an existing regular operating System.
Modules providing the functions needed by the device are
Selected and linked to form the run-time image. To that end,
the developer of the embedded operating System is required
to have knowledge of how each selected module should be

Jun. 26, 2003

included as a part of the run-time image, and the program
responsible for creating the run-time image has to be coded
accordingly to handle each module properly. This, however,
can be a daunting task. Each module has its particular
properties and requirements for resources, Such as files to be
copied and System Settings (e.g., registry keys) to be set, etc.
Moreover, the modules are often interdependent, i.e., the
proper operation of one module depends on the existence or
exclusion of other modules. Furthermore, multiple versions
of a given module may have been created during the
development process, and it is necessary to keep track of
those versions So that a proper version can be selected for the
target device. The developer of the embedded operating
system has to know all these details about the modules of the
regular operating System in order to properly use them in
constructing the run-time image. AS the regular operating
System becomes more complex, keeping track of these
details can be extremely difficult.

0006 Furthermore, different devices often require differ
ent combinations of modules tailored for their specific
functions. A program coded to construct a run-time image
from a particular combination of existing modules Suffers
from inflexibility, as it cannot be used to handle different
combinations. It is, however, impractical to attempt to code
a program that knows how to handle every available module
of the regular operating System So that it is capable of
constructing run-time images from any combination of the
modules.

SUMMARY OF THE INVENTION

0007. In view of the foregoing, the present invention
provides a System and method for building run-time images
of a Software program, Such as an operating System, from a
plurality of Selected Software program components, each of
which is a discrete packet of functionality. Each component
Specifies its properties and resources, and provides Script for
its own build behavior. A component may explicitly contain
data defining its properties, resources, and Script, or may
inherit them from other components through a prototyping
relationship. Each component may also specify dependency
data, which define dependencies among the components and
component groups in terms of component inclusion/exclu
Sion in the run-time image and the orders in which the
components are built into the run-time image.
0008. The system of the invention provides a general
framework for managing components and using the com
ponents to build run-time imageS. The description data for
the available components are Stored in a database, and the
files constituting the components are Stored in a repository.
The description data for a component defines the properties,
resources, and Script defining the component's build logic.
During a build process, components are Selected from the
database for use in a configuration. Instances of the Selected
components are included in the configuration. The Scripts of
the component instances in the configuration are then
invoked to build each of the Selected components into the
run-time image.

0009. To facilitate the tracking of different versions of the
components, a versioning Scheme is provided that differen
tiates between revisions and upgrades of an item. An
upgradeable item, Such as a Software program component,
has a version-independent identifier, a version-Specific iden

US 2003/O121024 A1

tifier, and a revision number. The version-independent iden
tifier of the item stays the same throughout revisions and
upgrades. The version-specific identifier, on the other hand,
is changed to a new value when the item is upgraded. Thus,
there may exist different upgrade versions of the same item
that share the same version-independent identifier but have
different version-specific identifiers. The revision number is
increased each time the item is modified So that the newest
version can be easily identified. An item to be retired may be
marked as end-of-life and may contain data identifying item
or items for replacing it.

BRIEF DESCRIPTION OF THE DRAWINGS

0.010 While the appended claims set forth the features of
the present invention with particularity, the invention,
together with its objects and advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings of which:
0.011 FIG. 1 is a block diagram generally illustrating an
exemplary computer System on which the present invention
may be implemented;

0012 FIG. 2 is a schematic diagram showing a plurality
of Software program components for building a run-time
image in accordance with the invention;
0013 FIG. 3 is a schematic diagram of a software
development System embodying an architecture for building
run-time images from components in accordance with the
invention;
0.014 FIG. 4 is a schematic diagram showing an example
of an instance object of a component and its prototype
components,

0.015 FIG. 5 is a schematic diagram showing objects
corresponding to different versions of a component;
0016 FIG. 6 is a schematic diagram showing an end-of

life component and replacement components thereof, and
0017 FIG. 7 is a schematic diagram showing a configu
ration object containing Scripts that are invoked to build a
run-time image.

DETAILED DESCRIPTION OF THE
INVENTION

0.018 Turning to the drawings, wherein like reference
numerals refer to like elements, the invention is illustrated as
being implemented in a Suitable computing environment.
Although not required, the invention will be described in the
general context of computer-executable instructions, Such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par
ticular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer System
configurations, including hand-held devices, multi-proces
Sor Systems, microprocessor-based or programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, and the like. The invention may be practiced in
distributed computing environments where tasks are per
formed by remote processing devices that are linked through
a communications network. In a distributed computing

Jun. 26, 2003

environment, program modules may be located in both local
and remote memory Storage devices.

0019. The following description begins with a descrip
tion of a general-purpose computing device that may be used
in an exemplary System for implementing the invention, and
the invention will be described in greater detail with refer
ence to FIGS. 2-7. Turning now to FIG. 1, a general purpose
computing device is shown in the form of a conventional
personal computer 20, including a processing unit 21, a
System memory 22, and a System buS 23 that couples various
System components including the System memory to the
processing unit 21. The System buS 23 may be any of Several
types of bus Structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The System memory includes
read only memory (ROM) 24 and random access memory
(RAM) 25. Abasic input/output system (BIOS) 26, contain
ing the basic routines that help to transfer information
between elements within the personal computer 20, Such as
during start-up, is stored in ROM 24. The personal computer
20 further includes a hard disk drive 27 for reading from and
writing to a hard disk 60, a magnetic disk drive 28 for
reading from or writing to a removable magnetic disk 29,
and an optical disk drive 30 for reading from or writing to
a removable optical disk 31 such as a CD ROM or other
optical media.

0020. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile Storage of computer readable instruc
tions, data Structures, program modules and other data for
the personal computer 20. Although the exemplary environ
ment described herein employs a hard disk 60, a removable
magnetic disk 29, and a removable optical disk 31, it will be
appreciated by those skilled in the art that other types of
computer readable media which can Store data that is
accessible by a computer, Such as magnetic cassettes, flash
memory cards, digital Video disks, Bernoulli cartridges,
random acceSS memories, read only memories, Storage area
networks, and the like may also be used in the exemplary
operating environment.

0021. A number of program modules may be stored on
the hard disk 60, magnetic disk 29, optical disk 31, ROM 24
or RAM 25, including an operating system 35, one or more
applications programs 36, other program modules 37, and
program data 38. A user may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and a pointing device 42. Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are often connected to the processing unit 21
through a Serial port interface 46 that is coupled to the
System bus, but may be connected by other interfaces, Such
as a parallel port, game port or a universal Serial bus (USB)
or a network interface card. A monitor 47 or other type of
display device is also connected to the System buS 23 via an
interface, Such as a Video adapter 48. In addition to the
monitor, personal computers typically include other periph
eral output devices, not shown, Such as Speakers and print
CS.

US 2003/O121024 A1

0022. The personal computer 20 may operate in a net
worked environment using logical connections to one or
more remote computers, Such as a remote computer 49. The
remote computer 49 may be another personal computer, a
Server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the personal com
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
Works, intranets and the Internet.

0023. When used in a LAN networking environment, the
personal computer 20 is connected to the local network 51
through a network interface or adapter 53. When used in a
WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establish
ing communications over the WAN 52. The modem 54,
which may be internal or external, is connected to the System
bus 23 via the serial port interface 46. In a networked
environment, program modules depicted relative to the
personal computer 20, or portions thereof, may be Stored in
the remote memory Storage device. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computerS may be used.

0024. In the description that follows, the invention will
be described with reference to acts and symbolic represen
tations of operations that are performed by one or more
computers, unless indicated otherwise. AS Such, it will be
understood that Such acts and operations, which are at times
referred to as being computer-executed, include the manipu
lation by the processing unit of the computer of electrical
Signals representing data in a structured form. This manipu
lation transforms the data or maintains it at locations in the
memory System of the computer, which reconfigures or
otherwise alters the operation of the computer in a manner
well understood by those skilled in the art. The data struc
tures where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described
in the foregoing context, it is not meant to be limiting as
those of skill in the art will appreciate that various of the acts
and operations described hereinafter may also be imple
mented in hardware.

0.025 Tuning now to FIG. 2, the present invention is
directed to a new approach to the generation of a run-time
image 70 of a Software program, and provides a generic
architecture that can be used for building various types of
Software products, especially run-time images. By way of
background, many modern operating Systems and applica
tions are not Shipped to end-users in a ready-to-run State.
Instead, additional processing is required to complete the
integration onto the end-users (“target”) computer, a process
typically known as “Setup' or “Install'. This process occurs
“online', that is, on the target computer System. In contrast,
the “build” process described herein according to the inven
tion provides a means (among other things) of performing
the “Setup' process “offline” (i.e., not on the target com
puter). The result of this process, known as a "run-time
image' is a ready-to-run operating System or application that

Jun. 26, 2003

generally does not require, or requires very little, additional
“Setup' or "Install' processing on the target computer.
0026. The invention is especially advantageous for build
ing run-time images of operating Systems (i.e., "embedded
operating Systems), and in a preferred embodiment of the
invention described below the Software program is an oper
ating System. It will be appreciated by those skilled in the
art, however, that the generic architecture of the invention is
equally applicable to building run-time images of other
types of Software programs.
0027. The architecture of the invention is based on an
important concept of "componentization'-the run-time
image is constructed using Software program “components'
as building blocks. The term “component” as used in the
architecture of the invention means a discrete packet of
functionality that can be included in the final run-time
image. For example, for an operating System, the compo
nents 72 may include Web browsers, transport protocol
drivers, device drivers, etc. Typically, the functionality of an
operating System component is defined by a Series of files
that are to be copied into the run-time image and a set of
System Settings/values that have to be added or edited. The
functionality defined by a component can vary widely. A
Simple component, Such as one that enables automatic
logon, might simply set one or more System settings (e.g.,
registry keys). Other components might define device driv
ers, Services, or even complete applications.
0028. The componentization concept of the invention
presents a new paradigm for the development of future
operating Systems. In this paradigm, the development of an
operating System starts with providing a collection of oper
ating System components, which may be newly developed or
taken from existing operating Systems. A Subset of the
available components is then Selected based on the functions
they provide and the functions to be Supported by the target
run-time image. The Selected components are then com
bined in a “build” process to generate an operating System
run-time image. The operating System components available
for the build process may be derived from an existing
operating System for general-purpose computers by dissect
ing the existing operating System into a Series of distinct
components. For example, the existing operating System
may be the recently released Windows XP operating system
of Microsoft Corporation. It should be appreciated, however,
that the present invention is not limited to using only
components derived from existing operating Systems for
regular computers, but may include new components
designed Specifically for use to build the run-time image.
0029. As will become clear from the detailed description
below, the invention provides many important advantages
over the conventional approaches to the generation of oper
ating System run-time images. For example, the architecture
of the invention provides Scalability of operation and can be
used to construct operating System run-time images of a
wide range of complexity. It also provides tremendous
extensibility to allow new functions and different upgrades
of components to be added easily and freely. It also Supports
multiple platforms with variations Such as different operat
ing Systems, CPU types, different locale, etc.
0030 Moreover, the new paradigm of building an oper
ating system not only can be used to build “embedded”
operating Systems for Special-purpose fixed-function

US 2003/O121024 A1

devices, but is equally applicable to the creation of operating
Systems for general-purpose consumer personal computers.
For instance, a next-generation operating System for per
Sonal computers may be shipped as files containing all of its
various components, together with Software implementing
the architecture for building run-time images and user
interface Software designed to allow a user to conveniently
Select components that provide desired functions. Using the
user interface, a regular consumer can easily customize the
operating System for a general-purpose computer by Select
ing the desired functions. Once the Selections are made,
instances of the components are automatically built into the
operating System run-time image on the consumer's com
puter.

0031. In accordance with a feature and central concept of
the invention, each of the components 72 is Supposed to
know how to build itself into the run-time image. In other
words, each component provides the logic for its own build
behavior. Thus, the process of building the run-time image
involves mainly the invocation of each Selected component
to build itself. The build logic of a component may be
Supplied in different coding formats. For instance, in a
preferred embodiment described below, the build logic of a
component is in the form of Script associated with each
component. The Script preferably is written in a widely used
Scripting language, Such as Visual Basic Script or Java
Script.

0032. By way of example, FIG. 2 shows a data structure
used in a preferred embodiment that contains data describing
an operating System component. AS shown in FIG. 2, the
description data (also called “metadata”) for a component 74
include a header portion 78, which contains certain Standard
properties of the component, Such as the name of the
component, a description of the component, and Some
versioning data 80. In accordance with a feature of a
preferred embodiment of the invention, the versioning data
includes a version-specific (VS) globally unique identifier
(GUID) 82, a version-independent (VI) GUID 84, and a
revision number 86, the meanings and purposes of which
will be described in greater detail below. In accordance with
another feature of a preferred embodiment, the component
may include a Prototype property 88 that contains a GUID
of a “prototype component' from which the component
inherits properties, resources, and Script, as will be described
in detail below.

0033. The component description data further include
data identifying extended properties 90 and resources 92 of
the component. The resources may be, for example, files
containing binary code of the component that need to be
copied into the run-time image, System Settings that have to
be set, as well as other types of resources that can be flexibly
defined and constructed, Such as by using Resource Type
properties and objects as will be described in greater detail
below. In accordance with another feature of a preferred
embodiment of the invention, the component description
data include dependency data 94 that specify how the
component depends on other components of the operating
System. The types of component dependency and how the
dependency is handled in building the run-time image will
be described in greater detail below.

0034. As mentioned above, a key concept of the inven
tion is that each component provides the logic of how to

Jun. 26, 2003

build itself, and in a preferred embodiment the logic is
provided in the form of script. In the example illustrated in
FIG. 2, the script 96 is shown as part of the component
description data. It will be become clear from the description
below, however, that a component is not required to explic
itly include in its description data any Script for its build
logic. Instead, a component may "inherit” the Scripts of
other components. Thus, by Specifying its inheritance from
other components, the component implicitly provides the
script it needs to build itself.
0035. By requiring each component to identify its own
build behavior, a generalized framework can be used for the
management and the Selection of components for run-time
image generation that is decoupled from platform-specific
requirements. In a preferred embodiment shown in FIG. 3,
a System 100 for building operating System run-time images
70 from components includes a database 102 for storing the
component description data as described above with refer
ence to FIG. 2 for all the available components 72.

0036) The database 102 also contains metadata describ
ing other types of items involved in the build process. One
type of such items is the platform type. Platforms 104 are
used to define the target operating System, CPU, locale, and
other variants that are handled at the global database level.
For example, one platform might be “Windows Embedded
(x86)-US English.” Similar to the components, a platform
also contains script. This script 106 is inherited by each
configuration (described below) of the run-time image that
is based on that platform. When a new configuration is
created based on a platform, the Script of the platform is
copied into the corresponding Configuration object 250 and
is Subsequently Saved as part of the configuration file. When
the configuration is used to build a run-time image, the
platform Script is invoked to drive operations Such as
dependency checking and overall build processing. In one
implementation, when creating a new configuration, the user
interface tool first presents a list of available platforms 104.
Once the user Selects a platform, only the portions of the
database that are associated with that platform will be
accessible when editing the configuration.

0037 Other types of objects described in the database
include groupS 110, resources 112, and resource types 116,
etc. Groups are collections of components defined for dif
ferent purposes. One particularly important type of groups
concerns component dependencies, which are described in
greater detail below.

0038 Each of the resource type items 116 in the database
102 describes a Resource Type object that can be invoked
during the build process to construct resources of its type
needed by instances of components Selected for building the
run-time image. AS shown in FIG. 2, a resource 122
Specified in the metadata of a component may include a
“Resource Type' property 124 that specifies the GUID of a
resource type. As will be described further below, this
ReSource Type property is used during a build process to
invoke the corresponding Resource Type object to construct
the resource. To that end, the ReSource Type object contains
Script defining the logic for constructing a resource of its
type. The use of resource type objects thus provides a degree
of independence between components using the resources
and the resources themselves. This independence allows
new types of resources to be added easily to the System and

US 2003/O121024 A1

existing types to be modified easily, without having to
modify all the components that use those resources.
0039. The binary files 128 that constitute the various
components are Stored in one or more repositories 132 of the
System. A repository is an archive that is used as a Source of
binary files during the construction of the run-time image.
Files associated with the Selected components are copied
from the repositories into the run-time image during the
build process. In one implementation, each repository may
have either a Single folder that contains the binary files, or
a CAB file containing the files.
0040. The system further includes one or more configu
ration files 140. Each configuration file is in essence a
manifest that lists instances of all the components that have
been Selected for building a run-time image, including data
describing all the properties, resources, and Scripts for
building instances of the Selected components. It is possible
for a Single configuration to contain multiple instances of the
Same component. In a preferred embodiment, configurations
are Stored as XML files. A Single configuration may be used
for building Several different types of run-time images, Such
as “free” or “checked” versions. Each configuration is bound
to a specific platform when it is created. Each configuration
file contains global information about the run-time image
that comes from the platform object 162.
0041. The component database 102, repositories 132, and
configuration files 140 may be populated with data by an
import process in which the respective contents are imported
from carrier files 146. In one embodiment, the carrier files
are XML files. They contain the definitions of all the item
types described in the database. The component database
102 functions essentially as a data warehouse. In a preferred
embodiment, once imported, the data in the database 102 are
not editable. In this regard, various versions of a component
may coexist in the database. This aspect is described in
greater detail below in connection with a versioning model
used in a preferred embodiment.
0042. In the system shown in FIG. 3, a component
management interface (CMI) module 150 is provided for
managing the build process. The CMI 150 provides an
interface between a user interface tool 152 and the other
modules of the System. The interface is exposed as a Series
of objects that map onto the various elements described in
the database 102, instances of components, and configura
tions 140, etc. For instance, as shown in FIG. 3, the objects
include platform objects 162 components objects 164, group
objects 166, resource objects 168, resource type objects 170,
configuration objects 172, component instance objects 176,
etc. These objects can be accessed in the build proceSS not
only by the CMI 150 but also by the scripts of the different
objects.

0043. The user interface tool 152 interacts with the other
modules in the System through the interface provided by the
CMI 150. The user interface tool 152, working with CMI
150, provides user interface functions to allow a user 180 to
perform various taskS Such as browsing available compo
nents 72 in the database 102, importing data and files from
carrier files into the database and repositories 132, Selecting
components for constructing a configuration 140, initiate a
build process based on a configuration, and responding to
queries and entering inputs as part of the interactive build
proceSS.

Jun. 26, 2003

0044) To construct a run-time image 70, the user 180 may
start by browsing the available components 72 in the data
base 102 for the functions they Support, and Selecting
desired components for inclusion in a configuration. Alter
natively, the user may select one of the configuration files
140 and edit that configuration by adding or removing
components. AS mentioned above, to allow the user interface
tool 152 to access the data items in the database and the
configuration file, the CMI 150 creates an object for each
component, platform, group, or configuration referenced to
by the user interface tool. In a preferred embodiment, the
objects are COM automation objects.
0045. In addition to the component objects, a component
instance object 176 (or “instance object”) is created for each
component Selected from the components in the database for
inclusion in a configuration. AS explained below, the
description data of the instance object 176, which include its
properties, resources, and Scripts, may be different from the
description data for the component as Stored in the database.
This is because each component is allowed to inherit from
another component, and all the properties and resources of
the components in the inherency chain are “collapsed”, and
their Scripts "coalesced,” into the instance object, as will be
described in greater detail below.
0046) Although the CMI 150 provides the interface
between the various operating System related elements and
the user interface tool 152, it is a generic module in that it
is not tied to any particular operating System platforms.
Moreover, in accordance with the componentization
approach of the invention, the CMI 150 is not required to
have “centralized” knowledge of how to build each of the
components described in the database for inclusion in a
run-time image operating System. This is because the com
ponents 72 provide their own logic for building themselves.
This de-centralized build operation provides inherent flex
ibility and extensibility of the architecture, because the
System can be used to construct run-time images from
combinations of different components of widely varying
platforms, without having to rebuild or alter the CMI.
0047 Component Inherence and Prototyping
0048 Many operating system components have very
similar build behavior. In other words, the operation of
building a given operating System component may involve
Steps that are commonly performed in building other oper
ating System components. For instance, the build operation
of many operating System components involve copying a
given list of files from the repository 132 to the run-time
image, and Setting a given list of System Settings, Such as
registry keys. AS described above, in accordance with the
invention, each component is required to provide its own
build logic, and in a preferred embodiment the logic is
provided as Script. Since the build operations of components
often involve Similar Steps, their build Scripts can have a
Significant degree of overlap. Moreover, functionally related
components, such as different Web browser components that
are Substantially identical but with different home pages,
tend to have similar properties and resources.
0049. In accordance with a feature of a preferred embodi
ment of the invention, instead of requiring each component
to provide a full set of script for its build behavior, a
component may provide the Script implicitly by Specifying
its inheritance from a Second component. In this context, the

US 2003/O121024 A1

Second component is Said to be the “prototype component'
of the first one. Besides the Script, the the inheriting com
ponent also inherits the properties and resources of its
prototype component.

0050. In a preferred embodiment, a single-inheritance
model is used. Each component can only, but is not required
to, depend on another component. AS shown in FIG. 2, the
header portion 78 of the description data of a component 74
may include a “Prototype' property 88, which contains the
GUID of its prototype component.
0051. For example, a component X may specify that it
inherits from a component Y. As a result of the inheritance,
the component X inherits the Script of the component Y and
also all of its properties and resources. The component X has
to provide its properties, resources, and Script only if they
are different from those of the component Y. The inheritance
can be chained, Similar to the class inheritance of the C++
programming language. Thus, the component Y may in turn
inherit from a component Z, and So on. The chain ends with
a “default” prototype component, from which all other
components of the platform are derived directly or indi
rectly. This default prototype component is provided for
each platform and defines the generic build behavior for
components of that platform.
0.052 This feature of component prototyping or inher
ence provides significant Saving of the database memory
Space. It allows properties, resources, and Script common to
many components to be stored in one common prototype
component and then inherited by all the components derived
from that prototype component. The inheritance model is
especially advantageous for component Scripting. AS
described above, all the build logic associated with a com
ponent is expressed as Script that may be Stored in the
component description data. Without prototyping or inher
itance, all components have to contain their complete Script
blockS. Prototype inheritance allows many components to
simply inherit the default script from the default prototype
component. It also significantly simplifies the development
and management of the components, because each compo
nent only has to provide properties, resources, and Script that
are different from its prototype component. Their features,
functions, and build behavior can be easily altered by
modifying the prototype component.

0.053 As mentioned above, when a component is instan
tiated in to a configuration (i.e., it is selected for inclusion in
the configuration), the CMI creates an instance object cor
responding to that component. The CMI also creates a
Special global object named "cmiThis,” which contains a
reference to the current instance object.
0.054 For illustration purposes, FIG. 4 shows an exem
plary inheritance object 190 for a component A, denoted
192. In this example, the component A has a prototype
component B, denoted 194, which in turn has the default
prototype component 196 of the selected platform as its
prototype. The inheritance of properties and resources is
facilitated by a mechanism that “collapses the properties
and resources of the entire component chain (including
components 192, 194, 196) when a component instance
object 190 is created. The individual sets of properties from
each component in the chain are merged into a single Set of
properties in the instance object 190 by an aggregation
process. Each individual property in a component is

Jun. 26, 2003

assigned an identifying name. Normally, the aggregation
process Simply copies all the properties of all the compo
nents in the component chain to the instance object. How
ever, if a property of the same name exists in Several
components in the component chain, then only the property
in the “most derived” component is copied to the instance
object. The term “most derived” means the component that
is furthest “up' the prototype chain of components. For
example, in FIG. 4, component 192 is the “most derived”
and component 196 is the “least derived”. It will be observed
that the Default Prototype component will always be the
“least derived” component in the component chain of any
instance Since it always appears at the end of the component
chain.

0055 Thus, there will only be at most one property with
a given name copied to the instance object by the aggrega
tion process. AS an example, assume that component 192 has
properties “P1’ and “P2', component 194 has properties
“P2” and “P3”, and default prototype component 196 has
properties “P3' and “P4. After the aggregation process, the
instance object 190 will contain properties “P1" and “P2”
from component 192, property “P3' from 194 and property
“P4” from 196. Property “P2” from 194 and property “P3”
from 196 will not by copied to the instance since these are
masked by the more-derived properties in components 192
and 194. The resource collapsing mechanism is identical to
that described here for aggregating properties. A conse
quence of the collapse process described is that a component
that inherits from another component via the prototype
mechanism may over-ride the property and resource values
of the prototype component as desired Simply by Supplying
alternative values for those properties and resources.
0056. In contrast to the “collapsing operation on the
inherited properties and resources, when an instance object
is created from a component, all the Scripts in that compo
nent and the components in its prototype chain are “coa
lesced” into the script text for the instance object. The
coalescing operation Simply adds the Script blocks one after
another. Thus, the total Script text for an instance object
comprises multiple distinct Script blocks, one from each
component in the prototype chain, if that component pro
vides its own script. In the example of FIG. 4, the script of
the instance object 190 for the component A includes the
Script blocks of the components A, B, and R. In a preferred
embodiment as illustrated in FIG. 4, instead of copying the
Scripts of the components directly into the instance object,
the instance object contains the version-Specific GUIDS
(VSGUIDs)(described below) of the components in the
chain. Thus, the instance object 190 contains the VSGUIDs
of the component A, component B, and the Default Proto
type component. The VSGUIDs of the components allows
the CMI to link the individual script blocks 198, 200,202 of
the components stored in the database 102 together to form
a Single Script block. The linking forms a hidden list of
individual Script sites that are linked in the same order as the
component prototype chain. At the end of the chain is the
script block 202 of the platform-defined default prototype
component. The linking is shown using dotted arrows in
FIG. 4.

0057 When the script procedure of an instance object is
accessed (or any other instance Script global), the CMI
attempts to locate this procedure in the Script block at the
head of the script list. In the example of FIG. 4, this is the

US 2003/O121024 A1

script block 198 of the component A. If the procedure is
located in that script block, it is executed. If not, the CMI
Searches in the next Script block in the list. This Search
continues until the procedure is located. For example, if the
procedure Foo is invoked against the chain shown in FIG.
4, the Foo procedure in the second script block 200 executes.
If the Bar procedure is invoked, the procedure in the first
script block 198 executes. Thus, the script blocks from
individual components in the prototype chain are linked into
a simple Single-inheritance object model, where "upstream”
components can over-ride procedures Supplied by “down
Stream” prototypes.
0.058. This same search process also applies to procedure
invocations that occur within the Script itself. If a procedure
is invoked that is not found in the current Script block, the
CMI will search the script chain starting with the next script
block down the chain. In FIG. 4, the Bar procedure in the
script 198 invokes the Foo procedure. Since this is not
present in the current script block, the CMI will locate and
execute the Foo procedure in the second script block 200.
This Search proceSS applies to all global objects in the Script.
This means, for example, that the Bar procedure in FIG. 4
can access the variables X, y and Z in the downstream Script
block.

0059. As shown in the Foo procedure in FIG. 4, upstream
Script can over-ride procedures in downstream Script. How
ever, Sometimes it might be necessary for an upstream
procedure to explicitly invoke the original downstream
version of the same procedure. In this case the Foo proce
dure cannot simply call Foo again, as this will be interpreted
as a recursive call to the local procedure. Instead, the CMI
provides an additional IDispatch reference in a special
global method called “cmiSuper.” This IDispatch interface
Starts Searching at the next Script block downstream from the
current block. Thus, the Foo procedure in the Second Script
block can use cmiSuper. Foo to invoke the Foo procedure in
the third script block 202.
0060. There is a third way the search for a procedure in
the scripts can be carried out. As noted above, the CMI
provides a cmiThis variable that provides a reference to the
instance object. Since Instance. Script exposes the composite
IDispatch interface, cmiThis. Script also exposes this inter
face. Therefore a procedure can be invoked via this inter
face, for example cmiThis. Script. Foo. Since this invocation
occurs directly on the CMI composite IDispatch, this is
equivalent to an upstream Search of the chain. That is, the
Search Starts at the very top of the chain. In object-oriented
programming terms this is the equivalent of a virtual func
tion invocation, Since it allows a procedure in a downstream
component to invoke procedures in upstream components.
0061 Component Dependencies
0.062 Besides the prototyping inherence described
above, a component may be related to the other components
through component dependency. Component functionality is
rarely defined in isolation. Typically, a component requires
the Services of other components in order to function cor
rectly. For instance, a browser component requires the
existence of a TCP component, which in turn requires a
medium driver component. Component dependency may
also be in the form of the order in which the component
instances should be built into the run-time image. In a
preferred embodiment, a rich dependency model is provided

Jun. 26, 2003

that allows complex inter-component relationships to be
described. These relationships ensure that adequate Support
is available in a run-time image for the Selected components,
and that the components are built into the run-time image in
the correct order.

0063. The dependency information is integrated into the
component database. As illustrated in FIG. 2, the descrip
tion data of a component 74 include dependency data 94.
This dependency information is included in the configura
tion when the corresponding component instance is copied
into the configuration object. In the following description, to
identify the dependency relationship between components,
if component A depends on component B, component A is
referred to as the “Source' component, and component B is
referred to as the “target component.
0064. The inclusion of the component dependency infor
mation in the description data of the components makes the
dependencies well defined and easy to keep track of. The
clarity of the dependencies among the components provided
by this Scheme is extremely valuable in the process of
debugging the operating System, wherein the cause of an
error may have to be traced through many inter-dependent
components.

0065. The dependency information is used in three ways.
First, it is used to validate a configuration, by checking that
all the dependency requirements of components included in
a configuration have been Satisfied. Second, it is used to
automatically include “target components when a Source
component is included in a configuration. Third, it is used to
control the order in which components are added to the
run-time image at build time. The logic for performing these
tasks is included in the Script of the configuration object.
0066 Generally, the simplest dependency specifies that
one component depends upon another component. For
example, X->Y means “component X depends on compo
nent Y.” Here, the symbol “->'' is a used generally to
represent a dependent relationship, which may of one of
different forms and types. In this example, component X is
the “source” component and component Y is the “target'
component. In a preferred embodiment, all dependencies are
Specified by the Source component. That is, the dependency
rule of the previous example would be included as part of the
definition of component X rather than component Y.
0067 Dependencies are transitive. If X depends on Y and
Y depends on Z, i.e., X->Y and Y->Z, then component X
implicitly depends on component Z. The transitive property
of dependencies means that including a single component in
a build can cause a cascade effect that includes many other
components Via direct and indirect dependencies.
0068 A component may also depend on a group. The
Simple dependencies between components directly connect
one component with another. Group dependencies, in con
trast, indirectly connect components via dependency groups.
Each component can belong to any number of dependency
groups. For example, all network interface card (NIC)
drivers might belong to a “NICDriver' group. Group depen
dencies are resolved by means of group membership. For
example, if component Y is a member of group G, then
X->G effectively means X->Y. This is expressed as
X->G(Y), which states the component X depends upon
group G, and group G has component Y as a member.

US 2003/O121024 A1

0069. In a preferred embodiment, a group cannot depend
onon another component or group. In other words, the
relationship G->Y is not valid. Also, groups cannot contain
other groups as members, only components. This means that
“double indirect” component dependencies are not allowed.
For example, X->G1(G2) is not allowed.
0070 An advantage of group-based dependencies is that
they add a level of indirection between components. This
allows a component to express its dependencies even before
the target components in the group have been fully authored.
Groups are also very useful with Some of the more advanced
dependency types described below.

0071. In the context of building an operating system
run-time image, there are three general forms of dependen
cies: inclusion, build order, and registry Setting. Inclusion
dependencies cause the addition or exclusion as necessary
during configuration. Build order dependencies control the
order in which components are built during the build pro
ceSS, but do not cause automatic inclusion of components.
Registry Setting dependencies also control the build order,
but they are generated automatically by the CMI as a result
of an analysis of component registry inter-dependencies.

0.072 In a preferred embodiment, dependency classes are
defined based on these three forms of dependency, and each
dependency belongs to a class. The different dependency
classes are shown in Table 1.

TABLE 1.

Dependency Class Values

Name Value Symbol Meaning

DependencyClassInclude 1. & Include dependency. This
is the default
dependency class.

DependencyClassBefore 2 > Build before dependency.
DependencyClass After 3 < Build after dependency.
DependencyClassRegistry 4 $ Implied registry

dependency.

0.073 Dependencies in the Include class control the inclu
Sion or exclusion of components in a run-time image.
Dependencies in the Before and After classes are build
dependencies. Build dependencies do not cause the inclu
Sion or exclusion of components, but instead are used to
restrict the order in which components are built during the
build process. Build dependencies do not imply include
dependencies. Dependencies in the Registry class are a
special variation of “build before” dependency. They are not
explicitly expressed in a component, and are instead Syn
thesized by an analysis of registry key processing Specified
by individual components. However, their action is identical
to a normal build-before dependency. Dependency classes
can be used with groups and dependency types as described
below.

0.074 The different types of dependency within the Inclu
Sion dependency class are shown in Table 2.

Jun. 26, 2003

TABLE 2

Inclusion Dependency Type Values

Name Value Symbol Meaning

DependencyTypeFromGroup O G-> Take type from group.
DependencyTypeExactlyOne 1. 1-> Exactly one of the

arget components
must be present.

DependencyTypeAtLeastOne 2 +-> At least one of the
arget components
must be present.
Either none or
exactly one of the
arget components
must be present.
All the target
components must be
present. This is the
default dependency
ype.
None of the target
components may be
present (exclusion).

DependencyTypeZeroOrCone 3 -e

DependencyTypeAll 4 *-e

DependencyTypeNone 5 O->

0075. The From Group dependency is not actually a true
dependency type. Dependency types can be specified in both
components and groups. If a component Specifies a From
Group dependency type then the type of the dependency
comes from the group, rather than from the component. The
From Group dependency type is only valid in components,
not groups, and the dependency target is required to be a
group. If the component specifies any other dependency
type, the dependency type in the component overrides the
dependency type in the group. Thus dependency types in
groups are, in effect, default types that are used only when
a component specifies the From Group dependency type.
0076) The “All” dependency (which is the default depen
dency type) means that all the components in the group are
required by the Source component. The Symbol for an All
dependency is *->. Thus, X*->G(A,B,C) means that com
ponent X depends upon all of group G. Since G has
components A, B and C as members, this means that
component X is dependent on components A, B and C.
0077. The Zero OrCne dependency type is a group depen
dency type and means that none or only one component in
the “target' group can exist. The ZeroOrCne dependency
has no meaning when used with a simple dependency.
0078. The None dependency is, in effect, a logical “not”
operation. For example, X 0->Y means that component X is
dependent on “not component Y, or that component X
conflicts with component Y. When applied to groups, a None
dependency is interpreted to mean that the conflict includes
all the components in the group. For example: X 0->G(A,B)
means that component X conflicts with both components. A
and B in the group.
0079 Certain self-referential dependency rules are valid.
For example: X 1->G(X,Y,Z) means that component X is
dependent upon exactly one of group G, which includes
component X as a member. This type of dependency can be
used to author Sets of components that are mutually exclu
SVC.

0080. It is possible to construct sets of dependencies that
are internally contradictory. Most Such sets involve the use

US 2003/O121024 A1

of at least one None dependency in cyclic deadlock. For
example, X 0->X states that component X conflicts with
itself. This makes the inclusion of component X impossible.
Such a dependency rule is obviously invalid and easy to
detect, but more complex contradictions are possible. The
contradictions of dependency between the components are
checked during the build process by the configuration
object. If a contradiction is detected, the user interface tool
is used to notify the user of the contradiction and request
user input to resolve the conflict.
0081. The semantics of the various dependency types are
slightly different for the build order dependency class. Table
3 shows the various build-before dependency types, and
table 4 shows the build-after dependency types.

TABLE 3

Build Before Dependency Type Semantics

Type Symbol X ? Y X -> G Notes

Exactly 1->> Not Not valid.
One valid.
AtLeast --->> Y is Not valid.
One built

before
X.

Zero OrOne ->> Not Not valid.
valid.

All *-e Y is All members of This is the default
built G are built dependency type.
before before X.
X.

None O->> Not Not valid. Use the semantically
valid. equivalent “build

all after.

0082)

TABLE 4

Build After Dependency Type Semantics

Type Symbol X-> Y X-e G Notes

Exactly 1-> & Not valid. Not valid.
One
AtLeast ---> & Y is built Not valid.
One after X.
Zero OrOne -> & Not valid. Not valid.
All *-> < Y is build All members of G. This is the

after X. are built after default
X. dependency

type.
None 0-> & Not valid. Not valid. Use the

semantically
equivalent
“build all
before.

0083) Note that terms such as “all” and “at least one of
are modified when used in the context of build dependencies
where the dependency target is a group. The terms are
assumed to apply only to the Subset of the group that is
actually instantiated into the build. For example, X
*->>G(A,B,C) is interpreted to mean that instances of
components A, B and C are built before component X if they
are included in the build. Thus, if the build includes com
ponents X, A and B the build order will be A, B and then X.
The absence of component C is not considered an error. Note

Jun. 26, 2003

also that the “ExactlyOne” and “ZeroOrone” types are not
valid for build order rules. The semantics of Such rules are
unclear given that the component author has already con
Strained which components may be included using include
rules. The exclusion of these rules also allows build order
resolution algorithms to resolve in linear time instead of
factorial time.

0084. The inclusion dependencies are typically combined
with build dependencies. For example, there may be one rule
of X--->& G(A,B) specifying that component X requires at
least one of components A or B to be included, and another
rule of X->>A specifies that component A must always be
built before component X. This means that if the set {X,A}
is chosen the build order will be Athen X, while if the set
{X,B} is chosen the build order is undefined (and may be B
then X or X then B).
0085 Component Versioning
0086 Through the course of development of an operating
System, a component may be modified many times to
remove bugs or to add functions. It is necessary to keep track
of all the different versions of the components so that a
correct version can be Selected for use in building a run-time
image.

0087. In a preferred embodiment, a formal versioning
Scheme is implemented. The versioning Scheme distin
guishes between a“revision” or “update” (the terms are used
interchangeably) to an object and an "upgrade” to an object.
Revisions to an object conceptually generate a new version
of the object that replaces earlier versions. Revisions typi
cally refer to incremental modifications made during the
development Stage Such that there is no need to preserve the
old version once the new version is imported into the
database. In contrast, an upgrade generates a new version
that can co-exist side-by-side with the old version in the
component database. An upgrade typically refers to modi
fications to the component after the component has already
been released for use by customers.
0088. The versioning scheme of the invention is designed
to allow multiple different upgrade versions of a component
to co-exist within the database and be clearly identified as
different versions of the “same” component. For example,
when a Service pack ships a new "upgrade' version of a
component, that version may be imported into the database
without displacing the existing version. Existing configura
tions will continue to be built using the old version of the
component that was used when they were authored, while
new configurations can use the new version of the compo
nent. At a convenient time, a configuration that uses the old
version can be manually or automatically upgraded to use
the new version of the component.
0089. In a preferred embodiment, the versioning scheme
is applied to all primary objects in the database. Primary
objects are Stand-alone objects that are made available as a
result of importing data into the database from a carrier file.
Secondary objects, on the other hand, generally Specify data
that are logically contained within a primary object. For
example, a Component object is a primary object and can
Specify a list of resources, and each resource is presented as
a Resource object, which is a Secondary object. Each pri
mary object type in the database is classified by the type of
versioning it Supports as follows:

US 2003/O121024 A1

0090. Immutable: These objects can not change.
Alterations to immutable primary objects must result
in the generation of a new object that is distinct from
the old object on which it is based.

0091 Revisable: These objects can be revised. A
revised version of the object replaces all previous
versions of that object in the database. In other
words, a revised version of an object is not allowed
to co-exist with the previous version of that object.

0092. Upgradeable: These objects can be upgraded.
An upgraded version is a new object that is distinct
from previous versions, but can co-exist with these
earlier versions in the database.

0093 Revisable--Upgradeable: These objects can be
both revised and/or upgraded.

0094) To support this scheme, each primary object con
tains version information. Primary objects that are not
upgradeable (i.e. are either immutable or revisable) are
uniquely identified by a single version-specific GUID
(“VSGUID") property. Each primary object that is upgrade
able has an additional version-independent GUID
(“VIGUID”) property in addition to a VSGUID. In one
implementation, only components and platforms are allowed
to be upgraded. Each object further includes a Revision
property, which is a simple ordinal value, where a higher
number represents a “newer' version of the object. Revi
Sions need not be sequential, but any changes that are made
to an object should be accompanied by an increase in the
value of this property.
0.095 For example, the component illustrated in FIG. 2
includes a VSGUID 82, a VIGUID 84, and a Revision
Number 86. The VSGUID provides a unique object identi
fication that is specific to an object and stays the same for
different revisions of that object. The VIGUID, in contrast,
provides a shared object identification that is common to all
the different upgrade versions (which are viewed as different
objects) of the “same' item in the database. Note that
“Sameness” in this context simply means that the objects
having the same VIGUID. As an example, the objects having
the same VIGUID may correspond to different upgrade
versions of a Web browser component.
0096 Besides the VSGUID, VIGUID, and the Revision
value, the versioning information may also include a Dat
eRevised property, a Released property, and a Version prop
erty. The Date Revised property stores the time and/or date of
the most recent edit of the object. The Released property
applies to component objects and is a flag that, if Set,
indicates that the component object has been released. A
released component object is one that should not undergo
further revisions. Any Subsequent editing of the component
will result in an upgrade to the component. The Version
property is simply a comment used by the user interface tool
to display a user-friendly version number, such as “v2.2”.
0097 FIG. 5 shows an example of how the revision
number, VSGUID, and VIGUID of a component named
“FOO” are changed in accordance with the component
versioning scheme described above. The three objects 220,
222, and 224 in FIG. 5 correspond to versions 1.0, 1.1, and
2.0 of FOO. The Revision values of the three versions are
increased with each revision. Of these three objects, version
1.1 is a revision of version 1.0, and these two versions have

10
Jun. 26, 2003

the same VSGUID. Because version 1.1 is newer than
version 1.0 as indicated by their Revision values, version 1.0
is removed from the database when version 1.1 is imported
therein. Version 2.0, in contrast, is an upgrade of version 1.1
and has a different VSGUID. Accordingly, version 2.0 and
version 1.1 can co-exist in the database.

0098. The three different versions of Foo, however, share
the same VIGUID, indicating that they are different upgrade
versions of the “same” component. Their Revision values
indicate which one is the most recent version. The VIGUID
shared by them allows the user or the System to recognize
that they represent different versions of the “same” compo
nent.

0099. In general, a VIGUID component reference within
the database 102 (FIG. 3) is assumed to refer to the most
recent revision of the component, i.e., the version of the
component with the greatest Revision value. For example,
components specifying prototypes by the VIGUID of the
prototype component. Thus, if a new version of a prototype
component is imported into the database 102, all compo
nents inheriting from that prototype component will auto
matically refer to that new version.
0100. In contrast, all cross-component references within
a configuration 140 are by means of VSGUIDs of the
components. When a component is instantiated into a con
figuration, all the VIGUID component references are con
verted into VSGUID references within the instance. The
purpose of doing So is to “freeze' the instance information
to refer to specific versions of the components. Thus, even
if new versions of a component are later imported into the
database, the configuration continues to refer to the old
version. This feature ensures that configuration builds
remain consistent, i.e., the same run-time image will be
generated, regardless of changes made to the database.
0101 Eventually many objects reach retirement, mean
ing that no new versions of the object are likely to be
released. Sometimes, this simply means that the final version
of the object remains valid, but will never be upgraded. In
other cases, however, when an object reaches the end of its
life, use of that object should be actively discouraged. This
can happen, for example, when a component is Superceded
by a totally new component that is not directly related to the
previous one (and hence cannot be viewed as just a new
version using VIGUID/VSGUID connection semantics).
0102) When the chain of object versions is to be explic
itly ended, a special “end of life” (EOL) object is placed at
the end of the version chain to act as a tombstone for the
objects in the chain. In one implementation, EOL objects are
indicated using a revision number value of 100,000 or
greater. It is permissible (though rare) for an EOL object to
be revised or upgraded, in which case, as usual, the Revision
Number property will be incremented (for example, to
100,001). Thus, the “most recent” EOL object can be
determined easily.
0.103 Component objects provide the most common use
of EOL objects. When a component is retired, an EOL object
for that component is added to the database to indicate that
the component is no longer valid. The user interface tool is
expected to recognize the Special EOL version and handle it
accordingly.
0104. The versioning scheme also supports a special
Branch resource that is only valid in an EOL component

US 2003/O121024 A1

object. As shown in FIG. 6, an EOL component 232 named
“Foo” and having a Version property of v1.0 includes a
Branch resource 234 that has a property called Tar
getVIGUID, which contains the VIGUID of a replacement
component. The Revision value of 100,000 marks the Foo
V1.0 component as an EOL component. In the example
illustrated in FIG. 6, the Branch resource 234 contains the
VIGUID of a “New Foo v4.0" component 236. The Branch
resource also contains an optional MinRevision property
that indicates the minimum revision level of the target
component that may be used as a replacement for the current
component. If not specified or 0, any revision level of the
replacement component may be used.

0105 Depending on how the Branch resource in an EOL
component is used, a number of different Scenarios are
possible. If the EOL component does not specify a Branch
resource, then the component is dead, and has no replace
ment component. If the EOL component specifies a Single
Branch resource, then the component is replaced by the new
component specified by the TargetVIGUID. The MinRevi
Sion property can be used to ensure that only appropriate
versions of the new component are used.
0106. In a different scenario, the EOL component has
multiple Branch resources, and the component is replaced
by all the components Specified in the Branch resources.
This scenario is illustrated in FIG. 6, where the Foo V3.4
component has two Branch resources 234 and 240, whose
TargetVIGUID properties contain the VIGUIDs of the com
ponent New Foo v4.0 and a component 242 called “Bar
v1.0', respectively. This indicates that the EOL Foo V3.4
component has been broken into two new components: New
Foo and Bar.

0107. In another scenario, several different EOL compo
nents may specify Branch resources that all reference the
Same target component. These EOL components are said to
"fuse’ into the Single new component. Hybrid Scenarios are
also possible, where an EOL component fissions into Several
new components, Some of which are fusions with other
components. The flexible fission/fusion scheme enabled by
Branch resources allows components to evolve over time,
and to track the Vagaries of Software development processes.

0108) Build Process
0109. In the process of constructing a configuration, the
State data of the instance objects of the Selected components
as well as their Script text are all included into the configu
ration object. By way of example, FIG. 7 shows a scenario
in which components S, T, U and other components are
included in a configuration 250. AS a result, the component
instances 252,254, and 256 of the components S, T, and U
are copied into the configuration 250. As shown in FIG. 7,
the configuration object also has its own Script, which is
copied from the platform object.

0110. When the user is satisfied with the selection of
components for the configuration, she can initiate the build
proceSS by Selecting a "Build” command through the user
interface tool. In turn, the user interface tool 152 calls an API
function called “Build to ask the CMI 150 to start the build
process. In response, the CMI 150 invokes a “DoBuild”
method of the script of the configuration object 250. The
configuration object then goes through the instance objects
in the configuration and asks each of the component

Jun. 26, 2003

instances to build itself into the run-time image by invoking
the “DoBuild” method in the script of that instance. As
described above, the Script of each instance provides the
build logic for that instance. The build operation is com
pleted when all of the instances have been built into the
run-time image. AS noted above, the Script of the configu
ration object is obtained from the Platform object. Thus, it
is ultimately the platform that defines the semantics of the
general build operation.
0111 Although the CMI 150 expects the script to handle
all of the build (and other) logic associated with a particular
platform, it does provide helper functions in Utility objects
that assist in common build operations. During the build
process, the CMI is responsible for providing Services to the
components to assist in building (e.g. Services to copy files
to the target). All other build processing is handled by either
the platform Script or component Script. Typically, the plat
form Script controls each phase of the build process and
resolves the build dependency graph to control the order in
which components are built into the final run-time. The
combination of a multi-phase build and the rich Semantics
within the dependency graph allows the build process to
handle any component interdependencies.

0112 AS mentioned above, a resource of an instance may
include a Resource Type property that contains the GUID of
a resource type object. In keeping with the componentiza
tion approach of the invention, the ReSource Type object has
its own properties, resources, and, inter alia, Script that
defines how to build a resource of its type. During the build
process, the DoBuild method(s) in the script of an instance
is invoked to build the instance, which includes Setting up its
resources. To that end, the Resource Type object is invoked
to build the resource and then pass it to the component
instance object.
0113. In view of the many possible embodiments to
which the principles of this invention may be applied, it
should be recognized that the embodiment described herein
with respect to the drawing figures is meant to be illustrative
only and should not be taken as limiting the Scope of
invention. Therefore, the invention as described herein con
templates all Such embodiments as may come within the
Scope of the following claims and equivalents thereof.

What is claimed is:
1. A computer-readable medium having computer-execut

able instructions for performing Steps for building a run-time
image of a Software program, comprising:

providing a plurality of Software program components,
each Software program component having description
data defining properties and resources thereof and
providing associated Script for building Said each Soft
ware program component into the run-time image;

Selecting Software program components from the plurality
of Software program components,

generating an instance of each Selected Software program
component,

combining instances of the Selected Software program
components in a configuration of the run-time image,
each instance having Script including the Script for
building a corresponding Selected Software program
component,

US 2003/O121024 A1

creating the run-time image by invoking the Script of each
of the instances in the configuration to build the cor
responding Selected Software program component into
the run-time image.

2. A Computer-readable medium as in claim 1, wherein
the Software program is an operating System.

3. A computer-readable medium as in claim 1, wherein the
Script for building each Software program component
includes instructions for copying binary files required by
Said each Software program component into the run-time
image.

4. A computer-readable medium as in claim 1, wherein the
Step of generating an instance of each Selected Software
program component includes:

identifying an inheritance chain for Said each Selected
Software program component, the inheritance chain
containing a plurality of Software program compo
nents,

collapsing properties and resources of the Software pro
gram components in the inheritance chain to form
properties and resources of the instance; and

coalescing Scripts of the Software program components in
the inheritance chain to form the Script of the instance
for building Said each Selected Software program com
ponent into the run-time image.

5. A computer-readable medium as in claim 4, wherein the
inheritance chain ends with a default prototype component
provided by a platform Selected for the run-time image, the
default prototype component having script defining default
build behavior for Software program components belonging
to the platform.

6. A computer-readable medium as in claim 1, having
further computer-executable instructions for performing the
Steps of:

including Script for dependency management in the con
figuration; and

invoking the Script for dependency management to check
dependencies among the Selected Software program
components.

7. A computer-executable media as in claim 6, wherein the
Script for dependency management includes instructions to
automatically include a non-Selected Software program com
ponent required by a Selected Software program component.

8. A computer-readable media as in claim 1, having
further computer-executable instructions for presenting a
user interface for receiving user inputs for Selecting the
Software program components for inclusion in the configu
ration.

9. A System for generating run-time images of a Software
program, comprising:

a database for Storing description data for a plurality of
Software program components, the description data for
each Software program component defining properties
and resources of Said each Software program compo
nent and providing associated Script for building Said
each Software program component into a run-time
image,

a repository for Storing a plurality of binary files consti
tuting the Software program components described in
the database;

Jun. 26, 2003

a configuration object containing instances of a plurality
of Selected components Selected from Said plurality of
Software program components for constructing a target
run-time image, each instance in the configuration
object including the Script for building a corresponding
Selected component; and

a management module for causing, during a build opera
tion for generating the target run-time image, the Script
of each instance contained in the configuration object to
be invoked to build the corresponding Selected com
ponent into the target run-time image.

10. A System as in claim 9, further including a user
interface tool for providing user interface to a user, the
interface tool cooperating with the management module to
allow the user to Select Software program components for
inclusion in the configuration file and to initiate construction
of the target run-time image.

11. A System as in claim 9, wherein the Software program
is an operating System.

12. A System as in claim 9, wherein the description data
for each Software program component include data Speci
fying dependency information with respect to other Software
program components in the database.

13. A system as in claim 9, wherein the database further
includes description data for a platform of the Software
program.

14. A System as in claim 13, wherein the description data
for the platform include a Script for dependency manage
ment.

15. A System as in claim 14, wherein the description data
for each Software program component include data Speci
fying dependency information with respect to other Software
program components in the database, and wherein the man
agement module generates the configuration object to
include the Script of the platform and invokes Said Script
during the build operation to check dependencies among the
Selected Software program components based on the depen
dency information Specified by the description data of the
Selected Software program components.

16. A System as in claim 15, wherein the dependencies
among the Selected Software program components include
inclusion dependencies and build-order dependencies.

17. A System as in claim 9, wherein the management
module is further programmed to import data into the
database, repository, and a configuration file corresponding
to the configuration object from a carrier file.

18. A computer-readable medium having Stored thereon a
database containing description data for a plurality of Soft
ware components for use in building run-time images, the
description data for each Software program component hav
ing a data Structure comprising:

a first data field containing data describing properties of
Said Software program component;

a Second data field containing data describing required
resources of Said Software program component;

a third data field containing data representing Script
defining a build behavior of Said Software program
component, Said Script being invokable for building
Said Software program component into a target run-time
image.

US 2003/O121024 A1

19. A computer-readable medium as in claim 18, wherein
the first data field further contains data identifying a proto
type Software program component Stored in the database.

20. A computer-readable medium as in claim 18, wherein
the database further includes description data for a platform
for the target run-time image.

21. A computer-readable medium as in claim 18, wherein
the data structure further includes a fourth data field con
taining dependency information data Specifying dependen
cies between Said Software component and other Software
program components in the database.

Jun. 26, 2003

22. A computer-readable medium as in claim 21, wherein
the dependency information data include data Specifying a
dependency between Said Software component and a group
of Software program components Stored in the database.

23. A computer-readable medium as in claim 18, having
Stored further thereon a plurality of binary files constituting
the Software program components described by the descrip
tion data in the database.

