
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0216061 A1

US 20080216061A1

Allen (43) Pub. Date: Sep. 4, 2008

(54) INFERRING FUNCTION CALLS IN AN Publication Classification
AMBIGUOUS LANGUAGE COMPUTER (51) Int. Cl
PROGRAM we

G06F 9/45 (2006.01)

(75) Inventor: John R. Allen, Los Altos, CA (US) (52) U.S. Cl. ... 717/142; 717/146

Correspondence Address:
Silicon Valley Patent Group LLP (57) ABSTRACT
18805 Cox Avenue, Suite 220 An ambiguous usage of a name in a statement of a computer
Saratoga, CA 95070 (US) program is resolved at least partially by adding to an entry

statement thereof a definition that includes the ambiguously
(73) Assignee: AGILITY DESIGN SOLUTIONS used name followed by constructing a definition-use graph,

INC, Palo Alto, CA (US) followed by checking whether or not an edge from the added
definition reaches the statement containing the ambiguously

(21) Appl. No.: 12/122,623 used name. If all edges into the ambiguous statement are from
the added definition, then the name is deemed to be a function

(22) Filed: May 16, 2008 call. Ifalledges into the ambiguous statement are not from the
O O added definition, then the name is deemed to be a memory

Related U.S. Application Data access. If some edges into the ambiguous statement are from
(63) Continuation of application No. 10/826,978, filed on the added definition but other edges are not, then the state

Apr. 16, 2004, now Pat. No. 7,376,941.

Analyze User
Program

100

function f(x)

function f(x)

Remove temporary

ment is flagged as a dual usage.

600

Look for dual usage
variables flagged by

computer

Insert new definition
to eliminate dual

usage
610

No dual usage

defs.
Interprocedural
analysis and
optimization

Programmed 690
Computer

Patent Application Publication Sep. 4, 2008 Sheet 1 of 22 US 2008/0216061 A1

receive a computer program containing a statement
with a name that is possibly used ambiguously as

either a function call or a memory reference, without
an explicit indication of which one of these two

add to the computer program a temporary definition for the
s name (regardless of whether or not there is a

120 permanent definition for that name)

i

130
tatement reachable fro

each of the temporary definition and
the permanent definition
Via different control flow

140 YES

identify the statement as
containing dual use of

the name as function call
and memory reference
(e.g. flag the statement
with an error message)

NO YES:

Statement reachable only by
the temporary definition via

all possible control flow

identify the statement as
Containing a function call
of the name (e.g. mark as
function call in memory) emory reference of the name

(e.g. mark as memory reference)

ls there another statement?
170

NO 1

prepare call graph

perform inter-procedural
optimization(s), for example procedure

inlining, interprocedural constant execute the program
propagation, procedure cloning Without temporary definition(s

interpret or compile the program
using inter-procedural optimization(s)
but without temporary definition(s)

Patent Application Publication Sep. 4, 2008 Sheet 2 of 22 US 2008/0216061 A1

function f(x)

temporary definition fory

FIG. 2A

Patent Application Publication Sep. 4, 2008 Sheet 3 of 22 US 2008/0216061 A1

function f(x)

FIG. 3A

temporary definition for
FIG. 3B f...y.

Patent Application Publication Sep. 4, 2008 Sheet 4 of 22 US 2008/0216061 A1

function f(x)

FIG. 4A

emporary definition
FIG. 4B ...Y

Patent Application Publication Sep. 4, 2008 Sheet 5 of 22 US 2008/0216061 A1

500- -- a elect a Satelet (OOCK) the

computer program as the current
Statement corresponding to the definition is

defined in the current statement;
510 otherwise turn it off

turn on a second flag if the variable
corresponding to the definition is used in
the current statement; otherwise turn it off

NO

statement; otherwise turn it off
definition is killed in the Current

52

One With a
definitions?

YES
53

Done With a
statements (blogks)

YES am man - -m-a m-an a m- as H

b turn on a third flag if the corresponding

555-N
Select a statement (block) in
the computer program as the

Current Statement
use the first, second and third flags of the
Current Statement and other statements to

Use the fourth flag for the decide whether the corresponding definition
Current statement to decide if the reaches the current statement; if yes and if the
statement contains a dual use. fourth flag is not on, turn it on and set changed

to true; otherwise turn off the fourth flag

YES- -585
interpret/compile program (if L = YES ===
no statement has dual use) F G 5

Patent Application Publication Sep. 4, 2008 Sheet 6 of 22 US 2008/0216061 A1

bit bit bit4 bit 5

SOXS3 ZS4 WS2 XS5

bit

F.G. 6A

DEFINES KILLS REACHESUSES

F.G. 6B

DEFINES KILLS REACHESUSES

FIG. 6D
01.000 01 011 10000 00000
OO 100 00100 11010 10000
OOOO1 01 011 11110 10000

Patent Application Publication Sep. 4, 2008 Sheet 7 of 22 US 2008/0216061 A1

bit

S0 yS3 ZS4 yS2XS5 FIG. 6E

DEFINES KILLS REACHESUSES

F.G. 6F S3 01000 11010 10000 OOOOO
S OO 100 OO 100 01010 11010
S5 00001 00001 O1110 11010

Patent Application Publication Sep. 4, 2008 Sheet 8 of 22 US 2008/0216061 A1

Insert a temporary definition at the entry point for 700 each variable used in the program

70 Compute the definition-use graph for the
program

Select a statement in the computer 710
program as the current statement

7

Select a use of a name in the Current statement as the Current use;

15

720 -
definition-USe-edges

YES

NO 725-N
Mark use as function e Current use fro

or more permanent

740

Mark use as reference
745 -

One With a
uses?

YES
755

750
One With a interpret/compile program (if
tatements2 YES no statement has dual use)

FIG. 7A

Patent Application Publication Sep. 4, 2008 Sheet 9 of 22 US 2008/0216061 A1

700B-NInsert a temporary definition at the entry point for
each variable used in the program

705B-N Compute the definition-use graph for the
program

Select a statement in the computer -7 10B
program as the current statement

15B

elect a use of a variable in the current statement as the curren use,
Set two flags to be false for the current use of the current variable in the
Current statement (anw temporarv edges and anV permanent eddes

72OE Select a definition-use edge that reaches into the
current use as the current edge

No. 730Es 35B
Set any permanent edges

flaq to true

NO

any temporary edges
NO

Mark use as access

765B1

interpret/compile program (if
no statement has dual use)

S

Mark use as function

77OE
One With a
uses?

YES
YES

FIG. 7B

Mark use as dual

One With a
tatementS2

Patent Application Publication Sep. 4, 2008 Sheet 10 of 22 US 2008/0216061 A1

y

(temporary (S)

Patent Application Publication

First edge out 0
First edge in 0
Number out 0
Number in 0

First edge out
First edge in 0

Number in 0

First edge out 0
First edge in 0
Number out 0
Number in 0

First edge out 0

Number out 0

First edge out 0
First edge in
Number out 0
Number in 2
Source loc pointer

Sep. 4, 2008 Sheet 11 of 22

Def-use edge 1

3

Def-use edge 2
Field Name Value

S2
S5

Pointer
pointer

4.
1

Def-use edge 3
Field Name Value

Sink loc Sink loc

Next edge out 0
Next edge in

Def-use edge 4
Field Name

Source loc
Sink loc

Temporary
Next edge out 0
N 5 ext edge in

V 3. 3. b 6

US 2008/0216061 A1

function f(x)

S0 temporary y

Goes to a Def
use edge 5

Patent Application Publication Sep. 4, 2008 Sheet 12 of 22 US 2008/0216061 A1

NOde SO : Def-use edde 1 Field Name Ueuse egg
First edge out 1 Field Name
First edge in 0

Number in 0

Nodes
Field Name Next edge out

; First edge out 0 Next edge in O First edge in O

Definition-use Graph

To Node S5

Field Name Field Name
Stmt NO. Node Kind

Symbol

Tree LOC T7

Field Name
Node Kind
Symbol

Node Kind

Next Strmt

Tree Loc T5

Intermediate
Representation

- - - - - - - - ---------------------essee-earessessessssssssseanaaaaaaassesseesaaaaasses----------------assess

Symo

Field Name
Name X

v
To Tree Loc T8 :

Symbol Table
Sym1

Patent Application Publication Sep. 4, 2008 Sheet 13 of 22 US 2008/0216061 A1

Scan and parse the program into a intermediate representation suitable for
compilation or interpretation, such as AST, SSA, Quads, etc. All nodes for

operations that may be array references or function calls are represented as a FOA
(Function Or Array) node.

definition for each variable that appears as the function or array
the initial ram Statement.

Add a temporary
Operand in a FOA node to

Construct def-use chains for the program using any technique such as the iterative
technique, interval technique, structured parse technique, etc. All edges that

Oy partitioning the variab
into equivalence classes using the definition-use graph, and giving each

Convert each FOA node into either a function invocation node (if some temporary
definition-use edge reaches it) or into an array reference node (if no temporary

definition-use edge reaches it). (See FIG 13)

FIG.9

Patent Application Publication Sep. 4, 2008 Sheet 14 of 22 US 2008/0216061 A1

can and parse the program into a intermediate representation suitable for
compilation or interpretation, such as AST, SSA, Quads, etc. All nodes for

operations that may be array references or function calls are represented as a FOA
Function Or Arraw) node.

Add a temporary
Operand in a FOA node to

definition for each variable that appears as the function or array
the initial ram statement.

technique, interval technique, structured parse technique, etc. All edges that
emanate from a temporary defare marked as temporarveddes. (See FIG 10

Convert each FOA node into either a function invocation node (if some temporary
definition-use edge reaches it) or into an array reference node (if no temporary

definition-use edge reaches it). (See FIG 13)

Rename different variables that reuse the same name by partitioning the variable
into equivalence classes using the definition-use graph, and giving each

equivalence class a name. (See FIG 11).

FIG. 9A

Patent Application Publication Sep. 4, 2008 Sheet 15 of 22 US 2008/0216061 A1

100C

Compute a control flow graph for the program, dividing the program into basic blocks

101C
For each statement in the program, compute three lists:

a) inputs (the variables used by the statement);
b) outputs (the variables defined by the statement) and

c) killed (the variables whose definitions are killed by the statement)
1 O2G
Compute an array definitions of the definitions in the program, where each member of

an output list is a separate definition;
Set a variable indefs equal to the number of definitions

1030
For each node n in the control flow graph, allocate 4 bit vectors each of which contains

indefs bits, all of which are initially 0:
a) uses - the definitions that are used in that node
b) defs - the definitions that are defined in that node
c) killed - the definitions that are killed in that node
d) reaches - the definitions that reach that node,

Set uses(i) to true if the variable defined by definitions(i) is in inputs(n);
Set defs(i) to true if the variable defined by definitions(i) is in outputs(n);
Set killed(i) to be true if the variable defined by definitions(i) is in killed(n),

1040 1050 N
Set a flag changed = true s changed true?

1055-N 1060 YES

Select a Current node Cn

Set a variable oldreaches = reaches(cn);
For each predecessor p of cn in the control flow graph

reaches(cn) = reaches(cn) (defines(p) (reaches(p) & Mkills(p))

Set changed=false

NO

107C 107
Breaches(cn) is One With a
Qldreaches2 nodes?

NO
1080-N

Set changed = true

-NO

For each use Cu of a variable in
the program

add a def-use edge from every
definition d such that reaches(d)

for cu is true.
FIG. 10

Patent Application Publication Sep. 4, 2008 Sheet 16 of 22 US 2008/0216061 A1

S == null?
(all symbols
examined?

Vark SaS examined.
Mark all defs of S as unvisited
Let d = any unvisited def of S.

dEE nu?
Il defs visited?

YES
resym(d, S, t); ee
Let d any unvisited def of S.

FIG 11

Patent Application Publication Sep. 4, 2008 Sheet 17 of 22 US 2008/0216061 A1

1200 function resym(d, s, new sym)
f* Locate all defs and uses in the same
equivalence class as defd for symbol
s, making all refs in the equivalence
class refer to new sym */
1210

1220

visited(d) = true,
replace defof s in d with new sym;
e = first def-use edge Out of stimt
associated with d,

1240 1250

replace use(e) with new Sym; e = null edge?
Yee in - first edge into sink(e);

1260

ES
Yes e in F= null edge

-N
e F next edge Out(e); resym(def(ein), S, new sym);

1290

e in F next edge in(e in);

1299 N.

FIG. 12

Patent Application Publication Sep. 4, 2008 Sheet 18 of 22 US 2008/0216061 A1

Function remove function or array(root)
f* Convert all ambiguous references
underneath root into either array
references, function calls, or note as dual
usages."l

1300

1305

Set visited(n) to false for all nodes "n" below
root,

Set "this node" = a node for which visited(this node)==false;
Yes visited(this node) = true; Ooes there exist a node

underneath root for Which
visited(n) == false;?

fnode = name(this node);

1335

Set this node to be an
array reference, reference?

Opy temporary edge
&

|On definition &fnode's

Only temporary edges in & no
defs out & not on definition & 6S 65

valid symbol kind

Set this node to be a
function call;

FIG. 13 No

Patent Application Publication Sep. 4, 2008 Sheet 19 of 22 US 2008/0216061 A1

function f(x)

itemporary definition fory

FIG. 14A

-14 OA
femporary definition:

FIG. 14B

Patent Application Publication Sep. 4, 2008 Sheet 20 of 22 US 2008/0216061 A1

function f(x)

FIG. 15A

FIG. 15B

Patent Application Publication Sep. 4, 2008 Sheet 21 of 22 US 2008/0216061 A1

46OO

function f(x)

Look for dual usage
variables flagged by

computer

y FX

Insert new definition
to eliminate dual

usage
610

function f(x)

No dual usage

Remove temporary
defs.

interprocedural
analysis and
Qptimization

Analyze User
Program

4690

Patent Application Publication Sep. 4, 2008 Sheet 22 of 22 US 2008/0216061 A1

function f(x)

FIG. 17A
a,b,c) = y(1)

y = X

function f(x)

FIG. 17B

function f(x)

FIG. 17C globaly

function f(x)

FIG. 17D
Z = y

a = y

US 2008/0216061 A1

INFERRING FUNCTION CALLS IN AN
AMBIGUOUS LANGUAGE COMPUTER

PROGRAM

CROSS-REFERENCE TO PARENT
APPLICATION

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/826,978 entitled “INFERRING FUNCTION
CALLS IN AN AMBIGUOUS LANGUAGE COMPUTER
PROGRAM filed by John R. Allen on Apr. 16, 2004.
0002 U.S. application Ser. No. 10/826,978 is incorpo
rated by reference herein in its entirety, including an Appen
dix A containing a computer program listing.

CROSS-REFERENCE TO COMPUTER
PROGRAM LISTING APPENDIX

0003) Appendix A attached hereto contains the following
file in IBM-PC format, compatible with MS-Windows, and is
a part of the present disclosure and is incorporated by refer
ence herein in its entirety.

Date Size Name

May 16, 2008 48,810 RENAME.TXT

The above file contains source code for a computer program
written in the C language for one embodiment of the inven
tion.

COPYRIGHT NOTICE

0004. A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

0005 Dynamically-typed programming languages (such
as the MATLABR) programming language) provide a power
ful prototyping and development mechanism for program
mers. Because Such programming languages allow variables
to take on the types of expressions that are assigned to them
during program execution, programmers do not have to worry
about details such as declaring the variable types or creating
functions specific for a given variable type. Such languages
Support a programming style where programmers create (or
in Some cases, recreate) variables based on local contexts.
Variables are frequently used in several different ways and for
several different purposes because programmers basically
just create variables as they need them.
0006 While dynamically-typed languages support a
relaxed programming style for programmers, they present
significant challenges for the programming tools that Support
them. In particular, the most obvious methods for executing
dynamically-typed languages provide extremely slow execu
tion speeds. The result is that programmers cannot develop
large applications in a dynamically-typed language because a
program of any significant size requires too much time to run.
The key to making dynamically-typed languages useful is

Sep. 4, 2008

optimizing their execution performance, increasing their
execution speed and thereby decreasing the time required to
execute programs of any significant size. The technology
behind Such execution improvement is commonly called
“code optimization', and the tool used to effect those
improvements is commonly called a “code optimizer” or just
“optimizer”.
0007 Optimizers work by “statically’ analyzing a pro
gram prior to its execution (or its “run-time') to predict how
the program will behave when executed on input data. Using
those predictions, optimizers change the code that is executed
So as to minimize the run time required to perform the calcu
lation. In a very simplistic example, an optimizer will analyze
a program that always computes and prints “7*6', and realize
that the program will always print “42. In such a case, the
optimizer will remove all instructions used in the computa
tion, and leave in only the instructions required to print “42.
The effectiveness of an optimizer depends on its ability to
predict, prior to program execution, how a program will
behave when it executes.
0008 Dynamically-typed languages present a significant
challenge for optimizers, since by their very nature dynami
cally-typed languages hide information until execution time.
Since the optimizer has less information prior to execution
about how a program behaves when it executes, the optimizer
is less able to statically predict program behavior and is
thereby limited in its ability to improve program execution.
0009. The most significant hindrance in dynamically
typed languages is the inability to statically distinguish
between function calls and array accesses. In many program
ming languages, function calls are distinguished syntactically
by the appearance of parentheses; e.g. a function call in the
Source is indicated by “function name (arg1, arg 2, . . .).
Parentheses are also commonly used to indicate array
accesses (or memory accesses) in languages; e.g. an array
access in the Source is indicated by "array name (subscript 1.
Subscript 2, . . .). Statically-typed languages are able to
easily distinguish between these different uses from variable
declarations. The programmer has to provide extra informa
tion about the variables to the compilation tool, which allows
the tool to determine whether a given usage is an array access
or a function call. In dynamically-typed languages, however,
where variables can change type during the execution of a
single assignment statement, such hints are not readily avail
able. For instance, the variable 'x' can be used as a function
call in one statement of a program in the form “X(1,1), then
be used as an array access two statements later in the same
form: “x(1,1). Users cannot always easily determine
whether a given reference is a function call or array access,
making it difficult for them to provide hints to a compilation
tool.

0010 A programming reference such as “x(1,1) above
which may be either a function call or a memory access when
examined from a strictly syntactic analysis is known as an
“ambiguous reference” and the variable associated with that
reference (“X” in the example) is known as an "ambiguous
name’. "Function calls' are variable references that when
executed in the interpreter cause the program counter of the
computer to jump to a non-sequential location, execute some
number of instructions, then jump back to the next sequential
instruction (accounting for “branch slots') following the
function call. An “array access” is a reference to a variable
that represents a collection of elements; the access may either
fetch or set the values for some number of that collection. A

US 2008/0216061 A1

“scalar access” is a reference to a variable that represents one
element, and the access may either fetch or set the value of
that element. “Memory access' refers to either an array
access or Scalar access, particularly when the collective
nature of the variable is unknown. Ifa programming reference
is used as a function call along some execution paths and as a
memory access along other execution paths, the reference is
considered a "dual usage'.
0011. The MATLAB(R) programming language (as
defined by the MATLAB interpreter version 13.1) is one
example of a dynamically-typed language. It not only Sup
ports parentheses as the syntactic notation for both function
calls and array accesses, but it also requires that a function
that takes no arguments be called without following paren
theses. This means that a simple variable access (in MAT
LAB, such a reference can be either scalar or vector) is
ambiguous with function calls. This ambiguity greatly
increases the difficulty of building effective programming
tools for the language.
0012. The MATLAB programming language is defined by
the actions of the interpreter provided for the language by The
MathWorks, Inc. Interpreters are useful programming tools
for dynamically-typed languages, in that they provide a
mechanism naturally Suited for resolving typing questions
during execution. Interpreters create and maintain an execu
tion state environment (such as a symbol table) while they
dynamically execute a program. This environment allows an
interpreter at any point during execution to examine the state
of the program, including the values and types that have been
assigned to variables. This environment allows an interpreter
to easily resolve any ambiguity between array accesses and
function calls, because it can determine precisely the charac
teristics of the variable in question. The following paragraph
(from “MATLAB: The Language of Technical Computing
Using MATLAB Version 6”. The MathWorks, Inc., 2002. p.
16-13) describes how MATLAB resolves variables as it
eXecutes:

0013 “When MATLAB comes upon a new name, it
resolves it into a specific function by following these steps:
0014. 1 Checks to see if the name is a variable.
0.015. 2 Checks to see if the name is a subfunction, a
MATLAB function that resides in the same M-file as the
calling function
0016 3 Checks to see if the name is a private function, a
MATLAB function that resides in a private directory acces
sible only to M-files in the directory immediately above it..

0017. 4 Checks to see if the name is a function on the
MATLAB search path. MATLAB uses the first file it encoun
ters with the specified name’
0.018. Once MATLAB has identified a name as a function
rather than as a variable, it resolves the function using the
following algorithm (“MATLAB: The Language of Technical
Computing. Using MATLAB Version 6”. The MathWorks,
Inc., 2002. pp. 21-67 and 21-68):
0019
0020. The function precedence order determines the pre
cedence of one function over another based on the type of
function and its location on the MATLAB path. From the
perspective of method selection, MATLAB contains two
types of functions: those built into MATLAB, and those writ
ten as M-files. MATLAB treats these types differently when
determining the function precedence order.

“Function Precedence Order

Sep. 4, 2008

0021 MATLAB selects the correct function for a given
context by applying the following function precedence rules,
in the order given.
0022. For built-in functions:
(0023. 1) Overloaded Methods
0024. If there is a method in the class directory of the
dispatching argument that has the same name as a MATLAB
built-in function, then this method is called instead of the
built-in function.
(0025, 2) Nonoverloaded MATLAB Functions
0026. If there is no overloaded method, then the MATLAB
built-in function is called. MATLAB built-in functions take
precedence over both Subfunctions and private functions.
Therefore, subfunctions or private functions with the same
name as MATLAB built-in functions can never be called.
0027. For nonbuilt-in functions:
(0028. 1) Subfunctions
0029 Subfunctions take precedence over all other M-file
functions and overloaded methods that are on the path and
have the same name. Even if the function is called with an
argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded
method.
0030) 2) Private Functions
0031 Private functions are called if there is no subfunction
of the same name within the current scope. As with Subfunc
tions, even if the function is called with an argument of type
matching that of an overloaded method, MATLAB uses the
private function and ignores the overloaded method.
0032 3) Class Constructor Functions
0033 Constructor functions (functions having names that
are the same as the (abdirectory, for example (a polynom/
polynom.m) take precedence over other MATLAB functions.
Therefore, if you create an M-file called polynom.m and put
it on your path before the constructor (apolynom/polynom.m
version, MATLAB will always call the constructor version.
0034) 4) Overloaded Methods
0035. MATLAB calls an overloaded method if it is not
masked by a Subfunction or private function.
0036 5) Current Directory
0037. A function in the current working directory is
selected before one elsewhere on the path.
0038. 6) Elsewhere on Path
0039 Finally, a function anywhere else on the path is
selected.”
0040. Because the MATLAB interpreter dynamically
maintains the program state, it can precisely resolve any
ambiguity in the use of a name.
0041. The just-described method for resolving the
ambiguous usage of a name in a statement is well-suited for
an interpreter, but does not work for a compiler because the
compiler must create executable code well before any state
ments in the program being compiled are executed. Specifi
cally, whether or not a name is defined as a function at the time
of execution of a particular statement is unknown ahead of
time. Compilers and related tools work by statically predict
ing the program's execution at run-time. Because they are
predicting, and not directly executing, these tools do not have
the advantage of a dynamically-maintained execution state.
0042. Resolving the ambiguity, particularly between func
tion calls and array/memory accesses, is an extremely impor
tant problem. Since function calls may have widely different
effects on a program's state than array accesses, separating
them is critical to the Success of any program analysis such as

US 2008/0216061 A1

optimization. For instance, determining how information
flows across procedure calls is an important area of analysis.
Such analysis is impossible to perform without knowledge of
the procedure calls, which cannot be determined unless pro
cedure calls, memory accesses, and dual usages are separated.
This type of information, which is typically used to build a
call graph of the procedures and analyze across them, is
valuable both to compiler tools and to interpreters that want to
pre-optimize program performance before initiating execu
tion. This information may also be useful in contexts other
than building a call graph, such as when performing localized
procedure inlining.
0043. Because of the significance of the problem, much
research has been performed on the problem of statically
distinguishing among function calls, array/memory accesses,
and dual usage in ambiguous dynamically-typed languages.
De Rose and Padua (De Rose, Luiz, and Padua, David, “Tech
niques for the Translation of MATLAB Programs into Fortran
90'. ACM Transactions on Programming Languages and
Systems, Vol 21, No. 2, March, 1999. Pages 286-323) devel
oped a state transition diagram to be used with a simple walk
over the program representation to distinguish function calls,
array accesses, and dual usages. This approach suffers from
two deficiencies: a) it does not take advantage of control flow,
and b) it does not account for the fact that a dynamically
typed language may have multiple variables that share the
same name. The first deficiency will cause the approach to
incorrectly label Some cases of dual usage. The second defi
ciency will cause the approach to label as dual usages many
variables that are not. In particular, since dynamically-typed
languages allow variables to be created and destroyed as
values are assigned to them, it is very feasible for a variable to
be a function call in the first part of a program and an array
access in the later part in essence, being two completely
different variables. De Rose and Padua's technique will force
the two variables into one, causing a false dual usage. A
compiler transformation “variable renaming eliminates this
false usage when utilized in the embodiment of this invention.
0044 Almasi and Padua developed a different approach
based on a data flow analysis framework in a 2002 paper
(Almasi, George and Padua, David, “MajIC: Compiling
MATLAB for Speed and Responsiveness”, ACM Conference
on Programming Language Design and Implementation,
June, 2002, Pages 294-303). Their approach is based on a
dataflow analysis approach using the fact that “a symbol that
has a reaching definition as a variable on all paths leading to
it MUST be a variable' (emphasis added). They incorporate
this fact into a meet-over-all-paths data analysis framework
by defining for each statement a set S of symbols which are
known to be variables at that statement. The sets can then be
computed for every statement by any number of well-known
techniques for computing fixed-point Solutions in a lattice. A
similar, but different, meet-over-all-paths analysis frame
work can be set up to determine that set of variables at each
statement that are known to be function calls.

0045 Almasi and Padua's approach provides significantly
more precision than De Rose and Padua's approach, but still
suffers from two significant disadvantages. First, different
approaches are required to compute variables and function
calls: the computations, while similar, cannot be performed
simultaneously on the same data. This means that computing
both the variables and the function calls requires roughly
twice the amount of some resource (a skilled practitioner will
realize that time and memory can be traded off in pro

Sep. 4, 2008

grammed computers, so that computing both requires
roughly either twice the memory or twice the computation
time of computing either alone). Since it is necessary to
compute both in order to compute “dual usage variables, this
extra overhead is required for most programs. Second, in
addition to neither approach (that is, to computing function
calls and variable accesses) being able to solve the other
problem, neither approach can be applied to other data flow
problems, such as dead code elimination, constant propaga
tion, or variable renaming. These transformations are data
flow analysis problems that are commonly used by compilers
and interpreters to improve program execution. Since they
require a different dataflow lattice than that used by Almasi
and Padua, an optimizer that attempts both Almasi and Pad
ua's approach and common optimization transformations
will incur even more computational overhead.
0046. A problem similar to that of inferring function calls
in ambiguous, dynamically-typed languages is the problem
of detecting uninitialized variables in statically-typed lan
guages such as FORTRAN. U.S. Pat. No. 5,615,369 granted
to Holler on Mar. 25, 1997, which is incorporated by refer
ence, specifies an invention for detecting and initializing
uninitialized variables in FORTRAN. Holler's framework
computes over all paths whether it is possible for the use of a
variable to reach back to the entry of a program without
passing through a definition of that variable. If so, the variable
may be uninitialized when used, and the invention inserts an
initialization at the source. Holler's method provides the same
dataflow lattice that is used in more conventional optimiza
tion problems, allowing it to be reused for other transforma
tions. However, Holler's approach computes information
overall possible control flow paths, causing it to be expensive
to compute in some instances.
0047 Dataflow analysis frameworks, lattices, and tech
niques are well known in the art and are discussed fully in
Chapter 4 of a book by Allen, Randy and Kennedy, Ken
entitled “Optimizing Compilers for Modern Architectures'.
Morgan Kaufmann publishers, 2002. This chapter is incorpo
rated by reference herein in its entirety. The goal of dataflow
analysis is to relate each “use of a variable in the program
(where “use' means any programming construct that may
read or in any other way use the value that the variable
contains in the computer's memory) to all possible “defini
tions of that variable in the program (where “definition
means any programming construct that may set or change the
value that the variable contains in the computer's memory)
that can possibly set the value that the use may receive.
“Definitions are also commonly called “defs'. A “reference'
(or “ref) is any form of reference to a variable, either a use of
the variable or a definition of the variable

0048. It is well known in the art how to go from a definition
of a variable to all locations in a computer program that may
use the definition at execution time. Specifically, a “defini
tion-use chain' is a data structure that is commonly used to
perform such an operation. A definition-use chain is com
prised of nodes and edges, where nodes represent variable
references in the user's program, and an edge exists between
two nodes when one node is a definition whose value may be
used by the second node. In other words, an edge connects a
definition to all possible runtime uses of that definition. While
edges are normally indicated as going from definition to use,
following the flow of data within the program, they may be as
easily thought of as flowing from use to def (indicating a use
that needs a value defined by the def), and a skilled artisan can

US 2008/0216061 A1

easily construct data structures that allow both forms to be
used. Note that the term “definition use graph' is more appro
priate than the traditional “definition-use chains' because
“graph more correctly characterizes the nature of the infor
mation the data structure contains. The definition-use chain
(or graph) is essentially a scalar version of true dependences
within a program. Note that each node in a definition use
graph is also referred to as a “permanent node' if the node
represents a permanent definition (e.g. represents a statement
or represents a variable) originally present in the user's com
puter program. In contrast if a node represents a temporary
definition that is added automatically (for all variables in most
embodiments) then the node is called a “temporary node'. As
noted below, a temporary node becomes a permanent node in
Some embodiments during optimization if a variable in the
user's computer program was originally undefined.
0049 Constructing definition-use edges within a single
straight-line block of code is well known. One visits each
statement in order in the basic block, noting the variables
defined by each statement as well as the variables used by
each statement. For each use, an edge is added to the defini
tion use graph for that use back to the last exposed definition
in the block of that variable in other words, to every defini
tion that reaches the use. Whenever a new definition is
encountered for a variable, the new definition kills (i.e. over
writes) the existing definition, so that later uses are linked
only to the new definition, not to the old. When the end of the
block is reached, the definition use graph is complete.
0050 Constructing a definition-use graph across a pro
gram comprised of more than a single straight-line block of
code is more complicated. Standard art contains many differ
ent methods for computing definition-use graphs for pro
grams containing control flow, many of which are Summa
rized in Chapter 1 by Kennedy, Ken entitled “A survey of
data-flow analysis techniques'. In a book by S. S. Muchnick
and N.D. Jones, editors, “Program Flow Analysis: Theory and
Applications., pp. 1-51. Prentice Hall publishers, 1981. At a
high level, the methods all work by decomposing a program
into simpler units (basic blocks, intervals, or others) and a
control flow graph indicating the flow between the units. In a
local pass, information is computed for each individual unit,
regardless of the control flow among the units. Such informa
tion typically consists of sets of variables that are used,
defined, killed (“kills' are definitions where all existing val
ues in a variable can safely be assumed to be replaced), and
reaches (“reaches' are definitions that can reach a given use).
This local information is then combined into global informa
tion by propagating it along the control flow graph, using any
of a number of dataflow propagation techniques (including
iterative, interval, parse, and others). After the global infor
mation is available for the whole program, a definition-use
graph can then be constructed by distributing the information
back across the local units.

0051 Dataflow information (e.g. in most embodiments
definitions and uses) are propagated by several techniques
(i.e. iterative, interval, and so on) are based on framing the
problem inside a lattice(also referred to in this patent appli
cation as a dataflow framework). A lattice, as defined in S.
Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997, consists of a set of values and two
operations “meet” and join', both of which are closed, com
mutative, associative, distributive (in this patent application,
but not in general), and monotonic (again in this patent appli
cation, but not in general). A lattice also has two designated

Sep. 4, 2008

elements “top” and “bottom'. All the dataflow propagation
techniques discussed at the beginning of this paragraph can be
applied to any problem that can be embedded in such a lattice
(or dataflow framework). Propagating uses and definitions of
variables is certainly one type of information embedded in a
lattice in all embodiments of the invention.
0052. When definitions and uses are propagated through a
lattice, it is often convenient to abstract the resulting flow of
data in a definition-use graph. Definition-use graphs can be
embodied in a number of different forms, including linked
lists, bit matrices, sets, bit vectors, etc. While the description
of the techniques most often refers to a linked list of edges,
skilled practitioners will readily recognize that all represen
tations are equivalent in terms of the application of this inven
tion.
0053) One of the reasons that the ability to distinguish
function calls from memory accesses is critical to optimizing
programs written in a dynamically-typed language is that an
understanding of function calls is critical to constructing defi
nition-use graphs and optimizing transformations. A memory
access that is only a use (a fact that can be determined from a
Syntactic analysis of the program in most languages that are
not dynamically-typed) is guaranteed not to change the State
of memory (other than registers) in a programmed computer.
A memory access that is a definition (a fact that can again be
determined from a syntactic analysis of the program in most
languages that are not dynamically-typed) is guaranteed to
change only a limited number of elements of memory of a
programmed computer. A function call, however, can execute
an arbitrary number of instructions, which may fetch and set
any number of elements of a computer's memory. Since the
goal of optimization is to predict at compile time what a
program is going to do at run time, function calls are a large
source of unpredictability, and thus are difficult for optimiza
tion techniques to handle. Memory accesses, on the other
hand, have a limited set of effects, and are much more easily
handled. As a result, separating function calls from memory
accesses is critical to effectively optimizing a program, and in
particular to constructing an accurate definition-use graph for
a program.
0054 “Entry points” and “entry nodes' are well defined
terms in compiler literature. An entry point is a program
location by which control may enter a function. In many
programming languages, that is a single statement. Such as in
MATLAB, where the function header is the only entry point.
In other languages, such as FORTRAN, multiple entry points
into a procedure are Supported, and any of those serves as an
entry point. For analysis, compilers often simplify programs
with multiple entry points by creating one unique entry point
and by making the multiple entry points labels. When control
reaches the unique entry point, it immediately branches to the
appropriate label representing the former entry point to which
control was to transfer. An “entry node' is the intermediate
representation of the unique entry point.

SUMMARY

0055. Several embodiments of the invention at least par
tially resolve an ambiguous usage of a name (also called an
"ambiguous name' or "ambiguous reference') in a statement
(also called "ambiguous statement”) of a computer program,
by automatically adding to an entry statement thereof a defi
nition that includes the ambiguously used name (the added
definition is also called “temporary definition'), followed by
constructing a definition-use graph, followed by checking

US 2008/0216061 A1

whether or not an edge from the temporary definition reaches
the statement containing the ambiguously used name.
0056. If all edges into the ambiguous statement are from
the temporary definition, then the name is deemed to be a
function call. If all edges into the ambiguous statement are not
from the temporary definition, then the name is deemed to be
a memory access. If some edges into the ambiguous statement
are from the temporary definition but other edges into the
ambiguous statement are not from the temporary definition,
then the name is deemed to be a dual usage (or an undefined
usage) by the programmer.
0057. If all ambiguities in a computer program are
resolved (to be either a function call or a memory access),
then the program is thereafter compiled, in the normal man
ner. If any ambiguity remains unresolved (i.e. is neither a
function call nor a memory access), then the statement is
flagged, so that the programmer may take an appropriate
action. For example, in Such a case, the programmer may
eliminate a dual usage by changing the name into a unique
name, if the program is to be compiled. Alternatively, the
programmer may maintain the dual usage, but not compile the
program and instead use the interpreter so that the ambiguity
in Such dual usage is resolved at run time in the manner
described above in the Background section.

BRIEF DESCRIPTION OF THE FIGURES

0058 FIG. 1 illustrates, in a flow chart, acts performed by
Some embodiments of the invention for resolving an ambigu
ous reference as a function call, memory access, or dual
usage, and for using that information to analyze a program
interprocedurally in order to improve its execution.
0059 FIGS. 2A and 2B illustrate, in a high level block
diagram, the flow of data through a user's source program and
corresponding intermediate representation in a computer's
memory for an ambiguous reference that resolves into a dual
uSage.
0060 FIGS. 3A and 3B illustrate, in a high level block
diagram, the flow of data through a user's source program and
corresponding intermediate representation in a computer's
memory for an ambiguous reference that resolves into a func
tion call.
0061 FIGS. 4A and 4B illustrate, in a high level block
diagram, the flow of data through a user's source program and
corresponding intermediate representation in a computer's
memory for an ambiguous reference that resolves into a
memory access.
0062 FIG. 5 illustrates, in a flow chart, acts performed by
Some embodiments of the invention in using reaching bits to
determine function calls, memory accesses, and dual usages.
0063 FIGS. 6A-6F illustrate, in high level block dia
grams, data structures contained in a computer's memory in
Some embodiments during the performance of the acts illus
trated in FIG. 5.
0064 FIGS. 7A and 7B illustrate, in a flow chart, acts
performed by some embodiments of the invention in detect
ing function calls, memory accesses, and dual usages
0065 FIGS. 8A-8C illustrate, in high level diagrams, tem
porary and permanent definition-use edges contained in a
computer's memory during the performance of the acts in
some embodiments illustrated in FIG. 7A.
0066 FIG. 8D illustrates, in a high level block diagram,
data structures contained in a computer's memory in some
embodiments for the definition-use edges described in FIGS.
8A-8C.

Sep. 4, 2008

0067 FIG.8E illustrates, in a high level block diagram, the
relationship between the data structures contained in a com
puter's memory in FIG. 8D for some embodiments and other
structures also present in the computer's memory.
0068 FIG. 9 illustrates, in a high level flow chart, acts
performed by some embodiments of the invention when com
bining variable renaming with the detection of function calls,
memory accesses, and dual usages.
0069 FIG. 9A illustrates, in a high level flow chart, acts
performed by an alternative embodiment when variable
renaming is performed in a different ordering with respect to
ambiguous reference resolution.
(0070 FIG. 10 illustrates, in a high level flow chart, acts
performed by some embodiments of the invention during the
construction of the definition-use graph.
(0071 FIGS. 11 and 12 illustrate, in high level flow charts,
acts performed by some embodiments of the invention to
rename variables.
0072 FIG. 13 illustrates, in a high level flow chart, acts
performed by some embodiments of the invention to detect
function calls, memory accesses, and dual usages.
0073 FIGS. 14A and 14B illustrate, in a block diagram, a
program where variable renaming will decrease the number
of dual usages found.
(0074 FIGS. 15A and 15B illustrate, in a block diagram,
the effects of variable renaming on the program in FIGS. 14A
and 14B.
0075 FIG. 16 illustrates, in a high level block diagram,
one typical use of the invention.
(0076 FIGS. 17A-17D illustrate, in high level block dia
grams, programming constructs where syntactic simplifica
tion of the analysis is possible for embodiments supporting
MATLAB.

DETAILED DESCRIPTION

0077. In several embodiments of the invention, a computer
is programmed to at least partially resolve an ambiguous
usage of a name in a statement of a computer program, by
adding to an entry statement (or in a statement immediately
following the entry statement) a definition (also called “tem
porary definition') that includes the ambiguously used name,
followed by constructing a definition-use graph of the com
puter program, followed by checking whether or not an edge
in the graph from the added definition reaches the statement
(also called "ambiguous statement') containing the ambigu
ously used name.
0078. In some embodiments, this invention enables a pro
grammed computer to read in a user's computer program
written in a dynamically-typed language that contains Syn
tactic ambiguity between function calls and memory
accesses. The programmed computer is able to resolve the
ambiguity and classify ambiguous references as either func
tion calls, variable accesses, or a dual usage (that is, the
variable may have different types depending on which execu
tion path is followed). One embodiment of this invention is
precise to the limits of symbolic execution, providing a sig
nificant advantage over the prior art by De Rose and Padua
discussed in the Background section (above).
0079. One embodiment of the invention is accomplished
using just one data flow analysis framework, which is also the
same framework used for other optimization transformations
(such as constant propagation, dead code elimination, vari
able renaming, and Such For these reasons, this embodiment
permits significant computational advantages over the prior

US 2008/0216061 A1

art by Almasi and Padua discussed in the Background section
(above). Note that this embodiment employs definitions tem
porarily to simplify computational structure and reduce com
putational expense, and solves the problem of resolving
ambiguous references (as opposed to detecting and correcting
uninitialized variables). In this embodiment, “temporary’
definitions are automatically inserted prior to or as part of the
dataflow construction, as a technique of simplifying the data
flow propagation through the lattice (e.g. by iterative or inter
Val technique) and resulting analysis. The definitions being
automatically inserted are temporary because all (or almost
all) definitions are automatically removed prior to any form of
optimization or code generation, although in other embodi
ments, such automatically inserted definitions may be
retained in the code and removed at a later time. In contrast,
note that Holler's definitions are automatically inserted to be
retained permanently, after dataflow construction and analy
sis, so as to correct for uninitialized variables that have been
detected. Holler's automatically inserted definitions do not
enter into the dataflow propagation. They are instead inserted
after further processing the results of dataflow propagation
(i.e. after dataflow propagation (also called “dataflow analy
sis) has been completed).
0080. Several embodiments are focused on automatically
identifying function calls, memory accesses, and dual usages
in ambiguous dynamically-typed languages. In contrast, Hol
ler's techniques appear to be focused on detecting and cor
recting uninitialized local variables in statically-typed lan
guages such as FORTRAN. Despite this different focus, it
may be worthwhile to see how an embodiment of this inven
tion is applied to detection and correction of uninitialized
local variables in FORTRAN. Hollers approach appears to
involve: a) construct def-use web, b) for each use, see if there
is an exposed execution path (this step does not appear to use
the def-use web) from the variable to an entry point, c) if not,
the variable is always identified as being initialized, d) if some
paths are exposed but not all, the variable is identified as being
possibly uninitialized and a definition is inserted at the entry,
and e) if all paths are exposed, the variable is identified as
being definitely uninitialized and a definition is inserted at the
entry. An "exposed execution path' as used by Holler means
a path from the entry node to the use of a variable such that the
variable is not defined anywhere along the path. Holler does
not appear to specify how Such paths are uncovered. As noted
above, the definitions being inserted by Holler are retained
permanently (and are to be used by Holler during Subsequent
steps, such as code generation), because the inserted defini
tions correct for uninitialized variables. In contrast, one
embodiment of this invention performs the following acts (in
the order of description): a) insert temporary definitions for
all local variables at each entry point without any checking
(i.e. definitions are automatically inserted regardless of
whether or not there is an exposed execution path), b) con
struct a definition-use graph including the temporary defini
tions, c) for each temporary definition, see if it reaches any
use, d) if the temporary definition reaches no use, the variable
is not uninitialized, (note that the definition is eventually
removed (e.g. by use of a classic optimization called “dead
code elimination” as described in Allen and Kennedy, chapter
4, to do this automatically), e) if the temporary definition
reaches a use, and no permanent definitions reach that use, the
variable is always identified as being uninitialized, and f) if
the temporary definition reaches a use and permanent defini
tions also reach that use, the variable is identified as being

Sep. 4, 2008

possibly uninitialized. These last steps (d), (e) and (f) are
effected in most embodiments of the invention by a simple
loop over the edges in the definition-use graph, rather than by
tracing execution through possible control flows. As a result,
this embodiment is far more effective computationally in
solving Holler's problem. In addition, note that this embodi
ment eliminates the need to explicitly look for and find
exposed execution paths as done by Holler. Furthermore, if no
warning messages need be issued, then dead code elimination
automatically retains any automatically inserted definitions
that are deemed to be necessary (at which point they become
permanent definitions), and deletes the automatically inserted
definitions that are unnecessary.
I0081 Temporary definitions are known to have been used
in the prior art at the beginnings of DO loops in vectorizing
and parallelizing compilers in order to detect Scalar refer
ences that may be expanded on vector machines or privatized
on parallel machines, as described in Chapters 5 and 6 of
Allen and Kennedy and in Chapter 6 of Pieper (Pieper, Karen.
“Parallelizing compilers: Implementation and effectiveness.”
PhD. thesis, Stanford Computer Systems Laboratory, June,
1993.). However, this prior art usage oftemporary definitions
does not disclose or Suggest their usage in various embodi
ments of the invention, as described herein.
I0082 Many embodiments of this invention insert tempo
rary definitions at critical points in the program flow. Differ
ent embodiments use different methods to determine how
those assignments are inserted. For instance, Static Single
Assignment (also called SSA) is an intermediate representa
tion that uses program flow to insert definitions at critical join
points (Allen and Kennedy, Chapter 4). Use of SSA to insert
temporary definitions for use in resolving ambiguous refer
ences is one embodiment of this invention.

0083. Some embodiments of the invention construct a
definition-use graph that allows for function calls and
memory accesses to be determined without prior knowledge
of which references are function calls and which are memory
accesses. This knowledge is normally required to construct
definition-use graphs. Holler's technique, for instance, could
not be applied to this problem, because her construction of
definition-use graphs requires knowledge of function calls
(something that is syntactically obvious in FORTRAN),
which is not available in a dynamically-typed language.
0084. Because embodiments of this invention formulate
the resolution of ambiguous references in a dataflow lattice
used for other conventional optimization problems, they are
able to directly apply other optimization transformations to
dynamically-typed languages. For instance, variable renam
ing (also called Scalar renaming) is a transformation used by
vectorizing compilers to reduce the complexity of a depen
dence graph (Allen and Kennedy, Chapter 5.4). To the appli
cant's knowledge, this transformation has never been
employed to reduce the number of dual usage references that
a dynamically-typed program may contain. Embodiments
that employ this transformation utilize the transformation in a
novel way and for a novel purpose. Furthermore, this trans
formation is simpler to implement in embodiments of this
invention than in other approaches, because embodiments of
this invention are based on the same dataflow framework used
for variable renaming. Other approaches use a different
framework which is not compatible.
I0085 FIG. 1 illustrates, in a high level flow chart, the
overall process in Some embodiments. A user may prepare a
program which contains a name (also called "ambiguous

US 2008/0216061 A1

name’) which cannot be syntactically determined to be a
function call or memory access. “Memory access includes
both “scalar access” (that is, access to variables that abstractly
represent a single entity) and "array access” (that is, access to
variables that abstractly represent a collection of entities; the
reference may be to either one or multiple of those entities).
Said program is received in some embodiments of this inven
tion in act 110 and is converted to a representation that is
amenable to analysis.
I0086. After receiving said program, some embodiments of
the invention insert a “temporary definition of the ambigu
ous name to the program in act 120. This temporary definition
does not permanently change the user's computer program;
the definition is strictly temporary, and is present only to
enable the analysis. It does not appearin any executable code.
This is distinctly different from Holler's approach, where
Such inserted definitions are permanent and appear in the
executable code.
0087 FIGS. 2A, 2B, 3A, 3B, 4A, and 4B illustrate the
program after the temporary definition has been inserted for
ambiguous names that are resolved into dual usages, function
calls, and memory access, respectively. In FIG. 2A, a tempo
rary definition (S0) has been inserted for variable “y” into the
user's program. Variable “y” is ambiguously used in both
statements S4 and S5. The temporary definition S0 can reach
the ambiguous statements S4 and S5 through one execution
path in the program (visualized by the Solid arrows, proceed
ing through statements S1 and S3). On an alternative execu
tion path, the temporary definition is blocked from reaching
the ambiguous statements. When following the execution
path (S0, S1, S2, S4}, the temporary definition does not reach
past statement S2, because S2 defines a new value of “y” a
“permanent definition' which reaches S4 following the
execution path indicated by the dotted arrow. Since both the
permanent definition S2 and the temporary definition S0
reach the ambiguous statements S4 and S5, the use of “y” in
S4 and S5 is a dual usage. The reference is a memory access
when the dotted control pathis followed and is a function call
when the solid control path is followed.
I0088 FIG. 2B illustrates the performance of the same
steps, but on an intermediate program representation Such as
that used by a compiler or an interpreter. The temporary
definition 210A is inserted for the ambiguous name “y”. This
temporary definition can reach the ambiguous statements
250A and 260A following the execution path indicated by the
solid arrow (220A, 230A, 250A). On another execution path
{220A, 240A, 250A), the temporary definition does not reach
the ambiguous statements; instead the permanent definition
240A blocks the temporary definition, and the permanent
definition reaches the ambiguous statement following the
dotted arrow. The reference is a memory access when the
dotted control path is followed and is a function call when the
solid control path is followed.
I0089 FIGS. 3A and 3B illustrate the performance of the
same steps when the ambiguous name resolves to a function
call. In FIG. 3A, the temporary definition S0 for “y” is again
inserted in the user's source program. This temporary defini
tion reaches the ambiguous statements S4 and S5 along all
execution paths (indicated by the solid arrows), so that the
ambiguous names can be determined to be function calls.
FIG. 3B repeats the same steps on an intermediate represen
tation used by a compiler or interpreter.
0090 FIGS. 4A and 4B illustrate the performance of the
same steps when the ambiguous name resolves to a memory

Sep. 4, 2008

access. In FIG. 4A, the temporary definition S0 for “y” is
again inserted in the user's source program. This temporary
definition is unable to reach either of the ambiguous state
ments S4 and S5 along any execution path, because perma
nent definitions blockit alongany path. Since only permanent
definitions reach the ambiguous statements (along the dotted
arrows), the ambiguous names can be determined to be
memory accesses. FIG. 4B illustrates the same steps on an
intermediate representation used by a compiler or interpreter.
0091 Returning to FIG. 1, after inserting the temporary
definition in act 120, embodiments of the invention then
determine inact 130 whether the ambiguous use is reached by
both a temporary definition and a permanent definition in
order to distinguish among the cases illustrated in FIG. 2A,
2B, 3A, 3B, 4A, or 4.B. If the answer is yes, then the ambigu
ous use is a dual usage as illustrated in FIGS. 2A and 2B and
is flagged as such in act 140. Some embodiments cannot
handle dual usages, and will issue an error message at that
point. Alternative embodiments only mark the usage as a dual
usage, and continue processing other statements in the user
program by proceeding to act 170.
0092. If the answerinact 130 is “no” (that is, the statement

is not reached by both temporary and permanent definitions),
embodiments then test in act 150 whether the ambiguous
statement is reachable only by temporary definitions. If
“yes”, then the ambiguous use is marked as a function call in
act 160 (this is the usage illustrated in FIGS. 3A and 3B) and
more ambiguous statements are processed in act 170. If the
answer to act 150 is 'no', the ambiguous use is marked as a
memory access in act 180 (this is the usage illustrated in
FIGS. 4A and 4B), and a check is made for more ambiguous
statements in act 170.

0093. Once all ambiguous statements have been pro
cessed, so that the answer to the test in act 170 is 'no',
different embodiments exploit the information used in differ
ent ways. For instance, the embodiment illustrated in FIG. 1
proceeds to improve the execution characteristics of the
user's program by executing the acts encapsulated in box 190,
using the information gathered about function calls to build a
call graph in order to perform interprocedural analysis. It then
uses the results of that analysis to improve the execution
characteristics of the user's program. Final execution of the
user's program in this embodiment is through either a com
piler or an interpreter. While performing act 190, this embodi
ment optionally goes back to act 110 to compute information
about other functions and add that information to the call
graph. Alternative embodiments skip the calculation of the
call graph and go directly to more limited interprocedural
optimizations and analysis. An alternative embodiment per
forms interprocedural optimizations such as procedure inlin
ing or procedure cloning without first building a call graph.
Other embodiments go directly to code generation or execu
tion without performing any interprocedural analysis. Other
embodiments indicate that the program is not compilable if it
contains any variables that are dual usage, and indicate the
dual usage references with error messages. These, and all
other embodiments of this invention, have one common fea
ture: all temporary definitions are either removed from the
program before code is generated or are ignored during the
code generation process. The temporary definitions are useful
in performing the analysis and are removed or ignored once
the analysis is completed.
(0094. The test in act 130 of FIG. 1 is answered by different
methods in different embodiments. Some embodiments use

US 2008/0216061 A1

standard data flow analysis techniques to construct definition
use graphs, reachability sets, or other data structures. Other
embodiments use different methods such as tracing execution
paths or control flow to answer the question. FIG. 5 presents
one embodiment which works by constructing reachability
sets. In this embodiment, sets are represented as bit vectors.
Sets can be represented by many different data structures, and
a skilled artisan can easily extend the techniques described in
this embodiment to other set representations. The method
illustrated in FIG. 5 computes four sets (illustrated in FIGS.
6B, 6D, and 6F) for each statement or basic block in the user's
program, named DEFINES, KILLS. REACHES, and USES
for the convenience of illustration. Each element in the set (or
each bit in the bit vector) represents one “definition' in the
program, as illustrated in FIGS. 6A, 6C, and 6E. A “defini
tion' is a variable in conjunction with a statement that defines
a value for that variable. For instance, in FIG. 6Athere are two
definitions for the variable “y”. The first element of the vector
represents the temporary definition of “y” in statement S0; the
fourth element of the vector represents the definition of “y” in
statement S2.

0095 Some embodiments compute the four sets by the
method illustrated in the high level flow chart in FIG. 5. At a
high level, the computation breaks down into two general
passes. Three of the sets are computed using only local infor
mation (that is, information derived directly from the state
ment or block) as indicated in the upper dotted box. The
fourth set is derived by globally propagating the local infor
mation across the entire program, as indicated in the lower
dotted box. The result is a set for every block or statement that
indicates which definitions reach the block or statement. The
fact that temporary definitions reach a given use can be
derived from this set, and thus used to identify function calls,
memory accesses, and dual usages.
0096. The embodiment illustrated in FIG.5 starts by com
puting local information for all the statements or blocks. Act
500 selects a block (or statement; hereinafter “block” will be
used to indicate either a basic block or a statement) for which
local information is to be computed. After selecting a block,
the programmed computer then proceeds to act 510, where it
selects a definition to process for that block. It then enters the
effects of that definition on the local sets in acts 505, 515, and
520. Act 505 builds the DEFINES set; if the variable defined
by selected definition is also defined in the current block, that
definition is added to the set (indicated with bit vectors by
enabling the corresponding bit). If the variable defined by the
definition is not defined in the current block, the definition is
not added to the set (indicated with bit vectors by clearing the
corresponding bit). Act 515 builds the USES set; if the vari
able defined by the selected definition is used in the current
block, that definition is added to the set (indicated with bit
vectors by enabling the corresponding bit). If the variable
defined by the definition is not used in the current block, the
definition is not added to the set (indicated with bit vectors by
clearing the corresponding bit). Act 520 builds the KILLS set.
If the selected definition cannot reach beyond the current
block because the block defines a value that totally overwrites
the definition (a situation called “killing the value), the defi
nition is added to the set (again by enabling the corresponding
bit in the bit vector). If not, the definition is not added to the
set (indicated by clearing the corresponding bit). The selected
definition is removed from a fourth set (REACHES) by act
530. This set will be computed in the global pass using the
first three sets. Act 525 moves through the next definition and

Sep. 4, 2008

proceeds back to act 510 until all definitions have been pro
cessed. Act 535 moves through the next block and proceeds
back to act 500 until all blocks have been processed, thereby
completing the computation of local information.
0097. Once local information has been computed, the pro
grammed computer proceeds to compute global information
by setting a flag “changed to true in act 540. In this embodi
ment, the programmed computer calculates the global infor
mation by repeatedly propagating information through the
control flow graph until no changes occur during propagation
(that is, a fixed point is reached). The flag “changed is used
to drive that iteration. After setting “changed to true, the
programmed computer enters a loop at act 545 that tests
whether “changed’ is true. If it is true (which it will be on the
first iteration given act 540), the loop is entered and
“changed” is initialized to false in act 550. A block (or state
ment) is selected in act 560; that block is used in act 570 to
update values for the four sets by propagating information
from block to block. Different embodiments use different
methods for updating these values. One specific embodiment
updates this information for a block “b” using the equation:
“REACHES(b)=REACHES(b)(DEFINES(p)|(REACHES
(p) & -KILLS(p)))' where “p' is iterated over all predeces
sors of “b' in the control flow graph. Whenever REACHES
(b) changes for a given block “b’, the flag “changed’ is set to
true. After that, the programmed computer checks in act 580
whether all statements have been processed. If not, it selects
another statement to process in act 560 and continues iterat
ing. If yes, one iteration of propagation has been completed,
and the programmed computer proceeds to act 545 to test
whether global information has been completely computed.
If not, it performs another round of propagation via act 550.
Otherwise, it executes act 555 to make use of the global
information to separate function calls, memory accesses, and
dual usage.
0.098 Inact 555, the programmed computer selects a state
ment to analyze for function calls, memory accesses, and dual
usages. Once selected, the programmed computer executes
act 565 to use at least the fourth flag to determine whether the
statement contains a dual usage. Different embodiments take
different approaches to determining this. One exemplary
embodiment intersects the REACHES set for the current
statement with the USES set for that statement. If the result
ing set contains members for a variable that are all temporary
definitions, that variable is used as a function call in the
statement. If the resulting set contains members for a variable
that are all permanent definitions, the variable is used as a
memory access. If the resulting set contains both elements
that are permanent definitions and elements that are tempo
rary definitions for a variable, that variable is a dual usage.
0099. After setting the type of usage, the programmed
computer executes act 575 to determine whether all state
ments have been examined. If not, it proceeds to act 555 and
repeats the process. If so, the computer proceeds via act 585
to continue the optimization, compilation, interpretation, or
other acts starting after act 170 from FIG. 1.
0100 FIGS. 6A-6F illustrate the sets computed by one
embodiment of the invention. FIGS. 6A and 6B illustrate the
final sets after global information is computed for the
example program illustrated in FIGS. 2A and 2B. FIG. 6A
illustrates which position in the bit vector corresponds to
which definition. For instance, the leftmost element of the bit
vector corresponds to the definition of variable “y” in state
ment S0; the next bit corresponds to the definition of “x” in

US 2008/0216061 A1

statement S3; and so on. Since statement S0 has been tempo
rarily inserted to hold the temporary definitions, any defini
tion that emanates from S0 is a temporary definition, and all
other definitions are permanent definitions. Thus, the leftmost
bit of the four bit vectors (corresponding to the definition of
y” in S0) represents a temporary definition; all other bits

represent permanent definitions.
0101 FIG. 6B illustrates the bit vectors at the end of the
global computation. Since S0 holds the temporary defini
tions, the DEFINES vector for it has all bits corresponding to
temporary definitions enabled (i.e. the left most bit). Since
that temporary definition is for “y”, the statement will kill all
definitions involving the variable “y”. The KILLS vector
indicates this by having bits 1 and 4 (counting from the left)
enabled, corresponding to the temporary definition of “y” in
S0 and the permanent definition of “y” in S2. No other state
ments in the program reach S0, so its REACHES vector is all
Zeros, and it holds only temporary definitions that take no
inputs, so its USES vector is likewise all Zeros. Since state
ment S1 is an “IF test, it neither defines nor kills any vari
ables, indicated by Zero DEFINES and KILLS vectors. The
definition of “y” in S0 can obviously reach the statement
(indicated by the leftmost bit of REACHES enabled), and
since S1 tests the input value of “x’, it can use any definition
of 'x'' that reaches the statement. This includes the uses in S3
and S5 (indicated by the corresponding bits in the USES
vector) if they can reach the statement; the REACHES vector
has shown that they cannot. S2 is an assignment of “1” to “y”.
thereby comprising a permanent definition. Since it corre
sponds to the fourth definition, the fourth bit from the left is
enabled in DEFINES. Since it kills all values of “y” that reach
it, bits for the definitions of “y” in S0 and S2 are enabled in the
KILLS vector. The only definition that reaches it is the tem
porary definition of “y”, and since the values used are con
stants, no definitions are used by the statement. S3 is an
assignment of '2' to “x”. It is the source of the second
definition, which explains the bits in the DEFINES and
KILLS vectors. The only definition which can reach it is the
temporary definition, and it uses no variables.
0102 S4 and S5 are the ambiguous statements in this
program. Since S4 defines “Z” and S5 defines “x', their
KILLS and DEFINES vectors are similar, varying only in the
different variables defined and in the fact that there are two
definitions for 'x' in the program but only one for “Z”. Both
statements use “y”, so the USES vector is identical for each.
The REACHES vector for S4 indicates that the definitions for
“y” in S0 (temporary), “x” in S3 (permanent), and “y” in S2
(permanent) reach it. The REACHES vector for S5 is similar,
containing the extra definition of “Z” in S4 (which cannot
reach itself). The REACHES vector for S4 indicates that the
temporary definition of “y” from S0 can reach statement S4
(by following the solid execution through S3), the permanent
definition of “y” from S2 can reach statement S4 (by follow
ing the dotted execution path), and the permanent definition
of “x” in S3 can reach statement S4 (following the solid
execution path). Because the embodiment presented in FIG.5
utilizes an arbitrary selection step, it is impossible to precisely
demonstrate the steps in which these four vectors are devel
oped. However, since the embodiment iterates to a fixed
point, the final result is the same regardless of how it gets
there.

(0103) The fourth bit vector (REACHES) is used in act 565
of FIG.5 to determine whether the use of “y” in statement S4
is a function call, memory access, or a dual usage. Since S4

Sep. 4, 2008

uses both the first and the fourth definition (counting from the
left), and since the first definition is a temporary definition for
“y” and the fourth definition is a permanent definition for “y”.
the programmed computer would determine that the usage is
a dual usage.
0104 FIGS. 6C and 6D illustrate the same embodiment
applied to the input program illustrated in FIGS. 3A and 3B.
In FIG.3A, the permanent definition of"y” in S2 (in FIG. 2A)
that killed the temporary definition has been converted to a
definition of “x'. This causes an extra use to appear in USES
for S1 (since S1 uses “x' and a new definition has been
created for “x', a new member is added to USES) and a new
set of KILLS and DEFINES to occur for S2 (since it now
defines “x' rather than “y”). The computation steps are the
same, and given that the new definition was substituted
directly in place of the old definition in the bit vector, the
REACHES vector for the ambiguous statements S4 and S5 is
the same. However, since the fourth definition (that in S2) is
now for 'x' rather than 'y', S4 and S5 no longer use it. This
removes one entry from the USES vector. As a result, S4 and
S5 now only use the leftmost definition, which is the tempo
rary definition. As a result, all reaching definitions are tem
porary, and the use is determined to be a function call.
0105 FIGS. 6E and 6F illustrate the same embodiment
applied to the input program illustrated in FIGS. 4A and 4B.
The program in FIGS. 4A and 4B differs from the one in
FIGS. 2A and 2B only in that the assignment in S3 has been
converted into a definition of “y”, rather than a definition of
“x”. This causes changes to the DEFINES and KILLS sets for
statement S3. The computed REACHES sets for the ambigu
ous statements S4 and S5 show that definitions 2 and 4 reach
the statement, but the leftmost temporary definition does not.
This is because the value of the temporary definition is
blocked or killed along every control path from S0 to S4 and
S5. Since definitions 2 and 4 are both permanent definitions,
all reaching definitions are permanent, and the use is deter
mined to be a memory access.
0106 FIGS. 7A and 7B illustrate, via a high level flow
chart, an alternative embodiment for determining the infor
mation required in act 130 of FIG. 1, using definition-use
edges. The embodiment illustrated in FIG. 7A (as do all
embodiments) inserts a temporary definition via act 700 for
each variable used in the program into an entry statement for
the program. Note that other embodiments prune the number
of temporary definitions that are required by analyzing the
program for syntactic indicators of variables that must be
either variables or functions. For instance, in most program
ming languages, variables that appear directly to the left of an
assignment operator cannot be function calls. Alternative
embodiments utilize indicators such as this, input from users,
or other similar methods to reduce the number of temporary
definitions that are required. Some of the indicators used by
alternative embodiments are illustrated in FIGS. 17A-17D.

0107. Once the temporary definition has been inserted in
act 700, the programmed computer computes a definition-use
graph for the program in act 705. This computation is illus
trated for one embodiment in FIG. 7B. In computing the
definition-use graph, the programmed computer assumes that
any ambiguous references are memory accesses, rather than
function calls. This assumption simplifies the computation of
the graph, and is valid assuming that functions are notable to
directly set variables in other function's calling spaces.
0108. Once the definition-use graph has been computed,
the programmed computer selects a statement in act 710 in

US 2008/0216061 A1

which to resolve ambiguous references. Having selected a
statement, the computer next selects an ambiguous name in
act 715. In act 720, the programmed computer examines all
the definition-use edges into the current statement that result
from the ambiguous name. FIGS. 8A, 8B, and 8C illustrate
definition-use graphs and the possible patterns that may occur
with respect to temporary and permanent definitions.
0109. A definition-use graph is a graph that provides a link
from a definition of a variable to all uses that may possibly use
it, and simultaneously, a link from a use of a variable to all
definitions that may set the value it receives. These links may
be effected in many different ways, and a skilled artisan, in
view of these disclosures, may easily apply these different
implementations to this problem. FIG. 8A illustrates the defi
nition-use graph for the program input from FIG. 2A, with
only the edges created by the variable “y” shown. Edges from
the temporary definitions (also called “temporary edges') are
dotted; edges from permanent definitions (also called “per
manent edges') are solid. In FIG. 8A, there are two edges
emanating from statement S0 (both dotted, since S0 is a
temporary definition). One of the edges goes to statement S4.
representing the fact that the temporary definition may be
used for a value of “y” in statement S4, and the other goes to
statement S5. Similarly there are permanent edges from S2 to
S4 and S5, representing the fact that the value created for “y”
in S2 may be used by S4 and S5. The full graph will also
contain edges for the definitions and uses of variable “x':
these edges have been omitted for clarity.
0110 FIG. 8B illustrates the definition-use graph for the
program input from FIG. 3A, with only the edges created by
the variable “y” shown. Dotted edges emanate from S0 to S4
and S5, representing the fact that only temporary edges can
create values for “y” as used in S4 and S5. Again, the full
graph will also contain edges for the definition and uses of
variable “x'; these edges have been omitted for clarity. FIG.
8C illustrates the definition-use graph for the program input
from FIG. 4A. There are permanent edges from each of S2
and S3 to S4 and S5, representing the fact that S2 and S3 are
the only source of value for “y” as used in S4 and S5. Again,
the full graph will also contain edges for the definition and
uses of variable “x'; these edges have been omitted for clarity.
0111. Note that FIGS. 6A-6F illustrate one embodiment of
the invention which utilizes reachability sets in the form of bit
vectors to represent the dataflow information. Another
embodiment illustrated in FIGS. 8A-8C represents dataflow
information as a definition-use graph. Other embodiments
use other representations. To the best knowledge of the appli
cant, there is no one best embodiment of this invention with
respect to representation of dataflow information. Instead, the
best embodiment depends on other factors surrounding the
invention. For instance, if the invention is used as part of an
optimizing compiler for a dynamically-typed language,
where other dataflow-based optimizations are to be per
formed, a definition-use graph may be the best choice (de
pending on which optimizations are to be performed), since it
simplifies many transformations. If, instead, the invention is
used as part of an interpreter which performs interprocedural
based analysis, bit vectors may well be sufficient, and the
extra overhead of computing a definition-use graph is prob
ably unwarranted.
0112. Using the definition-use graph, the programmed
computer in act 720 (FIG. 7A) determines whether a refer
ence is a function call, memory access, or dual use. It first
determines whether all the definition-edges coming into cur

Sep. 4, 2008

rent use are temporary definitions. If yes, the programmed
computer has determined that the use is a function call, marks
it as Such in act 725, and proceeds to examine another use via
act 745. If no, it then tests in act 730 whether all edges that
come into the use are permanent edges. If so, the programmed
computer marks the use as a memory access in act 740, and
proceeds to examine another use via act 745. If not, the
computer marks the use as dual in act 735 and proceeds to
examine another use via act 745. Note that the existence of
temporary definitions for all variables used in the program
ensures that at least one definition-use edge will reach a
variable use, so there is no need to check for the case of no
edges coming into a variable (which could be interpreted as
either all permanent edges or all temporary edges).
0113. In act 745, the programmed computer tests whether

it has examined all uses in the current statement. If not, it
proceeds back to act 715 and selects another use to test. If it
has examined all uses, it proceeds to act 750 to test whether it
has examined all statements in the program. If not, it proceeds
back to act 710 to select another statement to test. If it has
examined all statements, it proceeds to act 755 to utilize the
information it has built to compile, interpret, or optimize the
program.

0114 FIG. 7B illustrates an alternative embodiment uti
lizing definition-use edges, utilizing flags to record the infor
mation. A programmed computer following FIG. 7B begins
as in FIG. 7A, by inserting a temporary definition for all
variables used (act 700B) and by constructing the definition
use graph for the resulting program (act 705B). It then selects
a statement to use as the current statement in act 710B. Fol
lowing that, it selects a use from that Statement to use as the
current use, and sets two flags to be false in act 715B. These
flags are used to record whether any permanent edges and
whether any temporary edges reach the current use, respec
tively.
0115 The programmed computer will next select a defi
nition-use edge that reaches into the current use inact 720B to
use as the "current edge'. If the current edge is temporary
(tested in act 725B), the programmed computer sets one flag
to be true (act 730B); otherwise, it sets the other flag to be true
(act 735B). Either way, it then tests whether all edges have
been examined in act 740B. If not, then it returns to act 720B
to continue processing edges.
0116. When the test in act 740B is true, the programmed
computer then tests in act 745B whether both flags have been
set to true. If yes, then the use is a dual use and the computer
flags it as such in act 755B, then proceeds to act 770B to
determine if there are more uses to examine. If both flags are
not true, the programmed computer tests in act 750B whether
there are any temporary edges. If yes, then there are only
temporary edges, and the computer proceeds to act 760B to
mark the use as a function call, and then to act 770B to
determine if there are more uses to examine. If the test in act
750B results in false, then the computer proceeds to act 765B
to mark the use as a memory access and then to act 770B to
determine if there are more uses to examine. In act 770B, the
programmed computer tests whether it has examined all uses
in the current statement. If not, it returns to act 715B to select
a next use to process. If so, it proceeds to act 775B to deter
mine whether it has processed all statements. If not, it returns
to act 710B to select another statement to process. Otherwise,
it proceeds to act 780B to compile, interpret, optimize, or
otherwise continue processing the user's program.

US 2008/0216061 A1

0117 All embodiments of the invention inserta temporary
definition for variables, and control flow information is used
to determine whether those temporary definitions reach uses
or not. Some embodiments inserttemporary definitions for all
variables; other embodiments prune the set of variables for
which temporary definitions are inserted by using syntactic
clues from the language or other similar clues; but all embodi
ments insert at least one temporary definition. Similarly, dif
ferent embodiments analyze execution paths in different
ways. Some embodiments use sets or bit vectors; other
embodiments use definition-use graphs in various forms; oth
ers use other methods of analyzing control and data flow.
0118 FIG. 8D illustrates, via a high level block diagram,
the representation in a computer's memory of the definition
use graph in one embodiment. The graph is for the user's
program as provided in FIG. 2A. Abstractly, a definition-use
graph is comprised of a set of nodes and a set of edges
between those nodes. In the concrete implementation of the
embodiment illustrated in FIG.8D, the set of nodes is stored
as an array with members S0, S1, S2, and so on, and the set of
edges is stored as an array Def-use edge 1, Def-use edge 2,
and so on. A skilled artisan will readily recognize in view of
these disclosures that there are a large number of alternative
representations that equivalently represent definition-use
graphs. Nodes in FIG.8D are comprised of a number offields.
The “First edge out” field is an indicator (which may be a
pointer, an array index, or other similar indicator) for the first
edge in a list of edges that emanate from this node. The
"First edge out of node S0, for instance, is edge 1, and edge
1 represents a definition that reaches from node S0 to node S5.
The “First edge in field is an indicator (which again may be
a pointer, an array index, or other similar indicator) for the
first edge in a list of edges that go into this node. The “First
edge in of node S4, for instance, is edge 4, and edge 4
represents a definition that reaches from node S2 into node
S4. The “Number out” field is the number of edges that
emanate from this node, or alternatively, the number of ele
ments on the list of edges that starts from the “First edge
outfield. The "Number in field is the number of edges that
enter into this node, or alternatively, the number of elements
on the list of edges that starts from the “First edge in field.
The “Source loc' is an indicator of the intermediate repre
sentation that corresponds to this node.
0119 Edges in this embodiment are also comprised of a
number offields. The “Source' field indicates the node that is
the source of the definition-use edge, and similarly, the “Sink'
field indicates the node that is the sink of the definition-use
edge. For instance, edge 2 represents a definition in node S2
reaching a use in node S5. The “Variable field holds the
variable that gives rise to the definition-use edge. For
instance, the “Variable field in edge 2 being “y” indicates
that “y” is the variable that is defined in node S2 and used in
node S5. “Source loc’ and “Sink loc’ are indicators into the
intermediate representation of the program for the tree loca
tions that give rise to the definition and use for the definition
use edge, respectively. “Temporary' is set to yes for edges
that are temporary edges and to no for edges that are perma
nent. “Next edge out' and “Next edge in are used to link
edges together that emanate from or go into the same defini
tion or use, respectively. For instance, the “Next edge out
field of edge 1 having a value 3 means that edge 3 is the next
edge that has the same “Source' as edge 1 (i.e. node S0). The

Sep. 4, 2008

“Next edge in field of edge 2 having a value 1 means that
edge 1 is the next edge that has the same “Sink’ as edge 2 (i.e.
S5).
I0120 FIG. 8E illustrates, via a high level block diagram,
the state of a computer's memory in one embodiment of the
invention while separating function calls, memory accesses,
and dual usage for the users program illustrated in FIGS. 2A
and 2B. The definition-use graph, as fully described in FIG.
8D, is one component of the computer's memory. Other com
ponents in this embodiment include the Intermediate Repre
sentation (comprised of Tree Locs, which hold the semantic
representation of the program), the Symbol Table (comprised
of Syms, which hold information about the variables used in
the user's program), and other data structures holding pro
gram content. In this embodiment, Tree Locs are comprised
of several kinds of nodes, related to the semantic content of
the user program. The fragment in FIG. 8E illustrates 3 kinds
of Tree Locs: Definitions (represent temporary definitions),
Assignments (represent the assignment of a value to a vari
able) and References (represent the use of a variable). Tree
Loc T5, for instance, is an Assignment Tree Loc: it has a
“LHS' field (that holds the left hand side of the assignment),
a “RHS' field (that holds the right hand side of the assign
ment), a “Next Stimt” field (that holds the Tree Loc of the
statement that follows the assignment), and a “Strmt No field
(that holds an identifying number for the statement). Simi
larly, the nodes in the Symbol Table hold information about
the symbols, such as their “Name”, “Type', and “Size”. Dif
ferent embodiments may use different memory representa
tions, which, in view of this disclosure, a skilled artisan can
recognize as being equivalent in functionality to this embodi
ment. The essential aspect of definition-use graphs of this
invention is the ability to model a temporary definition for
appropriate edges.
I0121 FIG. 9 illustrates, via a high level flow chart, one
embodiment of the invention as it is employed within a pro
grammed computer. The programmed computer first scans
and parses the user's program into an intermediate represen
tation via act 900. Many standard techniques exist for scan
ning and parsing programs into intermediate representations
(such as LALR parsers, top-down parsers, and recursive
descent parsers, among others), and different embodiments of
the invention employ different techniques. There are also
many standard compiler intermediate representations (such
as AST, quads, and SSA, among others) and again, different
embodiments of the invention employ different representa
tions. For convenience, the illustration of this embodiment in
FIG. 9 assumes the existence of a special representation for
ambiguous references (Function or Array nodes), but in view
of this disclosure, a skilled artisan may envision other meth
ods of representation.
0122. After converting the user's program into a conve
nient intermediate representation, the programmed computer
adds a temporary definition for each variable used in the
program via act 910. As described previously, in view of this
disclosure a skilled artisan may easily prune the number of
variables for which temporary definitions must be added by
taking advantage of syntactic clues provided by the language.
I0123. After temporary definitions have been inserted, the
programmed computer in this embodiment constructs the
definition-use graph for the program via act 920. There are
many methods for constructing definition-use graphs, (Such
as the iterative technique, the interval technique, and the
structured-parse technique, among others). Other embodi

US 2008/0216061 A1

ments employ different methods for constructing definition
use graphs. As described earlier, different embodiments of
this invention use different techniques for analyzing execu
tion paths other than definition-use graph. FIG. 10 illustrates
the details of the method used to construct the definition-use
graph in this embodiment.
0.124. Once the definition-use graph has been constructed,
the programmed computer effects an optimization technique
known as variable renaming via act 930. Details of the tech
nique used for variable renaming in this embodiment are
illustrated in FIG. 11. Variable renaming partitions references
to a given variable into different equivalence classes, where a
reference is put into a given equivalence class if it must
occupy the same memory locations as all other members of
the equivalence class. Variable renaming is a transformation
effected in this particular embodiment; other embodiments
do not effect this transformation. Similarly, this embodiment
effects variable renaming before separating function calls,
memory accesses, and dual usages (act 940); other embodi
ments use different orders. Specifically, at least one embodi
ment performs variable renaming after separating function
calls, memory accesses, and dual usages. FIG. 9A illustrates
such an embodiment; the acts in FIG. 9A correspond to the
similarly named act in FIG.9, but the order in which variable
renaming occurs is different.
0.125 Variable renaming, as discussed in the embodiment
of FIG. 9 and FIG. 9A, is shown as being employed in the
context of dynamically-typed languages. Such use of variable
renaming in certain embodiments significantly improves the
resolution of ambiguous references into function calls,
memory accesses, and dual usages, as illustrated by FIGS.
15A and 15B, which are renamed versions of FIGS. 14A and
14B, as discussed in the next paragraph. Such variable renam
ing is a transformation not described by any of Padua and
DeRose, Padua and Almasi, or Holler.
0126. In this embodiment, after the programmed com
puter effects act 930, it proceeds to act 940 to convert all
ambiguous references into function calls, memory accesses,
or dual usages. The method used in this embodiment is illus
trated in FIG. 13; other embodiments use different methods.
0127 FIG. 10 illustrates, via a high level flow chart, the
steps taken in act 920 of FIG. 9 in order to construct the
definition-use graph. These actions are specific to this
embodiment; other embodiments construct the definition-use
graph in different ways, or use methods other than definition
use graphs to analyze execution paths. In act 1000, the pro
grammed computer constructs the control flow graph for
intermediate representation of the user's program. Standard
techniques exist for constructing control flow graphs, and
different embodiments use different methods in the construc
tion. Following construction of the control flow graph in act
1000, the programmed computer constructs 3 lists for every
statement in the program in act 1010. These lists are “inputs'
(a list of the variables used in the statement), “outputs” (the
variables whose values may be set in the statement), and
“killed (the variables whose values are totally replaced in the
statement).
0128. Note that when inserting temporary definitions via
acts 910 and 910A of FIGS. 9 and 9A, respectively, it is not
necessary to actually insert assignment statements into the
program or intermediate representation. Some embodiments
merely add extra entries to the “output list for the entry
statement to effect this temporary definition. Other embodi
ments modify the internal data structures used to compute the

Sep. 4, 2008

definition-use graph or similar structure without directly
modifying the intermediate representation of the program
proper.

I0129. Following construction of the input lists, output
lists, and killed lists, the programmed computer constructs an
array “definitions” of all the definitions in the program in act
1020. Each element of any "output list in the program is a
separate definition. The programmed computer also sets a
variable “ndefs' to hold the number of definitions that occur
in the program. This information is used by the programmed
computer in act 1030 to create a set of bit vectors for each
node in the control flow graph, and to set the values of those
vectors. These vectors are “uses” (the bit corresponding to a
definition is set to 1 if the definition is used in the node and 0
if not), “defs' (the bit corresponding to a definition is set to 1
if the variable defined by the definition is defined in the node
and 0 if not), “killed' (the bit corresponding to a definition is
set to 1 if the variable defined by the definition is killed in the
node, and 0 if not), and “reaches” (which will eventually be
the set of definitions that reach the node).
0.130. Once the local bit vectors are constructed, the pro
grammed computer enters an iterative loop in act 1040 where
it iterates over the bit vectors until a fixed point is reached. In
act 1040, the programmed computer sets a flag "changed to
true. This initialization is necessary to cause the following
loop in act 1050 to trigger. When changed is true, the pro
grammed computer proceeds from act 1050 to act 1060 to set
“changed to false. Following that, the programmed com
puter selects a node from the control flow graph to be the
current node “cn' (act 1055). In act 1065, the programmed
variable saves the initial value of “reaches(cn) into a tempo
rary “old reaches’, then updates a new value for “reaches
(cn) based on the values that have propagated to the prede
cessors of the node using the equation “reaches(cn) reaches
(cn)|(defines(p) (reaches(p) & -kills(p)))'. Note that the
symbol “I” represents “or.” (equivalent to set union) and the
symbol “& represents “and” (equivalent to set intersection).
I0131. In act 1070, the programmed computer tests
whether the newly computed value of “reaches(cn) is equal
to the value prior to the update. If not, the programmed
computer sets “changed to true in act 1080. The pro
grammed computer then checks whether all nodes (or blocks)
have been processed in act 1075. If they have not, the pro
grammed computer proceeds to act 1055 to select and process
another node in the control flow graph. If all nodes have been
processed, the programmed computer has completed one
iteration of the algorithm. It then proceeds to act 1050 to
determine whether the fixed point has been reached. If not, the
programmed computer performs another iteration, starting
with act 1060. If yes, so that the fixed point solution has been
computed, the reaches vectors have been globally computed,
and the programmed computer converts those vectors into a
definition-use graph via act 1085.
0.132. The transformation of variable renaming, as illus
trated in FIGS. 11 and 12 is one not described in any of De
Rose and Padua, Almasi and Padua, or Holler. This transfor
mation can significantly reduce the number of reported dual
usages, as illustrated by the program in FIGS. 14A and 14B.
FIGS. 15A and 15B illustrate the effects of variable renaming
on that program. This transformation is not possible in De
Rose and Padua's or Almasi and Padua's approach, because
they search for dual usage using a different lattice than that
required by renaming. Holler's approach is focused on a

US 2008/0216061 A1

different problem in a statically-typed language, and as such,
does not benefit from variable renaming.
0.133 FIG. 11 illustrates, in a high level flow chart, the
implementation of variable renaming (act 930 of FIG. 9) in
one embodiment of the invention. The implementation is
based on a definition-use graph, and assumes that the graph
has been built and is available. In act 1100, the programmed
computer marks all symbols in the user's program as unex
amined. It examines each symbol one at a time, at which time
it marks the symbol as examined, so that it processes each
symbol only once. The programmed computer then selects
any unexamined symbol and calls it 's'.
0134. The programmed computer then tests for “s' being
null in act 1110. If it is null, the computer assumes that all
symbols have been examined (when there are no unexamined
symbols, the selection agent returns null rather than a valid
symbol), and the process is complete. Otherwise the pro
grammed computer proceeds to act 1120, where it marks “s'
as examined, marks all defs (that is, all references on the
“defs' list from FIG. 10, act 1030 that involve the symbol “s')
of “s' as unvisited, and selects an unvisited def'd' of “s'
0135) In act 1130, the programmed computer tests
whether 'd' is null, the assumption being that when all defs
for “s' have been visited the selection agent returns null. If the
answer is “yes”, the programmed computer executes act 1150
to select another unexamined symbol and iterates through the
loop starting at act 1110. If “d' is an unexamined definition,
the programmed computer executes act 1140, which locates
and changes all references 's' that are in the same equiva
lence class as “d to be a unique symbol. This transformation
is effected by the procedure call “resym', detailed in FIG. 12.
“Resym' is passed the definition as a start of the equivalence
class, the symbol that is the basis for the equivalence class,
and a new temporary symbol (“t') which is to be the new
symbol used for all references in the equivalence class. The
programmed computer then iterates again through act 1130.
When the computer processes all definitions of all symbols, it
has completed the renaming.
0136. The recursive procedure “resym” for one embodi
ment is illustrated in a high level flow chart in FIG. 12. The
programmed computer initiates execution for resym starting
in act 1200, and proceeds to act 1210 where it tests whether
the passed in definition 'd' has been visited. If “d has already
been visited, then all references in its equivalence class have
already been determined, so there is nothing for the pro
grammed computer to do. Accordingly, it executes act 1299 to
return.

0137 If “d” has not been previously visited, the pro
grammed computer executes act 1220 to mark “d as visited
and replace the definition of “s' in “d with the new symbol
“new sym'. After this step, the intermediate representation
will now reflect that a symbol “new sym' is now changing
value in the statement represented by “d’, rather than the
symbol 's'. The programmed computer then selects a defini
tion-use edge 'e' that emanates from the statement associated
with the definition “s.
0.138. In act 1230, the programmed computer tests
whether 'e' is a null edge. If it is, all edges emanating from
the statement associated with 'd' have been examined, and
the equivalence class has been determined. Accordingly, the
programmed computer returns via act 1299. If 'e' is not null,
the programmed computer executes act 1240 to see if the
symbol associated with 'e' is “s', the symbol we are process
ing (statements can define multiple variables, and we only

Sep. 4, 2008

want to process the edges that are associated with the symbol
“s'). If the symbol is not “s', the programmed computer skips
over this edge by executing act 1295 and continues with the
next edge in the list. If the variable associated with the edge
“e' is 's', the programmed computer executes act 1250 to
replace the use of “s' that is the sink of 'e' with the new
symbol “new sym'. It then sets “e in to be the first of the list
of edges that come into the statement that represents the sink
Ofe.

0.139. In act 1260, the programmed computer tests
whether “e in is the null edge. If it is (the test answers
“yes”), then all edges coming into the use referenced in act
1250 have been processed, so the programmed computer
executes act 1295 to get the next edge that comes out of “d'.
If not, the programmed computer tests inact 1270 whether the
symbol associated with “e in is “s'. If not, it will skip over
this edge (following the reasoning for act 1240) and execute
act 1290 to get the next incoming edge. Otherwise, it proceeds
to act 1280, where it locates the definition associated with the
source of “e in', then recursively calls “resym” on that defi
nition with the same old and replacement symbols. When
complete, it proceeds to act 1290 to process the next edge. It
then loops back to act 1240, which eventually loops back to
act 1230, which will return when all edges have been pro
cessed.

0140 FIG. 13 illustrates in a high level flow chart acts
performed in one embodiment of the invention in performing
the conversion of act 940 in FIG.9. During this conversion,
the programmed computer walks (i.e. visits each node in) a
section of the intermediate representation and makes use of
the definition-use graph to determine whether references are
function calls, memory accesses, or dual usage. The pro
grammed computer receives a location in the intermediate
representation (“root') in act 1300, which delineates the sec
tion of the intermediate representation over which the com
puter is to convert ambiguous references. The programmed
computer starts in act 1305 by marking all tree locations
accessible from “root’ as being unvisited. It then executes act
1310 where it repeatedly selects unvisited tree locations (and
processes each location as per acts 1315-1365 discussed
below) until all locations have been visited. At that point, the
conversion is complete and the computer returns via act 1399.
0.141 While it is able to find an unvisited tree location, the
programmed computer assigns the value of the unvisited tree
location to “this node' in act 1315 and marks the tree loca
tion as having been visited. It then tests in act 1320 whether
“this node' is an ambiguous reference. An ambiguous refer
ence in this embodiment, which is used for the MATLAB
programming language, is a name which is followed by an
open parenthesis, some number of comma-separated expres
sions and ended with a close parenthesis. The comma-sepa
rated expressions may be subscript values for an array refer
ence or parameters to pass to a function call. Inside the tree
representation, this name is held in a tree location (called
“fnode' in FIG. 13). The comma-separated expressions are
held in another tree location which is a sibling to “fnode'
(same hierarchy level); both finode and the tree location hold
ing the comma-separated expressions are children of “this
node'. The programmed computer extracts the name held in
“fnode' inact 1330. In MATLAB, if this name is not a symbol
(an addition operator, for instance, is not a symbol), then
“this node' can only be an array access. In that case, the
programmed computer executes act 1335 to make the tree

US 2008/0216061 A1

location an array access, then proceeds to act 1310 to select
another unvisited tree location.

0142. If “this node' is a symbol reference, then the pro
grammed computer executes act 1340, which is primarily
testing whether there are only temporary edges reaching the
use represented by “this node'. This embodiment performs
additional tests that are not present in other embodiments.
These tests are required because act 1310, in visiting all the
tree locations in the intermediate representation, visits both
uses and definitions of variables. Since definitions will not be
reached by any definition-use edges (definitions are the
source of such edges, but cannot be the sink), they will not be
reached by any permanent edges. The criterion for identifying
an ambiguous reference as an array reference is having all
incoming edges be permanent edges. Since definitions have
no incoming edges, they can mistakenly be classified as func
tion calls, unless further analysis is performed as discussed
neXt.

0143. The “On definition variable is true if the ambigu
ous reference appears as the target of an assignment, in which
case it cannot be a function call. Similarly, the test “fnode's
symbol is a parameter' performed in act 1340 is an artifact of
this embodiment and is necessary because temporary defini
tions are inserted in statement 0 of the user program. In this
embodiment, statement 0 also holds user definitions of
parameters, so in this statement with respect to parameters, no
distinction is drawn between permanent and temporary defi
nitions. Instead, the distinction is implemented by the addi
tional test as follows. If either “On definition' is true or the
test"fnode's symbol is a parameter is true, then the ambigu
ous name cannot be a function call and must be an array
access. If there are only temporary edges and the additional
tests are true, the programmed computer sets “this node' to
be a function call in act 1345 and then proceeds to act 1310 to
select another unvisited tree location. Otherwise, it sets “this
node' to be an array access in act 1355 and then proceeds to
act 1310 to select another unvisited tree location.

0144. When the test in act 1320 is false, the programmed
computer tests in act 1350 whether the node represents a
symbol node that is not followed by an open parenthesis. In
this embodiment, which supports MATLAB, function calls
with no arguments do not have following parentheses, so it is
necessary to determine whether an ambiguous symbol used
without following parentheses is a function call or a scalar
access. This test is effected in act 1360, using the same basic
test as act 1340. If all incoming edges are temporary edges,
“this node' is setto be a function call inact 1365, and another
unvisited tree location is selected in act 1310. If all incoming
edges are permanent edges, “this node' is left alone (because
it is a scalar access, it has previously been set with a memory
access type in this embodiment). Another unvisited tree loca
tion is then selected by the programmed computer inact1310.
The embodiment illustrated in FIG. 13 assumes that any dual
usages have been detected and reported prior to its invocation
as per FIG. 9, so that all ambiguous references will be either
function calls or memory accesses.
0145. In FIG. 14A, statement S2 is reached by a temporary
definition of “y” and is thus a function call. S4 defines a new
value for “y”, creating a permanent definition. Without vari
able renaming, the use of “y” in statement S5 of a MATLAB
program appears to be both a function call and a memory
access, creating a dual usage, thereby complicating the com
pilation of the program. The dual usage is created by the use
of a single symbol “y” (in the user's program) to represent

Sep. 4, 2008

both a function call and a memory access. The choice is an
artifact of the user's choice to reuse the same symbol; had he
used a different symbol, no dual usage would exist. Several
embodiments of the type described herein automatically
separate the two distinct uses of the variable into two separate
variables using variable renaming, thereby eliminating the
dual usage. (For example, the second occurrence of symbol
y” is automatically replaced by the symbol “y 1, as
described next.)
0146 FIGS. 15A and 15B illustrate the program after
variable renaming as described in this embodiment has been
applied. Since the use of “y” in statement S2 is in a different
equivalence class than the definition of “y” in S4 and the use
of “y” in S5, a new symbol “y1” has been created for the latter
class. This allows the symbol “y” to be used as a function and
the symbol “y 1' to be used as an array, eliminating the dual
usage. The names “y” and y1 are for notational conve
nience; other names can equally well be used.
0147 FIG. 16 illustrates one typical use of some embodi
ments of the invention. A user 1610 prepares an initial version
1600 of a program written in a dynamically-typed, ambigu
ous language. The user 1610 then uses the programmed com
puter 1690 in accordance with the invention to analyze the
program version 1600 for function calls, memory access, and
dual usage. As may often be the case, program version 1600
in one example shown in FIG. 16 contains a dual usage for
“y”, which the programmed computer 1690 has automati
cally detected by performing an analysis operation 100 (of the
type described above in reference to FIG. 1). In this embodi
ment, the user 1610 removes the dual usage in version 1600
by changing his program, producing the new version 1630
which is shown to have new statements inserted therein (in the
dotted box).
0.148. Other embodiments automatically make changes
Such as loop unrolling or statement insertion to eliminate the
dual usage, rather than having the user perform the task. Other
embodiments (for instance, those involving interpreters or
just-in-time compilers) leave the dual usage in the program to
be resolved at run-time, and instead optimize the other por
tions of the program. After the program has been changed
(either manually by user 1610 or automatically by computer
1690) the new version 1630 is analyzed again by the pro
grammed computer 1690. At this stage, since the dual usage
has been eliminated, the computer 1690 does not find a dual
usage (which is reported to the user as indicated in message
1640 displayed on a monitor). This process is repeated any
number of times until the entirety of the program has been
analyzed and no dual usage is detected. At that point, inter
procedural analysis and optimization are optionally per
formed, for example as indicated in act 190 (FIG. 1). During
that act, temporary definitions inserted by the programmed
computer are removed. In other embodiments, the temporary
definitions are retained. Other embodiments bypass interpro
cedural analysis and proceed directly to code generation or
interpretation.
0149 Act 700 in FIG. 7A illustrates an embodiment that
takes the most simplistic and inefficient approach for adding
temporary definitions. In view of this disclosure, a skilled
artisan will readily recognize that several improvements are
possible based on syntactic (or equivalently, lexical) clues
present in the language. FIGS. 17A-17D illustrate some pro
grams and simplifications in embodiments based on the MAT
LAB language. In statement S1 in FIG. 17A, the variable “y”
appears on the right side of an assignment to multiple values

US 2008/0216061 A1

(“a”, “b', and “c”). The MATLAB language allows a function
to return multiple values (and thereby assign values to mul
tiple variables in a single assignment), but it does not allow an
array access to do that. As a result, if the only references to a
variable such as “y” are as the source of multiple return
values, then “y” can be inferred to be a function call, or if no
appropriate function can be found, an erroneous program.
Note that all references to “y” must meet the restriction. For
instance, the assignment to “y” in Statement S2 in the same
program means that a full analysis would have to be per
formed. The “y” in statement S1 is a different variable from
the “y” in statement S2 (as variable renaming as illustrated in
FIG. 11 will reveal) and represents a memory access. Since
this “y” has a use that is not in any way restricted by the
MATLAB language, it must be added as a source for tempo
rary definitions.
0150. In FIG. 17B, the reference “y(1) appears on the left
hand side of the assignment. Since function calls cannot
appear as targets of assignments in MATLAB, this implies
that “y” must be an array reference. In FIG. 17C, “y” is stated
to be a global variable, indicated by the prefix "global'. In
MATLAB, global variables can only be memory references:
they cannot be function calls. In FIG. 17D, all occurrences of
“y” are on the right hand side of assignment statements: “y” is
not the target of any assignment. As a result, “y” is guaranteed
to be a function call. When “y” occurs only on the right hand
side of assignments, it is never defined in the program. Since
it is never defined, there are no permanent definitions of “y” in
the program. If there are no permanent definitions of “y” in
the program, then no permanent definition of “y” can possibly
reach a use.

0151. In view of this disclosure, a skilled artisan will
readily recognize other such simplifications. Note that all
simplifications to act 700 (FIG. 7A) described in FIGS. 17A
17D can be determined from a simple lexical analysis (also
called syntactic analysis) of the program, which is generally
the first step in any compilation or interpretation system. For
instance, the pattern in FIG.17A can be recognized whenever
a close bracket (“I’) is followed by an equal sign (=) is
followed by a variable name. The pattern in FIG. 17B can be
recognized whenever a variable is the first occurrence in a
statement, and the statement contains an equal (“ ”) sign.
0152. In several embodiments of the invention, a computer

is programmed to at least partially resolve an ambiguous
usage of a name in a statement of a computer program, by
adding to an entry statement thereof a definition that includes
the ambiguously used name (also called “temporary defini
tion'), followed by constructing a definition-use graph, fol
lowed by checking whether or not an edge from the added
definition reaches the statement containing the ambiguously
used name (also called "ambiguous statement').
0153. The foregoing description is presented to enable one
to make and use the invention, and is provided in the context
of a particular application and its requirements. It is not
intended to be exhaustive or to limit the invention to the forms
disclosed. Various modifications to the disclosed embodi
ments will be readily apparent, and the general principles
defined herein may be applied to other embodiments and
applications without departing from the spirit and scope of
the invention. Thus, the invention is not intended to be limited
to the embodiments shown, but is to be accorded the widest
Scope consistent with the principles and features disclosed
herein. Accordingly, many modifications and variations will
be apparent. Numerous such modifications and adaptations of

Sep. 4, 2008

the embodiments and variants described herein are encom
passed by the appended claims.

1. A method executed in a computer for processing a com
puter program expressed in a high level language, the method
comprising:

translating said computer program into an intermediate
representation;

wherein said intermediate representation models at least
one statement in said computer program, said at least
one statement comprising an ambiguous usage of a
name as both a function call and an memory access;

constructing a graph of definitions and uses for a plurality
of names including said name in said computer program,
by adding a plurality of edges such that each edge con
nects a node in the intermediate representation, either
directly or indirectly, to another node in the intermediate
representation;

identifying usage of said name in said statement as a func
tion call, based on at least one edge in said graph reach
ing said statement; and

performing a transformation on said intermediate repre
sentation, based on said graph, into another intermediate
representation in memory.

2. The method of claim 1 wherein:
said transformation comprises variable renaming.
3. The method of claim 1 wherein:
said transformation comprises dead code elimination.
4. The method of claim 1 wherein:
said transformation comprises constant propagation.
5. The method of claim 1 further comprising:
performing lexical analysis on said computer program

based on a grammar of said high level language; and
applying at least one predetermined rule, based on said

lexical analysis, to check if said name can be definitively
determined to be one of (memory access and function
call).

6. The method of claim 5 wherein application of said pre
determined rule comprises determining that said name is
definitively a function call by:

checking if said name is not explicitly defined in any state
ment of said computer program.

7. The method of claim 5 wherein application of said pre
determined rule comprises determining that said name is
definitively a function call by:

checking if said name used as a multi-return function,
invoked in said statement.

8. The method of claim 1 further comprising:
adding to said computer program, a temporary definition

comprising said name, said adding being performed
prior to said constructing; and

checking if the temporary definition reaches said statement
along each control flow path and if true then performing
said identifying.

9. The method of claim 8 further comprising:
automatically propagating said temporary definition along

each control flow path that starts from said temporary
definition in said computer program until a permanent
definition of said name is reached.

10. The method of claim 9 wherein during said automati
cally propagating:

said temporary definition reaches said statement along a
first control flow path; and

US 2008/0216061 A1

said temporary definition reaches said permanent defini
tion in another statement along a second control flow
path; and

wherein said another statement occurs in a sequence of
statements between said temporary definition and said
Statement.

11. The method of claim 9 wherein during said automati
cally propagating:

said temporary definition reaches said statement along a
first control flow path;

said temporary definition reaches said permanent defini
tion in another statement along a second control flow
path; and

said permanent definition reaches said statement from said
another statement along a continuation of the second
control flow path.

12. The method of claim 1 wherein:
said transformation is performed prior to said identifying.
13. The method of claim 1 wherein:
said transformation is performed after said identifying.
14. A method executed in a computer for processing a

computer program expressed in a high level language, the
method comprising:

translating said computer program into an intermediate
representation;

wherein said intermediate representation models at least
one statement in said computer program, said at least
one statement comprising an ambiguous usage of a
name as both a function call and an memory access;

constructing a graph of definitions and uses for a plurality
of names including said name in said computer program,
by adding a plurality of edges such that each edge con
nects a node in the intermediate representation, either
directly or indirectly, to another node in the intermediate
representation;

identifying usage of said name in said statement as a func
tion call, based on finding no permanent definition of
said name in said computer program; and

Sep. 4, 2008

performing a transformation on said intermediate repre
sentation, based on said graph, into another intermediate
representation in memory.

15. The method of claim 14 wherein:
said transformation comprises variable renaming.
16. The method of claim 14 wherein:
said transformation comprises dead code elimination.
17. The method of claim 14 wherein:
said transformation comprises constant propagation.
18. The method of claim 14 further comprising:
performing lexical analysis on said computer program

based on a grammar of said high level language; and
applying at least one predetermined rule, based on said

lexical analysis, to check if said name can be definitively
determined to be one of (memory access and function
call).

19. The method of claim 14 wherein:
said transformation is performed prior to said identifying.
20. A computer programmed to process a computer pro

gram, the computer being programmed to:
translate the computer program into an intermediate rep

resentation, wherein said intermediate representation
models at least one statement in said computer program,
said at least one statement comprising an ambiguous
usage of a name as both a function call and an memory
acceSS,

construct a graph of definitions and uses for a plurality of
names including said name in said computer program,
by adding a plurality of edges such that each edge con
nects a node in the intermediate representation, either
directly or indirectly, to another node in the intermediate
representation;

identify usage of said name in said Statement as a function
call, based on said graph; and

perform a transformation on said intermediate representa
tion, based on said graph, to generate another interme
diate representation in a memory.

c c c c c

