WO 02/098066 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

5 December 2002 (05.12.2002) PCT WO 02/098066 A2
(51) International Patent Classification”: HO04L 12/56 (72) Inventors; and
(75) Inventors/Applicants (for US only): NORMAN,

(21) International Application Number: PCT/CA02/00810

(22) International Filing Date: 31 May 2002 (31.05.2002)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
09/870,767 1 June 2001 (01.06.2001) US
09/870,766 1 June 2001 (01.06.2001) US
09/870,800 1 June 2001 (01.06.2001) US
09/870,703 1 June 2001 (01.06.2001) US
09/870,841 1 June 2001 (01.06.2001) US

(71) Applicant (for all designated States except US): HYPER-
CHIP INC. [CA/CA]; 1800 René-Lévesque Ouest, Mon-
tréal, Québec H3H 2H2 (CA).

(74

(81)

Richard, S. [US/CA]; 1877 Poissant Road, Sutton, Que-
bec JOE 2KO (CA). DE MARIA, Marcelo [BR/CA]J;
575 Lucien I’Allier, Apt. 504, Montreal, Quebec H3C
41.3 (CA). COTE, Sébastien [CA/CA]; 181 Boulanger,
St-Bruno, Quebec J3V 2C2 (CA). LANGLOIS, Carl
[CA/CA]; 6630-23rd Avenue, Montreal, Quebec H1T 4C1
(CA). HAUGHEY, John [US/US]; 94 Corliss Road, Rich-
ford, VT 05476 (US). BOUDREAULT, Yves [CA/CA];
99 Holland Avenue, Apt. 401, Ottawa, Ontario K1Y 0Y1
(CA).

Agents: GEORGIEY, Stephan, P. et al.; Smart & Biggar,
Suite 3400, 1000 de la Gauchetiere Street West, Montreal,
Quebec H3B 4W5 (CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

[Continued on next page]

(54) Title: CELL-BASED SWITCH FABRIC ARCHITECTURE

(57) Abstract: A switch fabric implemented
on a chip includes an array of cells and an I/O
interface in communication with the cells for

109
H
110
el
100

116' R L

o IR :

18 | | 150 |« !

118 L= L= ',

106 _R 116" X il [m N E
-]

NAVE 2

: : E 1141 :

r 18 [| 150 |« i

| 1

1]

: 116 | | 140 1

< | c |

| 114, |

{

108 [+~ 118 | [150 |

| |

Pl » 116 | [140 S

+—C { !

L= e e L

114 S’

N 12

permitting exchange of data packet between the
cells and components external thereto. Each
cell includes a transmitter in communication
with the I/O interface and in communication
with every other cell of the array, the transmitter
being operative to process a data packet
received from the I/O interface to determine a
destination of the packet and forward it to at
least one cell of the array selected on a basis
of the determined destination. Each cell further
includes plural receivers associated with
respective cells from the array, each receiver
being in communication with a respective cell
allowing the respective cell to forward data
packets to the receiver, where the receivers are
in communication with the I/O interface for
releasing data packets thereto. In this way, the
transmitter in a given cell functionally extends
into those cells where dedicated receivers
are located, reducing transmitter memory
requirements and allowing the switch fabric to
be implemented on a single chip.

WO 02/098066

A2

89

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
CELL-BASED SWITCH FABRIC ARCHITECTURE

FIELD OF THE INVENTION

The present invention relates generally to the switching of packets and, more
particularly, to a high capacity switch fabric that can be implemented on a single

semiconductor substrate.
BACKGROUND OF THE INVENTION

In a networking environment, it is necessary to route information groups (usually
referred to as “packets”) between hosts along determined paths through the
network. A routing algorithm is performed by the hosts in the network in order to
determine the path to be followed by packets having various combinations of
source and destination host. A path typically consists of a number of “hops”
tht;ough the network, each such hop designating a host with a capacity to continue
forwarding the packet along the determined path. The outcome of the routing

algorithm thus depends on the state and topology of the network.

Often, each packet has a protocol address and a label switch address. The
protocol address identifies the destination host, while the label switch address
identifies the host to which the packet is to be transmitted via the next “hop”. As 'a
packet travels from the source and is redirected by hosts located at different hops
along the determined path, its label switch address is modified but its protocol

address remains unchanged.

To achieve the required functionality, each host typically comprises a device
known as a router, which has a routing layer for performing several basic
functions for each received packet, including determining a routing path through
the network and modifying the label switch address of the packet according to the
determined routing path. The router also has a switching layer for switching the

packet according to its new label switch address.

-1 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The switching layer may be implemented by a packet switch forming part of the
router. The packet switch commonly includes a plurality of input ports for
receiving streams of packets, a switch fabric for switching each packet according
to a local switch address and a plurality of output ports connected to the switch

fabric and also connected to adjacent hosts in the network.

Thus, upon receipt of a packet, the router analyzes the packet's protocol address
or label switch address, calculates a local switch address and sends the packet to
an input port of the packet switch. The packet switch then examines the label
switch address of the packet and forwards the packet to the corresponding output
port which leads to the next hop, and so on. Often, a new label switch address is

applied at each hop.

it is common to provide a buffer at each input port of the packet switch for
temporarily storing packets during the time it takes the router to determine the

identity of the next hop and during the time it takes the packet switch to send the

packet to the appropriate output pbrt.

However, packet switches face problems inherent to the random nature of packet
traffic. A first problematic situation may arise when two packets with different
destination output ports arrive at the same input port of the switch. For example,
let the destination output port of the first-arriving packet be blocked but let the
destination output port of the second-arriving packet be available. If the packets
are restricted to being transmitted in order of their arrival, then neither packet will

be transmitted, at least until the destination output port associated with the first-

arriving packet becomes free.

This problem can be solved by providing a mechanism for transmitting packets in
a different order from the one in which they arrive. This is commonly referred to in
the art as “scheduling” and is performed by a scheduling processor in a central
location, since decisions taken with regard to the transmission of packets to a
given output port will affect the availability of that output port and will therefore

-2-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
affect the decisions taken with regard to the transmission of packets to that output

port from other input ports.

Unfortunately, the centralized nature of the scheduling operation
disadvantageously limits the throughput of the switch as the data rate increases,
since the scheduler in the packet switch will usually be unable to keep up with the

task of timely scheduling multiple packet streams at high data rates.

A second problematic situation, known as “contention”, arises when two or more
packets from different input ports are destined for the same output port at the
same time. If an attempt is made to transmit both packets at the same time or
within the duration of a packet interval, then either one or both packets will be lost
or corrupted. Clearly, if lossless transmission is to be achieved, it is necessary to

provide some form of contention resolution.

Accordingly, a packet switch can be designed so as to select which input port will

be allowed to transmit its packet to the common destination output port. The |
selected input port will be given permission to transmit its packet to the destination
output port while‘ the other packets remain temporarily “stalled” in their respective
buffers. This is commonly referred to in the art as “arbitration” and is performed
by a processor in a central location, since decisions taken with regard to the
transmission of packets from input port A affect the throughput at the output ports,

which affects the decisions taken with regard to the transmission of packets from

input port B.

However, the centralized nature of arbitration again disadvantageously limits the
throughput of the switch as the data rate increases, since the arbiter in the packet
switch will not be able to keep up with a large number of packet streams at high

data rates.

As the size and capacity of a switch increases, so does the complexity of the
scheduling and arbitration. This increase in complexity of the scheduling and

arbitration entails an increase in latency, which consequently increases the

-3-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
memory requirement. As a result, traditional approaches to scheduling and
contention resolution have yielded packet switch designs that require large buffer

sizes and complex, centralized scheduling and arbitration circuitry.

These properties make it impractical to lithograph a traditionally designed high-
performance packet switch with a reasonable number of input and output ports
onto a single semiconductor .chip using available technology. For this reason,
traditional solutions have been implemented on multiple chips and therefore suffer
from other problems such as high power consumption, high packaging costs,
exposure to electromagnetic interference and significant inefficiencies and cost

penalties related to mass production.

As the required switching capacity of packet switches increases to 1012 bits per
second and beyond, traditional packet switches will be forced to further increase
their memory size and complexity, with an associated exacerbation of the

'problems inherent to a multichip design.

SUMMARY OF THE INVENTION

The present invention provides a compact and efficient switch fabric with
distributed scheduling, arbitration and buffering, as well as a relatively low
requirement for memory, allowing the switch fabric to be implemented on a single

mass-producible semiconductor chip.

Therefore, according to a first broad aspect, the invention may be summarized as
a switch fabric implemented on a chip, including' an array of cells and an /O
interface in communication with the array of cells for permitting exchange of data
packets between the array of cells and components external to the array of cells.
Each cell includes a transmitter in communication with the I/O interface and in
communication with every other cell vof the array, the transmitter being operative to
process a data packet received from the /O interface to determine a destination of
the data packet and forward the data packet to at least one cell of the array

selected on a basis of the determined destination.

-4 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Each cell further includes a plurality of receivers associated with respective cells
from the array, each receiver being in communication with a respective cell
allowing the resApective cell to forward data packets to the receiver, where the
receivers are in communication with the 1/O interface for releasing data packets to
the I/0 interface. In this way, the transmitter in a given cell functionally extends
into those cells where dedicated receivers are located, reducing transmitter

memory requirements and allowing the switch fabric to be implemented on a

single chip.

According to a second broad aspect, the invention may be summarized as a
switch fabric implemented on a chip, including an array of cells and an 110
interface in communication with the array of cells for permitting exchange of data
packets between said array of cells and components external to said array of
cells. Each cell communicates with at least one other cell of the array, thereby
permitting an exchange of data packets to take place between the cells of the
array. Each cell includes a memory for receiving a data packet from another cell
of the array as well as a control entity to control release of a data packet toward a
selected destination cell of the array at least in part on a basis of a degree of
occupancy of the memory in the destination cell. In this way, scheduling is

distributed amongst the cells of the switch fabric.

According to a third broad aspect, the invention may be summarized as a switch
fabric implemented on a chip, including an array of cells and an /O interface in
communication with the array of cells permitting exchange of data packets
between the array of cells and components external to the array of cells. Each
cell communicates with at least one other cell of the array, thereby permitting

exchange of data packets between the cells of the array.

Each cell includes a memory for holding a plurality of data packets for
transmission to other cells of said array. Each data packet of the plurality of data
packets has a characteristic element represented by a parameter, the parameter
allowing one data packet to be distinguished from another data packet in the

-5-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

plurality of data packets. Each cell further includes a control entity operative to
select at least one data packet from the plurality of data packets at least in part on
a basis of the parameter and to transmit the selected data packet to another cell
of said array of cells. In this way, arbitration is distributed throughout the cells of

the switch fabric.

According to a fourth broad aspect, the invention may be summarized as a switch
fabric implemented on a chip, including an array of cells and an /O interface in
communication with the array of cells for permitting exchange of data packets
between the array of cellé and components external to the array of cells. Each
cell communicates with at least one other cell of the array, permitting an exchange
of data packets between the cells of the array and an exchange of control
information between the cells of the array. Each cell is operative to control
transmission of data packets to other cells of the array at least in part on a basis

of the contro! information. The control information is thus used to regulate the flow

of data packets between cells.

According to a fifth broad aspect, the invention may be summarized as a router,
including a routing layer and a switching layer. The routing layer includes a
plurality of I/O ports for exchanging data with components external to the router.
The switching layer is adapted to switch data packets between 1/O ports of the
routing layer. The switching layer includes an array of cells in communication with
the routing layer for permitting exchange of data packets between the array of
cells and the routing layer. Each cell includes a memory for receiving a data
packet from the routing layer. The routing layer includes a controller to control
release of a data packet toward a cell of the array at least in part on a basis of a

degree of occupancy of the memory in the cell.

According to a sixth broad aspect, the invention provides a switch fabric
implemented on a chip, including an array of cells and an I/O interface in
communication with the array of cells for permitting exchange of data packets
between the array of cells and components external to the array of cells. Each

cell communicates with at least one other cell of the array permitting exchange of

-6-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

data packets between the cells of the array. Each cell includes a memory for

receiving a data packet from the I/O interface and a control signal path for

transporting a control signal to a component external to the array of cells, the

control signal being indicative of a degree of occupancy of the memory.

The invention may be summarized according to a seventh broad aspect as a
router, including a routing layer and a switching layer. The routing layer includes
a plurality of 1/0 ports for exchanging data with components external to the router.
The switching layer is in communication with the routing layer in order to switch
data packets between I/O ports of the routing layer. The routing layer includes a
controller responsive to reception of a control signal containing information
indicating that the switching layer is capable of accepting a data packet, to release

a data packet to the switching layer.

These and other aspects and features of the present invention will now become
apparent to those of ordinary skill in the art upon review of the following
description of specific embodiments of the invention in conjunction with the

accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

Fig. 1 shows, in schematic form, a switch fabric formed by an interconnection of

cells, in accordance with an embodiment of the present invention;

Fig. 2 shows, in schematic form, functional modules of a cell of the switch fabric in

Fig. 1, including a transmitter, a plurality of receivers and an arbiter;
Fig. 3 shows the format of a packet used in the switch fabric of Fig. 1;

Fig. 4 shows, in schematic form, the arbiter of Fig. 2;

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Fig. 5 shows, in schematic form, a receiver of Fig. 2;

Fig. 6 shows, in schematic form, an arrangement of functional modules used in
the administration of an aging policy with respect to packets stored in the receiver

of Fig. 5; and
Fig. 7 shows, in schematic form, the transmitter of Fig. 2;

Fig. 8 is a flowchart representing the operational steps executed by the queue

controller of Fig. 6 in administering the aging policy;

Fig. 9 shows, in schematic form, the transmitter of Fig. 2 adapted to provide

multicast functionality;

Figs. 10-12 show, in schematic form, other embodiments of the switch fabric

formed by an interconnection of cells;

Fig. 13 shows a packet switch that utilizes multiple switch cards, each containing

a switch fabric in accordance with the present invention;

Fig. 14 shows, in schematic form, a cell adapted to provide transmission of

system packets to and from a central processing unit;

Fig. 15 shows potential path that may be taken by system packets and traffic
packets through the cell of Fig. 14;

Fig. 16 shows, in schematic form, the transmitter of Fig. 14;
Figs. 17A and 17B show, in schematic form, a receiver of Fig. 14;

Fig. 18 shows the format of a system packet used in the cell of Fig. 14;

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
Fig. 19 shows, in schematic form, yet another embodiment of the switch fabric

formed by an interconnection of cells; and

Fig. 20 shows interaction between a packet-forwarding module, an input interface

and an output interface in accordance with an embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to Fig. 13, there is shown a packet switch 105, comprising one or
more line cards 106, 108, also referred to in the art as tributary cards. The line
cards 106, 108 are connected at one end td a core network 107 or to other packet
switches or routers. The line cards 106, 108 are connected at another end to one
or more switch cards 109. Line cards 106 receive packets from the core network
107 and transmit them to the switch cards 109, while line cards 108 receive
switched packets from the switch cards 109 and transmit them to the core network
107. In many embodiments, the line cards 106 are bi-directional. A mid-plane
(not shown) may be provided to facilitate interconnection between the line cards -

106, 108 and the switch card(s) 109.

Each switch card 109 has a plurality of input ports and a plurality of output ports.
From the point of view of an individual switch card 109, the line cards 106 are
input line cards as they supply packets to the input ports of the switch card 109,
while the line cards 108 are output line cards as they receive packets from the
output ports of the switch card 109. The function of a switch card 109 is to send

‘each packet received at one of its input ports to an output port specified by or

within the packet itself. In this sense, a switch card 109 exhibits self-routing
functionality. To provide this functionality, in a preferred embodiment, the switch
card 109 comprises a semiconductor substrate (or “wafer” or “chip”) 110 on which
resides a self-routing switch fabric. In some embodiments, the chip 110 may be a
CMOS silicon chip to balance memory density, logic speed and development cost,
but other embodiments need not be limited to CMOS, to silicon, to

semiconductors or even to electronics.

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

It should be understood that the term “switch fabric” has a meaning not restricted
to traditional routing and/or packet switching applications but extends to cover
other applications where a signal path is required to be established, either

temporarily or permanently, between a sender and a receiver.

Fig. 1 shows a switch fabric 100 in accordance with an embodiment of the present
invention, comprising N “cells” 114, 1 <j < N, implemented on a single chip 110
within a switch card 109. As will be appreciated from the remainder of the
specification, a “cell” is an entity that performs processing on a data packet. The

processing may be switching of the data packet or another type of processing.

The cells 114 are equipped with an input/output (1/O) interface for interfacing with
an off-chip environment. The I/O interface refers globally to the functional element
of the cell that allows it to communicate with the external world, in one example
this world being the off-chip line cards 106. In the illustrated embodiment, each
cell 114 includes an input interface 116 for receiving packets from one or more of
the input line cards 106 and an output interface 118 for providing switched
packets to one or more of the output line cards 108. In other examples, the /O
interface may be the collection of individual I/O ports on the cell.

In the illustrated non-limiting embodiment, the input interfaée 116 is connected to
pins on the chip 110, which pins are connected to traces 116” on the line card
109, which traces 116" connect to line cards 106 through a releasable cénnector
116'. But the traces 116” need not be contained or embedded within the switch

card 109 and need not be electronic; for example, in embodiments where indium

- phosphide based switch fabrics are contemplated, guided or free-space optical

inputs and outputs may be preferred.

In addition, the cells 114 are each equipped with one or more transmitters 140
and one or more receivers 150. Communication between the transmitters and
receivers in different cells is achieved by way of a predetermined interconnect

pattern 112 which includes “forward” channels and “reverse” (or “back”) channels.

-10 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The forward channels are arranged in such a way as to allow the transmitter 140
in a given cell to send packets to dedicated receivers 150 in its own cell and/or in
one or more other cells. Conversely, each receiver 150 in a given cell is
dedicated to receiving packets from the transmitter 140, either in its own cell or in
one of the other cells, via the appropriate forward channel. Thus, it can be said
that a transmitter functionally extends into those cells where its dedicated
receivers are located, the end result being that a transmitter on a given cell need
not compete with other transmitters on other cells when sending a packet. The
back channels include dedicated connections which transport control information
from a particular receiver to the associated transmitter from which it receives

packets along the forward channel. The individual transmitters in different cells

are functionally independent.

The interconnect patterh 112 defines one or more arrays of cells. As used herein,
the word “array” is meant to designate the set of cells that are connected to one
another. Therefore, a chip may have a plurality of arrays, in the instance where
interconnections are such that each cell does not communicate directly with every

other cell. The most basic form of array is two cells connected to one another.

In one embodiment of the present invention, the interconnect pattern 112 allows
each cell to transmit data to, receive data from, and access control information
from, itself and every other cell of the switch fabric 100. Fig. 10 illustrates this
feature in the case where N=4, and where each cell has a single transmitter 140
and N=4 receivers 150. It can be observed that receiver 150; in cell 114 is a
loopback receiver which receives packets sent by the transmitter 140 in cell 114j.
Fig. 19 shows the same logical interconnect pattern 112 as in Fig. 10, i.e., each
cell transmits data to, receives data from, and accesses control information from,
itself and every other cell of the switch fabric 100; however, N=16 and the cells
are arranged physically in a 4x4 matrix. For simplicity, only the forward channels

are shown.

With reference to Fig. 11, there is shown an alternative interconnect pattern 112 in

which there are provided sixteen cells, each having two transmitters 1404, 140

-11 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

and eight receivers 150. The sixteen cells 114 are arranged in a square matrix
formation, whereby the transmitter 140, belonging to each cell located in a given
row is connected to a receiver in each other cell located in the same row and the
transmitter 140g belonging to each cell located in a given column is connected to
a receiver in each other cell located in the same column. The fact that there is
one transmitter for eight receivers facilitates scaling to larger numbers of cells. In
this case, there are two loopback receivers per cell, although embodiments in
which there is only one loopback receiver or no loopback receiver are also within

the scope of the present invention.

Although the cells 114 on the chip 110 can be made structurally and functionally
identical to one another in order to simplify the overall chip design, this is not a
requirement. For example, Fig. 12 partially shows yet another possible
interconnect paftern within the scope of the present invention, wherein asymmetry
among cells or among groups of cells is incorporated into the design. As
illustrated, there are provided sixteen cells 114, again arranged in a matrix
formation, each with a single transmitter 140 and one or more receivers 150. The
structure of the interconnect of Fig. 12 is “tree”like in nature, which may be
advantageous under certain circumstances. Specifically, the tree-like structure
consists of several interlinked arrays of cells. In one array, cell #1 is adapted to
transmit packets to cells #2, #3, #4, #5, #6, #7, #8, #9, #10, #11 and #13, while in
the other array, cell #7 is adapted to transmit packets to cells #5, #6, #8, #9, #10,
#11, #12, #13, #14, #15 and #16. For simplicity, Fig. 12 shows only the
connections enabling the transmission from cell #1 and cell #7.

Still other interconnect patterns may be designed without departing from the spirit
of the invention. For example, in one embodiment of an Nx1 switch fabric, the
cells may be physically implemented as an N/2 by 2 array as this provides an
advantageous balance between the simpler wiring of an Nx1 physical
implementation and the shorter wiring of a YN x YN physical implementation. In
another embodiment, it is possible to create a three-dimensional array (or “cube”)

of cells and also to provide one or more of the cells with multiple transmitters.

-12 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
A wide variety of interconnect patterns would then'be possible within such a
structure. For instance, in a design employing 8 x 8 x 8 cells, each cell would be
designed so as to contain three transmitters (one for the “column”, one for the
“row” and one for the “line”), as well as 24 receivers, one for each of the cells in

the same column, row or line as the cell in question. If the cells are also

"connected in a diagonal fashion, the number of transmitters and receivers will

differ amongst the cells. For example, the cell at the center of the cube will
contain an additional four transmitters and 32 receivers, while the eight cells
located at the apexes of the cube will each contain an additional eight receivers

and one transmitter.

Other patterns such as a hypercube or a three- (or higher-) dimensional toroidal
mesh can similarly be created using the cells as described herein in order to
capitalize on the tremendous interconnectivity available today within a single
semiconductor substrate. Note that the expression “dimension” here does not
necessarily refer to the spatial extent of the cells’ physical layout, rather it
describes the functional relationship between groups of cells. Thus it is possible
to realize an array of cells where the cells are arranged functionally in three or
more dimensions while physically the cells occupy more or less the same plane or
occupy a three-dimensional stack of planes or other region of a semiconductor
substrate. Thus, it is within the scope of the invention to take advantage of
advances in lithography which would increase the allowable circuit density on a
chip so as to allow the switch fabric to be implemented logically as four-

dimensional yet on a physically two- or three-dimensional substrate.

Moreover, it is envisaged that although it may be desired to interconnect N cells
according to a particular interconnect pattern, a larger number of cells could be
initially designed onto the semiconductor substrate, with an interconnect pattern of
which the desired interconnect pattern is a subset. Upon lithography and
fabrication, faulty cells would be detected and these (along with, possibly, some
fault-free cells if they are in excess of N) could be electronically or otherwise

disabled so as to leave N fully operational cells with the desired interconnect

pattern on the chip.

-13 -

10

15

20

25

30

WO 02/098066 _ PCT/CA02/00810

An example arrangement of the functional modules that make up an example cell
(say, cell 1144) is shown in greater detail in Fig. 2 for the case where each cell
transmits packets to, and receives packets from, itself and every other cell. Cell
1144 is seen to comprise a transmitter 140, N receivers 1501...150N, an input
interface 116, an output interface 118 and an arbiter 260. Other embodiments of

the invention, to be described in greater detail later on, may include a central

- processing unit (CPU, not shown in Fig. 2) in each cell for generating and

processing specialized control information.

it may be advantageous to use electrical communication for currently available
CMOS semiconductors or guided or free-space optics for compound
semiconductors such as gallium arsenide or indium phosphide. In other
embodiments, the input interface 116 and output interface 118 may communicate
with the off-chip environment using a variety of media and techniques, including

but not limited to sonic, radio frequency and mechanical communication.

The input interface 116 receives packets from an off-chip packet-forwarding
module 226 via a data path 252 and forwards them to the transmitter 140 via a
data path 230. Occupancy information regarding the transmitter 140 is provided
to the input interface 116 via a set of free_slot lines 207; the input interface 116
provides this information to the off-chip packet-forwarding module 226 along a

control path 254.

The receivers 150 are connected to the arbiter 260, which is connected to the
output interface 118 via a data path 202. The output interface 118 supplies
packets to an off-chip input queue 228 via a data path 256. Occupancy
information regarding the off-chip input queue 228 is provided to the receivers 150
in the form of an almost_full flag 208 that runs through the output interface 118 in
the opposite direction of traffic flow. This fdnctionality may also be provided by an

external back channel.

-14 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
The interconnect pattern 112 includes “forward” channels 2101-, 1<js N, and
“reverse” (or “back”) channels 212jk, 1<j<N, 1= k<N. Forward channel 210; is
employed by the transmitter 140 in cell 114; to send packets to a corresponding
receiver 150; located on each of the cells 114, 1 <k < N. Back channel 212j is
used by the-transmitter 140 in cell 114k to access control information from
receiver 150 in cell 114j. Thus, in this embodiment, in total, there are N forward

channels, one for each cell, and there are N? back channels, one for each

combination cell pairs.

The switch fabric 100 processes data organized into packets. Each such packet
has one or more words, where the size of a word is generally fixed. In one
embodiment, the forward channels 210 are selected to be one bit wide so as to
allow data to be transferred serially. In another embodiment, the forward
channels 210 are selected to be at least as wide as to allow a parallel data
transfer involving two or more bits in an individual word. In yet another
embodiment, the forward channels 210 are selected to be sufficiently wide so as

to allow a parallel data transfer involving all the bits in an individual word.

On the other hand, the back channels 212 convey control information of relatively
low bandwidth compared to the required capacity of the forward channels 210,
and therefore an individual back channel may be designed as a serial link or one
with a low degree of parallelism compared to that of a forward channel. Note that
because the N? back channels 212 carry much less information than the main
data paths, they can be much narrower (i.e., one to a few bits wide) or slower than
the forward channels 210; alternatively, data from multiple back channels can be
multiplexed onto a single physical channel, etc. It will be noted that arrangements

where the back channel is designed to convey information in a parallel fashion are

within the scope of the present invention.

It should be understood that the term “packet” is intended to designate, in a
general sense, a unit of information. The scope of this definition includes, without
being limited to, fixed-length datagrams, variable-length datagrams, information

streams and other information formats. The various characteristics of a packet,

-15 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
such as its length, priority level, destination, etc. can be supplied within the packet

itself or can be provided separately.

Fig. 3 shows in more detail the structure of a packet 350 suitable for use with the
present invention. Specifically, a first word (or group of words) of the packet 350
makes up the so-called “header” 360 and the remaining words of the packet 350
make up the so-called “payload” 370. Ina non-limiting example embodiment, the
size of the header 360 is a single word and the size of the payload 370 ranges
from 7 to 23 words. In different embodiments within the scope of the present
invention, the number of words in each packet may be fixed or it may vary from

one packet to another.

The header 360 has various fields that contain control information. For example,
the header 360 may include a destination field 362, a priority field 364 and a
source field 366. The destination field 362 specifies the cell from which it is
desired that the packet eventually exit the switch fabric 100. This cell may be
referred to as the “destination cell”’. The destination field 362 may encode the
destination cell in any suitable way, for example using a binary code to represent

the destination cell or using a binary mask with a logic “1” in the position of the

destination cell.

In some embodiments of the invention capable of providing multicast functionality,
there may be more than one destination cell specified in the destination field 362
of a given packet 350. For the time being, however, it will be assumed that only
each packet is associated with only one destination cell, the consideration of a

multicast scenario being left to a later part of this specification.

The priority field 364 encodes a priority level associated with the packet 350. The
priority level associated with a packet 350 basically indicates to the switch fabric
100 the relative urgency with which the packet in question is to be forwarded fo its
destination cell. The set of possible priority levels may include a finely graduated

range encoded by, say, 8 bits (representing values between 0 and 255,

-16 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

inclusively). In other embodiments, the set of possible priority levels may consist

simply of “high”, “medium” and “low” priority levels.

The source field 366 is optional in the case where a single switch fabric is
considered in isolation. However, when multiple switch fabrics 100 of the type
shown in Fig. 1 are interconnected, it may be useful for a downstream switch

fabric that processes a packet received from an upstream switch fabric to know

" which cell on the upstream switch fabric actually sent the packet. Such

information may suitably be contained in the source field 366 of the header 360 of

the packet 350.

Of course, it is to be understood that still other header fields not shown in Fig. 3
may be used to store additional control information related to the packet 350. For
instance, a packet destined for the CPU in the destination cell may be so identified
in the header, as will a packet that has been generated by the CPU in a given cell.
This functionality will be described in further detail later on. In other example
embodiments, the header 360 may also contain a series of one or more “switch
fabric chip” exit ports defining a predetermined path through a multi-stage fabric.
Additionally, for each port on a line card, there may be one or more sub-ports.

The sub-port for which a particular packet is destined may be identified in a field of

the packet’s header 360.

While a packet may have a fixed or variable number of words, each word
generally has a fixed number of bits (i.e., each word is of a fixed “width”). For
example, a word may include, say, 33 bits, among which 32 bits may carry actual
information (which is of a different type for the header 360 and for the payload
370), and the 33 bit may be an “end-of-packet” bit 368 that is set for a particular
word when that word is a predetermined number of words from the end of the
packet to which it belongs. Thus, detection of variations in the end-of-packet
(EOP) bit 368 of successive words allows an entity processing a stream of words
to locate the beginning of a new packet. Specifically, when such an entity detects
a falling edge in the EOP bit, it will expect the next packet to begin following

-17 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
receipt of a predetermined number of additional words belonging to the current

packet.

Alternative ways of indicating the length and/or the start of a packet will be known
to those of ordinary skill in the art, such as, for example, including an additional
field in the header 360 which specifies the length of the packet, in terms of the
number of words. Of course, such measures are unnecessary when each packet
is of a known and fixed length, since a word counter could be used as a reference
in order to establish the expiry of one packet and the beginning of the next. As
will be understood by those of ordinary skill in the art, additional bits may be used

for parity checking and other functions, for example.

A packet travelling through the switch fabric 100 of Fig. 2 undergoes three main
stages of transmission. The first stage involves the packet being transmitted from
the off-chip environment to a given cell, say cell 114, via that cell’s input interface
116; upon receipt, the transmitter 140 begins the process of writing the packet into
a memory location in that cell. The second stage involves the packet being sent
from the transmitter 140 in cell 114 along the corresponding forward channel
210y to receiver 150 residing in the destination cell; upon receipt, the packet is
written into a memory location by receiver 150, in the destination cell. Finally, the
third stage involves the packet being sent from receiver 150 in the destination
cell via the arbiter 260 and through output interface 118 of that cell. In the
illustrated embodiment, the output interface 118 is connected to the off-chip input
queue 228 which provides additional buffering and feedback on the state of this ‘

buffering, thus allowing an over-provisioned switch fabric to deliver bursts that

temporarily exceed the capacity of the next link.

In accordance with an embodiment of the present invention, a packet having a
given priority level is transmitted at a particular stage only if there is sufficient
room downstream to accommodate the packet, taking into consideration its
priority level. This functionality is achieved by providing a packet transmission

control mechanism at each stage of transmission in order to regulate packet flow

-18 -

10

15

20

25

30

WO 02/098066) PCT/CA02/00810

and achieve the most desired overall functionality. However, it is within the scope

of the invention to omit one or more of the control mechanisms.

With regard to the first stage, the off-chip packet-forwarding module 226 controls
the flow of packets to cell 114y from the off-chip environment by consulting
occupancy information provided by the transmitter 140 via control path 254. An
example off-chip packet-forwarding module 226 will be described in greater detail
later on; for now, it is sufficient to mention that it is advantageous to use the
occupancy information in order to ensure that transmission of a packet to cell

114 J'only occurs if the transmitter 140 can accommodate that packet.

With regard to the second stage, if lossless transmission is to be supported, it is
advantageous for the control mechanism tb ensure that the transmitter 140 in cell
114 does not send the packet to receiver 150 in the destination cell unless the
receiver in question can accommodate that packet. (The destination cell may be
cell 114 itself but is more generally denoted 114;, 1 <j < N). An example
embodiment of such a control system is described herein below; for now, it is
sufficient to mention that the transmitter 140 in cell 114) uses back channel 212; 4
to monitor the status (occupancy) of individual memory locations in receiver 150y

in cell 114j, thereby to determine whether a packet can be accommodated by that

receiver.

With regard to the third stage, in this embodiment, receiver 150, in the destination
cell relies on the almost full flag 208 that provides occupancy information .
regarding the off-chip input queue 228. This control mechanism is described
herein below in greater detail; for now, it is sufficient to mention that receiver 150
in the destination cell is prevented from requesting transmission of a packet

unless it can be accommodated by the off-chip input queue 228.

Those skilled in the art will more fully understand the various stages of packet
transmission and their associated control mechanisms in the context of the
following detailed description of the individual functional modules of a generic cell

of Fig. 2 with additional reference to Figs. 4, 5 and 7.

-19-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

An example non-limiting implementation of the transmitter 140 in cell 114 is now
described with reference to Fig. 7. The transmitter 140 has a memory which
includes various storage areas, including a data memory 702, a plurality of control
memories 712, any memory used by a plurality of queue controllers 710 and any

other memory used by the transmitter 140.

The transmitter 140 receives words from the input interface 116 along the data
path 230. The words are fed to the data memory 702 via a set of data input borts.
The data memory 702 is writable in response to receipt of a write address and a
write enable signal from a packet insertion module 704 via a write_address line -
716 and a write_enable line 718, respectively. The write_address line 716 carries
the address in the data memory 702 to which the word presently on the data path
230 is to be written, while asserting a signal on the write_enable line 718 triggers
the actual operation of writing this word into the specified address. In order to
coordinate the arrival of packets at the data memory 702 with the generation of
signals on the write_address line 716 and the write_enable line 718, the data path
230 may pass through an optional delay element 706 before entering the data

input ports of the data memory 702.

In this example, the data memory 702 comprises N segments 713, one for each of
the N cells on the chip 110. The i segment 713j has the capacity to store a total
of M packets destined for cell 114j. More specifically, the j" segment 713j
includes M slots 708 A, 708 B, ---, 708 M, each slot being of such size as to
accommodate a packet. It should be understood that the invention is applicable to
any suitable combination of N and M, depending on the operational requirements
of the invention. In other embodiments, the data memory 702 may include a pool

of memory that is capable of storing portions of incoming data streams.

Associated with each segment 713; of the data memory 702 is a dedicated one of
the queue- controllers 710, ‘speciﬁcally queue controller 710;. Queue controller
710 has access to an associated control memory 712j. The control memory 712;
holds data representative of a degree of occupancy of the corresponding segment

-20 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

713 of the data memory 702. The term “degree of occupancy” should be
understood to include information indicative of the amount of space in the data
memory 702 and includes any data that can directly or indirectly provide such
information. In some embodiments, this information may be expressed as a
degree of vacancy or occupancy. In other embodiments, control memory 712
includes a plurality of entries 714j A, 714{ B, ..., 714) M which store the occupancy
status (i.e., occupied or unoccupied) of the respective slots 708j’A, 708],8,
708; M in the | segment 713j of the data memory 702. In addition, for each slot
that is occupied, the corresponding entry stores the priority level of the packet

" occupying that slot. In one embodiment, the control memory 712 and/or the

entries 714j A, 714; B, ..., T14;, M may take the form of registers, for example.

Different slots can be associated with different priority levels or, if there is a large
number of possible priority levels, different slots can be associated with different
priority “classes”, such as “low”, “medium’ and “high”. For example, given 256
possible priority levels (0 to 255), the low and medium priority classes could be
separated by a “low-medium” priority threshold corresponding to a priority level of
fabric 100, while the medium and high priority classes could be separated by a
“medium-high” priority threshold corresponding to a priority level of 200.

In one embodiment of the invention, each segment includes at least one slot per
priority class. By way of example, the ji" segment 713 of the data memory 702
may contain five slots 708 A, 708; B, 708;,C. 708j p, 708 E, where slots 708; A
and 708; g are associated with a high priority class, slots 708j c and 708; p are
associated with a medium priority class and slot 708j,E is associated with a low
priority class. It is to be understood, of course, that the present invention includes
other numbers of slots per segment and other associations of slots and priority
classes. For example, an embodiment could allow high-priority packets into any

slot while reserving some slots exclusively for high-priority packets.

The packet insertion module 704 is operable to monitor the EOP bit 368 on each
word received via the data path 230 in order to locate the header of newly
received packets. It is recalled that the EOP bit 368 undergoes a transition (e.g.,

-21-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

falling edge) for the word that occurs in a specific position within the packet to
which it belongs. In this way, detection and monitoring of the EOP bit 368
provides the packet insertion module 704 with an indication as to when a new
packet will be received and, since the header 360 is located at the beginning of
the packet, the packet insertion module 704 will know when the header 360 of a

new packet has arrived.

The packet insertion module 704 is further operable to extract control information
from the header 360 of each newly received packet. Such information includes
the destination of a newly received packet and its priority level for the purposes of
determining into which siot it should be placed in the data memory 702. The
packet insertion module 704 first determines into which segment a newly received
packet is to be loaded. This is achieved by determining the cell for which the
packet is destined by extracting the destination field from the header of the newly
received packet. The destination field identifies one of the N cells 114 as the
destination cell. The destination cell may be cell 114 itself but is more generally
denoted 114j. Having determined the set of slots associated with the destination
cell 114j, the packet insertion module 704 determines the slot into which the
received packet should be inserted. This is achieved by determining the priority
class of the received packet and verifying the availability of the slot(s) associated

with that priority class.

To this end, the packet insertion module 704 determines the priority class of a
packet by comparing the priority level of the packet to the previously defined
priority thresholds. For example, let slots 708; A, 708; B, 708 C, 708j D, 708; g be
associated with high, high, medium, medium and low priority levels, respectively.
Also, let the low-medium priority threshold and the medium-high priority threshold
be as defined previously, namely, at 100 and 200, respéctively. If the priority level
of the received packet is 167, for example, then the appropriate slots into which

the packet could be written include slots 708; ¢ and 708; p.

Next, the packet insertion module 704 determines which of the appropriate slots is

available by communicating with queue controller 71 Oj, to which it is connected via

-22 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

a respective queue_full line 726; and a respective new_packet line 728;.
Alternatively, a bus structure could be used to connect the packet insertion
module 704 and the queue controllers 710. In either case, the packet insertion
module 704 obtains the status (i.e., occupied or unoccupied) of the slots
associated with the priority class of the received packet via the queue_full line

726j.

~ The status information may take the form of a bit pattern which includes a set of

positioned bits equal in number to the number of siots, where a logic value of 0 in
a particular position signifies that the corresponding slot is unoccupied and where
a logic value of 1 in that position signifies that the corresponding slot is indeed
occupied. In this way, it will be apparent to the packet insertion module 704 which
of the slots associated with the priority class of the received packet are available.

In the above example, where the priority class of the received packet was
“medium” and slots 708j c and 708j p were associated with the medium priority -
class, queue controller .7101' would supply the occupancy of slots 708; c and
708],D via the queue_full line 726;. This information is obtained by consulting

~ entries 714j c and 714jp in control memory 712j. Of course, it is within the scope

of the invention for queue controller 710j to provide, each time, the occupancy of

all the slots in memory segment 713j.

If only one slot for the packet's priority class is available, then that slot is chosen
as the one to which the received packet will be written. If there is more than one
available slot for the packet’s priority class, then the packet insertion module 704
is free to choose any of these slots as the one to which the received packet will be
written. It is advantageous to provide a mechanism ensuring that slots are always
available for the packet’s priority class, as this prevents having to discard or reject
packets. One possible form of implementation of this mechanism is the regulation
circuitry on off-chip packet-forwarding module 226, which would only have
transmitted to cell 114 if it knew that there was room in the transmitter 140 for a
packet having the priority class in question. This feature will be described in

greater detail later in this specification.

~23-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Having determined the segment and the slot into which the received packet shall -
be written to, the packet insertion module 704 determines a corresponding base
address in the data memory 702. This may be done either by computing an offset
that corresponds to the relative position of the segment and the relative position of
the slot or by consulting a lookup table that maps segment and slot combinations

to addresses in the data memory 702.

The packet insertion module 704 is adapted to provide the base address to the
data memory 702 via the write_address line 716 and is further adapted to assert
the write_enable line 718. At approximately the same time, the packet insertion
module 704 sends a signal to queue controller 710; along the appropriate -
new_packet line 728, such signal being indicative of the identity of the slot that is
being written to and the priority level of the packet which is to occupy that slot.
Queue controller 71 Oj is adapted to process this signal by updating the status and

priority information associated with the identified slot (which was previously

unoccupied).

After the first word of the received packet is written to the above-determined base
address of the data memory 702, the address on the write_address line 716 is
then incremented at each clock cycle (or at each multiple of a clock cycle) as new
words are received along the data path 230. This will cause the words of the
packet to fill the chosen slot in the data memory 702. Meanwhile, the packet
insertion module 704 monitors the EOP bit 368 in each received word. When a
new packet is detected, the above process re-starts with extraction of control

information from the header 360 of the newly received packet.

In addition to being writable, the data memory 702 is also readable in response to
a read address supplied by an arbiter 760 along a read_address line 792. In one
embodiment, this may be implemented as a dual-port random access memory
(RAM). In another embodiment, multiple data memories 702 may share a read
port while each having an independent write port. As will be described in greater
detail later on, the arbiter 760 initiates reads from the data memory 702 as a

-24 -

10

15

20

25

30

WO 02/098066) . PCT/CA02/00810

function of requests received from the plurality of queue controllers 710 via a
corresponding plurality of request lines 703. A particular request line 703; will be
asserted if the corresponding queue controller 710; is desirous of forwarding a

packet to receiver 150 in cell 114;.

One possible implementation of a queue controller, say, queue controller 710;,
adapted to generate a request for transmission of a received packet will now be
described. Specifically, queue controller 710; is operable to generate a request
for transmitting one of the possible multiplicity of packets occupying the slots
708 A, 708;B, - 708; \ in the data memory 702. The identity of the slot chosen
to be transmitted is provided along a corresponding one of a plurality of slot_id
lines 705; while the priority associated with the chosen slot is provided on a

corresponding one of a plurality of priority lines 707j.

Each queue controller 71 Oj implements a function which determines the identity of
the occupied slot which holds the highest-priority packet that can be
accommodated by the receiver in the destination cell. This function can be
suitably implemented by a logic circuit, for example. By way of example, each of
the queue controllers 710; in the transmitter 140 in cell 114 can be designed to
verify the entries in the associated control memory 712j in order to determine,
amongst all occupied slots associated with segment 713;in the data memory 702,
the identity of the slot holding the highest-priority packet. Queue controller 710;
then assesses the ability of the receiver in the destination cell (i.e., receiver 150
in cell 114)) to accommodate the packet in the chosen slot by processing

information received via the corresponding back channel 212; .

In one embodiment of the present invention, receiver 150y in cell 114; will
comprise a set of M* slots similar to the M slots in the i segment 713j of the data
memory 702, although M* may be different from M. The information carried by
back channel 212j j in such a case will be indicative of the status (occupied or
unoccupied) of each of these M* slots. (Reference may be had to Fig. 5, where
the receiver slots are denoted 508. This Figure will be described in greater detail

later on when describing the receiver.) Thus, by consulting back channel 212; j,

-25-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

queue controller 710; in cell 114, has knowledge of whether or not its highest-

priority packet can be accommodated by the associated receiver 150, in cell 114;.

If the highest-priority packet can indeed be accommodated, then queue controller
710; places the identity of the associated slot on the corresponding slot_id line
705, places the priority level of the packet on the corresponding priority line 707
and submits a request to the arbiter 760 by asserting the corresponding request
line 703j. However, if the highest-priority packet cannot indeed be
accommodated, then queue controller 710; determines, among all occupied slots
associated with the segment 713; in the data memory 702, the identity of the slot
holding the next-highest-priority packet. As before, this can be achieved by

‘processing information received via the corresponding back channel 212 .

If the next-highest-priority packet can indeed be accommodated, then queue
controller 710j places the identity of the associated slot on the corresponding
slot_id line 703, places the priority level of the packet on the corresponding
priority line 707; and submits a request to the arbiter 760 by asserting the
corresponding request line 703;. However, if the next-highest-priority packet
cannot indeed be accommodated, then queue controller 710; determines, among
all occupied slots associated with the segment 713; in the data memory 702, the
identity of the slot holding the next-next-highest-priority packet, and so on. If none
of the packets can be accommodated or, alternatively, if none of the slots are
occupied, then no request is generated by queue controller 710j and the

corresponding request line 703; remains unasserted.

Assuming that queue controller 710] has submitted a request and has had its

request granted, it will be made aware of this latter fact by the arbiter 760. This
exchange of information can be achieved in many ways. For example, the arbiter
760 may identify the queue controller whose request has been granted by sending
a unique code on a grant line 711 and, when ready, the arbiter 760 may assert a
grant_enable line 715 shared by the queue controllers 710. Queue controller 710;

may thus establish that its request has been granted by (i) detecting a unique

-26-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

code in the signal received from the arbiter via the grant line 711; and (ii) detecting

the asserted grant_enable line 715.

It should be understood that other ways of signaling and detecting a granted
request are within the scope of the present invent.ion. For example, it is feasible
to provide a separate grant line to each queue controller; when a particular queue
controller's request has been granted, the grant line connected to the particular

queue controller would be the only one to be asserted.

Upon receipt of an indication that its request has been granted, queue controller
710; accesses the entry in the control memory 712; corresponding to the slot
whose packet now faces an imminent exit from the data memory 702 under the
control of the arbiter 760. Specifically, queue controller 710j changes the status of
that particular slot to “unoccupied”, which will alter the result of the request
computation logic, resulting in the generation of a new request that may specify a
different slot. The changed status of a slot will also be reflected in the information

subsequently provided upon request to the packet insertion module 704 via the

corresponding queue_full line 726;.

Also upon receipt of an indication that its request has been granted, queue
controller 71 0j asserts a corresponding pointer_update line 729j which returns
back to the arbiter 760. As will be described later on in connection with the arbiter
760, assertion of one of the pointer_update lines 729j indicates to the arbiter 760
that the grant it has issued has been acknowledged, allowing the arbiter 760 to
proceed with preparing the next grant, based on a possibly new request from

queue controller 71 Oj and on pending requests from the other queue controllers

710.

The function of the arbiter 760 is to grant one of the requests received from the
various queue controllers 710 and to consequently control read operations from
the data memory 702. To this end, the arbiter 760 comprises a request-
processing module 770, an address decoder 780 and a packet-forwarding module

790.

-27-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The request-processing module 770 receives the request lines 703, the priority
lines 707 and the pointer_update lines 729 from the queue controllers 710. The
request-processing module 770 functions to grant only one of the possibly many
requests received from the queue controllers 710. The request-processing
module 770 has an output which is the grant line 711. The grant line 711 is
connected to each of the queue controllers 710, as well as to the address decoder
780. In one embodiment of the present invention, the grant line 711 utilizes a
unique binary code to identify the queue controller whose request has been

granted.

The address decoder 780 receives the grant line 711 from the requeét—processing
module 770 and the slot id lines 705 from the queue controllers 710. The
address decoder 780 computes a base address in the data memory 702 that
stores the first word of the packet for which transmission has been granted. The

base address is provided to the packet-forwarding module 790 via a

base_address line 782.

The packet-forwarding module 790 receives, via the base_address line 782, the
location of the first word of the next packet that it is required to extract from the
data memory 702. The packet-forwarding module 790 stores the initial address
on the base_address line 782. Once it has finished reading the current packet
from the data memory 702, the packet-forwarding module 790, asserts the
grant_enable line 715 and proceeds to cause words to be read from the data

memory 702, starting at the initial address.

One possible implementation of the request-processing module 770, the address
decoder 780 and the packet-forwarding logic 790 is now described with additional
reference to Fig. 4. The request processing section 770 comprises a request
generator 420, which is connected to the queue controllers 710 via the request
lines 703 and the priority lines 707. The request generator 420 is also connected
to a programmable round-robin arbiter (PRRA) 422 via a plurality of request lines

-28 -

10

15

20

25

30

WO 02/098066 . PCT/CA02/00810

424 and may further be connected to a pointer control entity 412 via a control line

413.

The request generator 420 is adapted to admit only those requests associated
with the maximum priority level amongst all the priority levels specified on the
priority lines 707. To this end, the request generator 420 may be implemented as
a maximum comparator that outputs the maximum value of the (up to N) received
priority levels; this maximum value is then compared to all of the received priority
levels on the priority lines 707, which would result in an individual one of the
request lines 424 being asserted when the corresponding one of the request lines
703 is associated with the maximum priority level; the other request lines 424
would remain unasserted. As these highest-priority requests are eventually
granted, the queue controllers 710 will generate new requests on the request lines
703, causing the output of the request generator 420 to change over time.

The requests on the request lines 424 are proc_essed by the PRRA 422. The
PRRA 422 has an output that is the shared grant line 711 that is provided to the
queue controllers 710, to the pointer control entity 412 and to an address decoder
780. Among the possibly one or more request lines 424 being asserted, only one
of these will be granted by the PRRA 422 as a function of a “pointer” and a “mask”
produced by the pointer control entity 412. As already described, the grant line
711 identifies the queue controller whose request has been granted, suitably in

the form of a binary code which can uniquely identify each of the queue controllers

710.

In one embodiment, a pointer and a mask are defined for each of one or more
possible priority levels. The mask associated with a given priority level indicates
which queue controllers associated with that priority level remain as yet
ungranted, while the pointer associated with a given priority level indicates which
of the queue controllers 710 was the most recent one to have its request granted.
Among the multiple sets of pointer and mask pairs, the pointer control entity 412

submits only one pointer and one mask to the PRRA 422 at any given time.

-29-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

To compute the pointer and the mask, the pointer control entity 412 requires
knowledge of the information on the request lines 703 and the priority lines 707.
This knowledge may be obtained either directly or from the request generator 420
via the control line 413. In addition, the pointer control entity 412 requires
knowledge of the information circulating on the pointer_update lines 729 received
from the queue controllers 710. As may be appreciated from the following, the
pointer and mask submitted to the PRRA 422 allow it to be “fair” in deciding which

should be the next queue controller to see its request granted.

To simplify the description, but without limiting the scope of the invention, it can be
assumed that a pointer and a mask are not defined for each possible priority level,
but rather for each of a set of priority classes, namely high, medium and low.
Also, there are assumed to be four queue controllers 7104, 7102, 7103, 7104 that

submit requests to the request generator 420.

By way of example, let the requests from queue controllers 7104, 7102, 7103,
7104 be associated with medium, NONE, low and medium priority classes,
respectively. That is to say, queue controller 7102 has not submitted a request.
Accordingly, the initial “high” mask would be 0000 (as no request has a high
priority class), the initial “medium” mask would be 1001 (as queue controllers
7104 and 7104 have submitted requests associated with a medium priority class)
and the initial “low” mask would be 0010 (as queue controller 7103, has submitted
a request associated with a low priority class). The initial value of each pointer

would be set to zero, as no request has yet been granted.

in this example, the maximum priority class is medium. Hence, the request
generator 420 submits only queue controller 7101’s request and queue controller
7104’s request to the inputs of the PRRA 422. Furthermore, the pointer control
entity 412 provides the medium pointer and the medium mask to the PRRA 422.
As a result, the first request to be granted would thus be the either one submitted
by either queue controller 7104 or the one submitted by queue controller 7104.
Since the medium pointer is zero, the PRRA 422 has the choice of which request

to grant; this can be resolved by providing simple, passive logic to make the

-30-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

selection. Without loss of generality, let the very first granted request be that
submitted by queue controller 7101. The signal on the grant line 711 could
accordingly be set to encode the value “1”, indicative of the subscript 1in 7101.

As already described, queue controller 7104 is adapted to acknowledge the grant
of its request by way of the pointer_update line 7294. Receipt of any
acknowledgement by the pointer control entity 412 causes it to update its “active”
pointer (namely, the one being provided to the PRRA 422). In this case, the
acknowledgement received from queue controller 7104 causes the pointer control

entity 412 to update the medium pointer to 1000.

Note that because its requést has been granted, queue controlier 7104 will update
the occupancy information in the appropriate entry in control memory 7124, which
may result in the submission of a new request to the request generator 420.
Assume for the moment that queue controller 7101’s request has the same priority
class as before, namely, medium. This causes the medium mask to become

0001, indicating that queue controller 7104'’s request still has not been granted in

this round.

Now, assume that queue controller 7103 at this point submits a high-priority
request. This causes only queue controller 7103’s request to make it past the
request generator 420. The PRRA 422 therefore has no choice but to grant
queue controller 7103’s request. The signal on the grant line 711 could

accordingly be set to encode the value “3”, indicative of the subscript 1 in 7103.

Queue controlier 7103 subsequently acknowledges the grant of its request by
asserting the corresponding pointer_update line 7293. Receipt of this
acknowledgement by the pointer control entity 412 causes it to update its active
pointer, in this case the high pointer, which will become 0010. Note that since its
request has been granted, queue controller 7103 may now submit a new request
but assume for the purpose‘s of this example that it does not. The situation reverts
to the previous one where the requests having the maximum priority class are

again those coming from queue controllers 7104 and 7104.

-31-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Thus, the request generator 420 submits only queue controller 7104’s request and
queue controller 7104’s request to the inputs of the PRRA 422, while the pointer
control entity 412 provides the medium pointer (1000) and the medium mask
(0001) to the PRRA 422. This indicates to the PRRA 422 that queue controller
7104 has yet to be granted in this round and that the most recent queue controller
to be granted was queue controller 7104. Hence, the PRRA 422 has no choice
but to grant queue controller 7104, even though queue controller 7104 also
submitted a request having the same priority class. Still, this outcome is fair

because queue controller 7104’s request was granted last time.

It should therefore be appreciated that use of a pointer and a mask results in a fair
arbitration process. In the absence of the pointer and mask being provided to the
PRRA 422, the PRRA’s simple logic would continue to grant queue controller
7104 each time the situation would revert to one in which queue controller 7104
would be among the set of queue controllers having the maximum priority class.
Thus, it should be apparent that the pointer control entity 412 allows the PRRA
422 to grant requests in a truly fair manner; in the above example, queue
controller 7104 was prevented from unjustly monopolizing the data path 202.

Those skilled in the art should appreciate that other techniques for arbitrating
amongst a plurality of requests are within the scope of the present invention. For
example, although the pointer control entity 412 is useful in transforming the
PRRA 422 into a fair round robin arbitrator, it is not an essential requirement of
the invention. In fact, even a simple priority comparator would achieve the task of

admitting only one of the requests and blocking the rest.

It should further be appreciated that if no requests are submitted to the request
generator 420, then no request would end up being granted by the PRRA 422. In
this case, the output of the grant line 711 at the output of the PRRA could be set
to encode a value that does not identify any of the queue controllers, for example

“FFFFFFFF” or “deadcode” in hexadecimal.

-32-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

In addition to being provided to the queue controllers 710, the code specified in
the signal on the grant line 711 is also provided to the address decoder 780. The
address decoder 780 is adapted to compute a base address as a function of the
code specified on the grant line 711 and on the contents of the particular slot_id
line indexed by the code specified on the grant line 711. That is to say, the
address decoder 780 uses the grant line to identify a segment in the data memory
702 and to index the slot_id lines 705 in order to identify a slot within the identified

segment.

To this end, the address decoder 780 may comprise a multiplexer 784 and a
combiner 786. The multiplexer 784 receives the slot id lines 705 and is
selectable by the grant line 711. The grant line 711 and the output of the
multiplexer 784 feed into the combiner 786. If the code on the grant line 711
specifies an eX|st|ng one of the queue controllers 710 (rather than the above—
mentioned hexadecimal “FFFFFFFF” or “deadcode”), the combiner 786 is
operable to output a base address which is equal to the sum of the segment size
(i.e., M x the packet size) times the code specified on the grant line and the packet
size times the output of the multiplexer 784. The base address is provided to the

packet-forwarding module 790 along the base_address line 782.

It should be understood that if the code on the grant line 711 indicates that no
request has been granted, then the signal provided on the base_address line 782
can also be set to encode a predetermined code that does not refer to any

address in the data memory 702, for example “FFFFFFFF" or “deadcode” in

hexadecimal.

The packet-forwarding module 790 receives the base address from the address
decoder 780 along the base_address line 782. The base address indicates the
starting address of the next packet to be read out of the data memory 702 by the
packet-forwarding module 790. However, the packet-forwarding module 790 in
the arbiter 760 in cell 114 may be in the process of placing a current packet onto
the forward channel 210 and thus the packet-forwarding module 790 is operable

-33-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

to wait until it has finished reading out the current packet before beginning to

cause the next packet to be read from the data memory.

In order to determine the end of the current packet, the packet—forwardihg module
790 monitors the EOP bit 368 of each word being forwarded along forward
channel 210y by the data memory 702. The EOP bit 368 from successive words
forms a EOP bit stream which will undergo a transition (e.g., falling edge) at a
predetermine number of words prior to the end of the packet. In this way, the
packet—fom/arding module 790 knows when it is near the end of a packet.

Upon detecting a falling edge in the EOP bit stream, the packet-forwarding
module 790 records the base address provided on the base_address line‘782 and
triggers the next grant via the grant enable line 715. The packet;fonNarding
module 790 then proceed's to cause the words of the next packet to be read from
the data memory 702. This is achieved by providing a read address along a
read_address line 792. The first address placed on the read_address line 792 is
the base address and the address is incremented until the end of this next packet

is detected, and so on.

Assertion of the grant enable line 715 causés the following chain reaction.
Specifically, assertion of the grant_enable line 715 will affect only the queue
controller whose request has been granted. Assume, for the sake of this
example, that this queue controller is queue controller 710j, and that it had
requested transmission of the packet in slot 708j,3. Upon detection of the
grant_enable line 715 being asserted, queue controller 7105 will send an
acknowledgement via the corresponding pointer_update line 7291, which will
trigger an update in the active pointer stored by the pointer control entity 412 and
used by the PRRA 422. In addition, queue controller 710; will access entry
7141-,3, which is associated with slot 708; B. More specifically, it will modify the
occupancy status of slot 708; g to indicate that this slot is no longer occupied.

Modification of the occupancy status of slot 7081-,3 may cause one or more of the

following:

-34-

5

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

(i) Firstly, the change in occupancy status may cause the logic in the
queue controller 710j to update the signals on the corresponding
request line 703j, slot_id line 705j and priority line 707j;

(i) Secondly, the change in occupancy status will be signaled to the packet
insertion module 704 via the queue_full line 726j, which may change the
outcome of the decision regarding where a received packet may be
inserted; |

(ii) Thirdly, the change in occupancy status will be sent to the input
interface 116 via the free_slot line 207j; the input interface 116
subsequently alerts the off-chip packet-forwarding module 226 that
there is room in slot 708; B, which may trigger the transmittal of a new.

packet to the transmitter 140 via the input interface 116.

Depending on the interconnect pattern, a packet transmitted from one cell 114j
arrives at the corresponding receiver 150j in one or more cells (possibly including
cell 114; itself) by virtue of the corresponding shared forward channel 210;. Of
course, some of the cells receiving the packet will be destination cells for that
packet while others will not. The structure and operation of a receiver, say,
receiver 150j in cell 114, is now described with reference to Fig. 5.

The receiver 150; has a memory which includes various storage areas, including a
data memory 502, a control memory 512, any memory used by a queue controller
510 and any other memory used by the receiver 150;. Words received via forward
channel 210; and destined for receiver 150; in cell 114K are fed to the data

memory 502 via a plurality of data input ports.

The data memory 502 is writable in response to a write address and a write
enable signal received from a packet insertion module 504 via a write_address
line 516 and a write_enable line 518, respectively. The write_address line 516
carries the address in the data memory 502 to which the word presently on the
forward channel 210j is to be written, while the actual operation of writing this

word into the specified address is triggered by asserting a signal on the

-35-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

write_enable line 518. In order to coordinate the arrival of packets at the data
memory 502 with the generation of signals on the write_address line 516 and the
write_enable line 518, the forward channel 210; may pass through an optional
delay element 506 before entering the data input ports of the data memory 502.

The data memory 502 contains M* slots 5084, 508, ..., 508)*, where each slot
is large enough to accommodate a packet as described herein above. Thus, the
data memory requirement for a receiver 150 is M* packets. The data memory 502
may be referred to as a sector of memory and slots 508 may be referred to as
subdivisions. Recalling that the transmitter 140 on a given cell needs to fit N x M |
packets, and given that there are N receivers per cell and N cells per chip 110, the
total data memory requirement for the chip 110 is on the order of N x ((N x M) +
(N x M*)) packets, which is equal to N? x (M + M*) packets, not counting the

memory requirement of the other components such as the queue controllers,

PRRA, etc.

Clearly, the total memory requirement for the chip 110 is a quadratic function of
the numbef of cells and a linear function of both M and M*. Given a fixed number
of cells, the memory requirement can be tamed only by varying M and M*. it is
therefore of importance to pay attention to the values of M and M* when aiming for

a design that requires all the cells to fit on a chip.

The relationship between M* and M is also important. For instance, to make M=
greater than M would mean that more packets can be stored in the receiver than
in the segment of the transmitter dedicated to that receiver. Although this option
is within the scope of the present invention, it is does not allow all M* slots of the
receiver to be kept busy, thereby missing out on an otherwise available degree of
parallelism. A borderline case, also within the scope of the invention, arises
where M* is equal to M, although even a single-cycle latency will put a high

degree of parallelism out of reach.

Thus, the preferred approach is to make M* (the receiver data memory size) less

than M (the transmitter per-segment data memory size). An even more preferred

-36 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

approach makes M* just slightly less than M in order to minimize overall memory.
An even more high'ly preferred approach makes M* just large enough to
accommodate a small number of packets associated with each priority “rank”
(e.g., high, medium low) to allowAadditional packets of a given priority to be
received while status information is returned via the appropriate back channel,
while making M equal to or slightly less than the double of M*. For instance,
suitable values of M and M* include, but are not limited to 3 and 5, respectively or
4 and 7, respectively. In one specific embodiment of the invention, the data
memory 502 includes three slots 508a, 508g, 508¢C, where slot 5087 is
associated with a high priority class, slot 508g is associated with a medium
priority class and slot 508 is associated with a low priority class.

The receiver 150j also comprises queue controller 510. Queue controller 510 has
access to control memory 512 which is subdivided into a plurality of entries 5144,
514g, ..., 514+ for storing the occupancy status (i.e., occupied or unoccupied) of

the respective slots 508, 508, ..., 508+ in the data memory 502. Additionally, |
for each slot that is occupied, the corresponding entry stores the priority level of
the packet occupying that slot. In one embodiment, the entries 5144, 514g, ...,
514)+ may take the form of registers, for example. In other embodiments, the

control memory 512 may store a degree of occupancy or vacancy of the data

memory 502.

The packet insertion module 504 is operable to monitor the EOP bit 368 on each
word received via the forward channel 210; in order to locate the header of newly
received packets. It is recalled that the EOP bit 368 undergoes a transition (e.g.,
falling edge) for the word that occurs in a specific position within the packet to
which it belongs. In this way, detection and monitoring of the EOP bit 368
provides the packet insertion module 504 with an indication as to when a new
packet will be received and, since the header 360 is located at the beginning of
the packet, the packet insertion module 504 will know where to find the header

360 of a newly received packet.

-37-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The packet insertion module 504 extracts control information from the header 360
of each newly received packet. Such information includes the destination of a
newly received packet and its priority level for the purposes of determining into
which slot it should be placed in the data memory 502. The packet insertion
module 504 accepts packets destined for cell 114K and ignores packets destined
for other cells. The packet insertion module 504 also determines the slot into
which an accepted and received packet should be inserted. This is achieved by
determining the priority class of the received packet and verifying the availability of

the slot(s) associated with that priority class.

To this end, the packet insertion module 504 in cell 114K is operable to verify
whether the destination specified in the destination field 360 of the received
packet corresponds to cell 114K. In the case where all packets are non-multicast
packets, each packet specifies but a single destination cell and hence this portion
of the packet insertion module 504 functionality may be achieved by a simple
binary comparison. Packets found to be destined for cell 114K are accepted for

further processing while others are ignored.

Assuming that a received packet is accepted, the packet insertion module 504 is
operable to determine the priority class of the packet by comparing the priority
level of the -packet to the previously defined priority thresholds. By way of
example, as suggested herein above, let slots 508, 508g, 508 be associated
with high, medium, and low priority levels, respectively. Also, let the low-medium
priority threshold and the medium-high priority threshold be established as
previously defined, namely, at 100 and 200, respectively. If the priority level of the

received packet is 83, for example, then the slot into which it should be written

would be slot 508¢.

In this embodiment, the packet insertion module 504 knows that it can write the
received packet into slot 508¢ because, it will be recalled, the packet could only
be transmitted on the forward channel 210; if the corresponding slot were
available in the first place. Nonetheless, it is within the scope of the present

invention to include larger numbers of slots where more than one slot would be

-38-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

associated with a given priority class, which may require the packet insertion
module 504 to verify the occupancy of the individual slots 508 by consulting a

queue_full line 526 received from the queue controller 510.

Next, the packet insertion module 504 determines a corresponding base address
in the data memory 502 into which the first word of the packet is to be written.
This may be done either by computing an offset which corresponds to the relative
position of the chosen slot (in this case slot 508¢) or by consulting a short lookup

table that maps slots to addresses in the data memory 502.

The packet insertion module 504 is operable to provide the base address to the
data memory 502 via the write_address line 516 and is further operable to assert
the write_enable line 518. At approximately the same time, the pécket insertion
module 504 sends a signal to the queue controller 510 along a new_packet line
528, such signal being indicative of the identity of the slot which is being written to
and the priority level of the packet which shall occupy that slot. The queue
controller 510 is adapted to process this signal by updating the status and priority

information associated with the identified slot (which was previously unoccupied).

After the first word of the received packet is written to the above-determined base
address of the data memory 502, the address on the write_address line 516 is
then incremented at each clock cycle (or at each multiple of a clock cycle) as new
words are received along the forward channel 210j. This will cause the words of
the packet to fill the chosen slot in the data memory 502. Meanwhile, the EOP bit
368 in each received word is monitored by the packet insertion module 504.
When a new packet is detected, the above process re-starts with extraction of

control information from the header 360 of the newly received packet.

In addition to being writable, the data memory 502 is also readable in response to
receipt of a read address supplied along a corresponding read_address line 593j
by an arbiter 260 common to all receivers 150 in the cell 114K. As will be
described in greater detail later on, the arbiter 260 initiates reads from the data
memory 502 as a function of requests received from the queue controller 510 on

-39-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

each of the receivers 150 via a corresponding plurality of request lines 503. A
particular request line 503; will be asserted if the queue controller 510 in the
corresponding receiver 150j is desirous of forwarding a packet to the off-chip input
queue 228. Embodiments of the invention may include, without being limited to

the use of, dual ported RAM or single ported RAM.

The following describes one possible implementation of the queue controller 510
in receiver 150j which is adapted to generate a request for transmission of a
received packet. Specifically, the queue controller 510 is operable to generate a
request for transmitting one of the possible multiplicity of packets occupying the
slots 5084, 508p, ..., 508)* in the data memory 502. The identity of the slot
chosen to be transmitted is provided along a corresponding slot_id line 505j, while
the priority associated with the chosen slot is provided on a corresponding priority

line 507;.

The queue controller 510 implements a function which verifies the entries in the
control memory 512 in order to determine the identity of the occupied slot which -
holds the highest-priority packet that can be accommodated by the off-chip input
queue 228. This function can be suitably implemented by a logic circuit, for
example. By way of example, the queue controller 510 is designed to determine,
amongst all occupied slots in the data memory 502, the identity of the slot holding
the highest-priority packet. The queue controller 510 then assesses the ability of
the off-chip input queue 228 to accommodate that packet by processing

information received via the almost_full flag 208.

If the almost_full flag 208 is asserted, then it may be desirable to refrain from
requesting the transmittal of further packets to the off-chip input queue 228. In
some embodiments of the invention, the almost_full flag 208 may consist of a
plurality of almost_full flags, one for each priority class (high, medium, low). This
allows preferential treatment for high-priority packets by setting the occupancy
threshold for asserting the high-priority almost_full flag higher than the threshold

for asserting the low-priority aimost_full flag.

-40 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

If the highest-priority packet can indeed be accommodated, then the queue
controller 510 places the identity of the associated slot on the corresponding
slot_id line 503;, places the priority level of the packet on the corresponding
priority line 507j and submits a request to the arbiter 260 by asserting the
corresponding request line 503;. However, if the highest-priority packet cannot
indeed be accommodated, then the queue controller 510 determines, among all
occupied slots in the data memory 502, the identity of the slot holding the next-
highest-priority packet. As before, this can be achieved by processing information

received via the almost_full flag 208.

If the next-highest-priority packet can indeed be accommodated, then queue
controller 510 places the identity of the associated slot on the corresponding
slot_id line 5051-, places the priority level of the packet on the corresponding
priority line 507 and submits a request to the arbiter 260 by asserting the
corresponding request line 503j. However, if the next-highest-priority packet
cannot indeed be accommodated, then the queue controller 510 determines,
among all occupied slots in the data memory 502, the identity of the slot holding
the next-next-highest-priority packet, and so on.’ If none of the packets can be
accommodated or, alternatively, if none of the slots are occupied, then no request

is generated by the quede controller 510 and the corresponding request line 503;

remains unasserted.

Assuming that the queue controller 510 has submitted a request and has had its
request granted, it will be made aware of this latter fact by the arbiter 260. This
exchange of information can be achieved in many ways. For example, the arbiter
260 may identify the receiver containing the queue controller whose request has
been granted by sending a unique code on a common grant line 511 and, when
ready, the arbiter 260 may assert a grant_enable line 515 shared by the queue
controller 510 in each of the receivers 150. The queue controller 510 may thus
establish that its request has been granted by (i) detecting a unique code in the
signal received from the arbiter 260 via the grant line 511; and (ii) detecting the

asserted grant_enable line 515.

-41 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

It should be understood that other ways of signaling and detecting a granted
request are within the scope of the present invention. For example, it is feasible
to provide a separate grant line to the queue controller in each of the receivers
150. In this case, when the request of a queue controller in a particular one of the
receivers has been granted, the grant line connected to the particular receiver

would be the only one to be asserted.

Upon receipt of an indication that its request has been granted, the queue
controller 510 accesses the entry in the control memory 512 corresponding to the
slot whose packet now faces an imminent exit from the data memory 502 under
the control of the arbiter 260. Specifically, the queue controller 510 changes the
status of that particular slot to “unoccupied”, which will alter the resuit of the
request computation logic, resulting in the generation of a new request which may
specify a different slot. In the case where the packet insertion module 504 needs
to know the status of a slot, the changed status of a slot will be reflected in the

information provided via the queue_full line 526.

Also upon receipt of an indication that its request has been granted, the queue
controller 510 asserts a corresponding pointer_update line 529j which runs back
to the arbiter 260. As will be described later on in connection with the arbiter 260,
assertion of one of the pointer_update lines 529] indicates to the arbiter 260 that
the grant it has issued has been acknowledged, allowing the arbiter 260 to
proceed with preparing the next grant, based on a possibly new request from the
queue controller 510 in receiver 150; and on pending requests from queue

controllers in other ones of the receivers 150.

The function of the arbiter 260 is fo receive a request from the queue controller
510 in each of the receivers 150, to grant only one of the réquests and to control
read operations from the data memory 502. To this end, the arbiter 260
comprises a request-processing module 570, an address decoder 580 and a
packet-forwarding module 590. The arbiter 260 is very similar to the arbiter 760

previously described with reference to Fig. 4, with some differences in the

- 42 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

implementation of the address decoder 580 and the packet-forwarding module

590.

The request-processing module 570 receives, from the queue controller 510 in
receiver 150j, the corresponding request line 503;, the corresponding priority lines
505j and the corresponding pointer_update line 529j. The request-processing
module 570 functions to grant only one of the possibly many requests received in
this fashion. The request-processing module 570 has an output which is the grant
line 511. The grant line 511 is connected to each of the queue controller 510 in
each receiver, as well as to the address decoder 580. In one embodiment of the
present invention, the grant line 511 utilizes a unique binary code to identify the

queue controller whose request has been granted.

The address decoder 580 receives the grant line 511 from the request-processing
module 570 and the slot_id lines 505 from the queue controller 510 in each of the
receivers 150. The address decoder 580 computes a base address in the data
memory 502 that stores the first word of the packet for which transmission has
been granted. The base address is computed as a function of the code specified
on the grant line 511 and on the contents of the particular slot_id line indexed by
the code specified on the grant line 511. That is to say, the address decoder 580
uses the grant line to identify the receiver and to index the slot_id lines 505 in
order to identify a slot within the data memory 502 of the identified receiver. The

base address is provided to the packet-forwarding module 590 via a

base_address line 582.

The packet-forwarding module 590 receives a base address via the base_address
line 582. In addition, the packet-forwarding module 590 receives the grant line
511 from the request-processing module 570. The base address indicates the
location of the first word of the next packet that is required to be extracted from

the data memory 502 of the receiver identified on the grant line 511.

Since the packet-forwarding module 590 may be in the process of reading a

current packet from the data memory of another one of the receivers, the packet-

- 43 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

forwarding module 590 is programmed to wait until it has finished reading out the
current packet before beginning to read the next packet. After it has finished
reading the current packet from whichever data memory it is currently reading, the
packet-forwarding module 590 stores the initial address on the base_address line
582, asserts the grant_enable line 515 and proceeds to read from the data
memory 502 identified by the grant line 511, starting from the base address.

The output of the data memory 502 in the varioué receivers 150 arrives at a
respective input port of a multiplexer 592. The multiplexer has an output which is
placed onto the data path 202. Selection of which input port appears on the
output port is controlled by a select line 595 received from the packet forwarding
module 590. The select line 595 is a latched version of the grant line 511.

Latching of the select line 595 occurs upon receipt of the grant_enable line 515.

In order to determine the end of the current packet, the packet-forwarding module
590 monitors the EOP bit 368 of each word traveling along the data path 202.
The EOP bit 368 from successive words forms an EOP bit stream which will
undergo a transition (e.g., falling edge) ata predeterminé number of words prior to
the end of the packet. In this way, the packet-forwarding module 590 knows when
it is near the end of a packet. Upon detecting a falling edge in the EOP bit stream,
the packet-forwarding module 590 records the base address provided on the
base_address line 582 and triggers the next grant via the grant_enable line 515.

The packet-forwarding module 590 then proceeds to cause the words of a packet
to be read from the data memory 502 of the receiver indexed by the grant line
511. This is achieved by providing a read address along the corresponding
read_address line 593;. The first address placed on the read_address line 593; is
the base address and the address is incremented until the end of the next packet
is detected, and so on. It will be appreciated that rather than providing a separate
read_addresé line for each receiver, there may be a single read_address line

which passes through a demultiplexer (not shown) that is under control of the

signal on the grant line 511.

- 44 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Assertion of the grant enable line 515 causes the following chain reaction.
Specifically, assertion of the grant_enable line 515 will affect only the queue
controller 510 on the receiver identified by the signal on the grant line 511.
Assume, for the sake of this example, that the queue controller in question is the
one in receiver 150j, and that it had requested transmission of the packet in slot
508c. Upon detection of the grant_enable line 515, the queue controller 510 will
send an acknowledgement to the arbiter 260 via the corresponding
pointer_update line 529j, which will trigger an update |n the active pointer stored
by the pointer control entity and used by the PRRA in the request-processing
module 570. In addition, the queue controller 510 will access entry 514¢, which is
associated with slot 508¢. More specifically, it will modify the occupancy status of

slot 508¢ to indicate that this slot is no longer occupied.

Modification of the occupancy status of slot 508 may cause one or more of the

following:

(i) Firstly, the change in occupancy status may cause the logic in the
queue controller 510 to update the signals on the corresponding request
line 503, slot_id line 505; and priority line 507j;

(ii) Secondly, the change in occupancy status will be signaled to the packet
insertion module 504 via the queue_full line 526j, which may change the
outcome of the decision regarding where a received packet may be
inserted,

(iii) Thirdly, the change in occupancy status is sent by the queue controller
510 along the back channel 212 j to the transmitter 140 in cell 114;.
This will alert the transmitter that there is room in slot 508¢, which may
trigger the transmittal of a new packet to the receiver 150; via forward

channel 210j.

Since a new packet will arrive after the old packet has begun to be read, this

advantageously results in efficient data pipelining. Where the transmission of a

_packet is an atomic action that is at least as fast receipt of a new packet, the

occupancy status of the slot corresponding to the old packet can be set to “no

- 45 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

longer occupied” as soon transmission begins. If receipt can be up to twice as
fast as transmission, the occupancy status may be reset when one-half of the
packet is transmitted, etc. Moreover, as already described, the features of the
transmitter 140 will prevent transmission of a packet to occur unless the packet
can be accommodated by a receiver, thereby advantageously avoiding contention
at the receiver which may arise if the transmission were effected without regard to

the availability of space further downstream.

A packet entering the switch fabric 100 has a priority level which is identified in the
priority field 364 of the packet's header 360. That same priority level is associated
with the packet upon exit from the switch fabric 100. Nonetheless, it is within the

~ scope of the present invention to provide a mechanism for temporarily modifying

the priority level of the packet while the it is being processed by the transmitter or
receiver in a given cell. More specifically, it is within the scope of the invention for.
the transmitter or receiver on a given cell to maintain a “virtual” priority level
associated with a packet and to use the virtual priority level in its decision-making
process, without altering the actual priority level of the packet as defined in the
packet's header 360. It should therefore be appreciated that the priority level of a
packet as stored in an entry of the control memory 512 of the queue controller 510
of the j receiver 150; in the k™ cell 114 or in an entry of the control memory 71 2]
of the " queue controller 710; of the transmitter 140 in the k™ cell 114K may refer

either to the actual priority level of the packet or to its virtual priority level.

With additional reference to Fig. 6, there is shown a queue controller 610, which is
a modified version of queue controller 510 which was previously described with
reference to the transmitter 140 in Fig. 5. The queue controller 610 has access to
a “time stamp” from a time stamp counter 620 via a time_stamp line 605. The
time stamp counter 620 is operable to track an ongoing measure of time, such as
clock cycles. In other embodiments, time may be measured in terms of a number
of elapsed atomic events, a number of transmitted or received packets, etc.
Accordingly, the time stamp counter 620 may be driven by the signal on a clock

line 615 or on the aforedescribed grant_enable line 515, among others.

- 46 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The queue controller 610 has access to the control memory 512. ltis recalled that
the control memory 512 comprises a plurality of entries 5144, 514p, ..., 514\~
Each entry stores information pertaining to a corrésponding slot 508 in the data
memory 502. As has beenpreviously described, the information in each entry is
indicative of the availability of the corresponding slot and the priority level of the
packet occupying that slot, if applicable. In order to implement an aging policy,

additional information is stored in each of the entries 514.

Accordingly, entry 5144 includes a status field 632, a virtual priority field 634, a
time stamp field 636 and an age mask field 638. The status field 632 is indicative
of whether slot 508 is occupied or unoccupied. The virtual priority field is
indicative of the current virtual priority of the packet in slot 508a. The time stamp
field 636 is indicative of the time stamp which was in force at the time the packet
currently occupying slot 508 was written thereto. The age mask field 638 holds
an increment which is added to the virtual priority at specific times as the packet
ages. The increment may be fixed or variable, depending on the aging policy
being implemented. If it is envisaged that the aging policy will always utilize a
fixed aging mask (or if there is no aging policy), then the age mask field 638 is

optional.

The queue controller 610 implemehts an aging policy (e.g., none, linear,
exponential, logarithmic) by modifying the virtual priority of a packet as a function
of a variety of parameters, including the age of the packet and one or more of the
following: the contents of the age mask field 638, the kill limit value (the maximum
age for a packet before the packet is eliminated from the data memory, regardless

of its priority level), the time interval and the maximum allowable virtual priority

level.

Fig. 8 illustrates the steps involved in administering an aging policy, in accordance
with an embodiment of the present invention. At step 802, the queue controller
610 checks the new_packet line 528 in order to determine whether a new packet
is about to be written into a slot in the data memory 502. If so, the new_packet

line 528 will indicate the identity of the slot and its priority level. At step 804, the

-47 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

queue controller 610 inserts the time stamp (received from the time stamp counter

620 via the time_stamp line 605) into the time stamp field 636 of the identified slot.

In addition, the queue controller 610 selects a value to insert into the age mask
field 638 of the identified slot. This value may be determined as a function of the

* priority level of the new packet, as received along the new_packet line 528. The

queue controller 610 returns to step 802.

If, however, the queue controller 610 establishes at step 802 that no new packet is
about to be written into the data memory 502, the queue controller 610 proceeds
to step 806, where the queue controller 610 begins by selecting a first slot, say
slot 5085. The queue controller then executes step 808, which consists of
obfaining the value in the time stamp field 636 of the corresponding entry (in this
case 514p) and subtracting it from the present time stamp as received from the
time stamp counter 620. This produces an age value for the packet in the
selected slot (in this case 508p). At step 808, the queue controller 610 compares
the age of the packet in the selected slot to a “kill limit”, which represents the

maximum allowable age of a packet.

If the kill limit is exceeded at step 810, the queue controller 610 proceeds to step
812, where the packet is effectively “eliminated” from the data memory 502.
“Elimination” of a packet from the data memory 502 can encompass actual
erasure of the packet from the corresponding slot in the data memory, as well as
resetting of the status field 362 in the entry corresponding to the selected slot.
After having eliminated the packet from the data memory 502, the queue

controller 610 returns to step 802.

If the kill limit is not exceeded at step 810, the queue controller proceeds to step
814, where the contents of the age mask field 368 may or may not be added to
the contents of the virtual priority field 364. If the contents of the age mask field
368 is indeed added to the contents of the virtual priority field 364, this results in a
higher virtual priority level for the packet in the selected slot (in this case slot
508p). Whether the contents of the age mask field 368 is added to the contents
of the virtual priority field 364 depends on the aging policy in place. Also

-48 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

dependent on the aging policy is the extent to which the age mask field 638 is

updated at step 816.

According to a “no aging” policy, the virtual priority level of a packet does not
change over time. According to a linear aging policy, a change is effected to the
virtual priority level of a packet at fixed time intervals of duration T by a constant
vaiue V. The output of the time stamp counter 620 can be consulted in order to
establish whether yet another time interval has elapsed, at which point it would be
appropriate to update the virtual priority of the packet. The constant value V may
be specified in the age mask field 638 or it may be pre-determined.

According to the “exponential” aging policy, the virtual priority level is incremented
by an exponentially increasing value V(t) at fixed time intervals of duration T.
Again, the output of the time stamp counter 620 can be consulted in order to
establish whether yet another time interval has elapsed, at which point it would be
appropriate to update the virtual priority of the packet. In order to create the
exponentially increasing value, a dynamic parameter is needed and this is
provided by the age mask field 638. Specifically, adding the contents of an ever-
increasing age mask field 638 to the contents of the virtual priority field 634 at
evenly spaced apart time intervals will result in an exponentially increasing value
for the contents of both the age mask field 638 and the virtual priority field 634. In
one example embodiment, the contents of the age mask field 638 is doubled

every time the virtual priority level of the packet is updated.

According to the “logarithmic” aging policy, the virtual priority level is incremented
by a constant value V at time intervals which increase in duration as a function of
time. The constant value V may be pre-determined or it may be a function of the
actual priority level of the packet. In order to create logarithmically increasing time
intervals, a dynamic parameter is needed and this is provided by the age mask
field 638. Specifically, by comparing the contents of an ever-increasing age mask
field 638 to the time stamp received from the time stamp counter 620 in order to
decide whether to update the virtual priority level of the packet will result in such

updates happening at a logarithmically decreasing rate. In one example

-49 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

embodiment, the contents of the age mask field 638 is doubled every time the
virtual priority level of the packet is updated. This effectively results in a slower

aging process for the packet.

Other possible aging policies include but are not limited to policies quadratic and
one-time increments or aging tables indexed off of a function of the packet age.
Those skilled in the art will be appreciate that a plurality of such aging policies can
be implemented, with a different policy applied based on a packet property such

as destination, priority, etc.

Finally, at step 818, the queue controller 610 determines whether it has
considered all the slots 508 in the data memory 502 (i.e., whether it has
considered all the entries 514 in the control memory 512). If so, the queue
controller 610 returns to step 802; if riot, the next slot is selected at step 820 and

the queue controller 610 proceeds to execute step 808 (and subsequent steps)

using this next selected slot.

In some embodiments, the invention provides so-called “multicast” functionality,
by virtue of which a packet entering the transmitter 140 in a'given cell of the
switch fabric 100 (say, cell 114,) is sent via the corresponding forward channel
210y to the corresponding receiver 150 on multiple destination cells, possibly
including cell 114, itself. Such a packet is referred to as a multicast packet; a
special case of a multicast packet is a broadcast packet, whose destination celis
include all of the cells in the switch fabric 100. To accommodate the transmission
of multicast packets, the destination field 362 of the header 360 of a multicast
packet is designed so as to be capable of specifying the two or more destination
cells associated with the multicast packet. In one embodiment of the invention,
this may be achieved by encoding the set of destination cells by way of a binary

mask with a logic “1” in the position of each destination cell.

A multicast packet travelling through the switch fabric 100 of Fig. 2 undergoes
three main stages of transmission, similar to the aforedescribed stages of

transmission which are experienced by a non-multicast packet. The first stage

-50-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

involves the packet being transmitted from the off-chip environment to a given cell,
say cell 114, via that cell's input interface 116; upon receipt, the packet is written
into a memory location by the transmitter 140 in that cell. The second siage
involves the packet being sent from the transmitter 140 in cell 114 via the
corresponding forward channel 210 to the corresponding receiver 150 residing
in each of the two or more destination cells associated with the packet; upon
receipt of the packet at each of the destination cells, the packet is written into a
memory location by receiver 150 in that destination cell. This operation is
performed independently by the receiver in each destination cell. Finally, the third
stage involves the packet being sent from receiver 150 in each destination cell to

the off-chip input queue 228 via the arbiter 260 and the output interface 118 of

that destination cell.

To accommodate the transmiséion of multicast packets, the transmitter 140,
previously described with reference to Fig. 7, needs to be modified. Fig. 9 shows
an example non-limiting implementation of a transmitter 940 adapted to provide
multicast functionality. Without loss of generality, the transmitter 940 is assumed
to reside in cell 114. The transmitter 940 receives words from the input interface
116 along the data path 230. The transmitter 940 has a memory which includes -
various storage areas, including a data memory 902, a plurality of control
memories 712, 912 a set of registers used by a plurality of queue controllers 710,
910 and any other memory used by the transmitter 940. The words are fed to the

data memory 902 via a plurality of data input ports.

The data memory 902 is writable in response to a write address signal and a write
enable signal, which continue to be received from a packet insertion module 904
via the write_address line 716 and the write_enable line 718, respectively. The
write_address line 716 carries the address in the data memory 902 to which the
word presently on the data path 230 is to be written, while the actual operation of
writing this word into the specified address is triggered by asserting a signal on
the write_enable line 718. In order to coordinate the arrival of packets at the data

memory 902 with the generation of signals on the write_address line 716 and the

-51-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

write_enable line 718, the data path 230 may pass through an optional delay
element 706 before entering the data input ports of the data memory 902.

The data memory 902 comprises the previously described segments 713, one for
each of the N cells on the chip 110. The i segment 71 3 includes M slots 708; A,
708 B, ---» 708j M, each slot being of such size as to accommodate a packet
destined for cell 114;. Each of the segments 713 is represented by a
corresponding one of the queue controllers 710. Queue controller 710 has
access to an associated control memory 712 comprising a plurality of - entries
714j,A- 714j,B’ 714j,M which store the occupancy status (i.e., occupied or
unoccupied) of the respective slots 708j o, 708;B, ---, 708j \ in the i" segment
713; of the data memory 902. For each slot that is occupied, the corresponding
entry also stores the priority level of the packet occupying that slot.

In addition, the data memory 902 comprises an N+1" segment 913 for storing
multicast packets. The different multicast packets stored in segment 913 may be
destined for different combinations of two or more destination cells. Segment 913

“includes M slots 908p, 908p, ..., 908py, each slot being of such size as to .

accommodate a packet. In one embodiment of the invention, at least one slot is
reserved for each priority class. Segment 913 of the data memory 902 is

represented by a multicast queue controller 910.

Multicast queue controller 910 has access to an associated control memory 912
comprising a plurality of entries 9144, 914, ..., 914\ which store the occupancy
status (i.e., occupied or unoccupied) of the respective slots 9084, 908p, ..., 908\
in segment 913 of the data memory 902. Each entry also stores the priority level
of the corresponding packet as well as an address mask identifying the set of
destination cells for which the corresponding packet is Qestined. The occupancy

status is provided to the input interface 116 via a free_slot line 901.

In a manner similar to that already described with reference to the packet insertion

. module 704, the packet insertion module 904 is operable to monitor the EOP bit

368 on each word received via the data path 230 in order to locate the header of

-52-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

newly received packets. Because the EOP bit 368 undergoes a transition (e.g.,
falling edge) for the word that occurs in a specific position within the packet to
which it belongs, detection and monitoring of the EOP bit 368 provides the packet
insertion module 904 with an indication as to when a new packet will be received
and, since the header 360 is located at the beginning of the packet, the packet
insertion module 904 will know when the header 360 of a new packet has been

received.

The packet insertion module 904 extracts control information from the header 360
of each received packet. Such information includes the destination cell (or cells)
of a received packet and its priority level for the purposes of determining into
which slot it should be placed in the data memory 902. The packet insertion
module 904 first determines into which segment a received packet is to be written.
This is achieved by extracting the destination 362 field from the header of the

received packet in order to determine the destination cell (or cells) associated with

the packet.

If the destination field 362 identifies one destination cell, then the received packet
is a non-multicast packet and operation of the packet insertion module 904 in the
case of a non-multicast cell is identical to that previously described with reference
to the packet insertion module 704. However, if the destination field 362 identifies
more than one destination cell, then the receiver packet is a multicast packet and
the packet insertion module 904 operates differently. Specifically, the mere fact
that a received packet is a multicast packet causes it to be written into segment
913. Selection of the particular slot into which the packet is written is achieved in
a manner similar to that described with reference to the packet insertion module
704 of Fig. 7, namely by determining the priority class of the received packet and

verifying the availability of the slot(s) associated with that priority class.

To this end, the packet insertion module 904 is operable to determine the priority
class of a multicast packet by comparing the priority level of the packet to one or
more priority thresholds. For example, let slots 908a, 908g, 908¢, 908p, 908
be associated with high, high, medium, medium and low priority levels,

-53-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

respectively. Also, let the low-medium priority threshold and the medium-high
priority threshold be as defined previously, namely, at 100 and 200, respectively.
If the priority level of a received multicast packet is 229, for example, then the
potential slots into which the packet could be written include slots 908 and 908g.

Next, the packet insertion module 904 is operable to determine which of the
potential slots is available by communicating with the multicast queue controller
910, to which it is connected via a queue_full line 926 and a new. /_packet line 928.
Alternatively, a bus structure could be used to connect the packet insertion
module 904, the multicast queue controller 910 and the queue controllers 710. In
either case, the packet insertion 904 module obtains the status (i.e., occupied or
unoccupied) of the slots whose associated priority class matches the priority class

of the received packet.

The status information may take the form of a bit pattern which includes a set of
positioned bits equal in number to the number of slots, where a logic value of 0 in
a particular position signifies that the corresponding slot is unoccupied and where
a logic value of 1 in that position signifies that the corresponding slot is indeed
occupied. In this way, it will be apparent to the packet insertion module 904 which

of the slots associated with the priority class of the received:packet are available.

In the above example, where the priority class of the received multicast packet
was “high” and slots 908 and 908g were associated with the high priority class,
the multicast queue controller 910 would supply the occupancy of slots 908 and
908g via the queue_full line 926. This information is obtained by consulting
entries 914 and 914p in control memory 912. Of course, it is within the scope of
the invention for the multicast queue controller 910 to provide, each time, the

occupancy of all the slots in memory segment 913, not just those associated with

the packet’s priority class.

If only one slot associated with the packet's priority class is available, then that
slot is chosen as the one to which the received packet will be written. If there is
more than one available slot for the packet's priority class, then the packet

-54 -

10

.15

20

25

30

WO 02/098066 PCT/CA02/00810

insertion module 904 is free to choose any of these slots as the one to which the-
received packet will be written. Note that it is advantageous to regulate
transmission of packets to the transmitter 940 by the off-chip packet-forwarding
module 226 in order to avoid the situation in which none of the slots would be
available for the packet's priority class. This may be done by configuring the off-
chip packet-forwarding module 226 sd that it transmits the multicast packet to cell
114, (viz. the illustrated cell) only if it knows that there is room in the transmitter

940 for a multicast packet having the priority class in question.

Having determined the slot into which the received multicast packet shall be
written to, the packet insertion module 904 is operable to determine a
corresponding base address in the data memory 902. This may be done either by
computing ah offset which corresponds to the relative position of the slot or by
consulting a lookup table which maps slots to addresses in the data memory 902.
The packet insertion module 904 is adapted to provide the base address to the
data memory 902 via the write_address line 716 and is further adapted to assert
the write_enable line 718. At approximately the same time, the packet insertion
module 904 sends a signal to the multicast queue controller 910 along the
new _packet line 928, such signal being indicative of the identity of the slot which
is being written to and the priority level of the packet which is to occupy that slot.
The multicast queue controller 910 is adapted to process this signal by updating

the status and priority information associated with the identified slot (which was

previously unoccupied).

After the first word of the received multicast packet is written to the above-
determined base address of the data memory 902, the address on the
write_address line 716 is then incremented at each clock cycle (or at each
multiple of a clock cycle) as new words are received along the data path 230.
This will cause the words of the packet to fill the chosen slot in the data memory
902. Meanwhile, the EOP bit 368 in each received word is monitored by the
packet insertion module 904. When a new packet is detected, the above process
re-starts with extraction of control information from the header 360 of the newly

received packet.

- 55 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

In addition to being writable, the data memory 902 is also readable in response to
a read address supplied by an arbiter 960 along the aforedescribed read_address
line 792. In a manner similar to that already described with reference to the
arbiter 760 of Fig. 7, the arbiter 960 initiates reads from the data memory 902 as a
function of requests received from the plurality of queue controllers 710, 910 via a
corresponding plurality of request lines 703, 903. A particular request line 703j
will be asserted if the corresponding queue controller 710; is desirous of
forwarding a non-multicast packet to receiver 150y in cell 114j, while request line
903 will be asserted if the multicast queue controller 910 is desirous of forwarding
a multicast packet to receiver 150, in a multicplibity of cells 114j4, 114j2, ...,

114jp.

The queue controllers 710 have already been described with reference to Fig. 7.
The multicast queue controller 910, for its part, is implemented differently. The:
multicast queue controller 910 is‘ adapted to generate a request for transmission
of a received multicast packet to receiver 150, residing in two or more destination
cells 1141, 11452, ..., 114jp. Specifically, the multicast queue controller 910 is
operable to generate a request for transmitting one of the possible multiplicity of
packets occupying the slots 9084, 908, ..., 908\ in segment 913 of the data
memory 902. The identity of the slot chosen to be transmitted is provided along a
slot_id line 905 while the priority associated with the chosen slot is provided on a

priority line 907.

The multicast queue controller 910 implements a function which determines the
identity of the occupied slot which holds the highest-priority packet that can be
accommodated by the destination receiver. This function can be suitably
implemented by a logic circuit, for instance. By way of example, the multicast
queue controller 910 can be designed to verify the entries in the associated
control memory 912 in order to determine, amongst all occupied slots associated
with segment 913 in the data memory 902, the identity of the slot holding the
highest-priority packet. The multicast queue controller 910 then assesses the
ability of receiver 150 in each of the destination cells 11444, 11452, ..., 114;p to

-56 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

accommodate the packet in the chosen slot. This is achieved by processing
information received via the corresponding back channels 212j1 y, 212j2 J, ...,

212p J-

For example, let the chosen multicast packet be a high-priority packet stored in
slot 908 and let the address mask of the packet be: 1011, indicating that the
multicast packet is destined for cells 1144, 1143 and 1144. In this case, the
required occupancy information would be relevant to slots 5084 (i.e., the high-
priority slot) in receiver 150 in cells 1144, 1143 and 1144. This occupancy
information would be received via back channels 2121 j, 2122 j, and 2124, J;

If the multicast queue controller 910 finds that the chosen multicast packet can
indeed be accommodated by the receiver in each destination cell, it will attempt to
seize control of forward channel 210 before any of the affected (non-multicast)
queue controllers 710 makes another request to the arbiter 960. Therefore, the
multicast queue controller 910 makes a multicast request to the arbiter 960. In
one embodiment, the multicast request is associated with a priority level
associated with the packet. In other embodiments, the muiticast request is given
a higher priority in view of the probability associated with receiver 150 being
available in all of the destination cells.- The multicast queue controller 910 places
the identity of the chosen slot on the slot_id line 905, places the priority level of
the multicast request on the priority line 907 and submits a request to the arbiter

960 by asserting the request line 903.

Assuming that a request of this type submitted by the muiticast queue controller
910 has been granted, the multicast queue controller 910 will be made aware of
the grant by the arbiter 960. This exchange of information can be achieved in
many ways. For example, in a manner similar to that previously described with
reference to the arbiter 760, the arbiter 960 may identify the queue controller
whose request has been granted by sending a unique code on a grant line 911
and, when ready, the arbiter 960 may assert a grant_enable line 915 shared by
the queue controllers 710, 910. A given queue controller would thus know that its

request has been granted upon (i) detecting a unique code in the signal received

-57 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

from the arbiter via the grant line 911; and (ii) detecting the asserted grant_enable

line 915.

It should be understood that other ways of signaling and detecting a granted
request are within the scope of the present invention. For example, it is feasible
to provide a separate grant line to each queue controller, including the multicast
queue controller 910 and the non-multicast queue controllers 710; when a
particular queue controller's request has been granted, the grant line connected to
the particular queue controller would be the only one to be asserted. In this case,

no grant enable line need be provided.

Upon receipt of an indication that its request has been granted, the multicast
queue controller 910 accesses the entry in the control memory 912 c'orrespon,ding
to the slot whose packet now faces an imminent exit from the data memory 902
under the control of the arbiter 960. Specifically, the multicast queue controller
910 changes the status of that particular slot to “unoccupied”, which will alter the
result of the request computation logic, possibly resulting in the generation of a
new request spécifying a different slot. The changed status of a slot will also be

reflected in the information provided to the packet insertion module 904 via the

queue_full line 926.

Also upon receipt of an indication that its request has been granted, the multicast
queue controller 910 asserts a pointer_update line 929 which returns back to the
arbiter 960. In a manner similar to that described in connection with assertion of
one of the pointer_update lines 729;, assertion of the pointer_update line 929
indicates to the arbiter 960 that the grant it has issued has been acknowledged,
allowing the arbiter 960 to proceed with preparing the next grant, based on a
possibly new request from the muiticast queue controller 910 and on pending

requests from the other queue controllers 710.

However, in the case where the multicast queue controller 910 finds that one or
more destination receivers cannot accommodate the multicast packet, the

multicast queue controller 910 may do one of three things, depending on the

-58-

10

15 |

20

25

30

WO 02/098066 PCT/CA02/00810

operational requirements of the invention. It can either (i) attempt to transmit the
next-highest-priority multicast packet to all of the associated destination receivers;
(i) make a request to the arbiter 960 to transmit the multicast packet on the
forward channel 210 so that it is received by receiver 150, on those destination
cells which have an available slot, while being ignored by receiver 150 on other
destination cells; (iii) wait some time before making another request to the arbiter

960.

It is also within the scope of the present invention to modify the virtual priority level
of the multicast packet if one or more of the destination receivers cannot
accommodate the packet. If the virtual priority level is increased to such an extent
that the multicast packet now belongs to a different priority class, then a different

result will be obtained when the multicast queue controller 910 determines the

availability of a suitable slot within receiver 150, in each destination cell.

In case (i) above, the multicast controller 910 makes an attempt to transmit the
next-highest-priority multicast packet. This can be done by consulting the back
channels 212 in order to assess the availability of receiver 150y in each
destination cell to accommodate the next-highest-priority multicast packet
occupying one of the slots-908. If the multicast queue controller 910 again finds
that one or more destination cells cannot accommodate the multicast packet, the
multicast queue controller 910 may attempt to transmit the next-neXt—highest—

priority multicast packet, and so on.

In case (i) above, the multicast controller 910 makes a request to the arbiter 960
to transmit the multicast packet on forward channel 210 so that it is received by
receiver 150 in those destination cells which have an available slot. This may be
achieved in the same way as if all the destination cells were able to accommodate
the packet, i.e., by placing the identity of the chosen slot on the slot_id line 905,
placing the appropriate priority level on the priority line 907 and submitting a
request to the arbiter 960 by asserting the request line 903. However, upon
receipt of an indication that its request has been granted, the multicast queue

-59-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

controller 910 would assert the pointer_update line 929 but would pg yet change

the status of the slot to “unoccupied”.

Next, the multicast queue controller 910 would reset the bits in the address mask
of the corresponding entry in those bit positions corresponding to destination cells
that were found to have an available slot for accommodating the multicast packet.'
For example, let the chosen multicast packet be a high-priority packet stored in
slot 9084 and let the address mask of the packet be 1011, as before. Let the
occupancy information relevant to slot 5084 in receiver 150 in cellsv'1141, 1143
and 1144, as received via respective back channels 2124 j, 2122 j, and 2124 J,
be the following: “occupied, unoccupied, unoccupied”. This would mean that there
is room in slot 5084 in receiver 150 in cells 1143 and 1144, but not in cell 114.
If a request to transmit the multicast packet is granted, cells 1143 and 1144 will
process the packet, but cell 1144 will not. Consequently, the address mask would

become 1000 and may be referred to as “residual address mask”.

The residual address mask therefore indicates the destination cells o'f the
multicast packet which have yet to receive the multicast packet. The multicast
queue controller 910 is operable to make another request with the new address
mask in the above described manner until the address mask has been reduced to
“0000", at which point the multicast queue controller 910 would proceed with
changing the status of the slot (in this case, slot 9084) to “unoccupied” in the

appropriate entry (in this case 9144) in the control memory 912.

In addition, if a request to transmit the multicast packet to an incomplete subset of
the destination cells has been granted, the multicast queue controller 910 must
indicate to the packet-forwarding module in the arbiter 960 that the multicast
packet has been transmitted to only some of the destination cells so that when the
multicast packet is re-transmitted to the remaining destination cells by virtue of a
subsequent request being granted, it is not picked up a second time by the
destination cells which already received the packet. To this end, upon being
granted a request to send the multicast packet to an incomplete subset of the

destination cells, an already_sent mask is provided via a control line 995 to the

-60 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

packet-forwarding module 990 in the arbiter. The packet-forwarding module 990
uses the already_sent mask to modify the destination field 362 of the multicast

packet in a manner to be described in greater detail herein below.

As a result, the destination field 362 of a multicast packet transmitted the first time
to an incomplete set of destination cells will identify the original set of destination
cells, while the destination field 362 of the same multicast packet, re-transmitted a
second time due to some destination cells having had receivers that were not
available the first time around, will identify only those destination cells which are
known to have an available slot for accommodating the packet. It is also within
the scope of the invention, however, to modify the destination field 362 of a
multicast packet transmitted the first time so that it specifies only those destination

cells which are known to have an available slot for accommodating the packet.

In case (iii) above, upon finding that receiver 150 in one or more destination cells
cannot accommodate the multicast packet, the multicast queue controller 910 can
be adapted to wait an amount of time (or a number of transmitted packefs) before
making a delayed request to the arbiter 960 along the request line 903. The
delayed request follows a re-verification of the availability of receivers which were
initially found to be unavailable. Upon re-verification, it may be discovered that

some additional receivers may have developed an availability to accommodate

the packet.

The delayed request may be submitted in the same way as described with regard
to case (ii) above. However, it should be appreciated that during the time when
the request is being delayed, one or more receivers that may have been available
at the time when their availability was first verified (and the request withheld) may
become unavailable. It is therefore possible that the situation with regard to
receiver availability is no better after having delayed the request, unless some
way of making “tentative reservations” is provided. Accordingly, it is within the
scope of the present invention for the multicast queue controller 910 to manipulate

the request generation process in each of the non-multicast queue controllers 710

-61 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

in such a way as to tentatively reserve a slot in receiver 150 j on those destination

cells which can accommodate the multicast packet in question.

This can be achieved by altering the information received via the back channels
212, as perceived by the queue controllers 710. For example, the information
regarding the availability of a given slot in receiver 150 in cell 114, as received
via back channel 212j, J» might ordinarily be represented by logic “1” to indicate
that the slot is available and by logic “0” to indicate that the slot is occupied. If that
slot needs to be tentatively reserved by the muiticast queue controller 910, then a
two-input logical AND gate 999; may be placed in the path of back channel 212;
prior to entry into any of the queue controllers 710. A first input of the AND gate
would be the line 212; y leading from receiver 150 in cell 114j, while a second
input of the AND gate may be supplied by the multicast queue controller 910 via a
logical inverter (not shown). In operation, the multicast queue controller 910
would set the input to the inverter to logical “1” when making a tentative
reservation for that slot, which would make the slot appear unavailable to the
other queue controllers 710. The multicast queue controller 910 would reset the
input to the inverter (thereby rendering the output of each AND gate 999;
transparent to information received via the corresponding back channel) after it

has been granted a delayed request that followed the tentative reservation.

If, by the time the delayed requested is granted, it tums out that the multicast
packet can be accommodated by receiver 150, in all of the destination cells
specified in its original destination field 362, then the multicast queue controller
910 proceeds as in case (i) above. If, however, receiver 150 in some destination

cells is still unable to accommodate the multicast packet, the multicast controller

910 proceeds as in case (ii) above.

The arbiter 960 is now described with continued reference to Fig. 9. The function
of the arbiter 960 is to grant one of the requests received from the various queue
controllers 710, 910 and to consequently control read operations from the data
memory 902. To this end, the arbiter 960 comprises a request-processing module
970, an address decoder 980 and a packet-forwarding module 990. The arbiter

-62 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

960 may be essentially identical to the arbiter 760 previously described with
reference to Fig. 4, with some differences in the 'implementation of the request-
processing module 970, the address decoder 980 and the packet-forwarding

module 990.

The request-processing module 970 receives the request lines 703, 903, the
priority lines 707, 907 and the pointer_update lines 729, 929 from the queue
controllers 710, 910, respectively. The request-processing module 970 functions
to grant only one of the possibly many requests received from the queue
controllers 710, 910 along the request lines 703, 903. The request-processing
module 970 has an output which is the grant line 911. The grant line 911 is
connected to each of the queue controllers 710, 910 as well as to the address
decoder 980. In one embodiment of the present invenﬁon, the grant line 911
utilizes a unique binary code to identify the queue controller whose request has
been granted. It will be noted that the request-processing module 970 in the
arbiter 960 differs from the request-processing module 770 in the arbiter 760

merely in the number of inputs.

The address decoder 980 receives the grant line 911 from the request-processing
module 970 and the slot_id lines 705, 905 from the queue controllers 710, 910,
respectively. The address decoder 980 computes a base address in the data
memory 902 that stores the first word of the packet for which a request for
transmission has been granted. The base address is provided to the packet-
forwarding module 990 via a base_address line 982. It will be noted that the
address decoder 980 in the arbiter 960 differs from the address decoder 780 in
the arbiter 760 merely in its ability to process an additional code on the grant line
911 and in its ability to generate a base address over a wider range incorporating

segment 913 in the data memory 902.

The packet-forwarding module 990 receives, via the base_address line 982, the
location of the first word of the next packet that it is required to extract from the
data memory 902. The packet-forwarding module 990 also receives the

already_sent mask via the control line 995 from the multicast queue controller

-63-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

910. It is recalled that the already_sent mask is indicative of one or more
destination cells whose corresponding receiver 150 has already received the
packet to be extracted from the data memory 902 by the packet-forwarding
module 990.

The packet-forwarding module 990 is operable to wait until it has finished reading
out the current packet before beginning to read the next packet from the data
memory. After it has finished reading the current packet from the data memory
002, the packet-forwarding module 990 stores the initial address on the
base_address line 982, asserts the grant_enable line 915 and proceeds to read
from the data memory 902 starting from the initial address. In addition, the
packet-forwarding module 990 applies the already_sent mask to the destination
field of the packet extracted from the data memory 902. The packet-forwarding
module 990 in the arbiter 960 differs from the packet-forwarding module 790 in the
arbiter 760 in its ability to index larger data memory 902 and in its ability to apply
the already_sent mask to the destination field of a packet extracted from the data

memory 902.

It is not necessary to modify the aforedescribed receivers 150 or arbiter 260 in
order to enable the processing of multicast packets arriving via the appropriate

one of the forward channels 210.

It is noted that the packet insertion module 704 (or 904) in the transmitter 140 (or
940) controls where words are written into the data memory 702 (or 902), but it
does not control the rate at which words arrive at the data input ports of the data
memory 702 (or 902). This level of control is provided by an off-chip packet-
forwarding module 226 as described herein below. The non-multicast case is
considered for the purposes of the following but it should be appreciated that the
concepts described herein below are equally applicable to the transmission of

multicast packets.

Specifically, in preferred embodiments, the off-chip packet-forwarding module 226

is not allowed to send the words of a packet to the transmitter in a given cell

- 64 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

unless there is room in that transmitter's data memory 702 to accommodate the
packet, as this prevents having to discard packets in the switch fabric chip. A
feature of the present invention which allows such control to be executed locally at
the off-chip packet-forwarding module 226 stems from the use of the entries 714
stored in the control memories 712. Specifically, by providing the status of slots
708 in the data memory 702 of the transmitter of each cell via the control path
254, the off-chip packet-forwarding module 226 can be alerted as to the status
(occupied olr unoccupied) of each slot associated with a particular category of

priority level.

A detailed description of one possible implementation of the off-chip packet-
forwarding module 226, along with its interaction with the input interface 116 and
the output interface 118, is now provided with additional reference to Fig. 20. ltis
recalled that the off-chip packet-forwarding module 226 is connected to the input
interface 116 in cell 114 via data path 252 and a control path 254 (which flows in
the opposite direction). The data path 252 can be of sufficient width to
accommodate all the bits in a word or it may be narrower (and, therefore, also
narrower than the data path 230) so as to accommodate only a subset of the bits
in a word, thereby lowering the pin count of the chip 110. If the data path 252 is
indeed narrower than the data path 230, then the input interface 116 should be
configured to provide a rate matching functionality so that.the total information
transfer rate remains the same on both data paths. The control path 254 may be

as narrow as one or two bits in order to keep the pin count to a minimum.

As can be seen in Fig. 20, the off-chip packet-forwarding module 226 comprises a
buffer 2010, a controller 2020 and a memory 2030. A data path 2060 provides the
buffer 2010 with a stream of packets for transmission to the transmitter 140 in cell
114,. The controller 2020, which is connected to the buffer 2010 via a control line
2040, is adapted to control the release of words from the buffer 2010 onto the

data path 252.

The memory 2030 stores a plurality (N x M) of entries 2080. Entries 2080 may
also be referred to as “zones”. Entries 2080j,A through 2080; \ correspond to

-65 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

slots 708; A through 708; \, 1< j £ N, in the data memory 702 of the transmitter
140. Each entry may include one or more bits which are indirectly indicative of
whether the corresponding slot in the data memory 702 is occupied or
unoccupied. By “indirectly”, it is meant that the memory 2030 might not be
accurate with regard to the occupancy status of a particular slot in the data
memory 702 of the transmitter 140, but it will nevertheless contain an accurate
version of the number of slots for a given destination and priority level which are
occupied. The controller 2020 receives updated occupancy information from the
transmitter 140 via the input interface 116 and the control path 254. The controller

2020 has access to the memory 2030 via a control line 2050.

In operation, the controller 2020 performs the tasks of updating the occupancy
information in the memory 2030 and controlling the release of packets from the

buffer 2010. The two tasks may be performed asynchronously.

Regarding the transmission of packets from the buffer 2010, this is performed as a
function of the contents of the buffer 2010 and as a function of the occupancy
information stored in the memory 2030. Specifically, when the buffer 2010
contains a packet that is ready for transmission to the transmitter 140, the
controller 2020 verifies the destination cell associated with that packet and verifies

its priority class, in a similar manner to the packet insertion module 704 in the

transmitter 104.

Assume that the destination cell is cell 114K. This means that it would be
appropriate for the packet in question to occupy one of the slots 708K A, ---
708K M in the data memory 702. Furthermore, the priority level of the packet may
further narrow the selection of appropriate slots into which the packet may be
inserted once it arrives at the transmitter 140. Since the memory 2030 knows
which slots are occupied and which ones are not, the controller 2020 can
therefore determine whether the packet can be accommodated by an appropriate

slot in the data memory 702.

- 66 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

In one embodiment, the controller 2020 does not allow the packet to be
transmitted to the input interface 116 via the data path 252 unless at least one
appropriate slot is found to be unoccupied. In this case, the controller 2020 would
effectively reserve one of the appropriate slots by setting one of the appropriate
(and unoccupied) entries in the memory 2030 to “occupied” prior to or during
transmission of the packet to the transmitter 140. It is not important which slot is
reserved in this manner, as long as the priority class and destination are
consistent with the slot into which the packet will actually be inserted once it

arrives at the data memory 702.

Regarding the “occupancy update” task, it is recalled that the free_slot lines 207
provide the input interface 116 with information as to the release of packets from
the data memory. If, while monitoring the free_slot line 207, the input interface
116 determines the slot position of a packet being transmitted to its destination
receiver, the ihput interface 116 will send a “token release” message to the
controller 2020 via the control path 254. Such a token release message may
specify the precise slot which has been vacated. However, because reservations
in the memory 2030 are made as a function of destination and priority class, the
input interface 116 need only send the segment (i.e., destinaﬁon cell) and the
priority class associated with the slot being liberated. Upon receipt of the “token
release” message, the controller 2020 changes the information in one of entries in
the memory 2030 which is associated with that destination and priority class and

whose slot had been previously “reserved”.

Accordingly, a slot will be reserved for a packet before the packet has a chance to
arfive at the transmitter 140. This is advantageous when compared to the
situation in which a slot is marked “occupied” once it is actually occupied, as it

prevents the occurrence of a situation in which two packets are transmitted when

there is room for only one.

In addition, once the packet arrives at the transmitter, it will be written into the data
memory 702. As soon as it starts being written from memory, a “token release”
message is sent back to the controller 2020 on control path 254. This indicates

-67 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

to the controller 2020 that there is room in the transmitter 140 for a packet having
a particular destination and priority class and an appropriate packet can be sent to
the transmitter 140. This new packet will arrive after the old packet has begun to
be read and, provided the write operation does not catch up to the read operation,
advantageously resulting in efficient data pipelining, which is even more
advantageous when combined with the efficient data pipelining that occurs

between the transmitters 140 and receivers 150.

It is possible that due to a transmission error, the information contained in the
“oken release” message is incorrect. To this end, it may be advantageous to
configure the controller 2020 so that it is capable of requesting the status of each
slot in the data memory 702 of the transmitter 140, so as to perform a “refresh” of
the memory 203_0. This type of fefresh operation may be performed at an initial
phase or at other times during operation. This can be achieved by sending a
“refresh request” message to the input interface 116 via a forward-traveling control
path (not shown). The input interface 116 can be adapted to respond to a “refresh
request” message by sending the occupancy status of each s.Iot 708 in its data
memory 702. This information is obtained from the entries 714 in the control
memories 712. Upon receipt of the requested information from the input interface
116, the controller 2020 updates the contents of the entries 2080 in the memory
2030. In this way; the controller 2020 is able to géther information regarding the

occupancy of each slot in the data memory 702.

It is also within the scope of the invention for the input interface 116 to have
continuous access to up-to-date occupancy information by providing discrete or
bussed signal connections between the input interface 116 and the entries 714 in
the control memories 712 of the queue controllers 710. For example, such a bus

may be N x M bits wide in some embodiments.

Reference is now made to Fig. 14, which shows a cell 14144 in accordance with
another embodiment of the present invention, in which there is provided a central
processing unit (CPU) 1400. Cell 14144 is a modified version of cell 1144
described previously with reference to Fig. 2. Specifically, in addition to the CPU

-68 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

1400, cell 14144 comprises an arrangement of functional modules including the
previously described input and output interfaces 116, 118, as well as a modified
transmitter 1440, N maodified receiveré 14504...1450N, and two arbiters 260,
1460, among which arbiter 260 has already been described with reference to Fig.

5.

The main purpose of the CPU 1400 is to process, originate and/or respond to so-
called “system packets”. System packets generally do not carry data traffic;
rather, they carry control information. Examples of control information which may
be carried by a system packet generated by the CPU 1400 include the number of
packets sent by the transmitter 1440, the number of occupied slots in the data
memory of the transmitter 1440, the number of occupied slots in the data memory
of one or more receivers 1450, the total number of packets sent or received by the
external ports 116, 118, the number of packets killed by the transmitter 1440 or
any receiver 1450, etc. Examples of control information which may be carried by
a system packet destined for the CPU 1400 include instructions for changing the
parameters used in the aging mechanism or setting the delay of a request by the
multicast queue controller 910 in the transmitter (see Fig. 9) or instructing the time

stamp counter 620 (see Fig. 6) to count packets sent rather than clock cycles (or

vice versa).

in one embodiment, the CPU 1400 can be a 32-bit 4-stage pipelined RISC
processor with access to a CPU random access memory (RAM). The CPU RAM
is divided into scratch RAM, insert RAM and forward RAM. The scratch RAM is
used for general computations of a temporary nature, while the insert RAM is
used to store system packets arriving from the receivers 1450 and the forward
RAM is used to store system packets to be transmitted along the appropriate
forward channel by the transmitter 1440. In one embodiment, the size of both the
insert RAM and the forward RAM can be one, two or more slots each, where each
slot is of sufficient size to store a packet. The total RAM size may be on the order
of 2 kilobytes, for example. Of course, other CPU types and memory sizes are

within the scope of the present invention.

-69 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The CPU 1400 in cell 14144 is also connected to other CPUs in other cells via an
asynchronous peripheral bus 1472, which utilizes an internal peripheral bus
interface 1470 in each cell, including cell 14144, and a common external
peripheral bus interface (not shown) elsewhere on the chip 100. The internal
peripheral bus interface 1470 in cell 14144 communicates the with external
peripheral bus interface via the peripheral bus 1472. The purpose of the
peripheral bus is to allow the CPU 1400 in each cell to exchange information with
an external device (e.g., flash RAM, FPGA, UART, etc.) For example, the

peripheral bus is useful when downloading the initial CPU code from an external

memory device.

To accommodate the transmission of system packets to and from the CPU 1400,
the destination field of the header of all packets is designed so as to be capable of
specifyihg whether the packet is a system packet, i.e., is either destined for the
CPU of a given destination cell or has been generated by the CPU of a given
source cell. Accordingly, in one embodiment of the invention, and with reference
to Fig. 18, a packet 1850 is provided with an additional “to CPU” (or TCPU) field
1810 and an additional “from CPU” (or FCPU) field 1820 in the packet's header
1860. To indicate that a packet is a system packet, either thé TCPU field 1810 or
the FCPU field 1820 is set (or both), as appropriate. If the packet 1850 is not a
system packet, i.e., the packet 1850 is neither destined for the CPU of a given cell
nor generated by the CPU of a given cell, then both the TCPU and FCPU fields

1810, 1820 remain blank.

If a packet is indeed a system packet, then further information concerning the
meaning of the packet may be found in a subsequent word of the packet. For
example, the second, third or other word of a system packet may contain a “type”
field 1880. The type field 1880 identifies the nature of the control information
carried by a system packet. When a system packet is routed to the CPU 1400, it
will be processed according to the contents of the type field 1880. A system
packet may also contain a password field 1890, which is encodable and
decodable in software. Additionally, a system packet may include a query bit
1892, which indicates whether a response to the system packet is required from

-70 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

the CPU 1400. Either or both of the password field 1890 and the query bit 1892, if
used, may appear in the header 1860 of the packet 1850 or in a subsequent word

in the payload of the packet 1850.

The flow of system packets and traffic packets (i.e., non-s'ystem packets) through
cell 14144 may be better understood by additionally referring to Fig. 15, which is
simplified version of Fig. 14 in which the solid line represents the path that may be
traveled by traffic packets, while the dashed line represents the path that may be
traveled by system packets. The arbiters 260, 1460 have been omitted for

simplicity of illustration.

With continued reference to Fig. 14, the input interface 116 receives system
packets and traffic packets from the off-chip packet-forwarding module 226 via a
data path 252 and forwards them to the transmitter 1440 via a data path 230
(previously described with reference to Fig. 2). Occupancy information regarding
the transmitter 1440 is provided to the input interface 116 along a set of free_slot
lines 207, which forwards this information to the off-chip packet-forwarding module
226 along an external back channel 254 (also previously described with reference

to Fig. 2) running in the opposite direction of traffic flow.

The transmitter 1440 controls the transmission of system packets and traffic
packets received from the off-chip packet-forwarding module 226 onto the
corresponding forward channel, in this case forward channel 2104. In addition,
the transmitter 1440 also controls the transmission of system packets generated
by the CPU 1400, either independently or in response to a received system
packet containing a query, onto forward channel 2104. One way of achieving the

desired functionality will be described in greater detail later on.

Within cell 14144, the receivers 1450 receive packets, word by word, along the
forward channels 210. Each such received packet may be a traffic packet, a
system packet destined for the CPU 1400 or a system packet not destined for the
CPU 1400. System packets destined for the CPU 1400 are stored in a different

-71 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
area than traffic packets or system packets that are not destined for the CPU

1400.

Requests for transmission of packets stored by the receivers 1450 may be made
to arbiter 260 or to arbiter 1460. In the previously described manner, arbiter 260
is connected to the output interface 118 via the data path 202. The output
interface 118 supplies packets to the off-chip input queue 228. Occupancy
information regarding the off-chip input queue 228 is provided to the receivers
1450 in the form of the almost_full flag 208 (previously described) that runs
through the output interface 118 in a direction opposite to that of traffic flow. This -
funétionality may be provided by an external back channel. For its part, arbiter
1460 has an output connected to the CPU 1400 via a data path 1402. Occupancy
information regarding the CPU 1400 is provided to the receivers 1450 in the form

of a cpu_almost_full flag 1408.

It is noted that in this embodiment, system paCkets destined for the CPU 1400 in
cell 14144, and which arrive via the off-chip packet-forwarding module 226, will
reach the CPU 1400 via receiver 14504 in cell 14144 after having been placed
onto forward channel 2104 by the transmitter 1440 in cell 14144. Mt is envisaged
that in other embodiments of the invention, such system packets may reach the

CPU 1400 directly, without having to travel along forward channel 2101.

With reference now to Fig. 16, there is shown an example non-limiting
implementation of a transmitter 1440 adapted to allow the transmission of system
packets and traffic packets along the appropriate forward channel. Without loss of
generality, the transmitter 1440 is assumed to reside in cell 1414 and hence the
transmitter 1440 is connected to forward channel 210 and back channels 2121 ,

2123 4, ..., 212N J-

The transmitter 1440 receives words from the input interface 116 along the data
path 230. The words are fed to the data memory 702 via a plurality of data input
ports. The data memory 702 is writable in response to a write address signal and

a write enable signal, which are received from a packet insertion module 704 via

-72-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

the write_address line 716 and the write_enable line 718, respectively. The
write_address line 716 carries the address in the data memory 702 to which the
word presently on the data path 230 is to be written, while the actual operation of
writing this word into the specified address is triggered by asserting a signal on
the write_enable line 718. In order to coordinate the arrival of packets at the data
memory 702 with the generation of signals on the write_address line 716 and the
write_enable line 718, the data path 230 may pass through an optional delay
element 706 before entering the data input ports of the data memory 702.

The data memory 702 comprises the 'previously described segments 713, one for
each of the N cells on the chip 110. Each of the segments 713 is represented by
a corresponding one of a plurality of queue controllers 1610. Queue controlier
161 Oj has access to an associated control memory 712j comprising a plurality of
entries 714j A, 714j B, --- 714 M which store the occupancy status (i.e., occupied
or unoccupied) of the respective slots 708j A, 708 B, .. 708j M in the i segment
713; of the data memory 702. For each slot that is occupied, the corresponding

entry also stores the priority level of the packet occupying that slot.

In the manner already described with reference to Fig. 7, the packet insertion
module 704 is operable to monitor the EOP bit 368 on each word received vié the
data path 230 in order to locate the header of newly received packets. Because
the EOP bit 368 undergoes a transition (e.g., falling edge) for the word that occurs
in a specific position within the packet to which it belongs, detection and
monitoring of the EOP bit 368 provides the packet insertion module 704 with an
indication as to when a new packet will be received and, since the header 360 is
located at the beginning of the packet, the packet insertion module 704 will know

when the header 360 of a new packet has been received.

The packet insertion module 704 extracts control information from the header 360
of each received packet. Such information includes the destination cell (or cells)
of a received packet and its priority level for the purposes of determining into
which slot it should be placed in the data memory 702. This information is
obtained by extracting the destination field 362 from the header of the received -

-73-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

packet in order to determine the destination cell (or cells) associated with the
packet. This automatically determines the segment into which the received
packet is to be written. In addition, selection of the particular slot into which the
packet belongs is achieved in the mannér described with reference to the packet
insertion module 704 of Fig. 7, namely, by determining the priority class of the
received packet and verifying the availability of the slot(s) associated with that
priority class. It is noted that the transmitter 1440 draws no distinction between
system packets and traffic packets received from the input interface 116 along the

data path 230.

The data memory 702 is also readable in response to a read address supplied by
an arbiter 1660 along the read_address line 792. In a manner similar to that
already described with reference to the arbiter 760 of Fig. 7, the arbiter 1660
initiates reads from the data memory 702 as a function of requests received from
a plurality of queue controllers 1610, 1610CPU via a corresponding plurality of
request lines 1603, 1603CPU.

A particular one of the request lines 1603; will be asserted if the corresponding
queue controller 1610;j is desirous of forwarding a traffic packet or a system
packet to receiver 1450 in cell 1414; (possibly even cell 1414 itself), while
request line 1603CPU will be asserted if the CPU queue controller 1610CPU s
desirous of forwarding a system packet from the CPU 1400 to receiver 1450 in

one of the cells (possibly even cell 1414 itself).

The queue controllers 1610 generate requests in a manner similar to that of the
queue controllers 710 described previously with respect to Fig. 7. Specifically,
queue controller 1610; is operable to generate a request for transmitting one of
the possible multiplicity of packets occupying the slots 708j,A, 708j’B, 708j,M
in the data memory 702. The identity of the slot chosen to be transmitted is
provided along a corresponding one of a plurality of slot_id lines 1605j while the
priority associated with the chosen slot is provided on a corresponding one of a

plurality of priority lines 1607;.

-74 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Queue controlier 1610j implements a function which determines the identity of the
occupied slot which holds the highest-priority packet that can be accommodated
by the receiver in the destination cell. This function can be suitably implemented
by a logic circuit, for example. By way of example, queue controllers 1610j in the
transmitter 1440 in cell 1414, can be designed to verify the entries in the
associated control memory 712 in order to determine, amongst all occupied slots
associated with segment 713 in the data memory 702, the identity of the slot
holding the highest-priority packet. Queue controller 1610; then assesses the
ability of the receiver in the destination cell (i.e., receiver 1450, in cell 1414;) to
accommodate the packet in the chosen slot by processing information received

via the corresponding back channel 212; ;.

In one embodiment, receiver 1450 in cell 1414 includes a set of M** slots similar
to the M slots in the j segment 713; of the data memory 702, but M** will be
different from M. At least one of these slots will be reserved for accommodating
packets destined for the CPU in that cell. The information carried by back channel
21254 in such a case will be indicative of the status (occupied or unoccupied) of
each of these M** slots. (Reference may be had to Figs. 17A and 17B, where the
receiver slots not reserved for the CPU are denoted 508 and where the receiver
slots reserved for the CPU are denoted 1708. This Figure will be described in
greater detail later on when describing the receiver.) Thus, by consulting back
channel 212; j, queue controller 1610; in cell 1414 has knowledge of whether or

not its highest-priority packet can be accommodated by the associated receiver

1450, in cell 1414;.

If the highest-priority packet can indeed be accommodated, then queue controller
1610; places the identity of the associated slot on the corresponding slot_id line
16051-, places the priority level of the packet on the corresponding priority line
1607j and submits a request to the arbiter 1660 by asserting the corresponding
request line 1603;. However, if the highest-priority packet cannot indeed be
accommodated, then queue controller 1610; determines, among all occupied slots

associated with the segment 713 in the data memory 702, the identity of the slot

-75-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810
holding the next-highest-priority packet. As before, this can be achieved by

processing information received via the corresponding back channel 2121-, J-

If the next-highest-priority packet can indeed be accommodated, then queue
controller 1610j places the identity of the associated slot on the corresponding
slot_id line 1605,, places the priority level of the packet on the corresponding
priority line 1607; and submits a request to the arbiter 1660 by assertmg the
corresponding request line 16031. However, if the next-highest-priority packet
cannot indeed be accommodated, then queue controller 1610; determines, among
all occupied slots associated with the segment 713; in the data memory 702, the
identity of the slot holding the next-next-highest-priority packet, and so on. If none
of the packets can be accommodated or, alternatively, if none of the slots are

occupied, then no request is generated by queue controller 1610J- and the

corresponding request line 1603; remains unasserted.

For its part, the CPU queue controller 1610CPU is implemented quite differently
from the queue controllers 1610. Specifically, the CPU queue controller 1610CPU
has access to an associated control memory 1612CPU. The control memory
1612CPU comprises one or more entries 1614CPU which store the occupancy
status (i.e., occupied or unoccupied) of the respective slots in the forward RAM of
the CPU 1400. For each slot in the forward RAM that is occupied (by a system
packet), the corresponding entry in the control memory 1612CPU also stores the

priority level and the destination cell of that system packet.

The CPU queue controller 1610CPU is operable to generate a request for
transmitting a chosen one of the possible multiplicity of system packets occupying
the forward RAM of the CPU 1400. Selection of the system packet to be
transmitted is based upon the priority level of the packet and on the ability of
receiver 1450 .in the destination cell to accommodate the chosen system packet.
This is achieved by processing information received via the appropriate one of the

back channel 212}'1,J, 212j2’J, oo 212jP’J.

-76 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

This information will indicate whether the receiver in the destination cell has a free
slot amongst its slots 508 (reserved for packets not destined for the CPU in that
cell) or 708 (reserved for packets destined for the CPU in that cell). It is noted that
both types of information are needed, as a system packet generated by the CPU
1400 and temporarily stored in the forward RAM may be destined for the CPU in
the destination cell but it might just as easily not be destined for the CPU in the

destination cell.

If the CPU queue controller 1610CPU finds that the chosen system packet can
indeed be accommodated by the receiver in the destination cell, it will make a
request to the arbiter 1660. In one embodiment, such request is associated with a
priority level identical to that of the system packet to be transmitted. In other
embodiments, such request is given a lower priority in view of the fact that it is
merely a system packet. In other, fault diagnosis situations, the request to
transmit a system packet may be given a-relative|y high priority. To effect a
request to the arbiter 1660, the CPU queue controller 1610CPU places the priority

level of the request on the cpu_priority line 1607CPU and submits a request to the

arbiter 1660 by asserting the cpu_request line 1603CPU.

Assuming that a request is submitted by one of the queue controllers 1610,
1610CPU has been granted by the arbiter 1660, queue controllers 1610,
1610CPU will be made aware of this fact by the arbiter 1660. This exchange of
information can be achieved in many ways. For example, in a manner similar to
that previously described with reference to the arbiter 760, the arbiter 1660 may
identify the queue controller whose request has been granted by sending a unique
code on a grant line 1611 and, when ready, the arbiter 1660 may assert a
grant_enable line 1615 shared by the queue controllers 1610, 1610CPU. The
targeted queue controller would thus know that its request has been granted upon
(i) detecting a unique code in the signal received from the arbiter via the grant line
1611; and (ii) detecting the asserted grant_enable line 1615.

It should be understood that other ways of signaling and detecting a granted
request are within the scope of the present invention. For example, it is feasible

-77 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

to provide a separate grant line to each queue controller, including the CPU queue
controller 1610CPU and the other queue controllers 1610; when a particular
queue controller's request has been granted, the grant line connected to the
particular queue controller would be the only one to be asserted. In this case, no

grant enable line need be provided.

Upon receipt of an indication that its request has been granted, queue controller
1610j accesses the entry in the control memory 712j corresponding to the slot
whose packet now faces an imminent exit from the data memory 702 under the
control of the arbiter 1660. Specifically, queue controller 1610,- changes the status
of that particular slot to “unoccupied”, which will alter the result of the request
computation logic, resulting in the generation of a new request that may specify a
different slot. The changed status of a slot will also be reflected in the information
subsequently provided upon request to the packet insertion module 704 via the

corresponding queue_full line 726;.

On thé other hand, upon receipt of an indication that its request has been granted,
the CPU queue controller 1610CPU accesses the entry 1614CPU in the control
memory 1612CPU corresponding to the system packet to be transmitted.
Specifically, the CPU queue controller 1610CPU changes the status of that
particular slot to “unoccupied”, which will alter the resuit of the request
computation logic, resulting in the generation of a new request that may specify a

different slot.

Meanwhile, the CPU queue controller 1610CPU places the system packet in the
corresponding slot in the forward RAM of the CPU 1400 onto an output line 1621.
Output line 1621 is multiplexed, at a multiplexer 1620, with the data exiting the
data memory 702. The multiplexer 1620 is controlled by a signal on a select line
1689 which indicates whether or not the CPU queue controller 1610CPU has
been granted. This could be via a bit on the grant line 1611. That is to say, the
state of the grant line 1611 may regulate whether the packet being sent along
forward channel 210 is taken from the data memory 702 or from the CPU queue

controller 1610cpuU-
-78-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

Also upon receipt of an indication that its request has been granted, the target
queue controller 1610;, 1610CPU asserts a corresponding pointer_update line
1629j, 1629CPU, which retums back to the arbiter 1660. As will be described

later on in connection with the arbiter 1660, assertion of one of the pointer_update

lines 1629;, 1629CPV indicates to the arbiter 1660 that the grant it has issued has

been acknowledged, allowing the arbiter 1660 to proceed with preparing the next
grant, based on a possibly new request from the target queue controller and on

pending requests from the other queue controllers.

The arbiter 1660 is now described with continued reference to Fig. 16. The
function of the arbiter 1660 is to grant one of the requests received from the
various queue controllers 1610, 1610CPU and to consequently control read
operations from the data memory 702 and from the forward RAM in the CPU
1400. To this end, the arbiter 1660 comprises a request-processing module 1670,
an address decoder 1680 and the above-mentioned packet-forwarding module
1690. The arbiter 1660 may be similar to the arbiter 760 previously described with
reference to Fig. 4, with some differences in the implementation of the request-

processing module 1670, the address decoder 1680 and the packet-forwarding

module 1690.

The request-processing module 1670 receives the request lines 1603, 1603CPU,
the priority lines 1605, 1605CPU and the pointer_update lines 1629, 1629CPU
from the queue controllers 1610, 1610CPY, respectively. The request-processing
module 1670 functions to grant only one of the possibly many requests received
from the queue controllers 1610, 1610CPU along the request lines 1603,
1603CPVU. The request-processing module 1670 has an output which is the grant
line 1611. The grant line 1611 is connected to each of the queue controllers
1610, 161 0CPU as well as to the address decoder 1680. In one embodiment of
the present invention, the grant line 1611 utilizes a unique binary code to identify

the queue controller whose request has been granted.

-79 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The address decoder 1680 receives the grant line 1611 from the request-
processing module 1670 and the slot_id lines 1605 from the queue controllers

1610, respectively. If the grant line 1611 identifies a queue controller 1610 that is

not the CPU queue controller 1610CPU, then the address decoder 1680
computes, as a function of the slot specified on the appropriate slot_id line, a base
address in the data memory 702 that stores the first word of the packet for which a
request for transmission has been granted. The base address is provided to the

packet-forwarding module 1690 via a base_address line 1682.

However, if the grant line 1611 identifies the CPU queue controller 1610CPU, then
a base address computation is not required, since the CPU queue controller

1610CPU itself determines which system packet to transmit.

The packet-forwarding module 1690 is operable to wait until it has finished placing
the current packet onto the forward channel 210 before placing the next packet
onto the forward channel 210y. After it has finished placing the current packet
onto the forward channel 210, the packet-forwarding module 1690 consults the
grant line 1611. If it indicates that the granted queue controller is not the CPU
queue controller 1610cpy. then the packet-forwarding module 1690 stores the
initial address on the base_address line 1682, asserts the grant_ enab/e line 1615
and proceeds to read from the data memory 702 starting from the initial address.
In addition, the packet-forwarding module 1690 controls the multiplexer 1620 via

the select line 1689 so that it admits words coming from the data memory 702 and

"blocks words coming from the forward RAM of the CPU 1400.

If, on the other hand, the grant line 1611 indicates that the granted queue
controller is the CPU queue controller 1610cpy, then the packet-forwarding

module 1690 asserts the grant_enable line 1615 and initiates a read operation

‘from the forward RAM in the CPU 1400. In addition, the packet-forwarding

module 1690 controls the multiplexer 1620 via select line 1689 so that it admits
words coming from the forward RAM of the CPU 1400 and blocks words coming

from the data memaory 702.

-80 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

At a given receiver, all received packets along the corresponding forward channel
which are either traffic packets or system packets not destined for the CPU are
processed as previously described with reference to the receiver of Fig. 5.
However, the‘way in which system packets whose destination cell corresponds to
the cell in which the receiver is located and which are specifically destined for the
CPU 1400 in the destination cell are processed differently and hence it is
necessary to modify the receiver previously described with reference to Fig. 5.

To this end, Figs. 17A and 17B show a receiver 1450j adapted to process system
packets received via forward channel 210;. The receiver 1450; has a memory .
which includes various storage areas, including a data memory 1 702, a control
memory 1712, any memory used by a queue controller 1710 and any other

memory used by the receiver 1450;.

Received cells are fed to the data memory 1702 via a plurality of data input ports.
The data memory 1702 is writable in response to a write address and a write
enable signal received from a packet insertion module 1704 via the previously
described write_address line 516 and a write_enable line 518, respectivély. The
write_address line 516 carries the address in the data memory 1702 to which the
word presently on the forward channel 210;j is to be written, while the actual
operation of writing this word into the specified address is triggered by asserting a
signal on the write_enable line 518. In order to coordinate the arrivél of packets at
the data memory 1702 with the generation of signals on the write_address line
516 and the write_enable line 518, the forward channel 210; may pass thrdugh the
previously described optional delay element 506 before entering the data input

ports of the data memory 1702.

The data memory 1702 contains M** slots 508, 1708, including the M* previously
described slots 5084, 508g, ..., 508\, as well as one or more additional slots
1708, where each slot is large enbugh to accommodate a packet as described
herein above. Slots 5084, 508g, ... and 508+ are reserved for packets destined
for the off-chip input queue 228 and slot(s) 1708 are reserved for system packets
destined for the CPU 1400. In one specific embodiment of the invention, the data

-81-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

memory 1702 includes four slots 5084, 508g, 508¢, 1708, where slot 5084 may
be associated with a high priority class, slot 508g may be associated with a
medium priority class, slot 508¢c may be associated with a low priority class and
slot 1708 may be associated with a system packet of any priority destined for the

CPU 1400.

The queue controller 1710 in receiver 1450j has access control memory 1712,
which comprises a plurality of entries 514, 514, ..., 514m*, 1714 for storing the
occupancy status (i.e., occupied or unoccupied) of the respective slots 5084,
508, ..., 508+, 1708 in the data memory 1702. In addition, for each of the slots
508, 1708 that is occupied, the corresponding entry stores the priority level of the
packet occupying that slot. In one embodiment, the entries 5145, 514p, ...,
514\, 1714 may take the form of registers, for example. In other embodiments,

the fill level or vacancy status may be stored by the control memory 1712.

The packet insertion module 1704 is operable to monitor the EOP bit 368 on each
word received via the forward channel 210; in order to locate the header of newly
received packets. It is recalled that the EOP bit 368 undergoes a transition (e.g.,
falling edge) for the word that occurs in a specific position within the packet to
which it belongs. In this way, detection and monitoring of the EOP bit 368
provides the packet insertion module 1704 with an indication as to when a new
packet will be received and, since the header 360 is located at the beginning of
the packet, the packet insertion module 1704 will know where to find the header

360 of a newly received packet.

The packet insertion module 1704 extracts control information from the header
360 of each newly received packet. Such information includes the destination of a
newly received packet and an indication as to whether the received packet is a
system packet that is destined for the CPU 1400. The packet insertion module
1704 accepts packets destined for which the destination cell is cell 114y and
ignores packets for which the destination cell is not cell 114y. The packet
insertion module 1704 also determines the slot into which a received and

accepted packet should be inserted.

-82 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

In the case of a received packet being a system packet, such packet will not
require special treatment unless the TCPU field in the header of the packet is set.
If the TCPU field in the header ofa system packet is indeed set, then the received
packet needs to be placed into the slot reserved for system packets, which would
be slot 1708 in the above example. On the other hand, if the TCPU field 1810 in
the header 1860 of a system packet 1850 is not set (i.e., if only the FCPU 1820
field of the system packet is set), then the receiver 1450; is to treat such system

packet like a traffic packet.

The header 360 of a traffic packet 350 will indicate the priority level of the pécket
for the purposes of detérmining into which slot it should be placed in the data
memory 1702. The packet insertion module 1704 is operable to determine the
priority class of the packet by comparing the priority level of the packet to the
previously defined priority thresholds. By way of example, as suggested herein
above, let slots 508p, 508g, 508¢c be associated with high, medium, and low
priority levels, respectively. Also, let the low-medium priority threshold and the

‘medium-high priority threshold be established as previously defined, namely, at

100 and 200, respectively. If the priority level of the received packet is 12, for
example, then the slot into which it should be written would be slot 508¢.

In this embodiment, the packet insertion module 1704 knows that it can write the
received traffic packet into slot 508¢ because, it will be recalled, the packetvcould
only be transmitted on the forward channel 210j if the corresponding slot were
available in the first place. Nonetheless, it is within the scope of the present
invention to include larger numbers of slots where more than one slot would be
associated with a given priority class, which may require the packet insertion
module 1704 to verify the occupancy of the individual slots 508 by consulting the
queue_full line 526 (previously described) received from the queue controller

1710.

Next, the packet insertion module 1704 determines a corresponding base address
in the data memory 1702 into which the first word of the packet is to be written.

-83-

10

15

20

25 .

30

WO 02/098066 PCT/CA02/00810

This may be done either by computing an offset which corresponds to the relative
position of the chosen slot or by consulting a short lookup table that maps slots to

addresses in the data memory 1702.

The packet insertion module 1704 is operable to provide the base address to the
data memory 1702 via the write_address line 516 and is further operable to assert
the write_enable line 518. At approximately the same time, the packet insertion
module 504 sends a signal to the queue controller 1710 along the new_packet
line 528 (previously described with reference to Fig. 5), such signal being
indicative of the identity of the slot which is being written to and the priority level of
the packet which shall occupy that slot. The queue controller 1710 is adapted to
process this signal by updating the status and priority information associated with

the identified slot (which was previously unoccupied).

After the first word of the received packet is written to the above-determined base
address of the data memory 1702, the address on the write_address line 516 is
then incremented at each clock cycle (or at each multiple of a clock cycle) as new
words are received along the forward channel 210;. This will cause the words of
the packet to fill the chosen slot in the data memory 1702. Meanwhile, the EOP
bit 368 in each received word is monitored by the packet insertion module 1704.
When a new packet is detected, the above process re-starts with extraction of

control information from the header 360 of the newly received packet.

In addition to being writable, the data memory 1702 is also readable in response
to receipt of a read address supplied along a corresponding read_address line
1793;. In some embodiments where higher switching speeds are desirable, dual
ported RAM may be used to allow simultaneous reading and writing, although a
single-ported RAM could be used in order to reduce chip real estate. The
read_address line 1793; is the output of a 1x2 demultiplexer 1794 which is
controlled by a control signal received from the queue controller 1710 via a control
line 1795. The demultiplexer 1794 also has two data inputs, one of which
(denoted 1791) stems from an arbiter 260 and another of which (denoted 1792)

stems from an arbiter 1760.

-84 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

The arbiter 260 operates as previously described, i.e., it initiates reads from the
data memory 1702 as a function of requests received from the queue controller
1710 in each of the receivers 1450 via the corresponding plurality of request lines
503 (previously described). A particular request line 503; will be asserted if the
queue controller 1710 in the corresponding receiver 1450 is desirous of
forwarding a packet to the off-chip input queue 228. In a similar fashion, the
arbiter 1760 initiates reads from the data memory 1702 as a function of requests
received from the queue controller 1710 in each of the receivers 1450 via a
corresponding plurality of tcpu_request lines 1703. A particular tcpu_request line
1703; will be asserted if the queue controller 1710 in the corresponding receiver

1450; is desirous of putting a system packet into the insert RAM of the CPU 1400.

The two arbiters 260, 1760 operate in parallel and can concurrently process two
different requests from two different receivers 1450. However, the queue
controller 1710 in each of the receivers 1450 only allows one granted request to
be processed at any. given time. To enable this functionality, the following
provides one possible implementation of the queue controller 1710 in receiver
1450j which is adapted to generate up to two requests for the transmission of two
packets, one for off-chip transmission of one from one of the slots 5084, 508, ...,
508+ in the data memory 1702 and one for CPU-bound transmission of one of

the packets occupying the slot(s) 1708.

In the case of the request to the arbiter 260, the identity of the slot chosen to be
transmitted is provided along a corresponding slot_id line 505j, while the priority
associated with the chosen slot is provided on a corresponding priority line 507;.
Specifically, the queue controller 1710 implements a function which verifies the
entries in the control memory 1712 in order to determine the identity of the
occupied slot which holds the highest-priority packet that can be accommodated
by the off-chip input queue 228. This function can be suitably implemented by a
Idgic circuit, for example. By way of example, the queue controller 1710 is
designed to determine, amongst all occupied slots amongst slots 508 in the data
memory 1702, the identity of the slot holding the highest-priority packet. The

-85-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

queue controller 1710 then assesses the ability of the off-chip input queue 228 to

accommodate that packet by processing information received via the almost_full

flag 208.

If the almost_full flag 208 is asserted, then it may be desirable to refrain from
requesting the transmittal of further packets to the off-chip input queue 228. In
some embodiments of the invention, the almost_full flag 208 may consist of a
plurality of almost_full flags, one for each priority class (high, medium, low). This
allows preferential treatment for high-priority packets by setting the occupancy
threshold for asserti‘ng the high-priority almost_full flag higher than the threshold

for asserting the low-priority almost_full flag.

If the highest-priority packet can indeed be accommodated, then the queue
controller 1710 places the identity of the associated slot on the corresponding
slot_id line 505j, places the priority level of the packet on the - corresponding
priority line 507 and submits a request to the arbiter 260 by asserting the
corresponding request line 503j. However, if the highest-priority packet cannot
indeed be accommodated, then the queue controller 1710 determines, among all
occupied slots in the data memory 1702, the identity of the slot holding the next- -
highest-priority packet. As before, this can be achieved by processing information

received via the almost_full flag 208.

If the next-highest-priority packet can indeed be accommodated, then queué
controller 1710 places the identity of the associated slot on the corresponding
slot _id line 505j, places the priority level of the packet on the corresponding
priority line 507; and submits a request to the arbiter 260 by asserting the
corresponding request line 503;. However, if the next-highest-priority packet
cannot indeed be accommodated, then the queue controller 1710 determines,
among all occupied slots in the data memory 1702, the identity of the slot holding
the next-next-highest-priority packet, and so on. If none of the packets can be
accommodated or, alternatively, if none of the slots are occupied, then no request
is generated by the queue controller 1710 and the corresponding request line 503;

remains unasserted.

- 86 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

1n the case of the request to the arbiter 1460, the identity of the slot chosen to be

transmitted is prdvided along a corresponding tcpu_slot_id line 1705, while the
priority associated with the chosen slot is provided on a corresponding
tcpu_priority line 1707;. There may be only one slot 1708 for holding packets
destined for the insert RAM of the CPU 1400, in which case the queue controller
1710 implements a function which verifies whether this slot is occupied and
whether the slot can be accommodated by the CPU 1400. This function can be
suitably implemented by a logic circuit, for example'. The ability of the CPU 1400
to accommodate a received packet can be assessed by way of the

cpu_almost_full flag 1408.

If the cpu_almost_full flag 1408 is asserted, then it may be desirable to refrain
from requesting the transmittal of further packets to the CPU 1400. On the other
hand, if the cpu_almost_full flag 1408 is not asserted, then the queue controller
1710 places the identity of slot 1708 on the corresponding fcpu_slot_id line 1705,
places the priority level of the packet on the corresponding tcpu_priority line 1707;
and submits a request to the arbiter 1760 by asserting the corresponding

tcpu_request line 1 703j.

Now, assume that a request submitted by the queue controller 1710 has been
granted. If this granted request had been submitted to the arbiter 260, the latter
may identify the receiver containing the queue controller whose request has been
granted by sending a unique code on a common grant line 511 and, when ready,
the arbiter 260 may assert a grant_enable line 515 shared by the queue controller
1710 in each of the receivers 1450. The queue controller 1710 may thus establish
that its request has been granted by (i) detecting a unique code in the signal

received from the arbiter 260 via the grant line 511; and (i) detecting the asserted

grant_enable line 515.

In a similar fashion, if the granted request had been submitted to the arbiter 1460,
the latter may identify the receiver containing the queue controller whose request

has been granted by sending a unique code on a common cpu_grant line 1711

-87-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

and, when ready, the arbiter 1460 may assert a cpu_grant_enable line 1715
shared by the queue controller 1710 in each of the receivers 1450. The queue
controller 1710 may thus establish that its request has been granted by (i)
detecting a unique code in the signal received from the arbiter 1460 via the
cpu_grant line 1711; and (ii) detecting the asserted cpu_grant_enable line 1715.

Upon receipt of an indication that either or both of its requests have been granted,
the queue controller 1710 processes at most one of these. In one embodiment, a
granted request to arbiter 260 has priority over a granted request to arbiter 1460.
Depending on which granted request is accepted, the queue controller 1710

reacts differently.

Firstly, regardless of whether the granted request was to arbiter 260 or arbiter

1460, the queue controller 1710 accesses the entry in the control memory 1712

corresponding to the slot whose packet now faces an imminent exit from the data
memory 1702 under the control of the arbiter 260. Specifically, the queue
controller 1710 changes the status of that particular slot to “unoccupied”, which
will alter the result of the request computation logic, resulting in the generation of
a new request which may specify a different slot. In the case where the packet
insertion module 1704 needs to know the status of a slot, the changed status of a

slot will be reflected in the information provided via the queue_full line 526.

In the specific case where a granted request to arbiter 260 is accepted, the queue
controller 1710 asserts the corresponding pointer_update line 529,- (previously
described) which runs back to the arbiter 260. Assertion of one of the
pointer_update lines 529; indicates to the arbiter 260 that the grant it has issued
has been acknowledged, allowing the arbiter 260 to proceed with preparing the
next grant, based on a possibly new request from the queue controller 1710 in
receiver 1450j and on pending requests from queue controllers in other ones of
the receivers 1450. Additionally, the queue controller 1710 controls the signal on
the control line 1795 leading to the multiplexer 1794 so that the address provided
along the read_address line 1793; is the read address output by arbiter 260.

-88 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

In the specific case where a granted request to arbiter 1460 is accepted, the
queue controller 1710 asserts a corresponding pointer_update line 1729j which
runs back to the arbiter 1460. Assertion of one of the pointer_update lines 1729j
indicates to the arbiter 1460 that the grant it has issued has been acknowledged,
allowing the arbiter 1460 to proceed with preparing the next grant, based on a
possibly new request from the queue controller 1710 in receiver 1450 and on
pending requests from queue controllers in other ones of the receivers 1450.
Additionally, the queue controller 1710 controls the signal on the control line 1795
leading to the multiplexer 1794 so that the' address provided along the
read_address line 1793; is the read address output by arbiter 1460.

The function of the arbiter 260 is to receive a request from the queue controller
1710 in each of the receivers 1450, to grant only one of the requests and to
control read operations from the data memory 1702. To this end, the arbiter 260

comprises a request-processing module 570, an address decoder 580 and a

_packet-forwarding module 590. The arbiter 260 is identical to the arbiter. 260

previously described with reference to Fig. 5 and therefore no further description

is necessary.

Similarly, the function of the arbiter 1460 is to receive a request from the queue
controller 1710 in each of the receivers 1450, to grant only ane of fhe requests
and to control read operations from the data memory 1702. To this end, the
arbiter 1460 comprises a request-processing module 1770, an address decoder
1780 and a -packet-forwarding module 1790. The arbiter 1460 is very similar to

‘the arbiter 260 previously described with reference to Fig. 5, with a minor variation

in the implementation of the address decoder 1780.

Speciﬁcally,'the address decoder 1780 receives the cpu_grant line 1711 from the
request-processing module 1770 but and the slot_id lines 1705 from the queue
controllers 1710 in the various receivers 1450. The address decoder 1780
computes a base address in the data memory 1702 that stores the first word of
the system packet for which transmission has been granted. The base address is
computed as a function of the code specified on the cpu_grant line 1711. The

-89 -

10

WO 02/098066 PCT/CA02/00810

base address is provided to the packet-forwarding module 1790 via a

base_address line 1782.

Of course, those skilled in the art will appreciate that cells could be -adapted in
order to provide both multicast functionality and system packet transmission /

reception functionality.

Moreover, as used herein, the term “memory” should be understood to refer to
any data storage capability, either distributed, or in one single block.

While specific embodiments of the present invention have been described and
ilustrated, it will be apparent to those skilled in the art that numerous
modifications and variations can be made without departing from the scope of the

invention as defined in the appended claims.

-90 -

5

10

15

20

25

30

WO 02/098066

Claims:

PCT/CA02/00810

1) A switch fabric implemented on a chip, comprising:

a) an array of cells; |
b) an l/O interface in communication with said array of cells for permitting

exchange of data packets between said array of cells and components

external to said array of cells;

¢) each cell including:

)

It

1)

a transmitter in communication with said 1/O interface and in
communication with every other cell of said array, said
transmitter operative to process a data packet received from said
I/O interface to determine a destination of the data packet and
forward the data packet to at least one cell of séid array selected
on a basis of the determined destination;

a plurality of receivers associated with respective cells from said
array, each receiver being in communication with a respective
cell allowing the respective cell to forward data packets to the
receiver,

said receivers in communipation with said /O interface for

releasing data packets to said I/O interface.

2) A switch fabric as defined in claim 1, wherein said array of cells includes a

3)

4)

plurality of data channels, each data channel being associated with a given

cell, the data channel associated with said given cell connecting the transmitter

of said given cell to receivers in cells other than said given cell and associated

with said given cell.

A switch fabric as defined in claim 2, wherein the data channel associated with

said given cell connects the transmitter of said given cell to a receiver in every

cell of said array and associated with said given cell.

A switch fabric as defined in claim 3, wherein the plurality of data channels are

independent from one another, wherein transmission of a data packet over one

-901 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

data channel is made independently of a transmission of a data packet over

another data channel.

5) A switch fabric as defined in claim 4, wherein each data channel performs a

parallel data transfer.
6) A switch fabric as defined in claim 2, wherein said array of cells forms a matrix.
7) A switch fabric as defined in claim 6, wherein said matrix is bi-dimensional.

8) A switch fabric as defined in claim 7, wherein said matrix is three-dimensional.

'9) A switch fabric as defined in claim 2, wherein said array of cells forms a

toroidal mesh arrangement.

10)A switch fabric as defined in claim 2, wherein the transmitter of said given cell

includes a memory for storing data packets received from said I/O interface.

11)A switch fabric as defined in claim 10, wherein said memory includes a
plurality of segments, each segment being associated with a receiver in a cell
of said array to which the transmitter of said given cell is capable of forwardmg

a data packet via the data channel associated with said given cell.

12)A switch fabric as defined in claim 11, wherein the transmitter of said given cell
includes a control entity that processes a data packet forwarded from said 1/O
interface to determine a cell of said array to which the packet is destined and

identify on a basis of the determined cell a segment of said memory into which

the packet is to be loaded.

13)A switch fabric as defined in claim 12, wherein said control entity includes a

plurality of queue controllers associated with respective segments of said

memory.

-92-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

14)A switch fabric as defined in claim 13, wherein said memory implements a
plurality of registers, each register being associated with a queue controller
and being suitable for holding data representative of a degree of occupancy of

a segment of said memory associated with the queue controller.

15)A switch fabric as defined in claim 14, wherein a data packet received by said
transmitter from said 1/O interface is characterized by a priority level selected
from a group of priority levels, each segment of said memory being partitioned
into slots, each slot being capable of storing at least one data packet, each slot

being associated with a given priority level of said group of priority levels.

16)A switch fabric as defined in claim 15, wherein the registers of said memory
associated with each queue controller store data indicative of a degree of
occupancy of the slots of said segment associated with the queue controller,

for each priority level of the group of priority levels.

17)A switch fabric as defined in claim 12, wherein the transmitter of said given cell
communicates with each receiver associated with said given cell to assess a

degree of occupancy of each receiver associated with said given cell.

18)A switch fabric as defined in claim 17, wherein the transmitter of said given cell
communicates with each receiver associated with said given cell to assess the
degree of occupancy of each receiver associated with said given cell over a

back channel.
19)A switch fabric as defined in claim 18, including a plurality of back channels,
there being a dedicated back channel between the transmitter of said given

cell and each receiver associated with said given cell.

20)A switch fabric as defined in claim 19, wherein each back channel transfers

data serially.

-93-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

" 21)A switch fabric as defined in claim 18, wherein said memory includes an area

for storing data indicative of the degree of occupancy of each receiver

associated with said given cell.

22)A switch fabric as defined in claim 21, wherein said control entity is operative
to process the data indicative of the degree of occupancy of each receiver
associated with said given cell to determine which data packet stored in said

memory is suitable for transmission to a receiver.

23)A switch fabric as defined in claim 22, wherein said control entity determines
that a data packet is suitable for transmission to a certain receiver when the
data indicative of the degree of occupancy of the certain receiver indicates that

the receiver is capable of accepting the data packet.

24)A switch fabric as defined in claim 23, wherein when said control entity
determines that a data packet is suitable for transmission, said control entity

generates a control signal to request transmission of the data packet.

25)A switch fabric as defined in claim 24, wherein when said control entity
determines that a plurality of data packets are suitable for transmission, said
control entity generates a plurality of control signals to request transmission of

the data packets, each control signal being associated with a data packet.

26)A switch fabric as defined in claim 25, wherein said control entity includes an
arbiter for processing said control signals to select a data packet to transmit

among the plurality of data packets suitable for transmission.

27)A switch fabric as defined in claim 26, wherein a data packet is characterized
by a priority level, wherein each control signal conveys the priority level of the

data packet associated with the control signal.

28)A switch fabric as defined in claim 27, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission

-94 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

on a basis of the priority levels of the plurality of data packets suitable for

transmission.

29)A switch fabric as defined in claim 28 wherein said arbiter processes control

signals to request transmission of data packets in a round robin manner.

30)A switch fabric as defined in claim 29, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission
on a basis of the priority levels of the plurality of data packets suitable for
transmission and on the basis of whether or not a data packet was previously

submitted for transmission.

31)A switch fabric as defined in claim 10, wherein said memory is a first memory,
said cell comprising a second memory inciuding a plurality of sectors
associated with respective receivers of said plurality of receivers, said sectors

being capable of storing data packets forwarded to said receivers by cells of

said array.

32)A switch fabric as defined in claim 31, wherein each receiver of said plurality of

receivers communicates with said l/O interface.

33)A switch fabric as defined in claim 31, wherein said plurality of receivers

includes a control entity to regulate a release of data packets from said sectors

to said /O interface.

34)A switch fabric as defined in claim 33, wherein said control entity includes a

plurality of queue controllers associated with respective sectors of said

memory.

35)A switch fabric as defined in claim 34, wherein a data packet received by a
receiver of said plurality of receivers is characterized by a priority level
selected from a group of priority levels, each sector of said second memory
being divided into subdivisions, each subdivision being capable of storing at

- 95 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

least one data packet, each subdivision being associated with a given priority

level of said group of priority levels.

36)A switch fabric as defined in claim 35, wherein said control entity includes an
arbiter in communication with said queue controllers, each queue controller
being operative to transmit a control signal to said arbiter for each data packet
held in the sector associated with the queue controller to request release of the

data packet to said I/O interface.

37)A switch fabric as defined in claim 36, wherein each control signal conveys, the

priority level of the data packet associated with the control signal.

38)A switch fabric as defined in claim 37, wherein said arbiter selects a data
packet for release to said I/O interface among the data packets corresponding
to the control signals transmitted to said arbiter on the basis of the levels of
priority of the data packets corresponding to the control signals transmitted to

said arbiter.

39)A switch fabric as defined in claim 1, wherein each data packet comprises a
plurality of words including a first word of said data packet and a last word of
said data packet, wherein each word comprises a field indicative of whether

said word is a pre-determined number of words away from said last word of

said data packet.

40)A switch fabric as defined in claim 39, wherein the transmitter is operative to
monitor said field in each word of each data packet forwarded to at least one
cell of said array, the transmitter further being operative to begin forwarding a
next data packet upon detecting that said field of a word in a packet currently
being forwarded is indicative of said word being a pre-determined number of

words away from the last word of said data packet currently being forwarded.

41)A switch fabric as defined in claim 1, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being

-96 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination.

42)A switch fabric as defined in claim 2, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination,
wherein data packets received by the transmitter in a given cell from the I/O
interface and frorh the CPU in said given cell share the data channel

associated with said given cell.

43)A switch fabric as defined in claim 1, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, said receivers
being further operative to determine whether data packets are to be released
to the 1/O interface or to the CPU and release said data packets accordingly.

44)A switch fabric as claimed in claim 43, wherein each data packet comprises a
field indicative of whether the data packet is destined for a CPU and wherein
said receivers are operative to determine whether data packets are to be

released to the /O interface or to the CPU on the basis of said field.

45)A switch fabric as defined in claim 25, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, wherein said
control entity includes a first arbiter for processing said control signals to select
a data packet to transmit to the I/O interface among the plurality of data
packets suitable for transmission to the I/O interface, wherein said control
entity includes a second arbiter for processing said control signals to select a
data packet to transmit to the CPU among the plurality of data packets suitable

for transmission to the CPU.

-97-

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

46)A switch fabric as defined in claim 1, wherein the transmitter of said given cell

includes a memory for storing data packets received from said I/O interface.

47)A switch fabric as defined in claim 46, wherein said memory includes a
plurality of segments, each segment being associated with a receiver in a cell
of said array in which the transmitter of said given cell is capable of forwarding

a data packet via the data channel associated with said given cell.

48)A switch fabric implemented on a chip, comprising:

a) an array of cells;

b) an I/O interface in communication with said array of cells for permitting
exchange of data packets between said array of cells and components
external to said array of cells;

c) each cell communicating with at least one other cell of said array permitting
exchange of data packets between the cells of said array;

d) each cell including:

)] a memory for receiving a data packet from another cell of said array;
1)} a control entity to control release of a data packet toward a selected
destination cell of said array at least in part on a basis of a degree of

occupancy of the memory in said destination cell.

49)A switch fabric as defined in claim 48, wherein each cell of said array includes:
a) a transmitter in communication with said I/O interface and in
communication with every other cell of said array, said transmitter operative
to process a data packet received from said I/O interface to determine a
destination of the data packet and forward the data packet to at least one

cell of said array selected on a basis of the determined destination;
b) a plurality of receivers associated with respective cells from said array,
" each receiver being in communication with a respective cell allowing the

respective cell to forward data packets to the receiver,

c) said receivers in communication with said I/O interface for releasing data

packets to said /O interface.

-98 -

.10

15

20

25

30

WO 02/098066 PCT/CA02/00810

50)A switch fabric as defined in claim 49, wherein said array of cells includes a
plurality of data channels, each data channel being associated with a given
cell, the data channel associated with said given cell connecting the transmitter

of said given cell to receivers in cells other than said given cell and associated

with said given cell.

51)A switch fabric as defined in claim 49, wherein said array of cells includes a
plurality of data channels, each data channel being associated with a given
cell, the data channel associated with said given cell connecting the transmitter

of said given cell to a receiver in every cell of said array of cells and associated

with said given cell.

52)A switch fabric as defined in claim 51, wherein the plurality of data channels
are independent from one another, wherein transmission of a data packet over

one data channel is made independently of a transmission of a data packet

over another data channel.

53)A switch fabric as defined in claim 52, wherein each data channel performs a

parallel data transfer.

54)A switch fabric as defined in claim 48, wherein said array of cells forms a

matrix.

55)A switch fabric as defined in claim 54, wherein said matrix is bi-dimensional.

56)A switch fabric as defined in claim 54, wherein said matrix is three-

dimensional.

57)A switch fabric as defined in claim 48, wherein said array of cells forms a

toroidal mesh arrangement.

-99 -

10

15

20

. 25

30

WO 02/098066 PCT/CA02/00810

58)A switch fabric as defined in claim 49, wherein said memory is a first memory
and wherein the transmitter of said given cell includes a second memory for

storing data packets received from said /O interface.

59)A switch fabric as defined in claim 58, wherein said second memory includes a
plurality of segments, each segment being associated with a receiver in a cell
of said array to which the transmitter of said given cell is capable of forwarding

a data packet via the data channel.

60)A switch fabric as defined in claim 59, wherein the transmitter of said given cell
includes said control entity, said control entity being operative to process a
data packet forwarded from said I/O interface to determine a cell of said array
to which the data packet is destined and identify on a basis of the determined

cell a segment of said second memory into which the packet is to be loaded.

61)A switch fabric as defined in claim 60, wherein said control entity includes a

plurality of queue controllers associated with respective segments of said

second memory.

62)A switch fabric as defined in claim 61, wherein said second memory
'implements a plurality of registers, each register being associated with a
queue controller and being suitable for holding data representative of a degree

of occupancy of a segment of said second memory associated with the queue

controller.

63)A switch fabric as defined in claim 62, wherein a data packet received by said
transmitter from said 1/O interface is characterized by a priority level selected
in a group of priority levels, each segment of said second memory being
partitioned into slots, each slot capable of storing at least one data packet,
each slot being associated with a given priority level of said group of priority

levels.

-100 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

64)A switch fabric as defined in claim 63, wherein the registers of said second
memory associated with each queue controller store data indicative of a
degree of occupancy of the slots of said segment associated with the queue

controller, for each priority level of the group of priority levels.

65)A switch fabric as defined in claim 60, wherein said first memory is divided into
a plurality of sectors associated with respective ones of said receivers, said
sectors capable of storing data packets forwarded to said receivers by cells of
said array, said control entity being operative to communicate with each
receiver associated with said given cell to assess a degree of occupancy of the

sector of each receiver associated with said given cell.

66)A switch fabric as defined in claim 65, wherein said control entity
communicates with each receiver associated with said given cell to assess the

degree of occupancy of the sector of each receiver associated with said given

cell, over a back channel.

67)A switch fabric as defined in claim 66, including a plurality of back channels,
there being a dedicated back channel between said control entity and each

receiver associated with said given cell.

68)A switch fabric as defined in claim 67, wherein each back channel transfers

data serially.

69)A switch fabric as defined in claim 66, wherein said second memory includes
an area for storing data indicative of the degree of occupancy of the sector of

each receiver associated with said given cell.

70)A switch fabric as defined in claim 69, wherein said control entity is operative
to process the data indicative of the degree of occupancy of the sector of each
receiver associated with said given cell to determine which data packet stored

in said second memory is suitable for transmission to a receiver.

-101 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

71)A switch fabric as defined in claim 70, wherein when said control entity
determines that a data packet is suitable for transmission, said control entity

generates a control signal to request transmission of the data packet.

72)A switch fabric as defined in claim 71, wherein when said control entity
determines that a plurality of data packets are suitable for transmission, said
control entity generates a plurality of control signals to request transmission of

the data packets, each control signal being associated with a data packet.

73)A switch fabric as defined in claim 72, wherein said control entity includes an
arbiter for processing said control signais to select a data packet to transmit

among the plurality of data packets suitable for transmission.

74)A switch fabric as defined in claim 73, wherein a data packet is characterized
by a priority level, wherein each control signal conveys the priority level of the

data packet associated with the control signal.

75)A switch fabric as defined in claim 74, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission

on a basis of the priority levels of the plurality of data packets suitable for

transmission.

76)A switch fabric as defined in claim 75, wherein said arbiter processes control

signals to request transmission of data packets in a round robin manner.

77)A switch fabric as defined in claim 76, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission
on a basis of the priority levels of the plurality of data packets suitable for
transmission and on the basis of whether or not a data packet was previously

submitted for transmission.

78)A switch fabric as defined in claim 65, wherein each receiver of said plurality of

receivers communicates with said 1/O interface.

-102 -

5

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

79)A switch fabric as defined in claim 78, wherein said control entity is a first

control entity and wherein said plurality of receivers include a second control

entity to regulate a release of data packets from said sectors to said 1/O

interface.

80)A switch fabric as defined in claim 79, wherein said second control entity

includes a plurality of queue controllers associated with respective sectors of

said first memory.

81)A switch fabric as defined in claim 80, wherein a data packet received by a

receiver of said plurality of receivers is characterized by a priority level
selected.in a group of priority levels, each sector of said second memory being
divided into subdivisions, eaqh subdivision capable of storing at least one data

packet, each subdivision being associated with a given priority level of said

group of priority levels.

82)A switch fabric as defined in claim 81, wherein said second control entity

includes an arbiter in communication with said queue controllers, each queue
controller operative to transmit a control signal to said arbiter for each data
packet held in the sector associated with the queue control to request release

of the data packet to said /O interface.

83)A switch fabric as defined in claim 82, wherein each control signal conveys the

priority level of the data packet associated with the control signal.

84)A switch fabric as defined in claim 83, wherein said arbiter selects a data

packet for release to said I/O interface among the data packets corresponding
to the control signals transmitted to said arbiter on the basis of the levels of
priority of the data packets corresponding to the control signals transmitted to

said arbiter.

-103 -

WO 02/098066 PCT/CA02/00810

85)A switch fabric as defined in claim 49, wherein each data packet comprises a
plurality of words including a first word of said data packet and a last word of
said data packet, wherein each word comprises a field indicative of whether

said word is a pre-determined number of words away from said last word of

said data packet.

86)A switch fabric as defined in claim 85, wherein the transmitter is operative to
monitor said field in each word of each data packet forwarded to at least one
cell of said array, the transmitter further being operative to begin forwarding a
next data packet upon detecting that said field of a word in a packet currently
being forwarded is indicative of said word being a pre-determined number of

words away from the last word of said data packet currently being forwarded.

87)A switch fabric as defined in claim 49, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination.

88)A switch fabric as defined in claim 50, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination,
wherein data packets received by the transmitter in a given cell from the /O

interface and from the CPU in said given cell share the data channel

associated with said given cell.

89)A switch fabric as defined in claim 49, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, said receivers
being further operative to determine whether data packets are to be released

to the 1/O interface or to the CPU and release said data packets accordingly.

- 104 -

10

15

20

25

30

WO 02/098066 . PCT/CA02/00810

90)A switch fabric as claimed in claim 89, wherein each data packet comprises a
field indicative of whether the data packet is destined for a CPU and w'herein
said receivers are operative to determine whether data packets are to be
released to the I/O interface or to the CPU on the basis of said field.

91)A switch fabric as defined in claim 72, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, wherein said
control entity includes a first arbiter for processing said control signals to select

" a data packet to transmit to the I/O interface among the plurality of data
packets suitable for transmission to the I/O interface, wherein- said control
entity includes a second arbiter for processing said control signals to select a
data packet to transmit to the CPU among the plurality of data packets suitable

for transmission to the CPU.

92)A switch fabric implemented on a chip comprising:

a) an array of cells; and

b) an /O interface in communication with said array of cells permitting
exchange of data packets between said array of cells and components
external to said array of cells;

c) each cell communicating with at least one other cell of said array permitting
exchange of data packets between the cells of said array;

d) each cell including:

1) a memory for holding a plurality of data packets for transmission to
other cells of said array, each data packet of the plurality of data
packets having a characteristic element represented by a parameter,
the parameter allowing to distinguish one data packet from another data
packet in the plurality of data packets; and

i) a control entity operative to:

(i) select at least one data packet from the plurality of data packets
at least in part on a basis of the parameter; and |

(i) transmit the selected data packet to another cell of said array of

cells.

- 105 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

93)A switch fabric as defined in claim 92, wherein the parameter is priority, the

characteristic element being a priority level.

94)A switch fabric as defined in claim 93, wherein each cell of said array includes:

a) a transmitter in communication with said /O interface and in
communication with every other cell of said array, said transmitter operative
to process a data packet received from said 1/O interface to determine a
destination of the data packet and forward the data packet to at least one
cell of said array selected on a basis of the determined destination;

b) a plurality of receivers associated with respective cells from said array,
each receiver being in communication with a respective cell allowing the
respective cell to foMard data packets to the receiver,

c) said receivers in communication with said I/O interface for releasing data

packets to said I/O interface.

95)A switch fabric as defined in claim 94, wherein said array of cells includes a
plurality of data channels, each data channel being associated with a given
cell, the data channel associated with said given cell connecting the transmitter
of said given cell to receivers in cells other than said given cell and associated

with said given cell.

96)A switch fabric as defined in claim 94, wherein the data channel associated
with said given cell connects the transmitter of said given cell to a receiver in

every cell of said array of cells and associated with said given cell.

97)A switch fabric as defined in claim 96, wherein the plurality of data channels
are independent from one another, wherein transmission of a data packet over
one data channel is made independently of a transmission of a data packet

over another data channel.

98)A switch fabric as defined in claim 97, wherein each data channel performs a

parallel data transfer.

- 106 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

99)A switch fabric as defined in claim 98, wherein said memory and said control

entity form part of said transmitter.

100) A switch fabric as defined in claim 99, wherein said memory includes a
plurality of segments, each segment being associated with a receiver in a cell
of said array to which the transmitter of said given cell is capable of forwarding

a data packet via the data channel.

101) A switch fabric as defined in claim 100, wherein said control entity is
operative to process a data packet forwarded from said /O interface to
determine a cell of said array to which the data packet is destined and identify
on a basis of the deterh“lined cell a segment of said memory into which the

packet is to be loaded.

102) A switch fabric as defined in claim 101, wherein said control entity includes

a plurality of queue controllers associated with respective segments of said

memory.

103) A switch fabric as defined in claim 102, wherein said memory implements a
plurality of registers, each register being associated with a queue controller
and being suitable for holding data representative of a degree of occupancy of

a segment of said memory associated with the queue controller.

104) A switch fabric as defined in claim 103, wherein each segment of said
memory is partitioned in slots, each slot capable of storing at least one data
packet, each slot being associated with a given priority level of said group of

priority levels.

105) A switch fabric as defined in claim 104, wherein the registers of said
memory associated with each queue controller store data indicative of a
degree of occupancy of the slots of said segment associated with the queue

controller, for each priority level of the group of priority levels.

-107 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

106) A switch fabric as defined in claim 105, wherein the transmitter of said
given cell communicates with each receiver associated with said given cell to
assess a degree of occupancy of each receiver associated with said given cell.

107) A switch fabric as defined in claim 106, wherein the transmitter of said
given cell communicates with each receiver associated with said given cell to
assess the degree of occupancy of each receiver associated with said given

cell over a back channel.

108) A switch fabric as defined in claim 107, including a plurality of back
channels, there being a dedicated back channel between the transmitter of

said given cell and each receiver associated with said given cell.

109) A switch fabric as defined in claim 108, wherein each back channel

transfers data serially.

110) A switch fabric as defined in claim 109, wherein said memory includes an
area for storing data indicative of the degree of occupancy of each receiver

associated with said given cell.

111) A switch fabric as defined in claim 110, wherein said control entity is
operative to process the data indicative of the degree of occupancy of each
receiver associated with said given cell to determine which data packet stored

in said memory is suitable for transmission to a receiver.

112) A switch fabric as defined in claim 111, wherein said control entity
determines that a data packet is suitable for transmission to a certain receiver
when the data indicative of the degree of occupancy of the certain receiver

indicates that the receiver is capable of accepting the data packet.

113) A switch fabric as defined in claim 112, wherein when said control entity
determines that a group of data packets are suitable for transmission, said

-108 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

control entity generates a plurality of control signals to request transmission of

the data packets, each control signal being associated with a data packet.

114) A switch fabric as defined in claim 113, wherein said control entity includes
an arbiter for processing said control signals to select a data packet to transmit

among the group of data packets suitable for transmission.

115) A switch fabric as defined in claim 114, wherein each control signal

“conveys the priority level of the data packet associated with the control signal.

116) A switch fabric as defined in claim 115, wherein said arbiter selects a data
packet to transmit among the group of data packets suitable for transmission

on a basis of the priority levels of the group of data packets suitable for

transmission.

117) A switch fabric as defined in claim 116, wherein said arbiter processes

control signals to Arequest transmission of data packets in a round robin

manner.

118) A switch fabric as defined in claim 117, wherein said arbiter selects a data
packet to transmit among the group of data packets suitable for transmission
on a basis of the priority levels of the packets in the group of data packets

suitable for transmission and on the basis of whether or not a data packet was

previously submitted for transmission.

119) A switch fabric as defined in claim 97, wherein said memory is a first
memory, said switch fabric including a second memory wherein said second
memory includes a plurality of sectors associated with respective receivers of
said plurality of receivers, said sectors capable of storing data packets

forwarded to said receivers by cells of said array.

120) A switch fabric as defined in claim 119, wherein each receiver of said

plurality of receivers communicates with said I/O interface.

-109 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

121) A switch fabric as defined in claim 120, wherein said control entity is a first
control entity, said switch fabric including a second control entity to regulate a

release of data packets from said sectors to said /O interface.

122) A switch fabric as defined in claim 121, wherein said second control entity

includes a plurality of queue controllers associated with respective sectors of

said second memory.

123) A switch fabric as defined in claim 122, wherein a data packet received by
a receiver of said plurality of receivers is characterized by a priority level
selected in a group of priority levels, each sector of said second memory being
divided in subdivisions each subdivision capable of storing at least one data
packet, each subdivision being associated with a given priority level of said

group of priority levels.

124) A switch fabric as defined in claim 123, wherein said second control entity
includes an arbiter in communication with said queue controllers, each queue
controller operative to transmit a control signal to the arbiter of said second
control entity for each data packet held in the sector associated with the queue

controller to request release of the data packet to said I/O interface.

125) A switch fabric as defined in claim 124, wherein each control signal

conveys the priority level of the data packet associated with the control signal.

126) A switch fabric as defined in claim 125, wherein said arbiter selects a data
packet for release to said I/O interface among the data packets corresponding
to the control signals transmitted to the arbiter of said second control entity on

the basis of the levels of priority of the data packets corresponding to the

control signals.

-110 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

127) A switch fabric as defined in claim 92, wherein said control entity is
operative to alter the parameters associated with respective data packets of

the plurality of data packets.

128) A switch fabric as defined in claim 93, wherein said control entity is
operative to alter the priority levels associated with respective data packets of

said plurality of data packets.

129) A switch fabric as defined in claim 128, wherein said control entity is
operative to alter the priority level associated with a given data packet of said
plurality of data packets at least in part on a basis of a time of residence of the

given data packet in said memory.

130) A switch fabric as defined in claim 129, wherein said control entity is
operative to alter the priority level associated with the given data packet
according to a function that relates the priority level of the given data packet to
the time of residence of the data packet, the function selected in the group

consisting of linear function, exponential function and logarithmic function.

131) A switch fabric as defined in claim 94, wherein each data packet comprises
a plurality of words including a first word of said data packet and a last word of
said data packet, wherein each word comprises a field indicative of whether

said word is a pre-determined number of words away from said last word of

said data packet.

132) A switch fabric as defined in claim 131, wherein the transmitter is opérative
to monitor said field in each word of each data packet forwarded to at least one
cell of said array, the transmitter further being operative to begin forwarding a
next data packet upon detecting that said field of a word in a packet currently
being forwarded is indicative of said word being a pre-determined number of

words away from the last word of said data packet currently being forwarded.

-111 -

WO 02/098066 PCT/CA02/00810

133) A switch fabric as defined in claim 94, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination.

134) A switch fabric as defined in claim 95, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination,
wherein data packets received by the transmitter in a given cell from the I/O
interface and from the CPU in said given cell share the data channel

associated with said given cell.

135) A switch fabric as defined in claim 94, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, said receivers
being further operative to determine whether data packets are to be released
to the /O interface or to the CPU and release said data packets accordingly.

136) A switch fabric as claimed in claim 135, wherein each data packet
comprises a field indicative of whether the data packet is destined for a CPU
and wherein said receivers are operative to determine whether data packets
are to be released to the 1/O interface or to the CPU on the basis of said field.

137) A switch fabric as defined in claim 113, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, wherein said
control entity includes a first arbiter for processing said control signals to select
a data packet to transmit to the 1/O interface among the plurality of data
packets suitable for transmission to the 1/O interface, wherein said control
entity includes a second arbiter for processing said control signals to select a
data packet to transmit to the CPU among the plurality of data packets suitable

for transmission to the CPU.

-112 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

138) A switch fabric implemented on a chip, comprising:

a) an array of cells;

b) an I/O interface in communication with said array of cells for permitting
exchange of data packets between said array of cells and components
external to said array of cells;

c) each cell communicating with at least one other cell of said array,
permitting:

1) exchange of data packets between the cells of said array;
1)) exchange of control information between the cells of said array;
d) each cell operative to control transmission of data packets to other cells of

said array at least in part on a basis of the control information.

139) A switch fabric as defined in claim 138, wherein said array of cells includes:
a) a plurality of data channels for transporting data packets between the cells

of said array; and ,
b) a plurality of channels distinct from said data channels for conveying the

control information to the cells of said array.

140) A switch fabric as defined in claim 139, wherein each of the channels of the
plurality of channels distinct from said data channels interconnects two cells of

said array.

141) A switch fabric as defined in claim 140, wherein each cell of said array
includes:
a) a transmitter in communication with said 1/O interface and in
communication with every other cell of said array, said transmitter operative
to process a data packet received from said /O interface to determine a
destination of the data packet and forward the data packet to at least one
cell of said array selected on a basis of the determined destination;
b) a plurality of receivers associated with respective cells of said array, each
receiver being in communication with a respective cell allowing the

respective cell to forward data packets to the receiver;

-113 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

c) said receivers in communication with said /O interface for releasing data

packets to said I/O interface.

142) A switch fabric as defined in claim 141, wherein each data channel of said
plurality of data channels is associated with a given cell of said array, the data
channel associated with said given cell connecting the transmitter of said given

cell to receivers in cells other than said given cell and associated with said

given cell.

143) A switch fabric as defined in claim 141, wherein each data channel of said
plurality of data channels is associated with a given cell of said array, the data
channel associated with said given cell connecting the transmitter of said given

cell to a receiver in every cell of said array of cells and associated with said

given cell.

144) A switch fabric as defined in claim 143, wherein the plurality of data
channels are independent from one another, wherein transmission of a data
packet over one data channel is made independently of transmission of a data

packet over another data channel.

145) A switch fabric as defined in claim 144, wherein each data channel

performs a parallel data transfer.

146) A switch fabric as defined in claim 145, wherein the transmitter of said
given cell includes a memory for storing data packets received from said /O

interface.

147) A switch fabric as defined in claim 144, wherein said memory includes a
plurality of segments, each segment being associated with a receiver in a cell
of said array to which the transmitter of said given cell is capable of forwarding

a data packet via a.data channel from said plurality of data channels.

-114 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

148) A switch fabric as defined in claim 147, wherein the transmitter of said
given cell includes a control entity, said control entity being operative to
process a data packet forwarded from said 1/O interface to determine a cell of
said array to which the data packet is destined and identify on a basis of the

determined cell a segment of said memory in which the packet is to be loaded.

149) A switch fabric as defined in claim 148, wherein said control entity includes
a plurality of queue controllers associated with respective segments of said

memory.

150) A switch fabric as defined in claim 149, wherein said memory impleménts a
plurality of registers, each register being associated with a queue controller
and being suitable for holding data representative of a degree of occupancy of

a segment of said memory associated with the queue controller.

151) A switch fabric aé defined in claim 150, wherein a data packet received by
said transmitter from said /O interface is characterized by a priority level
selected in a group of priority levels, each segment of said memory being
partitioned into slots, each slot capable of storing at least one data packet,
each slot being associated with a given priority level of said group of priority

levels.

152) A switch fabric as defined in claim 151, wherein the registers of said
memory associated with each queue controller store data indicative of a
degree of occupancy of the slots of said segment associated with the queue

controller, for each priority level of the group of priority levels.

153) A switch fabric as defined in claim 152, wherein said memory is a first
memory; wherein each cell includes a second memory, said second memory -
being divided into a plurality of sectors corresponding to respective ones of the
receivers associated with the cell, said sectors capable of storing data packets
forwarded to the receivers; and wherein the control information is passed

between said control entity and each receiver associated with said given cell

115 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

and is indicative of a degree of occupancy of the sector corresponding to each

receiver associated with said given cell.

154) A switch fabric as defined in claim 153, wherein said control entity
communicates with each receiver associated with said given cell via a channel

from said plurality of channels distinct from said data channels to receive the

control information.

155) A switch fabric as defined in claim 154, wherein said plurality of channels
distinct from said data channels are back channels, there being a dedicated

back channel between said control entity and respective receivers associated

with said given cell.

156) A switch fabric as defined in claim 155, wherein each back channel

transfers data serially.

157) A switch fabric as defined in claim 156, wherein said first memory includes
an area for storing data derived from the control information, indicative of the

degree of occupancy of the sectors of receivers associated with said given

cell.

158) A switch fabric as defined in claim 157, wherein said control entity is
operative to process the data derived from the control information to determine

which data packet stored in said ‘ﬁrst memory is suitable for transmission to a

receiver.

159) A switch fabric as defined in claim 158, wherein when said control entity
determines that a data packet is suitable for transmission, said control entity

generates a control signal to request transmission of the data packet.

160) A switch fabric as defined in claim 159, wherein when said control entity

determines that a plurality of data packets are suitable for transmission, said

- 116 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

control entity generates a plurality of control signals to request transmission of

the data packets, each control signal being associated with a data packet.

161) A switch fabric as defined in claim 160, wherein said control entity includes
an arbiter for processing said control signals to select a data packet to transmit

among the plurality of data packets suitable for transmission.

162) A switch fabric as defined in claim 161, wherein a data packet is
characterized by a priority level, wherein each control signal conveys the

priority level of the data packet associated with the control signal.

163) A switch fabric as defined in claim 162, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission
at least in part on a basis of the priority levels of the plurality of data packets

suitable for transmission.

164) A switch fabric as defined in claim 163, wherein said arbiter processes

control signals to request transmission of data packets in a round robin

manner.

165) A switch fabric as defined in claim 164, wherein said arbiter selects a data
packet to transmit among the plurality of data packets suitable for transmission
on a basis of the priority levels of the plurality of data packets suitable for
transmission and on the basis of whether or not a data packet was previously

submitted for transmission.

166) A switch fabric as defined in claim 165, wherein each receiver of said

plurality of receivers communicates with said I/O interface.

167) A switch fabric as defined in claim 166, wherein said control entity is a first
control entity, the plurality of receivers of each cell include a second control

entity to regulate a release of data packets from the sectors of the receivers to

said /O interface.

- 417 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

168) A switch fabric as defined in claim 141, wherein each data packet
comprises a plurality of words including a first word of said data packet and a
last word of said data packet, wherein each word comprises a field indicative
of whether said word is a pre-determined number of words away from said last

word of said data packet.

169) A switch fabric as defined in claim 168, wherein the transmitter is operative
to monitor said field in each word of each data packet forwarded to at least one
cell of said array, the transmitter further being operative to begin forwarding a
next data packet upon detecting that said field of a word in a packet currently
being forwarded is indicative of said word being a pre-determined number of
words away from the last word of said data packet currently being forwarded.

170) A switch fabric as defined in claim 141, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
~further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination.

171) A switch fabric as defined in claim 142, each cell further including a central
processing unit (CPU) connected to the transmitter, said transmitter being
further operative to process a data packet received from said CPU to
determine a destination of the data packet and forward the data packet to at
least one cell of said array selected on the basis of the determined destination,
wherein data packets received by the transmitter in a given cell from the 1/O
interface and from the CPU in said given cell share the data channel

associated with said given cell.

172) A switch fabric as defined in claim 141, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, said receivers
being further operative to determine whether data packets are to be released
to the I/O interface or to the CPU and release said data packets accordingly.

-118 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

173) A switch fabric as claimed in claim 172, wherein each data packet
comprises a field indicative of whether the data packet is destined for a CPU
and wherein said receivers are operative to determine whether data packets
are to be released to the I/O interface or to the CPU on the basis of said field.

174) A switch fabric as defined in claim 160, each cell further including a central
processing unit (CPU) connected to the plurality of receivers, wherein said
control entity includes a first arbiter for processing said control signals to select
a data packet to transmit to the /O interface among the plurality of data
packets suitable for transmission to the 1/O interface, wherein said control
entity includes a second arbiter for processing said control signals to select a
data packet to transmit to the CPU among the plurality of data packets suitable

for transmission to the CPU.

175) A router, comprising:

a) a routing layer, said routing layer including a plurality of /O ports for
exchanging data with components external to said router;

b) a switching layer to switch data packets between /O ports of said routing
layer, said switching layer including an array of cells in communication
with said routing layer for permitting exchange of data packets between
said array of cells and said routing layer;

c) each cell including a memory for receiving a data packet from said routing
layer;

d) said routing layer including a controller to control release of a data packet
toward a cell of said array at least in part on a basis of a degree of

occupancy of the memory in said cell.

176) A router as defined in claim 175, wherein said routing layer comprising a
memory for storing data packets for release to said switching layer, said

" controller controlling release of data packets from the memory of said routing

layer.

-119 -

5

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

177) A router as defined in claim 176, wherein the memory of said routing layer
includes an area for storing data indicative of a degree of occupancy of the

memory of said cell.

178) A router as defined in claim 177, wherein said controller is in
communication with said memory to obtain access to the data indicative of a
degree of occupancy of the memory of said cell, said controller controlling
release of data packets from the memory of said routing layer at least in part

on a basis of the data indicative of a degree of occupancy of the memory of

said cell.

179) A router as defined in claim 178, wherein the memory of said routing layer
includes a plurality of areas associated with respective cells of said array, each

area operative to store data indicati\)e of a degree of occupancy of the memory

of a corresponding cell.

180) A router as defined in claim 179, wherein said controller is responsive to a
control signal issued by said switching layer to alter the data indicative of a

degree of occupancy of the memory of a given cell in the area associated with

. the given cell.

181) A router as defined in claim 180, wherein each cell of said switching layer is
operative to issue a control signal to said controller to convey to said controller

data indicative of the degree of occupancy of the memdry of the cell.

182) A router as defined in claim 181, wherein the memory of each cell is

partitioned into slots, each slot capable of storing a data packet.

183) A router as defined in claim 182, wherein each area associated with a
given cell of said array is partitioned into zones, each zone being associated
with a slot of the memory of the given cell, each zone containing data
indicating if the associated slot of the memory of the given cell is available for

reception of a data packet.

-120 -

10

15

20

25

30

WO 02/098066 PCT/CA02/00810

184) A router as defined in claim 183, wherein each cell of said array, in
response to release of a data packet from a certain slot of the memory of the

cell, issues the control signal to convey to said controller data indicative of the

degree of occupancy of the memory of the cell.

185) A router as defined in claim 184, wherein the control signal contains

information identifying the certain slot of the memory of the cell.

186) A router as defined in claim 185, wherein said controller is responsive to
the control signal containing information identifying the certain slot of the
memory of the cell to alter the data in the zone of the memory of the routing

layer associated with the certain slot.

187) A switch fabric implemented on a chip, comprising:

a) an array of cells;
b) an /O interface in communication with said array of cells for permittihg

exchange of data packets between said array of cells and components

external to said array of cells;
c) each cell communicating with at least one other cell of said array
permitting exchange of data packets between the cells of said array;

d) each cell including:
1) a memory for receiving a data packet from said I/O interface; and

i) a control signal path for transporting a control signal to a component
external to said array of cells, the control signal being indicative of a

degree of occupancy of said memory.

188) A switch fabric as defined in claim 187, wherein said memory is partitioned

into slots, each slot capable of storing a data packet.

189) A switch fabric as defined in claim 188, wherein the control signal indicative
of a degree of occupancy of said memory contains information indicating

whether a slot of said memory is free to accept a data packet.

-121 -

WO 02/098066 PCT/CA02/00810

190) A switch fabric as defined in claim 189, wherein in response to release of a
data packet from a certain cell of said memory, said cell generating the control’

signal, the control signal including information identifying the certain cell.

| 191) A router, comprising:

a) a routing layer, said routing layer including a plurality of /O ports for

exchanging data with components external to said router; and |
b) a switching layer in communication with said routing layer to switch data

10 packets between I/O ports of said routing layer,

c) said routing layer including a controller, said controller responswe to
reception of a control signal containing information indicating that said
switching layer is capable of accepting a data packet, to release a data

packet to said switching layer.

. 15

192) A router as defined in claim 191, wherein said switching layer includes a
memory, the control signal containing information indicating the degree of |

occupancy of said memory.

-122 -

PCT/CA02/00810

WO 02/098066

109
-

1/21

0

100

T T
Lt — <t
o o — o o -— o o \.—/\1|
o < [To) <t Lo <t [
-— — — -— — — !

|

|

|
(=) (d=) (=] © e [>=] © |
— — - — - -—
-— - - — - -— |

|

J

FIG. 1

WO 02/098066

PCT/CA02/00810
2/21
114,
-t
212, ,
150, 1]
I
| 212,,
108 1 256 202 |ARBITER| | 3 o
EOFFCHIP: : ' B et 150, (TN
I eut ! OUTPUT
| NP | 208 |INTERFACE —
| Topg |2, 18 | 208 - 212, |
I' 228 | - «——> ‘|5[]N< ’
= f
FRee stor |AmosT_Fu]
[| 254 207
| OFF-CHIP| "> S
L L]
| omg 252 [N | 230 ST TN
(MODULE | — T Hed | 12125
| 228 reansmirter - [FTTITLL | Tl212,
L 140 — LN,
108 |
______ =
210
2102%\
2103\/-‘\
TO/FROM OTHER
CELLS 114

FIG. 2

WO 02/098066

PACKET
350

3/21

PCT/CA02/00810

DESTINATION
362

PRIORITY
364

SOURCE
366

EOP
368

FIG. 3

HEADER
360

$PAYLOAD
370

WO 02/098066

PCT/CA02/00810

4/21
PRIORITY REQUEST Pﬁo%gsme MODULE
REQUEST)| %
703 / 424
703, . —>
~ —»| REQUEST PRRA
71075 > > GENERATOR i
703 420 422
707NJ » —]
413 I
POINTER UPDATE]| / 412 .
729, ,/5: — POINTER, MASK
{
729 729y GRANT
- Nk
SLOT_ID l
705,
1= .
SLOT_ID
|| B MUX COMBINER
™ 784 [786
SLOT _ID —
705, ADDRESS
L e - * DECODER
" 180
__BASE ADDRESS
READ_ADDRESS I 782
~ 192 :
- PACKET
EOP FORWARDING
368 MODULE
> 790

GRANT _ENABLE

715

A

FIG. 4

PCT/CA02/00810

WO 02/098066

¢ 'DId

> W
Rid "
| o |
| 3Incow |
{ | ONISSI204d | !
il 1SInDI |
4L m m
. | |
925] i
g ananoleisl - [ris|tois oos L3 | y w
m_._“m_moé 015 . . LmV _ w
| noILHISNI el : “fos | || 085 |i
~ _ 13NJvd \ F_m.mm jLvadn \Tzo5 QI 101S w Mwmmmmm m_
Q [816319YNT LM 828 » 4IlNIod AllHOlYd
‘2 | 916SS340av 3LIEM 1IN9Yd MIN m m
BT 285 m
804 T — '
HSINVED geaugayasve m
D1z —~— : ~G1G T19VNT LNVHS: w
> 905 |—» - m m
80S w olmw w
| t | Tnaoin |}
I — | ONIGYY MY §
¢S le6g Wy 1w |
fo51 SSHOOY QY [y e | |
N] - ,
S| <80z TINd ISOWTY 82 o6s | -

WO 02/098066

PCT/CA02/00810

6/21
CLOCK
(815
TIME STAMP |
i GRANT ENABLE
o2 515
el
TIME_STAMP
505
WELE NEW_PACKET
528
CONTROLLER |le—FO =
610
I ~__512

632 | 634 | 636 | 638 ~_b14

FIG. 6

PCT/CA02/00810

WO 02/098066

ey Jﬁ.ZN—N\/. r\)znow _.NN—N\,/. >1;N_.N\/ A » N\ .@Hﬁ.ﬂ
| _ r
| S1 m ol Neyyo gy e
i 379YN3 INYH9 ! \ / \
| vyl | a5 1, 7] — —= _—
| TN | Loz |4 | [0z Whgaz|l | so]| | ‘8oz
-t
_ ONIQHYMHEOL | w : : :
| LIV " — — Tl 7= 7=
| 78(4 | 6L ege | 180z | || ¢Csoz]| | ¢ B0z ;
5 SSIHOaY avad | | T— =
| $S3yaay 3jSvd _" d03 \'Ngg; VagazIl | Yeoz |l e 90L <t
I —_ l— R
! 08L |- ! 70/ 0€¢
¢——»4300930]5,__ |1 AYOWIW ¥1va
1L ss3u0av| < |! y 9lL
ILNYH9 - glL
x| j 18VNT 3L 353400V
S (—me 11N M
NI Ny, Va0 Ng, LM
| Nz | (Lo 1Y A
1 > 1 N o
| > 0l |e—
| [N, e R i v Nezs oyl
ooz (BT NN Bz Y 4 | gy Cez tgz : L |
i 3INAON | 1%z~ A A) | 3indow
HONISSI00Ud [2— 7 T NOLLHISNI
_ e — 01
I| 1s3no3d ﬂ \ — — bozL 1319vd
| 0L, \ VR NVERTI I AVAY k2] Bl v Ak VA | R L :Eumwm__a
| { —
_ > T 1
| < < 0l |
Sa/ "7~ _ / — - 1o /J _
Sm%\‘ /mE /5 ‘6zs L AW STZ] - |87 T iz | P eee 1avavd man
Hall 1SIND3Y Almomd 31v0dN H3LNIOd

WO 02/098066

NEW
PACKET?
802

8/21

PCT/CA02/00810

SET
TIME_STAMP SLULEgosA
FELD 806
804 NEXT SLOT | _
g0 [
'Y
COMPARE TIME_STAMP
FIELD TO CURRENT TIME
STAMP
808
KILLLIMITN
EXCEEDED?
810 l
CHANGE STATUS TO ADD AGE_MASK TO
“UNOCCUPIED" VIRTUAL PRIORITY
812 814

FIG. 8

\

UPDATE AGE_MASK
816

PCT/CA02/00810

WO 02/098066

9/21

Y d
> g .
|||||| ri; A A N0z Miagy] 4 »(J 6 ‘DId
R : :
| 516 w ‘oiz Mg e ee
| 318YNT LNVYD a N} Z \ .
_ —_— | l e _— — -
“ (B 102 | {21z M Wigoz| |80z | 306
_ 1 = . .
| ONIGHYMYO4 [|) : : :
| e Caoe | [Pha0z | |7Touz || focs
| w1 6 A ||y I§ o ==l ==l ~ o
| SS3Y0QY 35YY IN3S AQYIHY Nees) \Less UNgoz |l 1 sozl || Veos || <« 90L [
" el 1] L o
| > . H
i HI00030|%_ |1 , oL,
_ $S3400Y _ 8L/ L
|LNYY9 11! 106 L $SIHOOY
IR S— F18YNI 3LIMM S
| { \/2 "
| N | LR e N
| N / - “G06 9¢L
| 1| 6CL~N N o, o
" o : 0L/ o
| I] L [[T _ 8L T06
o [BTy N pi] - [TV M) |y e 8L : (G DU
_ clL 0 MR A) | 3Incow
| JINQOW [B2l — > NOILHISNI
w,__mw%%%my : 0L, = 9Z6 13N0vd
|1 - = = 9
L5 P) regarions o W] - [T M) ||| 44 303no
i b B
_ = 5 016 |
| - O < = e S Ny
gge T £06 106 66 AN AT 716 | 716 || 826 L3NV MIN
H3Llgyy ~ 1SIN03 ALIHOMd 31vadn H3ILNIOd

WO 02/098066 PCT/CA02/00810

10/21 112

210
"

150, N

e, L=
150

150

:
;
/

|
|

A

N

—-_—

l_.

(o-]
-—
ol
o

—2
114,

—-—
—
(=7]

|
|

140

AAA A

—

|_.

Qo
—
(&2
o

—=2
114,

—-—
|_.
QD
—
|z
(=)
H=

Y

150,
150,
150
50

-—
—_—
[0 o)

114,

—

—

D
—

|
[

FIG.10

WO 02/098066 PCT/CA02/00810
11721
A
1 A |]
YYVY Y YVYYY [yvvyy Avvy
tllf&\ll{l}r__ Ulrw%ﬂr_« t %rgll%llr_ tllrllrsllglljr_-
— T | [—
540 150%2« 120 150£Z‘ 540 15051_?;- hm 15.0&2j
A g__:: Ny A A ‘q;f
1405 {= 140 1= 140 = 1405 =h
A
| A]]
vvlr YYYY [v v Avvy
thrdrlr]r Il el |« ||| fticledrde] | [tLrrirfe] |
B S =t § ST || [S 5 S=
‘40;\150\%?_ 140 A150§=—:-Z 140A150§%f‘ 140 A15U‘\~2=ET‘
e s = =
140, =1 140, = 140, =] 140, =11
A
vvir vvi* ﬁr‘r#i {tvvi*
ool ||t | ptne | ey
e e = (=t
140 150&;*“ 140 150\,151 140, 19040=rT] 540 150£;“"
A S [NE n] [S
14UB$‘_, N 14DBAT 14UBJ: \ 140BJ-~
A
YYY V. YYVYY 1 YYVYY Avvvyy
tlrlrfelr] | AAOOAGEANNLELEEN tirfelrfr] |
ooz [oweoto=:=l gl ffvwgaos
| [C::;‘ S S =
140A \»L__‘:‘ 14UA Tl 14UA q;4 140}-\ \\6;5

FIG. 11

WO 02/098066

FIG.12

PCT/CA02/00810
12/21
A A
N
1 2 3 4
g !
“
5 6 7 | 8
! ¥
4
9 ||l 1w 1 L
r— .
13 14 15 1 18

PCT/CA02/00810

WO 02/098066

13/21

WO 02/098066 PCT/CA02/00810

14/21 1414 1
Xl 2121,1147 \dA
1450, ¢
. Y| 2z,
[>]1850, [y
ARBITER| fi—2 2 | || 212,
260 |« »{7450,
" "10g) 256 202 iy
{ el > : 212
1| OFF-CHIP| TN
o | OUTPUT {1450,
! ' 508 |INTERFACE g
| QUELE ! 19 |
| 228 4——d—> —
|
] E— | -’
ALMOST FULL
208
ARBITER
1460
1402 7
CPU |
1400 1470
1621
FREE_SLOT CPU_ALMOST FULL
______ 207 1408
1l0FF CHIP} 2z ~
-CHIP) ::L 212
lPACKET*.‘i“ INPUT ‘ - e
|FORWAR- _ |INTERFAGE| .0 | TRANSMITTER | |||| H— 1?12
| DING |, 116 1440 <
mopuLep <) — < —= L L1212,
| 226 | >
| -
106!
**** 210
210, 1=
2103_/—\
210Nv/‘~\ YYYY

FIG 14 TOJ/FROM OTHER CELLS 1414

WO 02/098066 PCT/CA02/00810

15/21
CELL 1414,
e ¢ ———
| OUTPUT \ RECEIVER
~4----| |NTERFACE [~============"" 1450 = ————
118 | =
1
1
1
1
1
1
]
U] !
o |
1
1
]
]
i
INPUT Suiie >
— | INTERFACE +TRAN&"£[']TTER—>
..... L T A [S

FIG. 15

PCT/CA02/00810

WO 02/098066

I

_||||1||||||||||||||_ﬂ.zm_N\/ 0z NZIFA Ari N g ad 1281 91 'DIA
® GlgL | Ney, Ceir lews
| J1gyNa INVHD | T " 7] D S S—
| 0691 e QIR TVe v WNz=|l [[W?e Wigsr
| mnoon | | 102 107 qar" | oL |"‘eoz) " B0z
! ONIQYYMYO0d < : : :
| 1PIIvd _ | 37— [777—
| 2891 A | 260 | 11¢"80z| | “ 8oL | | “ ‘80t
| $$3HOOY 33V | $$3400Y Qv3Y | re—] r—
| — !
LNVHO "|ugoonaniL | \ Z0L AHOWIW ¥Lvd
@r\lu. SR N i , ?m»m%m_«m&_m;
\ L A momé k m_/wm<zm J11HM $
) N L0l URZN Y 9zL 0£Z
N Mezai~) = S0)
S| P a— Voigr |< — = [
! o I'N \ = = Igm—_ P4 8L - N/ .
W ozer [oe0on, ANWNpTZ| - (B ez | YTz Loy, “8LL S| e
_ z 2191 5 A A R oy 1IN0
g lndon 16291 A 7 > NOILYISNI
Rt — DSt o : 1349V
| | Nmom.—\ A - 2 N\ s_lm..a ﬂﬂm ﬂMﬂM k 9L
| Lz 5091 QI 1078 v | yy1In4 30300
I | €091 = O >
| ——— : ‘0ie |
Vo N Voo — = ==
e £ T T o1 ezoraivadn uatniod B V]| Yezy
03917 g9l hig v AV, pl
yaLigyy 153nodd - 2 (49091 ALIHDIYd NdD | ——or v Ml
1496291 31YQdN ¥3LNIOd N 0 n_um%Zmu:Sm Ndd nda o
: / 5 0191 |3 X

PCT/CA02/00810

WO 02/098066

i~ z1ll w ——
puet [Mpisl < || vl ._ O
Wi [t - €05 153N03Y 2] oNiSs3004d |

JINCOW 928 _ 11 15303
nNoiLyasnl | 14 3030 Em_ﬂx%S 's09 m _

815 T19YNT LM L 825 f ik HaLNIOd / c | 083

916 $S34aaY ILIHMY 13MIYd MaN N 205 m MWM_SME

| G6L1 ALIHOINd “ Hady

L1G LNVHD. i 785 —

012 5 801 6L S3YaQY 38V
211 ,1008 | —» “Ngog m&m.mgucﬁm | S16718YNT LNVHI | HC S
V H !
: - R 517 | oNIgYmMEOd) |
~ : - i 1DIYd ||
w “g0g 1
~ _ XNW e e

— 202N 7
fosy1 rAVAS 268
8071
— - ~)
TIN4_LSONTY NdJ
logy1 f/mﬁ o601
TIN4” LSOV .

VLI

‘OId

bobbdbS

PCT/CA02/00810

WO 02/098066

l£0/1

@O® O Iz 1
ow% ® i JLV0dn WaiNigd LSIN0FH NdaL
(|
s 9)
32_5&__9_5-:& Wil o
LNYH9 d) L0
. Cwon | LS ALINOINd NdOL
0" 1018 ndal
~ Y Y Y \
o~
%
5, L . i,
TINCON
ONIOHYMYO4 1IN0V 280} 4300330 SS3400Y ONISSI004d 1SIN0Y
$S34aQY 3SV8
09yl

dLT "DId

WO 02/098066

SYSTEM
PACKET o
1850

PCT/CA02/00810

19/21
DESTINATION |PRIORITY] SOURCE [TCPU | FCPU | EQP
362 364 | 366 | 1810 | 1820 | 368
PASSWORD TYPE . QUERY
1890 1880 1892

FIG. 18

} HEADER
J 1860

> PAYLOAD

PCT/CA02/00810

WO 02/098066

20/21

61 DId

Iy ilyiy hyyy €ty
AAA AAA ﬂb»» K Hbﬁb»
Cyyy tyyy Olyyy By11
AAA ﬂb)b ﬂﬂ’ ﬂhh
9 [9 G ..
bl vl plL pi
i i F eces
Pyl 2 Cp1) ST
».,H A4 MN

WO 02/098066

PCT/CA02/00810

21/21
2080LA 20802,_A ZOBUM 2080M
2080 18 2080Zé 20803_'B_ 2080&51«,2030
2080, 2080, 1y zosow‘ 2080,
1M 2.M —
Lzuao
\
CONTROLLER |
2020 [
4 " CTRL TOKEN RELEASE
0ATA 1'\2040 254 207
2060) INPUT ‘—8‘—
5 BUFFER INTERFACE TRANSMITTER
2010 g 140
DATA 230
262

FI1G. 20

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

