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Scan and parse the program into a intermediate representation suitable for 
compilation or interpretation, such as AST, SSA, Quads, etc. All nodes for 

operations that may be array references or function calls are represented as a FOA 
(Function Or Array) node. 

definition for each variable that appears as the function or array 
the initial ram Statement. 

Add a temporary 
Operand in a FOA node to 

Construct def-use chains for the program using any technique such as the iterative 
technique, interval technique, structured parse technique, etc. All edges that 

Oy partitioning the variab 
into equivalence classes using the definition-use graph, and giving each 

Convert each FOA node into either a function invocation node (if some temporary 
definition-use edge reaches it) or into an array reference node (if no temporary 

definition-use edge reaches it). (See FIG 13) 

FIG.9 

  

  

  

  

  

  

  

    

  



Patent Application Publication Sep. 4, 2008 Sheet 14 of 22 US 2008/0216061 A1 

can and parse the program into a intermediate representation suitable for 
compilation or interpretation, such as AST, SSA, Quads, etc. All nodes for 

operations that may be array references or function calls are represented as a FOA 
Function Or Arraw) node. 

Add a temporary 
Operand in a FOA node to 

definition for each variable that appears as the function or array 
the initial ram statement. 

technique, interval technique, structured parse technique, etc. All edges that 
emanate from a temporary defare marked as temporarveddes. (See FIG 10 

Convert each FOA node into either a function invocation node (if some temporary 
definition-use edge reaches it) or into an array reference node (if no temporary 

definition-use edge reaches it). (See FIG 13) 

Rename different variables that reuse the same name by partitioning the variable 
into equivalence classes using the definition-use graph, and giving each 

equivalence class a name. (See FIG 11). 

FIG. 9A 

      

  

  

  

    

  

  

  

  



Patent Application Publication Sep. 4, 2008 Sheet 15 of 22 US 2008/0216061 A1 

100C 

Compute a control flow graph for the program, dividing the program into basic blocks 

101C 
For each statement in the program, compute three lists: 

a) inputs (the variables used by the statement); 
b) outputs (the variables defined by the statement) and 

c) killed (the variables whose definitions are killed by the statement) 
1 O2G 
Compute an array definitions of the definitions in the program, where each member of 

an output list is a separate definition; 
Set a variable indefs equal to the number of definitions 

1030 
For each node n in the control flow graph, allocate 4 bit vectors each of which contains 

indefs bits, all of which are initially 0: 
a) uses - the definitions that are used in that node 
b) defs - the definitions that are defined in that node 
c) killed - the definitions that are killed in that node 
d) reaches - the definitions that reach that node, 

Set uses(i) to true if the variable defined by definitions(i) is in inputs(n); 
Set defs(i) to true if the variable defined by definitions(i) is in outputs(n); 
Set killed(i) to be true if the variable defined by definitions(i) is in killed(n), 

1040 1050 N 
Set a flag changed = true s changed true? 

1055-N 1060 YES 

Select a Current node Cn 

Set a variable oldreaches = reaches(cn); 
For each predecessor p of cn in the control flow graph 

reaches(cn) = reaches(cn) (defines(p) (reaches(p) & Mkills(p)) 

Set changed=false 

NO 

107C 107 
Breaches(cn) is One With a 
Qldreaches2 nodes? 

NO 
1080-N 

Set changed = true 

-NO 

For each use Cu of a variable in 
the program 

add a def-use edge from every 
definition d such that reaches(d) 

for cu is true. 
FIG. 10 

    

    

    

    

    

    

  

  

  

  

  

  



Patent Application Publication Sep. 4, 2008 Sheet 16 of 22 US 2008/0216061 A1 

S == null? 
(all symbols 
examined? 

Vark SaS examined. 
Mark all defs of S as unvisited 
Let d = any unvisited def of S. 

dEE nu? 
Il defs visited? 

YES 
resym(d, S, t); ee 
Let d any unvisited def of S. 

FIG 11 

  

    

  

  

  

  

  

    

  

  



Patent Application Publication Sep. 4, 2008 Sheet 17 of 22 US 2008/0216061 A1 

1200 function resym(d, s, new sym) 
f* Locate all defs and uses in the same 
equivalence class as defd for symbol 
s, making all refs in the equivalence 
class refer to new sym */ 
1210 

1220 

visited(d) = true, 
replace defof s in d with new sym; 
e = first def-use edge Out of stimt 
associated with d, 

1240 1250 

replace use(e) with new Sym; e = null edge? 
Yee in - first edge into sink(e); 

1260 

ES 
Yes e in F= null edge 

-N 
e F next edge Out(e); resym(def(ein), S, new sym); 

1290 

e in F next edge in(e in); 

1299 N. 

FIG. 12 

    

    

  

  



Patent Application Publication Sep. 4, 2008 Sheet 18 of 22 US 2008/0216061 A1 

Function remove function or array(root) 
f* Convert all ambiguous references 
underneath root into either array 
references, function calls, or note as dual 
usages."l 

1300 

1305 

Set visited(n) to false for all nodes "n" below 
root, 

Set "this node" = a node for which visited(this node)==false; 
Yes visited(this node) = true; Ooes there exist a node 

underneath root for Which 
visited(n) == false;? 

fnode = name(this node); 

1335 

Set this node to be an 
array reference, reference? 

Opy temporary edge 
& 

|On definition &fnode's 

Only temporary edges in & no 
defs out & not on definition & 6S 65 

valid symbol kind 

Set this node to be a 
function call; 

FIG. 13 No 

  

    

    

    

  

  

  

  

  

  



Patent Application Publication Sep. 4, 2008 Sheet 19 of 22 US 2008/0216061 A1 

function f(x) 

itemporary definition fory 

FIG. 14A 

-14 OA 
femporary definition: 

FIG. 14B 

  



Patent Application Publication Sep. 4, 2008 Sheet 20 of 22 US 2008/0216061 A1 

function f(x) 

FIG. 15A 

FIG. 15B 

  



Patent Application Publication Sep. 4, 2008 Sheet 21 of 22 US 2008/0216061 A1 

46OO 

function f(x) 

Look for dual usage 
variables flagged by 

computer 

y FX 

Insert new definition 
to eliminate dual 

usage 
610 

function f(x) 

No dual usage 

Remove temporary 
defs. 

interprocedural 
analysis and 
Qptimization 

Analyze User 
Program 

4690 

  

  

  

    

  

    

  

  

  

  

  

  

    

    

    

  

  

  

  



Patent Application Publication Sep. 4, 2008 Sheet 22 of 22 US 2008/0216061 A1 

function f(x) 

FIG. 17A 
a,b,c) = y(1) 

y = X 

function f(x) 

FIG. 17B 

function f(x) 

FIG. 17C globaly 

function f(x) 

FIG. 17D 
Z = y 

a = y 

  



US 2008/0216061 A1 

INFERRING FUNCTION CALLS IN AN 
AMBIGUOUS LANGUAGE COMPUTER 

PROGRAM 

CROSS-REFERENCE TO PARENT 
APPLICATION 

0001. This application is a continuation of U.S. applica 
tion Ser. No. 10/826,978 entitled “INFERRING FUNCTION 
CALLS IN AN AMBIGUOUS LANGUAGE COMPUTER 
PROGRAM filed by John R. Allen on Apr. 16, 2004. 
0002 U.S. application Ser. No. 10/826,978 is incorpo 
rated by reference herein in its entirety, including an Appen 
dix A containing a computer program listing. 

CROSS-REFERENCE TO COMPUTER 
PROGRAM LISTING APPENDIX 

0003) Appendix A attached hereto contains the following 
file in IBM-PC format, compatible with MS-Windows, and is 
a part of the present disclosure and is incorporated by refer 
ence herein in its entirety. 

Date Size Name 

May 16, 2008 48,810 RENAME.TXT 

The above file contains source code for a computer program 
written in the C language for one embodiment of the inven 
tion. 

COPYRIGHT NOTICE 

0004. A portion of the disclosure of this patent document 
contains material that is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by anyone of the patent document or the patent disclo 
sure, as it appears in the Patent and Trademark Office patent 
files or records, but otherwise reserves all copyright rights 
whatsoever. 

BACKGROUND 

0005 Dynamically-typed programming languages (such 
as the MATLABR) programming language) provide a power 
ful prototyping and development mechanism for program 
mers. Because Such programming languages allow variables 
to take on the types of expressions that are assigned to them 
during program execution, programmers do not have to worry 
about details such as declaring the variable types or creating 
functions specific for a given variable type. Such languages 
Support a programming style where programmers create (or 
in Some cases, recreate) variables based on local contexts. 
Variables are frequently used in several different ways and for 
several different purposes because programmers basically 
just create variables as they need them. 
0006 While dynamically-typed languages support a 
relaxed programming style for programmers, they present 
significant challenges for the programming tools that Support 
them. In particular, the most obvious methods for executing 
dynamically-typed languages provide extremely slow execu 
tion speeds. The result is that programmers cannot develop 
large applications in a dynamically-typed language because a 
program of any significant size requires too much time to run. 
The key to making dynamically-typed languages useful is 
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optimizing their execution performance, increasing their 
execution speed and thereby decreasing the time required to 
execute programs of any significant size. The technology 
behind Such execution improvement is commonly called 
“code optimization', and the tool used to effect those 
improvements is commonly called a “code optimizer” or just 
“optimizer”. 
0007 Optimizers work by “statically’ analyzing a pro 
gram prior to its execution (or its “run-time') to predict how 
the program will behave when executed on input data. Using 
those predictions, optimizers change the code that is executed 
So as to minimize the run time required to perform the calcu 
lation. In a very simplistic example, an optimizer will analyze 
a program that always computes and prints “7*6', and realize 
that the program will always print “42. In such a case, the 
optimizer will remove all instructions used in the computa 
tion, and leave in only the instructions required to print “42. 
The effectiveness of an optimizer depends on its ability to 
predict, prior to program execution, how a program will 
behave when it executes. 
0008 Dynamically-typed languages present a significant 
challenge for optimizers, since by their very nature dynami 
cally-typed languages hide information until execution time. 
Since the optimizer has less information prior to execution 
about how a program behaves when it executes, the optimizer 
is less able to statically predict program behavior and is 
thereby limited in its ability to improve program execution. 
0009. The most significant hindrance in dynamically 
typed languages is the inability to statically distinguish 
between function calls and array accesses. In many program 
ming languages, function calls are distinguished syntactically 
by the appearance of parentheses; e.g. a function call in the 
Source is indicated by “function name (arg1, arg 2, . . . ). 
Parentheses are also commonly used to indicate array 
accesses (or memory accesses) in languages; e.g. an array 
access in the Source is indicated by "array name (subscript 1. 
Subscript 2, . . . ). Statically-typed languages are able to 
easily distinguish between these different uses from variable 
declarations. The programmer has to provide extra informa 
tion about the variables to the compilation tool, which allows 
the tool to determine whether a given usage is an array access 
or a function call. In dynamically-typed languages, however, 
where variables can change type during the execution of a 
single assignment statement, such hints are not readily avail 
able. For instance, the variable 'x' can be used as a function 
call in one statement of a program in the form “X(1,1), then 
be used as an array access two statements later in the same 
form: “x(1,1). Users cannot always easily determine 
whether a given reference is a function call or array access, 
making it difficult for them to provide hints to a compilation 
tool. 

0010 A programming reference such as “x(1,1) above 
which may be either a function call or a memory access when 
examined from a strictly syntactic analysis is known as an 
“ambiguous reference” and the variable associated with that 
reference (“X” in the example) is known as an "ambiguous 
name’. "Function calls' are variable references that when 
executed in the interpreter cause the program counter of the 
computer to jump to a non-sequential location, execute some 
number of instructions, then jump back to the next sequential 
instruction (accounting for “branch slots') following the 
function call. An “array access” is a reference to a variable 
that represents a collection of elements; the access may either 
fetch or set the values for some number of that collection. A 
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“scalar access” is a reference to a variable that represents one 
element, and the access may either fetch or set the value of 
that element. “Memory access' refers to either an array 
access or Scalar access, particularly when the collective 
nature of the variable is unknown. Ifa programming reference 
is used as a function call along some execution paths and as a 
memory access along other execution paths, the reference is 
considered a "dual usage'. 
0011. The MATLAB(R) programming language (as 
defined by the MATLAB interpreter version 13.1) is one 
example of a dynamically-typed language. It not only Sup 
ports parentheses as the syntactic notation for both function 
calls and array accesses, but it also requires that a function 
that takes no arguments be called without following paren 
theses. This means that a simple variable access (in MAT 
LAB, such a reference can be either scalar or vector) is 
ambiguous with function calls. This ambiguity greatly 
increases the difficulty of building effective programming 
tools for the language. 
0012. The MATLAB programming language is defined by 
the actions of the interpreter provided for the language by The 
MathWorks, Inc. Interpreters are useful programming tools 
for dynamically-typed languages, in that they provide a 
mechanism naturally Suited for resolving typing questions 
during execution. Interpreters create and maintain an execu 
tion state environment (such as a symbol table) while they 
dynamically execute a program. This environment allows an 
interpreter at any point during execution to examine the state 
of the program, including the values and types that have been 
assigned to variables. This environment allows an interpreter 
to easily resolve any ambiguity between array accesses and 
function calls, because it can determine precisely the charac 
teristics of the variable in question. The following paragraph 
(from “MATLAB: The Language of Technical Computing 
Using MATLAB Version 6”. The MathWorks, Inc., 2002. p. 
16-13) describes how MATLAB resolves variables as it 
eXecutes: 

0013 “When MATLAB comes upon a new name, it 
resolves it into a specific function by following these steps: 
0014. 1 Checks to see if the name is a variable. 
0.015. 2 Checks to see if the name is a subfunction, a 
MATLAB function that resides in the same M-file as the 
calling function . . . . 
0016 3 Checks to see if the name is a private function, a 
MATLAB function that resides in a private directory acces 
sible only to M-files in the directory immediately above it.. 

0017. 4 Checks to see if the name is a function on the 
MATLAB search path. MATLAB uses the first file it encoun 
ters with the specified name’ 
0.018. Once MATLAB has identified a name as a function 
rather than as a variable, it resolves the function using the 
following algorithm (“MATLAB: The Language of Technical 
Computing. Using MATLAB Version 6”. The MathWorks, 
Inc., 2002. pp. 21-67 and 21-68): 
0019 
0020. The function precedence order determines the pre 
cedence of one function over another based on the type of 
function and its location on the MATLAB path. From the 
perspective of method selection, MATLAB contains two 
types of functions: those built into MATLAB, and those writ 
ten as M-files. MATLAB treats these types differently when 
determining the function precedence order. 

“Function Precedence Order 
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0021 MATLAB selects the correct function for a given 
context by applying the following function precedence rules, 
in the order given. 
0022. For built-in functions: 
(0023. 1) Overloaded Methods 
0024. If there is a method in the class directory of the 
dispatching argument that has the same name as a MATLAB 
built-in function, then this method is called instead of the 
built-in function. 
(0025, 2) Nonoverloaded MATLAB Functions 
0026. If there is no overloaded method, then the MATLAB 
built-in function is called. MATLAB built-in functions take 
precedence over both Subfunctions and private functions. 
Therefore, subfunctions or private functions with the same 
name as MATLAB built-in functions can never be called. 
0027. For nonbuilt-in functions: 
(0028. 1) Subfunctions 
0029 Subfunctions take precedence over all other M-file 
functions and overloaded methods that are on the path and 
have the same name. Even if the function is called with an 
argument of type matching that of an overloaded method, 
MATLAB uses the subfunction and ignores the overloaded 
method. 
0030) 2) Private Functions 
0031 Private functions are called if there is no subfunction 
of the same name within the current scope. As with Subfunc 
tions, even if the function is called with an argument of type 
matching that of an overloaded method, MATLAB uses the 
private function and ignores the overloaded method. 
0032 3) Class Constructor Functions 
0033 Constructor functions (functions having names that 
are the same as the (abdirectory, for example (a polynom/ 
polynom.m) take precedence over other MATLAB functions. 
Therefore, if you create an M-file called polynom.m and put 
it on your path before the constructor (apolynom/polynom.m 
version, MATLAB will always call the constructor version. 
0034) 4) Overloaded Methods 
0035. MATLAB calls an overloaded method if it is not 
masked by a Subfunction or private function. 
0036 5) Current Directory 
0037. A function in the current working directory is 
selected before one elsewhere on the path. 
0038. 6) Elsewhere on Path 
0039 Finally, a function anywhere else on the path is 
selected.” 
0040. Because the MATLAB interpreter dynamically 
maintains the program state, it can precisely resolve any 
ambiguity in the use of a name. 
0041. The just-described method for resolving the 
ambiguous usage of a name in a statement is well-suited for 
an interpreter, but does not work for a compiler because the 
compiler must create executable code well before any state 
ments in the program being compiled are executed. Specifi 
cally, whether or not a name is defined as a function at the time 
of execution of a particular statement is unknown ahead of 
time. Compilers and related tools work by statically predict 
ing the program's execution at run-time. Because they are 
predicting, and not directly executing, these tools do not have 
the advantage of a dynamically-maintained execution state. 
0042. Resolving the ambiguity, particularly between func 
tion calls and array/memory accesses, is an extremely impor 
tant problem. Since function calls may have widely different 
effects on a program's state than array accesses, separating 
them is critical to the Success of any program analysis such as 
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optimization. For instance, determining how information 
flows across procedure calls is an important area of analysis. 
Such analysis is impossible to perform without knowledge of 
the procedure calls, which cannot be determined unless pro 
cedure calls, memory accesses, and dual usages are separated. 
This type of information, which is typically used to build a 
call graph of the procedures and analyze across them, is 
valuable both to compiler tools and to interpreters that want to 
pre-optimize program performance before initiating execu 
tion. This information may also be useful in contexts other 
than building a call graph, such as when performing localized 
procedure inlining. 
0043. Because of the significance of the problem, much 
research has been performed on the problem of statically 
distinguishing among function calls, array/memory accesses, 
and dual usage in ambiguous dynamically-typed languages. 
De Rose and Padua (De Rose, Luiz, and Padua, David, “Tech 
niques for the Translation of MATLAB Programs into Fortran 
90'. ACM Transactions on Programming Languages and 
Systems, Vol 21, No. 2, March, 1999. Pages 286-323) devel 
oped a state transition diagram to be used with a simple walk 
over the program representation to distinguish function calls, 
array accesses, and dual usages. This approach suffers from 
two deficiencies: a) it does not take advantage of control flow, 
and b) it does not account for the fact that a dynamically 
typed language may have multiple variables that share the 
same name. The first deficiency will cause the approach to 
incorrectly label Some cases of dual usage. The second defi 
ciency will cause the approach to label as dual usages many 
variables that are not. In particular, since dynamically-typed 
languages allow variables to be created and destroyed as 
values are assigned to them, it is very feasible for a variable to 
be a function call in the first part of a program and an array 
access in the later part in essence, being two completely 
different variables. De Rose and Padua's technique will force 
the two variables into one, causing a false dual usage. A 
compiler transformation “variable renaming eliminates this 
false usage when utilized in the embodiment of this invention. 
0044 Almasi and Padua developed a different approach 
based on a data flow analysis framework in a 2002 paper 
(Almasi, George and Padua, David, “MajIC: Compiling 
MATLAB for Speed and Responsiveness”, ACM Conference 
on Programming Language Design and Implementation, 
June, 2002, Pages 294-303). Their approach is based on a 
dataflow analysis approach using the fact that “a symbol that 
has a reaching definition as a variable on all paths leading to 
it MUST be a variable' (emphasis added). They incorporate 
this fact into a meet-over-all-paths data analysis framework 
by defining for each statement a set S of symbols which are 
known to be variables at that statement. The sets can then be 
computed for every statement by any number of well-known 
techniques for computing fixed-point Solutions in a lattice. A 
similar, but different, meet-over-all-paths analysis frame 
work can be set up to determine that set of variables at each 
statement that are known to be function calls. 

0045 Almasi and Padua's approach provides significantly 
more precision than De Rose and Padua's approach, but still 
suffers from two significant disadvantages. First, different 
approaches are required to compute variables and function 
calls: the computations, while similar, cannot be performed 
simultaneously on the same data. This means that computing 
both the variables and the function calls requires roughly 
twice the amount of some resource (a skilled practitioner will 
realize that time and memory can be traded off in pro 
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grammed computers, so that computing both requires 
roughly either twice the memory or twice the computation 
time of computing either alone). Since it is necessary to 
compute both in order to compute “dual usage variables, this 
extra overhead is required for most programs. Second, in 
addition to neither approach (that is, to computing function 
calls and variable accesses) being able to solve the other 
problem, neither approach can be applied to other data flow 
problems, such as dead code elimination, constant propaga 
tion, or variable renaming. These transformations are data 
flow analysis problems that are commonly used by compilers 
and interpreters to improve program execution. Since they 
require a different dataflow lattice than that used by Almasi 
and Padua, an optimizer that attempts both Almasi and Pad 
ua's approach and common optimization transformations 
will incur even more computational overhead. 
0046. A problem similar to that of inferring function calls 
in ambiguous, dynamically-typed languages is the problem 
of detecting uninitialized variables in statically-typed lan 
guages such as FORTRAN. U.S. Pat. No. 5,615,369 granted 
to Holler on Mar. 25, 1997, which is incorporated by refer 
ence, specifies an invention for detecting and initializing 
uninitialized variables in FORTRAN. Holler's framework 
computes over all paths whether it is possible for the use of a 
variable to reach back to the entry of a program without 
passing through a definition of that variable. If so, the variable 
may be uninitialized when used, and the invention inserts an 
initialization at the source. Holler's method provides the same 
dataflow lattice that is used in more conventional optimiza 
tion problems, allowing it to be reused for other transforma 
tions. However, Holler's approach computes information 
overall possible control flow paths, causing it to be expensive 
to compute in some instances. 
0047 Dataflow analysis frameworks, lattices, and tech 
niques are well known in the art and are discussed fully in 
Chapter 4 of a book by Allen, Randy and Kennedy, Ken 
entitled “Optimizing Compilers for Modern Architectures'. 
Morgan Kaufmann publishers, 2002. This chapter is incorpo 
rated by reference herein in its entirety. The goal of dataflow 
analysis is to relate each “use of a variable in the program 
(where “use' means any programming construct that may 
read or in any other way use the value that the variable 
contains in the computer's memory) to all possible “defini 
tions of that variable in the program (where “definition 
means any programming construct that may set or change the 
value that the variable contains in the computer's memory) 
that can possibly set the value that the use may receive. 
“Definitions are also commonly called “defs'. A “reference' 
(or “ref) is any form of reference to a variable, either a use of 
the variable or a definition of the variable 

0048. It is well known in the art how to go from a definition 
of a variable to all locations in a computer program that may 
use the definition at execution time. Specifically, a “defini 
tion-use chain' is a data structure that is commonly used to 
perform such an operation. A definition-use chain is com 
prised of nodes and edges, where nodes represent variable 
references in the user's program, and an edge exists between 
two nodes when one node is a definition whose value may be 
used by the second node. In other words, an edge connects a 
definition to all possible runtime uses of that definition. While 
edges are normally indicated as going from definition to use, 
following the flow of data within the program, they may be as 
easily thought of as flowing from use to def (indicating a use 
that needs a value defined by the def), and a skilled artisan can 
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easily construct data structures that allow both forms to be 
used. Note that the term “definition use graph' is more appro 
priate than the traditional “definition-use chains' because 
“graph more correctly characterizes the nature of the infor 
mation the data structure contains. The definition-use chain 
(or graph) is essentially a scalar version of true dependences 
within a program. Note that each node in a definition use 
graph is also referred to as a “permanent node' if the node 
represents a permanent definition (e.g. represents a statement 
or represents a variable) originally present in the user's com 
puter program. In contrast if a node represents a temporary 
definition that is added automatically (for all variables in most 
embodiments) then the node is called a “temporary node'. As 
noted below, a temporary node becomes a permanent node in 
Some embodiments during optimization if a variable in the 
user's computer program was originally undefined. 
0049 Constructing definition-use edges within a single 
straight-line block of code is well known. One visits each 
statement in order in the basic block, noting the variables 
defined by each statement as well as the variables used by 
each statement. For each use, an edge is added to the defini 
tion use graph for that use back to the last exposed definition 
in the block of that variable in other words, to every defini 
tion that reaches the use. Whenever a new definition is 
encountered for a variable, the new definition kills (i.e. over 
writes) the existing definition, so that later uses are linked 
only to the new definition, not to the old. When the end of the 
block is reached, the definition use graph is complete. 
0050 Constructing a definition-use graph across a pro 
gram comprised of more than a single straight-line block of 
code is more complicated. Standard art contains many differ 
ent methods for computing definition-use graphs for pro 
grams containing control flow, many of which are Summa 
rized in Chapter 1 by Kennedy, Ken entitled “A survey of 
data-flow analysis techniques'. In a book by S. S. Muchnick 
and N.D. Jones, editors, “Program Flow Analysis: Theory and 
Applications., pp. 1-51. Prentice Hall publishers, 1981. At a 
high level, the methods all work by decomposing a program 
into simpler units (basic blocks, intervals, or others) and a 
control flow graph indicating the flow between the units. In a 
local pass, information is computed for each individual unit, 
regardless of the control flow among the units. Such informa 
tion typically consists of sets of variables that are used, 
defined, killed (“kills' are definitions where all existing val 
ues in a variable can safely be assumed to be replaced), and 
reaches (“reaches' are definitions that can reach a given use). 
This local information is then combined into global informa 
tion by propagating it along the control flow graph, using any 
of a number of dataflow propagation techniques (including 
iterative, interval, parse, and others). After the global infor 
mation is available for the whole program, a definition-use 
graph can then be constructed by distributing the information 
back across the local units. 

0051 Dataflow information (e.g. in most embodiments 
definitions and uses) are propagated by several techniques 
(i.e. iterative, interval, and so on) are based on framing the 
problem inside a lattice(also referred to in this patent appli 
cation as a dataflow framework). A lattice, as defined in S. 
Muchnick, Advanced Compiler Design and Implementation, 
Morgan Kaufmann, 1997, consists of a set of values and two 
operations “meet” and join', both of which are closed, com 
mutative, associative, distributive (in this patent application, 
but not in general), and monotonic (again in this patent appli 
cation, but not in general). A lattice also has two designated 
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elements “top” and “bottom'. All the dataflow propagation 
techniques discussed at the beginning of this paragraph can be 
applied to any problem that can be embedded in such a lattice 
(or dataflow framework). Propagating uses and definitions of 
variables is certainly one type of information embedded in a 
lattice in all embodiments of the invention. 
0052. When definitions and uses are propagated through a 
lattice, it is often convenient to abstract the resulting flow of 
data in a definition-use graph. Definition-use graphs can be 
embodied in a number of different forms, including linked 
lists, bit matrices, sets, bit vectors, etc. While the description 
of the techniques most often refers to a linked list of edges, 
skilled practitioners will readily recognize that all represen 
tations are equivalent in terms of the application of this inven 
tion. 
0053) One of the reasons that the ability to distinguish 
function calls from memory accesses is critical to optimizing 
programs written in a dynamically-typed language is that an 
understanding of function calls is critical to constructing defi 
nition-use graphs and optimizing transformations. A memory 
access that is only a use (a fact that can be determined from a 
Syntactic analysis of the program in most languages that are 
not dynamically-typed) is guaranteed not to change the State 
of memory (other than registers) in a programmed computer. 
A memory access that is a definition (a fact that can again be 
determined from a syntactic analysis of the program in most 
languages that are not dynamically-typed) is guaranteed to 
change only a limited number of elements of memory of a 
programmed computer. A function call, however, can execute 
an arbitrary number of instructions, which may fetch and set 
any number of elements of a computer's memory. Since the 
goal of optimization is to predict at compile time what a 
program is going to do at run time, function calls are a large 
source of unpredictability, and thus are difficult for optimiza 
tion techniques to handle. Memory accesses, on the other 
hand, have a limited set of effects, and are much more easily 
handled. As a result, separating function calls from memory 
accesses is critical to effectively optimizing a program, and in 
particular to constructing an accurate definition-use graph for 
a program. 
0054 “Entry points” and “entry nodes' are well defined 
terms in compiler literature. An entry point is a program 
location by which control may enter a function. In many 
programming languages, that is a single statement. Such as in 
MATLAB, where the function header is the only entry point. 
In other languages, such as FORTRAN, multiple entry points 
into a procedure are Supported, and any of those serves as an 
entry point. For analysis, compilers often simplify programs 
with multiple entry points by creating one unique entry point 
and by making the multiple entry points labels. When control 
reaches the unique entry point, it immediately branches to the 
appropriate label representing the former entry point to which 
control was to transfer. An “entry node' is the intermediate 
representation of the unique entry point. 

SUMMARY 

0055. Several embodiments of the invention at least par 
tially resolve an ambiguous usage of a name (also called an 
"ambiguous name' or "ambiguous reference') in a statement 
(also called "ambiguous statement”) of a computer program, 
by automatically adding to an entry statement thereof a defi 
nition that includes the ambiguously used name (the added 
definition is also called “temporary definition'), followed by 
constructing a definition-use graph, followed by checking 
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whether or not an edge from the temporary definition reaches 
the statement containing the ambiguously used name. 
0056. If all edges into the ambiguous statement are from 
the temporary definition, then the name is deemed to be a 
function call. If all edges into the ambiguous statement are not 
from the temporary definition, then the name is deemed to be 
a memory access. If some edges into the ambiguous statement 
are from the temporary definition but other edges into the 
ambiguous statement are not from the temporary definition, 
then the name is deemed to be a dual usage (or an undefined 
usage) by the programmer. 
0057. If all ambiguities in a computer program are 
resolved (to be either a function call or a memory access), 
then the program is thereafter compiled, in the normal man 
ner. If any ambiguity remains unresolved (i.e. is neither a 
function call nor a memory access), then the statement is 
flagged, so that the programmer may take an appropriate 
action. For example, in Such a case, the programmer may 
eliminate a dual usage by changing the name into a unique 
name, if the program is to be compiled. Alternatively, the 
programmer may maintain the dual usage, but not compile the 
program and instead use the interpreter so that the ambiguity 
in Such dual usage is resolved at run time in the manner 
described above in the Background section. 

BRIEF DESCRIPTION OF THE FIGURES 

0058 FIG. 1 illustrates, in a flow chart, acts performed by 
Some embodiments of the invention for resolving an ambigu 
ous reference as a function call, memory access, or dual 
usage, and for using that information to analyze a program 
interprocedurally in order to improve its execution. 
0059 FIGS. 2A and 2B illustrate, in a high level block 
diagram, the flow of data through a user's source program and 
corresponding intermediate representation in a computer's 
memory for an ambiguous reference that resolves into a dual 
uSage. 
0060 FIGS. 3A and 3B illustrate, in a high level block 
diagram, the flow of data through a user's source program and 
corresponding intermediate representation in a computer's 
memory for an ambiguous reference that resolves into a func 
tion call. 
0061 FIGS. 4A and 4B illustrate, in a high level block 
diagram, the flow of data through a user's source program and 
corresponding intermediate representation in a computer's 
memory for an ambiguous reference that resolves into a 
memory access. 
0062 FIG. 5 illustrates, in a flow chart, acts performed by 
Some embodiments of the invention in using reaching bits to 
determine function calls, memory accesses, and dual usages. 
0063 FIGS. 6A-6F illustrate, in high level block dia 
grams, data structures contained in a computer's memory in 
Some embodiments during the performance of the acts illus 
trated in FIG. 5. 
0064 FIGS. 7A and 7B illustrate, in a flow chart, acts 
performed by some embodiments of the invention in detect 
ing function calls, memory accesses, and dual usages 
0065 FIGS. 8A-8C illustrate, in high level diagrams, tem 
porary and permanent definition-use edges contained in a 
computer's memory during the performance of the acts in 
some embodiments illustrated in FIG. 7A. 
0066 FIG. 8D illustrates, in a high level block diagram, 
data structures contained in a computer's memory in some 
embodiments for the definition-use edges described in FIGS. 
8A-8C. 
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0067 FIG.8E illustrates, in a high level block diagram, the 
relationship between the data structures contained in a com 
puter's memory in FIG. 8D for some embodiments and other 
structures also present in the computer's memory. 
0068 FIG. 9 illustrates, in a high level flow chart, acts 
performed by some embodiments of the invention when com 
bining variable renaming with the detection of function calls, 
memory accesses, and dual usages. 
0069 FIG. 9A illustrates, in a high level flow chart, acts 
performed by an alternative embodiment when variable 
renaming is performed in a different ordering with respect to 
ambiguous reference resolution. 
(0070 FIG. 10 illustrates, in a high level flow chart, acts 
performed by some embodiments of the invention during the 
construction of the definition-use graph. 
(0071 FIGS. 11 and 12 illustrate, in high level flow charts, 
acts performed by some embodiments of the invention to 
rename variables. 
0072 FIG. 13 illustrates, in a high level flow chart, acts 
performed by some embodiments of the invention to detect 
function calls, memory accesses, and dual usages. 
0073 FIGS. 14A and 14B illustrate, in a block diagram, a 
program where variable renaming will decrease the number 
of dual usages found. 
(0074 FIGS. 15A and 15B illustrate, in a block diagram, 
the effects of variable renaming on the program in FIGS. 14A 
and 14B. 
0075 FIG. 16 illustrates, in a high level block diagram, 
one typical use of the invention. 
(0076 FIGS. 17A-17D illustrate, in high level block dia 
grams, programming constructs where syntactic simplifica 
tion of the analysis is possible for embodiments supporting 
MATLAB. 

DETAILED DESCRIPTION 

0077. In several embodiments of the invention, a computer 
is programmed to at least partially resolve an ambiguous 
usage of a name in a statement of a computer program, by 
adding to an entry statement (or in a statement immediately 
following the entry statement) a definition (also called “tem 
porary definition') that includes the ambiguously used name, 
followed by constructing a definition-use graph of the com 
puter program, followed by checking whether or not an edge 
in the graph from the added definition reaches the statement 
(also called "ambiguous statement') containing the ambigu 
ously used name. 
0078. In some embodiments, this invention enables a pro 
grammed computer to read in a user's computer program 
written in a dynamically-typed language that contains Syn 
tactic ambiguity between function calls and memory 
accesses. The programmed computer is able to resolve the 
ambiguity and classify ambiguous references as either func 
tion calls, variable accesses, or a dual usage (that is, the 
variable may have different types depending on which execu 
tion path is followed). One embodiment of this invention is 
precise to the limits of symbolic execution, providing a sig 
nificant advantage over the prior art by De Rose and Padua 
discussed in the Background section (above). 
0079. One embodiment of the invention is accomplished 
using just one data flow analysis framework, which is also the 
same framework used for other optimization transformations 
(such as constant propagation, dead code elimination, vari 
able renaming, and Such For these reasons, this embodiment 
permits significant computational advantages over the prior 
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art by Almasi and Padua discussed in the Background section 
(above). Note that this embodiment employs definitions tem 
porarily to simplify computational structure and reduce com 
putational expense, and solves the problem of resolving 
ambiguous references (as opposed to detecting and correcting 
uninitialized variables). In this embodiment, “temporary’ 
definitions are automatically inserted prior to or as part of the 
dataflow construction, as a technique of simplifying the data 
flow propagation through the lattice (e.g. by iterative or inter 
Val technique) and resulting analysis. The definitions being 
automatically inserted are temporary because all (or almost 
all) definitions are automatically removed prior to any form of 
optimization or code generation, although in other embodi 
ments, such automatically inserted definitions may be 
retained in the code and removed at a later time. In contrast, 
note that Holler's definitions are automatically inserted to be 
retained permanently, after dataflow construction and analy 
sis, so as to correct for uninitialized variables that have been 
detected. Holler's automatically inserted definitions do not 
enter into the dataflow propagation. They are instead inserted 
after further processing the results of dataflow propagation 
(i.e. after dataflow propagation (also called “dataflow analy 
sis) has been completed). 
0080. Several embodiments are focused on automatically 
identifying function calls, memory accesses, and dual usages 
in ambiguous dynamically-typed languages. In contrast, Hol 
ler's techniques appear to be focused on detecting and cor 
recting uninitialized local variables in statically-typed lan 
guages such as FORTRAN. Despite this different focus, it 
may be worthwhile to see how an embodiment of this inven 
tion is applied to detection and correction of uninitialized 
local variables in FORTRAN. Hollers approach appears to 
involve: a) construct def-use web, b) for each use, see if there 
is an exposed execution path (this step does not appear to use 
the def-use web) from the variable to an entry point, c) if not, 
the variable is always identified as being initialized, d) if some 
paths are exposed but not all, the variable is identified as being 
possibly uninitialized and a definition is inserted at the entry, 
and e) if all paths are exposed, the variable is identified as 
being definitely uninitialized and a definition is inserted at the 
entry. An "exposed execution path' as used by Holler means 
a path from the entry node to the use of a variable such that the 
variable is not defined anywhere along the path. Holler does 
not appear to specify how Such paths are uncovered. As noted 
above, the definitions being inserted by Holler are retained 
permanently (and are to be used by Holler during Subsequent 
steps, such as code generation), because the inserted defini 
tions correct for uninitialized variables. In contrast, one 
embodiment of this invention performs the following acts (in 
the order of description): a) insert temporary definitions for 
all local variables at each entry point without any checking 
(i.e. definitions are automatically inserted regardless of 
whether or not there is an exposed execution path), b) con 
struct a definition-use graph including the temporary defini 
tions, c) for each temporary definition, see if it reaches any 
use, d) if the temporary definition reaches no use, the variable 
is not uninitialized, (note that the definition is eventually 
removed (e.g. by use of a classic optimization called “dead 
code elimination” as described in Allen and Kennedy, chapter 
4, to do this automatically), e) if the temporary definition 
reaches a use, and no permanent definitions reach that use, the 
variable is always identified as being uninitialized, and f) if 
the temporary definition reaches a use and permanent defini 
tions also reach that use, the variable is identified as being 
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possibly uninitialized. These last steps (d), (e) and (f) are 
effected in most embodiments of the invention by a simple 
loop over the edges in the definition-use graph, rather than by 
tracing execution through possible control flows. As a result, 
this embodiment is far more effective computationally in 
solving Holler's problem. In addition, note that this embodi 
ment eliminates the need to explicitly look for and find 
exposed execution paths as done by Holler. Furthermore, if no 
warning messages need be issued, then dead code elimination 
automatically retains any automatically inserted definitions 
that are deemed to be necessary (at which point they become 
permanent definitions), and deletes the automatically inserted 
definitions that are unnecessary. 
I0081 Temporary definitions are known to have been used 
in the prior art at the beginnings of DO loops in vectorizing 
and parallelizing compilers in order to detect Scalar refer 
ences that may be expanded on vector machines or privatized 
on parallel machines, as described in Chapters 5 and 6 of 
Allen and Kennedy and in Chapter 6 of Pieper (Pieper, Karen. 
“Parallelizing compilers: Implementation and effectiveness.” 
PhD. thesis, Stanford Computer Systems Laboratory, June, 
1993.). However, this prior art usage oftemporary definitions 
does not disclose or Suggest their usage in various embodi 
ments of the invention, as described herein. 
I0082 Many embodiments of this invention insert tempo 
rary definitions at critical points in the program flow. Differ 
ent embodiments use different methods to determine how 
those assignments are inserted. For instance, Static Single 
Assignment (also called SSA) is an intermediate representa 
tion that uses program flow to insert definitions at critical join 
points (Allen and Kennedy, Chapter 4). Use of SSA to insert 
temporary definitions for use in resolving ambiguous refer 
ences is one embodiment of this invention. 

0083. Some embodiments of the invention construct a 
definition-use graph that allows for function calls and 
memory accesses to be determined without prior knowledge 
of which references are function calls and which are memory 
accesses. This knowledge is normally required to construct 
definition-use graphs. Holler's technique, for instance, could 
not be applied to this problem, because her construction of 
definition-use graphs requires knowledge of function calls 
(something that is syntactically obvious in FORTRAN), 
which is not available in a dynamically-typed language. 
0084. Because embodiments of this invention formulate 
the resolution of ambiguous references in a dataflow lattice 
used for other conventional optimization problems, they are 
able to directly apply other optimization transformations to 
dynamically-typed languages. For instance, variable renam 
ing (also called Scalar renaming) is a transformation used by 
vectorizing compilers to reduce the complexity of a depen 
dence graph (Allen and Kennedy, Chapter 5.4). To the appli 
cant's knowledge, this transformation has never been 
employed to reduce the number of dual usage references that 
a dynamically-typed program may contain. Embodiments 
that employ this transformation utilize the transformation in a 
novel way and for a novel purpose. Furthermore, this trans 
formation is simpler to implement in embodiments of this 
invention than in other approaches, because embodiments of 
this invention are based on the same dataflow framework used 
for variable renaming. Other approaches use a different 
framework which is not compatible. 
I0085 FIG. 1 illustrates, in a high level flow chart, the 
overall process in Some embodiments. A user may prepare a 
program which contains a name (also called "ambiguous 
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name’) which cannot be syntactically determined to be a 
function call or memory access. “Memory access includes 
both “scalar access” (that is, access to variables that abstractly 
represent a single entity) and "array access” (that is, access to 
variables that abstractly represent a collection of entities; the 
reference may be to either one or multiple of those entities). 
Said program is received in some embodiments of this inven 
tion in act 110 and is converted to a representation that is 
amenable to analysis. 
I0086. After receiving said program, some embodiments of 
the invention insert a “temporary definition of the ambigu 
ous name to the program in act 120. This temporary definition 
does not permanently change the user's computer program; 
the definition is strictly temporary, and is present only to 
enable the analysis. It does not appearin any executable code. 
This is distinctly different from Holler's approach, where 
Such inserted definitions are permanent and appear in the 
executable code. 
0087 FIGS. 2A, 2B, 3A, 3B, 4A, and 4B illustrate the 
program after the temporary definition has been inserted for 
ambiguous names that are resolved into dual usages, function 
calls, and memory access, respectively. In FIG. 2A, a tempo 
rary definition (S0) has been inserted for variable “y” into the 
user's program. Variable “y” is ambiguously used in both 
statements S4 and S5. The temporary definition S0 can reach 
the ambiguous statements S4 and S5 through one execution 
path in the program (visualized by the Solid arrows, proceed 
ing through statements S1 and S3). On an alternative execu 
tion path, the temporary definition is blocked from reaching 
the ambiguous statements. When following the execution 
path (S0, S1, S2, S4}, the temporary definition does not reach 
past statement S2, because S2 defines a new value of “y” a 
“permanent definition' which reaches S4 following the 
execution path indicated by the dotted arrow. Since both the 
permanent definition S2 and the temporary definition S0 
reach the ambiguous statements S4 and S5, the use of “y” in 
S4 and S5 is a dual usage. The reference is a memory access 
when the dotted control pathis followed and is a function call 
when the solid control path is followed. 
I0088 FIG. 2B illustrates the performance of the same 
steps, but on an intermediate program representation Such as 
that used by a compiler or an interpreter. The temporary 
definition 210A is inserted for the ambiguous name “y”. This 
temporary definition can reach the ambiguous statements 
250A and 260A following the execution path indicated by the 
solid arrow (220A, 230A, 250A). On another execution path 
{220A, 240A, 250A), the temporary definition does not reach 
the ambiguous statements; instead the permanent definition 
240A blocks the temporary definition, and the permanent 
definition reaches the ambiguous statement following the 
dotted arrow. The reference is a memory access when the 
dotted control path is followed and is a function call when the 
solid control path is followed. 
I0089 FIGS. 3A and 3B illustrate the performance of the 
same steps when the ambiguous name resolves to a function 
call. In FIG. 3A, the temporary definition S0 for “y” is again 
inserted in the user's source program. This temporary defini 
tion reaches the ambiguous statements S4 and S5 along all 
execution paths (indicated by the solid arrows), so that the 
ambiguous names can be determined to be function calls. 
FIG. 3B repeats the same steps on an intermediate represen 
tation used by a compiler or interpreter. 
0090 FIGS. 4A and 4B illustrate the performance of the 
same steps when the ambiguous name resolves to a memory 
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access. In FIG. 4A, the temporary definition S0 for “y” is 
again inserted in the user's source program. This temporary 
definition is unable to reach either of the ambiguous state 
ments S4 and S5 along any execution path, because perma 
nent definitions blockit alongany path. Since only permanent 
definitions reach the ambiguous statements (along the dotted 
arrows), the ambiguous names can be determined to be 
memory accesses. FIG. 4B illustrates the same steps on an 
intermediate representation used by a compiler or interpreter. 
0091 Returning to FIG. 1, after inserting the temporary 
definition in act 120, embodiments of the invention then 
determine inact 130 whether the ambiguous use is reached by 
both a temporary definition and a permanent definition in 
order to distinguish among the cases illustrated in FIG. 2A, 
2B, 3A, 3B, 4A, or 4.B. If the answer is yes, then the ambigu 
ous use is a dual usage as illustrated in FIGS. 2A and 2B and 
is flagged as such in act 140. Some embodiments cannot 
handle dual usages, and will issue an error message at that 
point. Alternative embodiments only mark the usage as a dual 
usage, and continue processing other statements in the user 
program by proceeding to act 170. 
0092. If the answerinact 130 is “no” (that is, the statement 

is not reached by both temporary and permanent definitions), 
embodiments then test in act 150 whether the ambiguous 
statement is reachable only by temporary definitions. If 
“yes”, then the ambiguous use is marked as a function call in 
act 160 (this is the usage illustrated in FIGS. 3A and 3B) and 
more ambiguous statements are processed in act 170. If the 
answer to act 150 is 'no', the ambiguous use is marked as a 
memory access in act 180 (this is the usage illustrated in 
FIGS. 4A and 4B), and a check is made for more ambiguous 
statements in act 170. 

0093. Once all ambiguous statements have been pro 
cessed, so that the answer to the test in act 170 is 'no', 
different embodiments exploit the information used in differ 
ent ways. For instance, the embodiment illustrated in FIG. 1 
proceeds to improve the execution characteristics of the 
user's program by executing the acts encapsulated in box 190, 
using the information gathered about function calls to build a 
call graph in order to perform interprocedural analysis. It then 
uses the results of that analysis to improve the execution 
characteristics of the user's program. Final execution of the 
user's program in this embodiment is through either a com 
piler or an interpreter. While performing act 190, this embodi 
ment optionally goes back to act 110 to compute information 
about other functions and add that information to the call 
graph. Alternative embodiments skip the calculation of the 
call graph and go directly to more limited interprocedural 
optimizations and analysis. An alternative embodiment per 
forms interprocedural optimizations such as procedure inlin 
ing or procedure cloning without first building a call graph. 
Other embodiments go directly to code generation or execu 
tion without performing any interprocedural analysis. Other 
embodiments indicate that the program is not compilable if it 
contains any variables that are dual usage, and indicate the 
dual usage references with error messages. These, and all 
other embodiments of this invention, have one common fea 
ture: all temporary definitions are either removed from the 
program before code is generated or are ignored during the 
code generation process. The temporary definitions are useful 
in performing the analysis and are removed or ignored once 
the analysis is completed. 
(0094. The test in act 130 of FIG. 1 is answered by different 
methods in different embodiments. Some embodiments use 
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standard data flow analysis techniques to construct definition 
use graphs, reachability sets, or other data structures. Other 
embodiments use different methods such as tracing execution 
paths or control flow to answer the question. FIG. 5 presents 
one embodiment which works by constructing reachability 
sets. In this embodiment, sets are represented as bit vectors. 
Sets can be represented by many different data structures, and 
a skilled artisan can easily extend the techniques described in 
this embodiment to other set representations. The method 
illustrated in FIG. 5 computes four sets (illustrated in FIGS. 
6B, 6D, and 6F) for each statement or basic block in the user's 
program, named DEFINES, KILLS. REACHES, and USES 
for the convenience of illustration. Each element in the set (or 
each bit in the bit vector) represents one “definition' in the 
program, as illustrated in FIGS. 6A, 6C, and 6E. A “defini 
tion' is a variable in conjunction with a statement that defines 
a value for that variable. For instance, in FIG. 6Athere are two 
definitions for the variable “y”. The first element of the vector 
represents the temporary definition of “y” in statement S0; the 
fourth element of the vector represents the definition of “y” in 
statement S2. 

0095 Some embodiments compute the four sets by the 
method illustrated in the high level flow chart in FIG. 5. At a 
high level, the computation breaks down into two general 
passes. Three of the sets are computed using only local infor 
mation (that is, information derived directly from the state 
ment or block) as indicated in the upper dotted box. The 
fourth set is derived by globally propagating the local infor 
mation across the entire program, as indicated in the lower 
dotted box. The result is a set for every block or statement that 
indicates which definitions reach the block or statement. The 
fact that temporary definitions reach a given use can be 
derived from this set, and thus used to identify function calls, 
memory accesses, and dual usages. 
0096. The embodiment illustrated in FIG.5 starts by com 
puting local information for all the statements or blocks. Act 
500 selects a block (or statement; hereinafter “block” will be 
used to indicate either a basic block or a statement) for which 
local information is to be computed. After selecting a block, 
the programmed computer then proceeds to act 510, where it 
selects a definition to process for that block. It then enters the 
effects of that definition on the local sets in acts 505, 515, and 
520. Act 505 builds the DEFINES set; if the variable defined 
by selected definition is also defined in the current block, that 
definition is added to the set (indicated with bit vectors by 
enabling the corresponding bit). If the variable defined by the 
definition is not defined in the current block, the definition is 
not added to the set (indicated with bit vectors by clearing the 
corresponding bit). Act 515 builds the USES set; if the vari 
able defined by the selected definition is used in the current 
block, that definition is added to the set (indicated with bit 
vectors by enabling the corresponding bit). If the variable 
defined by the definition is not used in the current block, the 
definition is not added to the set (indicated with bit vectors by 
clearing the corresponding bit). Act 520 builds the KILLS set. 
If the selected definition cannot reach beyond the current 
block because the block defines a value that totally overwrites 
the definition (a situation called “killing the value), the defi 
nition is added to the set (again by enabling the corresponding 
bit in the bit vector). If not, the definition is not added to the 
set (indicated by clearing the corresponding bit). The selected 
definition is removed from a fourth set (REACHES) by act 
530. This set will be computed in the global pass using the 
first three sets. Act 525 moves through the next definition and 
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proceeds back to act 510 until all definitions have been pro 
cessed. Act 535 moves through the next block and proceeds 
back to act 500 until all blocks have been processed, thereby 
completing the computation of local information. 
0097. Once local information has been computed, the pro 
grammed computer proceeds to compute global information 
by setting a flag “changed to true in act 540. In this embodi 
ment, the programmed computer calculates the global infor 
mation by repeatedly propagating information through the 
control flow graph until no changes occur during propagation 
(that is, a fixed point is reached). The flag “changed is used 
to drive that iteration. After setting “changed to true, the 
programmed computer enters a loop at act 545 that tests 
whether “changed’ is true. If it is true (which it will be on the 
first iteration given act 540), the loop is entered and 
“changed” is initialized to false in act 550. A block (or state 
ment) is selected in act 560; that block is used in act 570 to 
update values for the four sets by propagating information 
from block to block. Different embodiments use different 
methods for updating these values. One specific embodiment 
updates this information for a block “b” using the equation: 
“REACHES(b)=REACHES(b)(DEFINES(p)|(REACHES 
(p) & -KILLS(p)))' where “p' is iterated over all predeces 
sors of “b' in the control flow graph. Whenever REACHES 
(b) changes for a given block “b’, the flag “changed’ is set to 
true. After that, the programmed computer checks in act 580 
whether all statements have been processed. If not, it selects 
another statement to process in act 560 and continues iterat 
ing. If yes, one iteration of propagation has been completed, 
and the programmed computer proceeds to act 545 to test 
whether global information has been completely computed. 
If not, it performs another round of propagation via act 550. 
Otherwise, it executes act 555 to make use of the global 
information to separate function calls, memory accesses, and 
dual usage. 
0.098 Inact 555, the programmed computer selects a state 
ment to analyze for function calls, memory accesses, and dual 
usages. Once selected, the programmed computer executes 
act 565 to use at least the fourth flag to determine whether the 
statement contains a dual usage. Different embodiments take 
different approaches to determining this. One exemplary 
embodiment intersects the REACHES set for the current 
statement with the USES set for that statement. If the result 
ing set contains members for a variable that are all temporary 
definitions, that variable is used as a function call in the 
statement. If the resulting set contains members for a variable 
that are all permanent definitions, the variable is used as a 
memory access. If the resulting set contains both elements 
that are permanent definitions and elements that are tempo 
rary definitions for a variable, that variable is a dual usage. 
0099. After setting the type of usage, the programmed 
computer executes act 575 to determine whether all state 
ments have been examined. If not, it proceeds to act 555 and 
repeats the process. If so, the computer proceeds via act 585 
to continue the optimization, compilation, interpretation, or 
other acts starting after act 170 from FIG. 1. 
0100 FIGS. 6A-6F illustrate the sets computed by one 
embodiment of the invention. FIGS. 6A and 6B illustrate the 
final sets after global information is computed for the 
example program illustrated in FIGS. 2A and 2B. FIG. 6A 
illustrates which position in the bit vector corresponds to 
which definition. For instance, the leftmost element of the bit 
vector corresponds to the definition of variable “y” in state 
ment S0; the next bit corresponds to the definition of “x” in 
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statement S3; and so on. Since statement S0 has been tempo 
rarily inserted to hold the temporary definitions, any defini 
tion that emanates from S0 is a temporary definition, and all 
other definitions are permanent definitions. Thus, the leftmost 
bit of the four bit vectors (corresponding to the definition of 
y” in S0) represents a temporary definition; all other bits 

represent permanent definitions. 
0101 FIG. 6B illustrates the bit vectors at the end of the 
global computation. Since S0 holds the temporary defini 
tions, the DEFINES vector for it has all bits corresponding to 
temporary definitions enabled (i.e. the left most bit). Since 
that temporary definition is for “y”, the statement will kill all 
definitions involving the variable “y”. The KILLS vector 
indicates this by having bits 1 and 4 (counting from the left) 
enabled, corresponding to the temporary definition of “y” in 
S0 and the permanent definition of “y” in S2. No other state 
ments in the program reach S0, so its REACHES vector is all 
Zeros, and it holds only temporary definitions that take no 
inputs, so its USES vector is likewise all Zeros. Since state 
ment S1 is an “IF test, it neither defines nor kills any vari 
ables, indicated by Zero DEFINES and KILLS vectors. The 
definition of “y” in S0 can obviously reach the statement 
(indicated by the leftmost bit of REACHES enabled), and 
since S1 tests the input value of “x’, it can use any definition 
of 'x'' that reaches the statement. This includes the uses in S3 
and S5 (indicated by the corresponding bits in the USES 
vector) if they can reach the statement; the REACHES vector 
has shown that they cannot. S2 is an assignment of “1” to “y”. 
thereby comprising a permanent definition. Since it corre 
sponds to the fourth definition, the fourth bit from the left is 
enabled in DEFINES. Since it kills all values of “y” that reach 
it, bits for the definitions of “y” in S0 and S2 are enabled in the 
KILLS vector. The only definition that reaches it is the tem 
porary definition of “y”, and since the values used are con 
stants, no definitions are used by the statement. S3 is an 
assignment of '2' to “x”. It is the source of the second 
definition, which explains the bits in the DEFINES and 
KILLS vectors. The only definition which can reach it is the 
temporary definition, and it uses no variables. 
0102 S4 and S5 are the ambiguous statements in this 
program. Since S4 defines “Z” and S5 defines “x', their 
KILLS and DEFINES vectors are similar, varying only in the 
different variables defined and in the fact that there are two 
definitions for 'x' in the program but only one for “Z”. Both 
statements use “y”, so the USES vector is identical for each. 
The REACHES vector for S4 indicates that the definitions for 
“y” in S0 (temporary), “x” in S3 (permanent), and “y” in S2 
(permanent) reach it. The REACHES vector for S5 is similar, 
containing the extra definition of “Z” in S4 (which cannot 
reach itself). The REACHES vector for S4 indicates that the 
temporary definition of “y” from S0 can reach statement S4 
(by following the solid execution through S3), the permanent 
definition of “y” from S2 can reach statement S4 (by follow 
ing the dotted execution path), and the permanent definition 
of “x” in S3 can reach statement S4 (following the solid 
execution path). Because the embodiment presented in FIG.5 
utilizes an arbitrary selection step, it is impossible to precisely 
demonstrate the steps in which these four vectors are devel 
oped. However, since the embodiment iterates to a fixed 
point, the final result is the same regardless of how it gets 
there. 

(0103) The fourth bit vector (REACHES) is used in act 565 
of FIG.5 to determine whether the use of “y” in statement S4 
is a function call, memory access, or a dual usage. Since S4 
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uses both the first and the fourth definition (counting from the 
left), and since the first definition is a temporary definition for 
“y” and the fourth definition is a permanent definition for “y”. 
the programmed computer would determine that the usage is 
a dual usage. 
0104 FIGS. 6C and 6D illustrate the same embodiment 
applied to the input program illustrated in FIGS. 3A and 3B. 
In FIG.3A, the permanent definition of"y” in S2 (in FIG. 2A) 
that killed the temporary definition has been converted to a 
definition of “x'. This causes an extra use to appear in USES 
for S1 (since S1 uses “x' and a new definition has been 
created for “x', a new member is added to USES) and a new 
set of KILLS and DEFINES to occur for S2 (since it now 
defines “x' rather than “y”). The computation steps are the 
same, and given that the new definition was substituted 
directly in place of the old definition in the bit vector, the 
REACHES vector for the ambiguous statements S4 and S5 is 
the same. However, since the fourth definition (that in S2) is 
now for 'x' rather than 'y', S4 and S5 no longer use it. This 
removes one entry from the USES vector. As a result, S4 and 
S5 now only use the leftmost definition, which is the tempo 
rary definition. As a result, all reaching definitions are tem 
porary, and the use is determined to be a function call. 
0105 FIGS. 6E and 6F illustrate the same embodiment 
applied to the input program illustrated in FIGS. 4A and 4B. 
The program in FIGS. 4A and 4B differs from the one in 
FIGS. 2A and 2B only in that the assignment in S3 has been 
converted into a definition of “y”, rather than a definition of 
“x”. This causes changes to the DEFINES and KILLS sets for 
statement S3. The computed REACHES sets for the ambigu 
ous statements S4 and S5 show that definitions 2 and 4 reach 
the statement, but the leftmost temporary definition does not. 
This is because the value of the temporary definition is 
blocked or killed along every control path from S0 to S4 and 
S5. Since definitions 2 and 4 are both permanent definitions, 
all reaching definitions are permanent, and the use is deter 
mined to be a memory access. 
0106 FIGS. 7A and 7B illustrate, via a high level flow 
chart, an alternative embodiment for determining the infor 
mation required in act 130 of FIG. 1, using definition-use 
edges. The embodiment illustrated in FIG. 7A (as do all 
embodiments) inserts a temporary definition via act 700 for 
each variable used in the program into an entry statement for 
the program. Note that other embodiments prune the number 
of temporary definitions that are required by analyzing the 
program for syntactic indicators of variables that must be 
either variables or functions. For instance, in most program 
ming languages, variables that appear directly to the left of an 
assignment operator cannot be function calls. Alternative 
embodiments utilize indicators such as this, input from users, 
or other similar methods to reduce the number of temporary 
definitions that are required. Some of the indicators used by 
alternative embodiments are illustrated in FIGS. 17A-17D. 

0107. Once the temporary definition has been inserted in 
act 700, the programmed computer computes a definition-use 
graph for the program in act 705. This computation is illus 
trated for one embodiment in FIG. 7B. In computing the 
definition-use graph, the programmed computer assumes that 
any ambiguous references are memory accesses, rather than 
function calls. This assumption simplifies the computation of 
the graph, and is valid assuming that functions are notable to 
directly set variables in other function's calling spaces. 
0108. Once the definition-use graph has been computed, 
the programmed computer selects a statement in act 710 in 



US 2008/0216061 A1 

which to resolve ambiguous references. Having selected a 
statement, the computer next selects an ambiguous name in 
act 715. In act 720, the programmed computer examines all 
the definition-use edges into the current statement that result 
from the ambiguous name. FIGS. 8A, 8B, and 8C illustrate 
definition-use graphs and the possible patterns that may occur 
with respect to temporary and permanent definitions. 
0109. A definition-use graph is a graph that provides a link 
from a definition of a variable to all uses that may possibly use 
it, and simultaneously, a link from a use of a variable to all 
definitions that may set the value it receives. These links may 
be effected in many different ways, and a skilled artisan, in 
view of these disclosures, may easily apply these different 
implementations to this problem. FIG. 8A illustrates the defi 
nition-use graph for the program input from FIG. 2A, with 
only the edges created by the variable “y” shown. Edges from 
the temporary definitions (also called “temporary edges') are 
dotted; edges from permanent definitions (also called “per 
manent edges') are solid. In FIG. 8A, there are two edges 
emanating from statement S0 (both dotted, since S0 is a 
temporary definition). One of the edges goes to statement S4. 
representing the fact that the temporary definition may be 
used for a value of “y” in statement S4, and the other goes to 
statement S5. Similarly there are permanent edges from S2 to 
S4 and S5, representing the fact that the value created for “y” 
in S2 may be used by S4 and S5. The full graph will also 
contain edges for the definitions and uses of variable “x': 
these edges have been omitted for clarity. 
0110 FIG. 8B illustrates the definition-use graph for the 
program input from FIG. 3A, with only the edges created by 
the variable “y” shown. Dotted edges emanate from S0 to S4 
and S5, representing the fact that only temporary edges can 
create values for “y” as used in S4 and S5. Again, the full 
graph will also contain edges for the definition and uses of 
variable “x'; these edges have been omitted for clarity. FIG. 
8C illustrates the definition-use graph for the program input 
from FIG. 4A. There are permanent edges from each of S2 
and S3 to S4 and S5, representing the fact that S2 and S3 are 
the only source of value for “y” as used in S4 and S5. Again, 
the full graph will also contain edges for the definition and 
uses of variable “x'; these edges have been omitted for clarity. 
0111. Note that FIGS. 6A-6F illustrate one embodiment of 
the invention which utilizes reachability sets in the form of bit 
vectors to represent the dataflow information. Another 
embodiment illustrated in FIGS. 8A-8C represents dataflow 
information as a definition-use graph. Other embodiments 
use other representations. To the best knowledge of the appli 
cant, there is no one best embodiment of this invention with 
respect to representation of dataflow information. Instead, the 
best embodiment depends on other factors surrounding the 
invention. For instance, if the invention is used as part of an 
optimizing compiler for a dynamically-typed language, 
where other dataflow-based optimizations are to be per 
formed, a definition-use graph may be the best choice (de 
pending on which optimizations are to be performed), since it 
simplifies many transformations. If, instead, the invention is 
used as part of an interpreter which performs interprocedural 
based analysis, bit vectors may well be sufficient, and the 
extra overhead of computing a definition-use graph is prob 
ably unwarranted. 
0112. Using the definition-use graph, the programmed 
computer in act 720 (FIG. 7A) determines whether a refer 
ence is a function call, memory access, or dual use. It first 
determines whether all the definition-edges coming into cur 
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rent use are temporary definitions. If yes, the programmed 
computer has determined that the use is a function call, marks 
it as Such in act 725, and proceeds to examine another use via 
act 745. If no, it then tests in act 730 whether all edges that 
come into the use are permanent edges. If so, the programmed 
computer marks the use as a memory access in act 740, and 
proceeds to examine another use via act 745. If not, the 
computer marks the use as dual in act 735 and proceeds to 
examine another use via act 745. Note that the existence of 
temporary definitions for all variables used in the program 
ensures that at least one definition-use edge will reach a 
variable use, so there is no need to check for the case of no 
edges coming into a variable (which could be interpreted as 
either all permanent edges or all temporary edges). 
0113. In act 745, the programmed computer tests whether 

it has examined all uses in the current statement. If not, it 
proceeds back to act 715 and selects another use to test. If it 
has examined all uses, it proceeds to act 750 to test whether it 
has examined all statements in the program. If not, it proceeds 
back to act 710 to select another statement to test. If it has 
examined all statements, it proceeds to act 755 to utilize the 
information it has built to compile, interpret, or optimize the 
program. 

0114 FIG. 7B illustrates an alternative embodiment uti 
lizing definition-use edges, utilizing flags to record the infor 
mation. A programmed computer following FIG. 7B begins 
as in FIG. 7A, by inserting a temporary definition for all 
variables used (act 700B) and by constructing the definition 
use graph for the resulting program (act 705B). It then selects 
a statement to use as the current statement in act 710B. Fol 
lowing that, it selects a use from that Statement to use as the 
current use, and sets two flags to be false in act 715B. These 
flags are used to record whether any permanent edges and 
whether any temporary edges reach the current use, respec 
tively. 
0115 The programmed computer will next select a defi 
nition-use edge that reaches into the current use inact 720B to 
use as the "current edge'. If the current edge is temporary 
(tested in act 725B), the programmed computer sets one flag 
to be true (act 730B); otherwise, it sets the other flag to be true 
(act 735B). Either way, it then tests whether all edges have 
been examined in act 740B. If not, then it returns to act 720B 
to continue processing edges. 
0116. When the test in act 740B is true, the programmed 
computer then tests in act 745B whether both flags have been 
set to true. If yes, then the use is a dual use and the computer 
flags it as such in act 755B, then proceeds to act 770B to 
determine if there are more uses to examine. If both flags are 
not true, the programmed computer tests in act 750B whether 
there are any temporary edges. If yes, then there are only 
temporary edges, and the computer proceeds to act 760B to 
mark the use as a function call, and then to act 770B to 
determine if there are more uses to examine. If the test in act 
750B results in false, then the computer proceeds to act 765B 
to mark the use as a memory access and then to act 770B to 
determine if there are more uses to examine. In act 770B, the 
programmed computer tests whether it has examined all uses 
in the current statement. If not, it returns to act 715B to select 
a next use to process. If so, it proceeds to act 775B to deter 
mine whether it has processed all statements. If not, it returns 
to act 710B to select another statement to process. Otherwise, 
it proceeds to act 780B to compile, interpret, optimize, or 
otherwise continue processing the user's program. 
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0117 All embodiments of the invention inserta temporary 
definition for variables, and control flow information is used 
to determine whether those temporary definitions reach uses 
or not. Some embodiments inserttemporary definitions for all 
variables; other embodiments prune the set of variables for 
which temporary definitions are inserted by using syntactic 
clues from the language or other similar clues; but all embodi 
ments insert at least one temporary definition. Similarly, dif 
ferent embodiments analyze execution paths in different 
ways. Some embodiments use sets or bit vectors; other 
embodiments use definition-use graphs in various forms; oth 
ers use other methods of analyzing control and data flow. 
0118 FIG. 8D illustrates, via a high level block diagram, 
the representation in a computer's memory of the definition 
use graph in one embodiment. The graph is for the user's 
program as provided in FIG. 2A. Abstractly, a definition-use 
graph is comprised of a set of nodes and a set of edges 
between those nodes. In the concrete implementation of the 
embodiment illustrated in FIG.8D, the set of nodes is stored 
as an array with members S0, S1, S2, and so on, and the set of 
edges is stored as an array Def-use edge 1, Def-use edge 2, 
and so on. A skilled artisan will readily recognize in view of 
these disclosures that there are a large number of alternative 
representations that equivalently represent definition-use 
graphs. Nodes in FIG.8D are comprised of a number offields. 
The “First edge out” field is an indicator (which may be a 
pointer, an array index, or other similar indicator) for the first 
edge in a list of edges that emanate from this node. The 
"First edge out of node S0, for instance, is edge 1, and edge 
1 represents a definition that reaches from node S0 to node S5. 
The “First edge in field is an indicator (which again may be 
a pointer, an array index, or other similar indicator) for the 
first edge in a list of edges that go into this node. The “First 
edge in of node S4, for instance, is edge 4, and edge 4 
represents a definition that reaches from node S2 into node 
S4. The “Number out” field is the number of edges that 
emanate from this node, or alternatively, the number of ele 
ments on the list of edges that starts from the “First edge 
outfield. The "Number in field is the number of edges that 
enter into this node, or alternatively, the number of elements 
on the list of edges that starts from the “First edge in field. 
The “Source loc' is an indicator of the intermediate repre 
sentation that corresponds to this node. 
0119 Edges in this embodiment are also comprised of a 
number offields. The “Source' field indicates the node that is 
the source of the definition-use edge, and similarly, the “Sink' 
field indicates the node that is the sink of the definition-use 
edge. For instance, edge 2 represents a definition in node S2 
reaching a use in node S5. The “Variable field holds the 
variable that gives rise to the definition-use edge. For 
instance, the “Variable field in edge 2 being “y” indicates 
that “y” is the variable that is defined in node S2 and used in 
node S5. “Source loc’ and “Sink loc’ are indicators into the 
intermediate representation of the program for the tree loca 
tions that give rise to the definition and use for the definition 
use edge, respectively. “Temporary' is set to yes for edges 
that are temporary edges and to no for edges that are perma 
nent. “Next edge out' and “Next edge in are used to link 
edges together that emanate from or go into the same defini 
tion or use, respectively. For instance, the “Next edge out 
field of edge 1 having a value 3 means that edge 3 is the next 
edge that has the same “Source' as edge 1 (i.e. node S0). The 
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“Next edge in field of edge 2 having a value 1 means that 
edge 1 is the next edge that has the same “Sink’ as edge 2 (i.e. 
S5). 
I0120 FIG. 8E illustrates, via a high level block diagram, 
the state of a computer's memory in one embodiment of the 
invention while separating function calls, memory accesses, 
and dual usage for the users program illustrated in FIGS. 2A 
and 2B. The definition-use graph, as fully described in FIG. 
8D, is one component of the computer's memory. Other com 
ponents in this embodiment include the Intermediate Repre 
sentation (comprised of Tree Locs, which hold the semantic 
representation of the program), the Symbol Table (comprised 
of Syms, which hold information about the variables used in 
the user's program), and other data structures holding pro 
gram content. In this embodiment, Tree Locs are comprised 
of several kinds of nodes, related to the semantic content of 
the user program. The fragment in FIG. 8E illustrates 3 kinds 
of Tree Locs: Definitions (represent temporary definitions), 
Assignments (represent the assignment of a value to a vari 
able) and References (represent the use of a variable). Tree 
Loc T5, for instance, is an Assignment Tree Loc: it has a 
“LHS' field (that holds the left hand side of the assignment), 
a “RHS' field (that holds the right hand side of the assign 
ment), a “Next Stimt” field (that holds the Tree Loc of the 
statement that follows the assignment), and a “Strmt No field 
(that holds an identifying number for the statement). Simi 
larly, the nodes in the Symbol Table hold information about 
the symbols, such as their “Name”, “Type', and “Size”. Dif 
ferent embodiments may use different memory representa 
tions, which, in view of this disclosure, a skilled artisan can 
recognize as being equivalent in functionality to this embodi 
ment. The essential aspect of definition-use graphs of this 
invention is the ability to model a temporary definition for 
appropriate edges. 
I0121 FIG. 9 illustrates, via a high level flow chart, one 
embodiment of the invention as it is employed within a pro 
grammed computer. The programmed computer first scans 
and parses the user's program into an intermediate represen 
tation via act 900. Many standard techniques exist for scan 
ning and parsing programs into intermediate representations 
(such as LALR parsers, top-down parsers, and recursive 
descent parsers, among others), and different embodiments of 
the invention employ different techniques. There are also 
many standard compiler intermediate representations (such 
as AST, quads, and SSA, among others) and again, different 
embodiments of the invention employ different representa 
tions. For convenience, the illustration of this embodiment in 
FIG. 9 assumes the existence of a special representation for 
ambiguous references (Function or Array nodes), but in view 
of this disclosure, a skilled artisan may envision other meth 
ods of representation. 
0122. After converting the user's program into a conve 
nient intermediate representation, the programmed computer 
adds a temporary definition for each variable used in the 
program via act 910. As described previously, in view of this 
disclosure a skilled artisan may easily prune the number of 
variables for which temporary definitions must be added by 
taking advantage of syntactic clues provided by the language. 
I0123. After temporary definitions have been inserted, the 
programmed computer in this embodiment constructs the 
definition-use graph for the program via act 920. There are 
many methods for constructing definition-use graphs, (Such 
as the iterative technique, the interval technique, and the 
structured-parse technique, among others). Other embodi 
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ments employ different methods for constructing definition 
use graphs. As described earlier, different embodiments of 
this invention use different techniques for analyzing execu 
tion paths other than definition-use graph. FIG. 10 illustrates 
the details of the method used to construct the definition-use 
graph in this embodiment. 
0.124. Once the definition-use graph has been constructed, 
the programmed computer effects an optimization technique 
known as variable renaming via act 930. Details of the tech 
nique used for variable renaming in this embodiment are 
illustrated in FIG. 11. Variable renaming partitions references 
to a given variable into different equivalence classes, where a 
reference is put into a given equivalence class if it must 
occupy the same memory locations as all other members of 
the equivalence class. Variable renaming is a transformation 
effected in this particular embodiment; other embodiments 
do not effect this transformation. Similarly, this embodiment 
effects variable renaming before separating function calls, 
memory accesses, and dual usages (act 940); other embodi 
ments use different orders. Specifically, at least one embodi 
ment performs variable renaming after separating function 
calls, memory accesses, and dual usages. FIG. 9A illustrates 
such an embodiment; the acts in FIG. 9A correspond to the 
similarly named act in FIG.9, but the order in which variable 
renaming occurs is different. 
0.125 Variable renaming, as discussed in the embodiment 
of FIG. 9 and FIG. 9A, is shown as being employed in the 
context of dynamically-typed languages. Such use of variable 
renaming in certain embodiments significantly improves the 
resolution of ambiguous references into function calls, 
memory accesses, and dual usages, as illustrated by FIGS. 
15A and 15B, which are renamed versions of FIGS. 14A and 
14B, as discussed in the next paragraph. Such variable renam 
ing is a transformation not described by any of Padua and 
DeRose, Padua and Almasi, or Holler. 
0126. In this embodiment, after the programmed com 
puter effects act 930, it proceeds to act 940 to convert all 
ambiguous references into function calls, memory accesses, 
or dual usages. The method used in this embodiment is illus 
trated in FIG. 13; other embodiments use different methods. 
0127 FIG. 10 illustrates, via a high level flow chart, the 
steps taken in act 920 of FIG. 9 in order to construct the 
definition-use graph. These actions are specific to this 
embodiment; other embodiments construct the definition-use 
graph in different ways, or use methods other than definition 
use graphs to analyze execution paths. In act 1000, the pro 
grammed computer constructs the control flow graph for 
intermediate representation of the user's program. Standard 
techniques exist for constructing control flow graphs, and 
different embodiments use different methods in the construc 
tion. Following construction of the control flow graph in act 
1000, the programmed computer constructs 3 lists for every 
statement in the program in act 1010. These lists are “inputs' 
(a list of the variables used in the statement), “outputs” (the 
variables whose values may be set in the statement), and 
“killed (the variables whose values are totally replaced in the 
statement). 
0128. Note that when inserting temporary definitions via 
acts 910 and 910A of FIGS. 9 and 9A, respectively, it is not 
necessary to actually insert assignment statements into the 
program or intermediate representation. Some embodiments 
merely add extra entries to the “output list for the entry 
statement to effect this temporary definition. Other embodi 
ments modify the internal data structures used to compute the 
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definition-use graph or similar structure without directly 
modifying the intermediate representation of the program 
proper. 

I0129. Following construction of the input lists, output 
lists, and killed lists, the programmed computer constructs an 
array “definitions” of all the definitions in the program in act 
1020. Each element of any "output list in the program is a 
separate definition. The programmed computer also sets a 
variable “ndefs' to hold the number of definitions that occur 
in the program. This information is used by the programmed 
computer in act 1030 to create a set of bit vectors for each 
node in the control flow graph, and to set the values of those 
vectors. These vectors are “uses” (the bit corresponding to a 
definition is set to 1 if the definition is used in the node and 0 
if not), “defs' (the bit corresponding to a definition is set to 1 
if the variable defined by the definition is defined in the node 
and 0 if not), “killed' (the bit corresponding to a definition is 
set to 1 if the variable defined by the definition is killed in the 
node, and 0 if not), and “reaches” (which will eventually be 
the set of definitions that reach the node). 
0.130. Once the local bit vectors are constructed, the pro 
grammed computer enters an iterative loop in act 1040 where 
it iterates over the bit vectors until a fixed point is reached. In 
act 1040, the programmed computer sets a flag "changed to 
true. This initialization is necessary to cause the following 
loop in act 1050 to trigger. When changed is true, the pro 
grammed computer proceeds from act 1050 to act 1060 to set 
“changed to false. Following that, the programmed com 
puter selects a node from the control flow graph to be the 
current node “cn' (act 1055). In act 1065, the programmed 
variable saves the initial value of “reaches(cn) into a tempo 
rary “old reaches’, then updates a new value for “reaches 
(cn) based on the values that have propagated to the prede 
cessors of the node using the equation “reaches(cn) reaches 
(cn)|(defines(p) (reaches(p) & -kills(p)))'. Note that the 
symbol “I” represents “or.” (equivalent to set union) and the 
symbol “& represents “and” (equivalent to set intersection). 
I0131. In act 1070, the programmed computer tests 
whether the newly computed value of “reaches(cn) is equal 
to the value prior to the update. If not, the programmed 
computer sets “changed to true in act 1080. The pro 
grammed computer then checks whether all nodes (or blocks) 
have been processed in act 1075. If they have not, the pro 
grammed computer proceeds to act 1055 to select and process 
another node in the control flow graph. If all nodes have been 
processed, the programmed computer has completed one 
iteration of the algorithm. It then proceeds to act 1050 to 
determine whether the fixed point has been reached. If not, the 
programmed computer performs another iteration, starting 
with act 1060. If yes, so that the fixed point solution has been 
computed, the reaches vectors have been globally computed, 
and the programmed computer converts those vectors into a 
definition-use graph via act 1085. 
0.132. The transformation of variable renaming, as illus 
trated in FIGS. 11 and 12 is one not described in any of De 
Rose and Padua, Almasi and Padua, or Holler. This transfor 
mation can significantly reduce the number of reported dual 
usages, as illustrated by the program in FIGS. 14A and 14B. 
FIGS. 15A and 15B illustrate the effects of variable renaming 
on that program. This transformation is not possible in De 
Rose and Padua's or Almasi and Padua's approach, because 
they search for dual usage using a different lattice than that 
required by renaming. Holler's approach is focused on a 
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different problem in a statically-typed language, and as such, 
does not benefit from variable renaming. 
0.133 FIG. 11 illustrates, in a high level flow chart, the 
implementation of variable renaming (act 930 of FIG. 9) in 
one embodiment of the invention. The implementation is 
based on a definition-use graph, and assumes that the graph 
has been built and is available. In act 1100, the programmed 
computer marks all symbols in the user's program as unex 
amined. It examines each symbol one at a time, at which time 
it marks the symbol as examined, so that it processes each 
symbol only once. The programmed computer then selects 
any unexamined symbol and calls it 's'. 
0134. The programmed computer then tests for “s' being 
null in act 1110. If it is null, the computer assumes that all 
symbols have been examined (when there are no unexamined 
symbols, the selection agent returns null rather than a valid 
symbol), and the process is complete. Otherwise the pro 
grammed computer proceeds to act 1120, where it marks “s' 
as examined, marks all defs (that is, all references on the 
“defs' list from FIG. 10, act 1030 that involve the symbol “s') 
of “s' as unvisited, and selects an unvisited def'd' of “s' 
0135) In act 1130, the programmed computer tests 
whether 'd' is null, the assumption being that when all defs 
for “s' have been visited the selection agent returns null. If the 
answer is “yes”, the programmed computer executes act 1150 
to select another unexamined symbol and iterates through the 
loop starting at act 1110. If “d' is an unexamined definition, 
the programmed computer executes act 1140, which locates 
and changes all references 's' that are in the same equiva 
lence class as “d to be a unique symbol. This transformation 
is effected by the procedure call “resym', detailed in FIG. 12. 
“Resym' is passed the definition as a start of the equivalence 
class, the symbol that is the basis for the equivalence class, 
and a new temporary symbol (“t') which is to be the new 
symbol used for all references in the equivalence class. The 
programmed computer then iterates again through act 1130. 
When the computer processes all definitions of all symbols, it 
has completed the renaming. 
0136. The recursive procedure “resym” for one embodi 
ment is illustrated in a high level flow chart in FIG. 12. The 
programmed computer initiates execution for resym starting 
in act 1200, and proceeds to act 1210 where it tests whether 
the passed in definition 'd' has been visited. If “d has already 
been visited, then all references in its equivalence class have 
already been determined, so there is nothing for the pro 
grammed computer to do. Accordingly, it executes act 1299 to 
return. 

0137 If “d” has not been previously visited, the pro 
grammed computer executes act 1220 to mark “d as visited 
and replace the definition of “s' in “d with the new symbol 
“new sym'. After this step, the intermediate representation 
will now reflect that a symbol “new sym' is now changing 
value in the statement represented by “d’, rather than the 
symbol 's'. The programmed computer then selects a defini 
tion-use edge 'e' that emanates from the statement associated 
with the definition “s. 
0.138. In act 1230, the programmed computer tests 
whether 'e' is a null edge. If it is, all edges emanating from 
the statement associated with 'd' have been examined, and 
the equivalence class has been determined. Accordingly, the 
programmed computer returns via act 1299. If 'e' is not null, 
the programmed computer executes act 1240 to see if the 
symbol associated with 'e' is “s', the symbol we are process 
ing (statements can define multiple variables, and we only 
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want to process the edges that are associated with the symbol 
“s'). If the symbol is not “s', the programmed computer skips 
over this edge by executing act 1295 and continues with the 
next edge in the list. If the variable associated with the edge 
“e' is 's', the programmed computer executes act 1250 to 
replace the use of “s' that is the sink of 'e' with the new 
symbol “new sym'. It then sets “e in to be the first of the list 
of edges that come into the statement that represents the sink 
Ofe. 

0.139. In act 1260, the programmed computer tests 
whether “e in is the null edge. If it is (the test answers 
“yes”), then all edges coming into the use referenced in act 
1250 have been processed, so the programmed computer 
executes act 1295 to get the next edge that comes out of “d'. 
If not, the programmed computer tests inact 1270 whether the 
symbol associated with “e in is “s'. If not, it will skip over 
this edge (following the reasoning for act 1240) and execute 
act 1290 to get the next incoming edge. Otherwise, it proceeds 
to act 1280, where it locates the definition associated with the 
source of “e in', then recursively calls “resym” on that defi 
nition with the same old and replacement symbols. When 
complete, it proceeds to act 1290 to process the next edge. It 
then loops back to act 1240, which eventually loops back to 
act 1230, which will return when all edges have been pro 
cessed. 

0140 FIG. 13 illustrates in a high level flow chart acts 
performed in one embodiment of the invention in performing 
the conversion of act 940 in FIG.9. During this conversion, 
the programmed computer walks (i.e. visits each node in) a 
section of the intermediate representation and makes use of 
the definition-use graph to determine whether references are 
function calls, memory accesses, or dual usage. The pro 
grammed computer receives a location in the intermediate 
representation (“root') in act 1300, which delineates the sec 
tion of the intermediate representation over which the com 
puter is to convert ambiguous references. The programmed 
computer starts in act 1305 by marking all tree locations 
accessible from “root’ as being unvisited. It then executes act 
1310 where it repeatedly selects unvisited tree locations (and 
processes each location as per acts 1315-1365 discussed 
below) until all locations have been visited. At that point, the 
conversion is complete and the computer returns via act 1399. 
0.141 While it is able to find an unvisited tree location, the 
programmed computer assigns the value of the unvisited tree 
location to “this node' in act 1315 and marks the tree loca 
tion as having been visited. It then tests in act 1320 whether 
“this node' is an ambiguous reference. An ambiguous refer 
ence in this embodiment, which is used for the MATLAB 
programming language, is a name which is followed by an 
open parenthesis, some number of comma-separated expres 
sions and ended with a close parenthesis. The comma-sepa 
rated expressions may be subscript values for an array refer 
ence or parameters to pass to a function call. Inside the tree 
representation, this name is held in a tree location (called 
“fnode' in FIG. 13). The comma-separated expressions are 
held in another tree location which is a sibling to “fnode' 
(same hierarchy level); both finode and the tree location hold 
ing the comma-separated expressions are children of “this 
node'. The programmed computer extracts the name held in 
“fnode' inact 1330. In MATLAB, if this name is not a symbol 
(an addition operator, for instance, is not a symbol), then 
“this node' can only be an array access. In that case, the 
programmed computer executes act 1335 to make the tree 
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location an array access, then proceeds to act 1310 to select 
another unvisited tree location. 

0142. If “this node' is a symbol reference, then the pro 
grammed computer executes act 1340, which is primarily 
testing whether there are only temporary edges reaching the 
use represented by “this node'. This embodiment performs 
additional tests that are not present in other embodiments. 
These tests are required because act 1310, in visiting all the 
tree locations in the intermediate representation, visits both 
uses and definitions of variables. Since definitions will not be 
reached by any definition-use edges (definitions are the 
source of such edges, but cannot be the sink), they will not be 
reached by any permanent edges. The criterion for identifying 
an ambiguous reference as an array reference is having all 
incoming edges be permanent edges. Since definitions have 
no incoming edges, they can mistakenly be classified as func 
tion calls, unless further analysis is performed as discussed 
neXt. 

0143. The “On definition variable is true if the ambigu 
ous reference appears as the target of an assignment, in which 
case it cannot be a function call. Similarly, the test “fnode's 
symbol is a parameter' performed in act 1340 is an artifact of 
this embodiment and is necessary because temporary defini 
tions are inserted in statement 0 of the user program. In this 
embodiment, statement 0 also holds user definitions of 
parameters, so in this statement with respect to parameters, no 
distinction is drawn between permanent and temporary defi 
nitions. Instead, the distinction is implemented by the addi 
tional test as follows. If either “On definition' is true or the 
test"fnode's symbol is a parameter is true, then the ambigu 
ous name cannot be a function call and must be an array 
access. If there are only temporary edges and the additional 
tests are true, the programmed computer sets “this node' to 
be a function call in act 1345 and then proceeds to act 1310 to 
select another unvisited tree location. Otherwise, it sets “this 
node' to be an array access in act 1355 and then proceeds to 
act 1310 to select another unvisited tree location. 

0144. When the test in act 1320 is false, the programmed 
computer tests in act 1350 whether the node represents a 
symbol node that is not followed by an open parenthesis. In 
this embodiment, which supports MATLAB, function calls 
with no arguments do not have following parentheses, so it is 
necessary to determine whether an ambiguous symbol used 
without following parentheses is a function call or a scalar 
access. This test is effected in act 1360, using the same basic 
test as act 1340. If all incoming edges are temporary edges, 
“this node' is setto be a function call inact 1365, and another 
unvisited tree location is selected in act 1310. If all incoming 
edges are permanent edges, “this node' is left alone (because 
it is a scalar access, it has previously been set with a memory 
access type in this embodiment). Another unvisited tree loca 
tion is then selected by the programmed computer inact1310. 
The embodiment illustrated in FIG. 13 assumes that any dual 
usages have been detected and reported prior to its invocation 
as per FIG. 9, so that all ambiguous references will be either 
function calls or memory accesses. 
0145. In FIG. 14A, statement S2 is reached by a temporary 
definition of “y” and is thus a function call. S4 defines a new 
value for “y”, creating a permanent definition. Without vari 
able renaming, the use of “y” in statement S5 of a MATLAB 
program appears to be both a function call and a memory 
access, creating a dual usage, thereby complicating the com 
pilation of the program. The dual usage is created by the use 
of a single symbol “y” (in the user's program) to represent 
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both a function call and a memory access. The choice is an 
artifact of the user's choice to reuse the same symbol; had he 
used a different symbol, no dual usage would exist. Several 
embodiments of the type described herein automatically 
separate the two distinct uses of the variable into two separate 
variables using variable renaming, thereby eliminating the 
dual usage. (For example, the second occurrence of symbol 
y” is automatically replaced by the symbol “y 1, as 
described next.) 
0146 FIGS. 15A and 15B illustrate the program after 
variable renaming as described in this embodiment has been 
applied. Since the use of “y” in statement S2 is in a different 
equivalence class than the definition of “y” in S4 and the use 
of “y” in S5, a new symbol “y1” has been created for the latter 
class. This allows the symbol “y” to be used as a function and 
the symbol “y 1' to be used as an array, eliminating the dual 
usage. The names “y” and y1 are for notational conve 
nience; other names can equally well be used. 
0147 FIG. 16 illustrates one typical use of some embodi 
ments of the invention. A user 1610 prepares an initial version 
1600 of a program written in a dynamically-typed, ambigu 
ous language. The user 1610 then uses the programmed com 
puter 1690 in accordance with the invention to analyze the 
program version 1600 for function calls, memory access, and 
dual usage. As may often be the case, program version 1600 
in one example shown in FIG. 16 contains a dual usage for 
“y”, which the programmed computer 1690 has automati 
cally detected by performing an analysis operation 100 (of the 
type described above in reference to FIG. 1). In this embodi 
ment, the user 1610 removes the dual usage in version 1600 
by changing his program, producing the new version 1630 
which is shown to have new statements inserted therein (in the 
dotted box). 
0.148. Other embodiments automatically make changes 
Such as loop unrolling or statement insertion to eliminate the 
dual usage, rather than having the user perform the task. Other 
embodiments (for instance, those involving interpreters or 
just-in-time compilers) leave the dual usage in the program to 
be resolved at run-time, and instead optimize the other por 
tions of the program. After the program has been changed 
(either manually by user 1610 or automatically by computer 
1690) the new version 1630 is analyzed again by the pro 
grammed computer 1690. At this stage, since the dual usage 
has been eliminated, the computer 1690 does not find a dual 
usage (which is reported to the user as indicated in message 
1640 displayed on a monitor). This process is repeated any 
number of times until the entirety of the program has been 
analyzed and no dual usage is detected. At that point, inter 
procedural analysis and optimization are optionally per 
formed, for example as indicated in act 190 (FIG. 1). During 
that act, temporary definitions inserted by the programmed 
computer are removed. In other embodiments, the temporary 
definitions are retained. Other embodiments bypass interpro 
cedural analysis and proceed directly to code generation or 
interpretation. 
0149 Act 700 in FIG. 7A illustrates an embodiment that 
takes the most simplistic and inefficient approach for adding 
temporary definitions. In view of this disclosure, a skilled 
artisan will readily recognize that several improvements are 
possible based on syntactic (or equivalently, lexical) clues 
present in the language. FIGS. 17A-17D illustrate some pro 
grams and simplifications in embodiments based on the MAT 
LAB language. In statement S1 in FIG. 17A, the variable “y” 
appears on the right side of an assignment to multiple values 
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(“a”, “b', and “c”). The MATLAB language allows a function 
to return multiple values (and thereby assign values to mul 
tiple variables in a single assignment), but it does not allow an 
array access to do that. As a result, if the only references to a 
variable such as “y” are as the source of multiple return 
values, then “y” can be inferred to be a function call, or if no 
appropriate function can be found, an erroneous program. 
Note that all references to “y” must meet the restriction. For 
instance, the assignment to “y” in Statement S2 in the same 
program means that a full analysis would have to be per 
formed. The “y” in statement S1 is a different variable from 
the “y” in statement S2 (as variable renaming as illustrated in 
FIG. 11 will reveal) and represents a memory access. Since 
this “y” has a use that is not in any way restricted by the 
MATLAB language, it must be added as a source for tempo 
rary definitions. 
0150. In FIG. 17B, the reference “y(1) appears on the left 
hand side of the assignment. Since function calls cannot 
appear as targets of assignments in MATLAB, this implies 
that “y” must be an array reference. In FIG. 17C, “y” is stated 
to be a global variable, indicated by the prefix "global'. In 
MATLAB, global variables can only be memory references: 
they cannot be function calls. In FIG. 17D, all occurrences of 
“y” are on the right hand side of assignment statements: “y” is 
not the target of any assignment. As a result, “y” is guaranteed 
to be a function call. When “y” occurs only on the right hand 
side of assignments, it is never defined in the program. Since 
it is never defined, there are no permanent definitions of “y” in 
the program. If there are no permanent definitions of “y” in 
the program, then no permanent definition of “y” can possibly 
reach a use. 

0151. In view of this disclosure, a skilled artisan will 
readily recognize other such simplifications. Note that all 
simplifications to act 700 (FIG. 7A) described in FIGS. 17A 
17D can be determined from a simple lexical analysis (also 
called syntactic analysis) of the program, which is generally 
the first step in any compilation or interpretation system. For 
instance, the pattern in FIG.17A can be recognized whenever 
a close bracket (“I’) is followed by an equal sign (=) is 
followed by a variable name. The pattern in FIG. 17B can be 
recognized whenever a variable is the first occurrence in a 
statement, and the statement contains an equal (“ ”) sign. 
0152. In several embodiments of the invention, a computer 

is programmed to at least partially resolve an ambiguous 
usage of a name in a statement of a computer program, by 
adding to an entry statement thereof a definition that includes 
the ambiguously used name (also called “temporary defini 
tion'), followed by constructing a definition-use graph, fol 
lowed by checking whether or not an edge from the added 
definition reaches the statement containing the ambiguously 
used name (also called "ambiguous statement'). 
0153. The foregoing description is presented to enable one 
to make and use the invention, and is provided in the context 
of a particular application and its requirements. It is not 
intended to be exhaustive or to limit the invention to the forms 
disclosed. Various modifications to the disclosed embodi 
ments will be readily apparent, and the general principles 
defined herein may be applied to other embodiments and 
applications without departing from the spirit and scope of 
the invention. Thus, the invention is not intended to be limited 
to the embodiments shown, but is to be accorded the widest 
Scope consistent with the principles and features disclosed 
herein. Accordingly, many modifications and variations will 
be apparent. Numerous such modifications and adaptations of 
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the embodiments and variants described herein are encom 
passed by the appended claims. 

1. A method executed in a computer for processing a com 
puter program expressed in a high level language, the method 
comprising: 

translating said computer program into an intermediate 
representation; 

wherein said intermediate representation models at least 
one statement in said computer program, said at least 
one statement comprising an ambiguous usage of a 
name as both a function call and an memory access; 

constructing a graph of definitions and uses for a plurality 
of names including said name in said computer program, 
by adding a plurality of edges such that each edge con 
nects a node in the intermediate representation, either 
directly or indirectly, to another node in the intermediate 
representation; 

identifying usage of said name in said statement as a func 
tion call, based on at least one edge in said graph reach 
ing said statement; and 

performing a transformation on said intermediate repre 
sentation, based on said graph, into another intermediate 
representation in memory. 

2. The method of claim 1 wherein: 
said transformation comprises variable renaming. 
3. The method of claim 1 wherein: 
said transformation comprises dead code elimination. 
4. The method of claim 1 wherein: 
said transformation comprises constant propagation. 
5. The method of claim 1 further comprising: 
performing lexical analysis on said computer program 

based on a grammar of said high level language; and 
applying at least one predetermined rule, based on said 

lexical analysis, to check if said name can be definitively 
determined to be one of (memory access and function 
call). 

6. The method of claim 5 wherein application of said pre 
determined rule comprises determining that said name is 
definitively a function call by: 

checking if said name is not explicitly defined in any state 
ment of said computer program. 

7. The method of claim 5 wherein application of said pre 
determined rule comprises determining that said name is 
definitively a function call by: 

checking if said name used as a multi-return function, 
invoked in said statement. 

8. The method of claim 1 further comprising: 
adding to said computer program, a temporary definition 

comprising said name, said adding being performed 
prior to said constructing; and 

checking if the temporary definition reaches said statement 
along each control flow path and if true then performing 
said identifying. 

9. The method of claim 8 further comprising: 
automatically propagating said temporary definition along 

each control flow path that starts from said temporary 
definition in said computer program until a permanent 
definition of said name is reached. 

10. The method of claim 9 wherein during said automati 
cally propagating: 

said temporary definition reaches said statement along a 
first control flow path; and 
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said temporary definition reaches said permanent defini 
tion in another statement along a second control flow 
path; and 

wherein said another statement occurs in a sequence of 
statements between said temporary definition and said 
Statement. 

11. The method of claim 9 wherein during said automati 
cally propagating: 

said temporary definition reaches said statement along a 
first control flow path; 

said temporary definition reaches said permanent defini 
tion in another statement along a second control flow 
path; and 

said permanent definition reaches said statement from said 
another statement along a continuation of the second 
control flow path. 

12. The method of claim 1 wherein: 
said transformation is performed prior to said identifying. 
13. The method of claim 1 wherein: 
said transformation is performed after said identifying. 
14. A method executed in a computer for processing a 

computer program expressed in a high level language, the 
method comprising: 

translating said computer program into an intermediate 
representation; 

wherein said intermediate representation models at least 
one statement in said computer program, said at least 
one statement comprising an ambiguous usage of a 
name as both a function call and an memory access; 

constructing a graph of definitions and uses for a plurality 
of names including said name in said computer program, 
by adding a plurality of edges such that each edge con 
nects a node in the intermediate representation, either 
directly or indirectly, to another node in the intermediate 
representation; 

identifying usage of said name in said statement as a func 
tion call, based on finding no permanent definition of 
said name in said computer program; and 
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performing a transformation on said intermediate repre 
sentation, based on said graph, into another intermediate 
representation in memory. 

15. The method of claim 14 wherein: 
said transformation comprises variable renaming. 
16. The method of claim 14 wherein: 
said transformation comprises dead code elimination. 
17. The method of claim 14 wherein: 
said transformation comprises constant propagation. 
18. The method of claim 14 further comprising: 
performing lexical analysis on said computer program 

based on a grammar of said high level language; and 
applying at least one predetermined rule, based on said 

lexical analysis, to check if said name can be definitively 
determined to be one of (memory access and function 
call). 

19. The method of claim 14 wherein: 
said transformation is performed prior to said identifying. 
20. A computer programmed to process a computer pro 

gram, the computer being programmed to: 
translate the computer program into an intermediate rep 

resentation, wherein said intermediate representation 
models at least one statement in said computer program, 
said at least one statement comprising an ambiguous 
usage of a name as both a function call and an memory 
acceSS, 

construct a graph of definitions and uses for a plurality of 
names including said name in said computer program, 
by adding a plurality of edges such that each edge con 
nects a node in the intermediate representation, either 
directly or indirectly, to another node in the intermediate 
representation; 

identify usage of said name in said Statement as a function 
call, based on said graph; and 

perform a transformation on said intermediate representa 
tion, based on said graph, to generate another interme 
diate representation in a memory. 
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