
(19) United States
US 2013 0138615A1

(12) Patent Application Publication (10) Pub. No.: US 2013/0138615 A1
Gupta et al. (43) Pub. Date: May 30, 2013

(54) SYNCHRONIZING UPDATES ACROSS
CLUSTER FILESYSTEMS

(75) Inventors: Karan Gupta, San Jose, CA (US);
Manoj P. Naik, San Jose, CA (US);
Frank B. Schmuck, Campbell, CA
(US); Mansi A. Shah, Sunnyvale, CA
(US); Renu Tewari, San Jose, CA (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 13/305,784

(22) Filed: Nov. 29, 2011

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
USPC 707/690; 707/E17.007

(57) ABSTRACT
Embodiments of the invention relate to synchronization of
data in a shared pool of configurable computer resources. An
image of the filesystem changes, including data and metadata,
is captured in the form of a consistency point. Sequential
consistency points are created, with changes to data and meta
data in the filesystem between sequential consistency cap
tured and placed in a queue for communication to a target
filesystem at a target site. The changes are communicated as
a filesystem operation, with the communication limited to the
changes captured and reflected in the consistency point.

Cofitter Systeini Server

Exter:
4- Devices

US 2013/O138615 A1 May 30, 2013 Sheet 1 of 9 Patent Application Publication

(s)

US 2013/O138615 A1 May 30, 2013 Sheet 2 of 9 Patent Application Publication

US 2013/O138615 A1 May 30, 2013 Sheet 3 of 9 Patent Application Publication

Patent Application Publication May 30, 2013 Sheet 4 of 9

Create viapping at - 2
Sctice Site

Sof write aia (ca. A 4.08
to Sic: Si:

Replicate Data and Metadata A-48
to arget Site

US 2013/O138615 A1

Patent Application Publication May 30, 2013 Sheet 5 of 9 US 2013/O138615 A1

Create Consistency Point (-32
at Soice St.

is teja 1

Create Second Consistency Point /
a Soi C& Site

A8
the fiege:Ces

eEye: the
(Consistency

is?

YES

icientify Differences S.

Create node Output Fie - 32
C: digitfied eigiata Riefe C38

C'eate Directory Output Fie for / 54
identified Directory Entry Differences

Place Cuipilt Fies in Source -88
Site Qi:iie

F.G.

Patent Application Publication

^.
-6{ ;38 :

C:{i} set
K in a Prior Consistency

Pini ai Si C8
S;

Existing Fife Related ic
i: ; 3& e3 dified

May 30, 2013 Sheet 6 of 9

iodie is sie;

ASC&rar Aity:S
of hiayi (fi:

Create eigo:a:'y Mew
iii.3de at larget. Site

aiapped ic New inois:
at Soice Site

US 2013/O138615 A1

- 8:

- 8

-608

k

Hard ink of Subjectinode - 612
to liaiped arget irode

Estatised

2. - N614

Consistancy -
Point?
N YES

Place New Data in Queue / 616
arid Visite to a get via

3" iik

3A 3i: Y N No -e- :::::ced if 8 x. ise;3:33 refereed N.

-1. N618
- there New

ir tie C); sisted
i: - Null

date A. vitalia:
Attrites

-3.

Patent Application Publication May 30, 2013 Sheet 7 of 9 US 2013/O138615 A1

-

i For Each Charged | - a
Directory in Consistency ir8: Marse ice is arget iode Cit

-708 s -78
Sieci

Directory is i?ost
Directory Recent Consistency

it

/ 7:0 N
Solice to larget O i O

{{k up irectory at vapied -72
node at the larget Site

-:
s

Directory
at arget?

(Create Directory
at larget air .ink

: Sotice

YES
78 r s

Chaige was a tiere a Change
Directory eve O 3 -is:

Sys:

YES

Esia is lik (; Soi ce is
Target to update Directory

with Changed aia

US 2013/O138615 A1 May 30, 2013 Sheet 8 of 9 Patent Application Publication

Patent Application Publication May 30, 2013 Sheet 9 of 9 US 2013/O138615 A1

OceSSC: -32

Alain viemory --90

Display
ite face Corification 906.

fast citie
(BUS)

Seconday viemory - 912

- 3.
isk rive

8

Renovate Storage Rese grrrrrrrrrrr, five orage
38 -. i

822 - 3:------ Storage

920 926
924 w Communication Communication :

terface

F.

US 2013/O 1386.15 A1

SYNCHRONIZING UPDATES ACROSS
CLUSTER FILESYSTEMS

BACKGROUND

0001. This invention relates to data synchronization
across cluster filesystems. More specifically, the invention
relates to tracking changes in a filesystem and replaying the
changes to another filesystem using a standard protocol.
0002. In a scalable and writable caching system that
caches remote file data, data is fetched from a remote site and
updates made at the cache site, also known as the source site,
and replayed at the remote site, also known as the target site.
It is known that network connectivity between the source and
target sites may be subject to temporary disconnects. When a
disconnection between the two sites occurs, the Source site
should still be available for access to data that is previously
cached, and as such, the Source site continues to support both
data and metadata updates. At Such time as connectivity
between the two sites is restored, the data and metadata
updates need to be synchronized to the target site.

BRIEF SUMMARY

0003. This invention comprises a method, system, and
article for synchronization of update data and metadata from
a source data site in communication with a shared pool of
configurable computing resources to a target data site.
0004. In one aspect, a method is provided for synchroni
zation of the update data. A consistency point is created in a
Source filesystem on a periodic basis. Each consistency point
represents filesystem data and metadata at a point-in-time,
and is employed to establish a recovery point. More specifi
cally, the periodic creation of the consistency point includes a
first consistency point is created at a first point-in-time and a
second consistency point is created at a second point-in-time.
The first and second consistency points are compared to iden
tify any differences. In addition, a source filesystem object is
mapped to a target filesystem object based upon a correspond
ing relationship between the objects. The identified differ
ences are applied between the first and second consistency
points. More specifically, the application of differences
includes replaying the identified differences as one or more
filesystem operations.
0005. In another aspect, a system is provided with tools to
Support synchronization of consistent data. A shared pool of
configurable computer resources is provided with a func
tional unit in communication therewith, the functional unit
having tools thereinto Support the synchronization. The tools
include a data manager, a delta manager, and a data mover.
The data manager processes data at a source site in the shared
pool and periodically creates a consistency point in a source
filesystem of the Source site. Each consistency point repre
sents source filesystem data and metadata at a point-in-time to
establish a recovery point. More specifically, the data man
ager creates a first consistency point at a first point-in-time
and a second consistency point at a second point-in-time. The
delta manager, which is in communication with the data man
ager, functions to compare the first consistency point with the
second consistency point. More specifically, the delta man
ager identifies any differences between the first and second
consistency points. The data mover, which is in communica
tion with the delta and application managers, applies the
identified differences between the first and second consis
tency points. The application of differences includes a replay

May 30, 2013

of the identified difference based upon a mapping of a source
file system object to a target filesystem object.
0006. In a further aspect, a computer program product is
delivered as a service through a network connection. The
computer program product comprises a computer readable
storage medium having computer readable program code
embodied therewith. Computer readable program code is pro
vided to process data at a source site in a shared pool of
configurable resources, including periodic creation of a con
sistency point in a source filesystem of the source site. Each
created consistency point represents source filesystem data
and metadata at a point-in-time and is employed as a recovery
point. More specifically, the code creates a first consistency
point at a first point-in-time and a second consistency point at
a second point-in-time. Computer readable program code is
further provided to compare the first consistency point with
the second consistency point, and specifically to identify any
differences between the first and second consistency points.
In addition, computer readable program code is provided to
map a source filesystem object to a target filesystem object,
with the mapping being based upon a relationship between
the objects. Computer readable program code is provided to
apply the identified differences between the first and second
consistency points. More specifically, the code replays the
identified differences as one or more filesystem operations
based upon the mapping.
0007. In yet another aspect, a method is provided to syn
chronize update data. More specifically, a first consistency
point is created in a source filesystem at a first point-in-time,
and a second consistency point is created in the source file
system at a second point-in-time. The first consistency point
represents filesystem data and metadata at a first point-in
time and functions to establish a first recovery point. The
second consistency point represents filesystem data and
metadata at a second point-in-time and functions to establish
a second consistency point. Following a communication fail
ure associated with the Source filesystem, the first consistency
point is compared with the second consistency point. The
comparison includes identifying changes between the first
and second consistency points. The identified changes
between the first and second consistency points are applied to
Support the synchronization. More specifically, the applica
tion includes replacing the changes as a filesystem operation
based upon a mapping of a source filesystem object to a target
filesystem object.
0008. Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009. The drawings referenced hereinform a part of the
specification. Features shown in the drawings are meant as
illustrative of only some embodiments of the invention, and
not of all embodiments of the invention unless otherwise
explicitly indicated.
0010 FIG. 1 depicts a cloud computing node according to
an embodiment of the present invention.
0011 FIG. 2 depicts a cloud computing environment
according to an embodiment of the present invention.
0012 FIG.3 depicts abstraction model layers according to
an embodiment of the present invention.

US 2013/O 1386.15 A1

0013 FIG. 4 depicts a flow chart illustrating a process for
placing changes to the data and metadata at a source site in a
queue for communication to a target site.
0014 FIG.5 depicts a flow chart illustrating a process for
management of consistency points at the Source site.
0015 FIG. 6 depicts a flow chart illustrating a process for
detection of failure of communication between the source and
target sites, and the first aspect of management of a recovery
to bring the target site up to date with the data and metadata in
the source site.
0016 FIG. 7 depicts a flow chart illustrating a process for
reconciling directory entries in two consistency points at the
Source site.
0017 FIG. 8 depicts a block diagram illustrating tools
embedded in a computer system to Support the synchroniza
tion of data.
0018 FIG.9 depicts is a block diagram showing a system
for implementing an embodiment of the present invention.

DETAILED DESCRIPTION

0019. It will be readily understood that the components of
the present invention, as generally described and illustrated in
the Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as presented in
the Figures, is not intended to limit the scope of the invention,
as claimed, but is merely representative of selected embodi
ments of the invention.
0020. The functional units described in this specification
have been labeled as managers. A manager may be imple
mented in programmable hardware devices such as field pro
grammable gate arrays, programmable array logic, program
mable logic devices, or the like. The managers may also be
implemented in Software for processing by various types of
processors. An identified manager of executable code may,
for instance, comprise one or more physical or logical blocks
of computer instructions which may, for instance, be orga
nized as an object, procedure, function, or other construct.
Nevertheless, the executables of an identified manager need
not be physically located together, but may comprise dispar
ate instructions stored in different locations which, when
joined logically together, comprise the managers and achieve
the stated purpose of the managers.
0021 Indeed, a manager of executable code could be a
single instruction, or many instructions, and may even be
distributed over several different code segments, among dif
ferent applications, and across several memory devices. Simi
larly, operational data may be identified and illustrated herein
within the manager, and may be embodied in any Suitable
form and organized within any Suitable type of data structure.
The operational data may be collected as a single data set, or
may be distributed over different locations including over
different storage devices, and may exist, at least partially, as
electronic signals on a system or network.
0022 Reference throughout this specification to “a select
embodiment,” “one embodiment, or “an embodiment’
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear
ances of the phrases “a select embodiment,” “in one embodi
ment,” or “in an embodiment in various places throughout
this specification are not necessarily referring to the same
embodiment.

May 30, 2013

0023. Furthermore, the described features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments. In the following description,
numerous specific details are provided. Such as examples of a
data mover, a replication manager, a migration manager, etc.,
to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, how
ever, that the invention can be practiced without one or more
of the specific details, or with other methods, components,
materials, etc. In other instances, well-known structures,
materials, or operations are not shown or described in detail to
avoid obscuring aspects of the invention.
0024. The illustrated embodiments of the invention will be
best understood by reference to the drawings, wherein like
parts are designated by like numerals throughout. The follow
ing description is intended only by way of example, and
simply illustrates certain selected embodiments of devices,
systems, and processes that are consistent with the invention
as claimed herein.

0025. A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. Referring now to FIG. 1, a schematic of an example of
a cloud computing node is shown. Cloud computing node
(10) is only one example of a Suitable cloud computing node
and is not intended to Suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node (10) is
capable of being implemented and/or performing any of the
functionality set forth hereinabove. In cloud computing node
(10) there is a computer system/server (12), which is opera
tional with numerous other general purpose or special pur
pose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with com
puter system/server (12) include, but are not limited to, per
Sonal computer systems, server computer systems, thin cli
ents, thick clients, hand-held or laptop devices,
multiprocessor Systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputer systems, mainframe computer systems,
and distributed cloud computing environments that include
any of the above systems or devices, and the like.
0026 Computer system/server (12) may be described in
the general context of computer system-executable instruc
tions, such as program modules, being executed by a com
puter system. Generally, program modules may include rou
tines, programs, objects, components, logic, data structures,
and so on that perform particular tasks or implement particu
lar abstract data types. Computer system/server (12) may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.
0027. As shown in FIG. 1, computer system/server (12) in
cloud computing node (10) is shown in the form of a general
purpose computing device. The components of computer sys
tem/server (12) may include, but are not limited to, one or
more processors or processing units (16), a system memory
(28), and a bus (18) that couples various system components
including system memory (28) to processor (16). Bus (18)

US 2013/O 1386.15 A1

represents one or more of any of several types of bus struc
tures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus. Computer
system/server (12) typically includes a variety of computer
system readable media. Such media may be any available
media that is accessible by computer system/server (12), and
it includes both volatile and non-volatile media, removable
and non-removable media.

0028 System memory (28) can include computer system
readable media in the form of Volatile memory, Such as ran
dom access memory (RAM) (30) and/or cache memory (32).
Computer system/server (12) may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys
tem (34) can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a "floppy disk’), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In Such instances, each
can be connected to bus (18) by one or more data media
interfaces. As will be further depicted and described below,
memory (28) may include at least one program product hav
ing a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

0029 Program/utility (40), having a set (at least one) of
program modules (42), may be stored in memory (28) by way
of example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen
tation of a networking environment. Program modules (42)
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

0030 Computer system/server (12) may also communi
cate with one or more external devices (14). Such as a key
board, a pointing device, a display (24), etc.; one or more
devices that enable a user to interact with computer system/
server (12); and/or any devices (e.g., network card, modem,
etc.) that enable computer system/server (12) to communicate
with one or more other computing devices. Such communi
cation can occur via Input/Output (I/O) interfaces (22). Still
yet, computer system/server (12) can communicate with one
or more networks Such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter (20). As depicted,
network adapter (20) communicates with the other compo
nents of computer system/server (12) via bus (18). It should
be understood that although not shown, other hardware and/
or Software components could be used in conjunction with
computer system/server (12). Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

May 30, 2013

0031 Referring now to FIG. 2, illustrative cloud comput
ing environment (50) is depicted. As shown, cloud computing
environment (50) comprises one or more cloud computing
nodes (10) with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone (54A), desktop computer (54B),
laptop computer (54C), and/or automobile computer system
(54N) may communicate. Nodes (10) may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Commu
nity, Public, or Hybrid clouds as described hereinabove, or a
combination thereof. This allows cloud computing environ
ment (50) to offerinfrastructure, platforms and/or software as
services for which a cloud consumer does not need to main
tain resources on a local computing device. It is understood
that the types of computing devices (54A)-(54N) shown in
FIG. 2 are intended to be illustrative only and that computing
nodes (10) and cloud computing environment (50) can com
municate with any type of computerized device over any type
of network and/or network addressable connection (e.g.,
using a web browser).
0032 Referring now to FIG.3, a set of functional abstrac
tion layers provided by cloud computing environment (50)
(FIG. 2) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments of the inven
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided: hardware and soft
ware layer (60), virtualization layer (62), management layer
(64), and workload layer (66). The hardware and software
layer (60) includes hardware and software components.
Examples of hardware components include mainframes, in
one example IBM(R) zSeries(R systems: RISC (Reduced
Instruction Set Computer) architecture based servers, in one
example IBM pSeries(R systems; IBM xSeries(R) systems:
IBM BladeCenterR) systems; storage devices; networks and
networking components. Examples of Software components
include network application server Software, in one example
IBM WebSphere(R) application server software; and database
software, in one example IBM DB2R) database software.
(IBM, zSeries, pSeries, xSeries, BladeCenter, WebSphere,
and DB2 are trademarks of International Business Machines
Corporation registered in many jurisdictions worldwide).
0033. Virtualization layer (62) provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers; virtual storage; virtual net
works, including virtual private networks; virtual applica
tions and operating systems; and virtual clients.
0034. In one example, management layer (64) may pro
vide the following functions: resource provisioning, metering
and pricing, user portal, service level management, and SLA
planning and fulfillment. The functions are described below.
Resource provisioning provides dynamic procurement of
computing resources and other resources that are utilized to
perform tasks within the cloud computing environment.
Metering and pricing provides cost tracking as resources are
utilized within the cloud computing environment, and billing
or invoicing for consumption of these resources. In one
example, these resources may comprise application Software
licenses. Security provides identity verification for cloud con
Sumers and tasks, as well as protection for data and other
resources. User portal provides access to the cloud computing
environment for consumers and system administrators. Ser
Vice level management provides cloud computing resource

US 2013/O 1386.15 A1

allocation and management such that required service levels
are met. Service Level Agreement (SLA) planning and full
fillment provides pre-arrangement for, and procurement of
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.
0035 Workloads layer (66) provides examples of func

tionality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may be
provided from this layer includes, but is not limited to: map
ping and navigation; Software development and lifecycle
management; virtual classroom education delivery; data ana
lytics processing; operation processing; and maintenance of
consistent application data to Support migration within the
cloud computing environment.
0036. In the shared pool of configurable computer
resources described herein, hereinafter referred to as a cloud
computing environment, applications may migrate to any
data center, also referred to hereinas a data site. There are two
general Scenarios in which an application is Subject to migra
tion, including a planned migration and an unplanned migra
tion. In a planned migration, the application migrates to any
data center, i.e. target site, in the cloud while maintaining
disaster recovery Support, and in an unplanned migration the
application is subject to failure and recovers in any data center
in the cloud while maintaining disaster recovery Support.
Accordingly, the difference between a planned migration and
an unplanned migration is the failure and Subsequent recov
ery of a failed application.
0037. The source site is the primary location of data, and
the target site provides a replica of the source data. In one
embodiment, the Source site operates in a read-write mode to
Support both read and write operations, and the target site
operates in a read-only mode and is limited to Supporting read
operations. Continuous synchronization of Source data with
the target site is provided. In one embodiment, a failure of the
Source site is followed by a target site being upgraded to a new
Source site to Support both read and write operations. Such an
upgrade may require applications and/or tools to be migrated
to the new source site to support the functionality of the new
Source site.

0038. Data from the source site is defined at a file set level.
In one embodiment, a fileset is a subtree of the filesystem
namespace that provides an administrative boundary for data
management. As such, the granularity of replication and con
sistency is a file set. The aspect of the defined granularity
guarantees that all dependent writes across all files within a
given file set are guaranteed to be ordered. FIG. 4 is a flow
chart (400) illustrating the aspect of placing changes to the
data and metadata at the source site in a queue for communi
cation to the target site. Prior to placing any data and/or
metadata changes in the queue, a mapping at the Source site
with file identifier spaces at the Source and targets sites is
created (402). More specifically, the inode numbers at the
Source site need to be mapped to the equivalent inode num
bers at the target site, and the filenames at the Source site may
need to be mapped to the equivalent filenames at the target
site.

0039. An application runs at the source site (404). The
application may support read and/or write operations. Data
generated from a write operation is stored in data storage local
to the source site in which the application is processing, e.g.
local storage (406). At the same time, the data created from
the write operation is replicated from the local data storage to
backup data storage at the target site while the application

May 30, 2013

continues to process one or more operations (408). The rep
lication at step (408) includes both data and metadata from the
write operation. The replication at step (408) may be con
ducted synchronously or asynchronously from one or more
server nodes in the source site to one or more server nodes in
the target site. Regardless of the format of the replication at
step (408), a data consistency point is created on both the
Source and target data storage. The creation of the consistency
point ensures that should the application be subject to a fail
ure, the application can recover from a consistent data set.
0040. A consistency point can be achieved using several
different methods known to someone skilled in the art. In one
embodiment, a filesystem or storage system Snapshot is taken
and copy-on-write semantics are employed to save data at a
certain point-in-time without delaying application requests
for an extended period of time. In one embodiment, any level
of consistency can be used, including, but not limited to,
application, crash, filesystem, etc. Accordingly, data and
metadata from one or more write operations are stored in
Source data storage and replicated to target data storage, with
creation of one or more consistency points in both data Stor
age locations.
0041 Periodic consistency points are created and main
tained at both the Source and target locations, with the con
sistency points functioning as recovery points in the event of
a site failure. More specifically, a consistency point is taken
local to the source site, and once all of the data reflected in the
consistency point has been transmitted to the target site, a
consistency point is created at the target site. Accordingly, as
changes to data and metadata take place at the Source site,
these changes are reflected in a consistency point local to the
Source site, and communicated to the target site where a target
consistency point is created local to the target site.
0042. To support efficient use of network bandwidth, the
transmission of consistency points from the Source site to the
target site may be limited to differences from a prior consis
tency point. FIG. 5 is a flow chart (500) illustrating a process
for management of consistency points at the Source site. A
first consistency point is created local to the source site (502).
Following a time interval (504), a second consistency point is
created local to the source site (506). It is determined if there
are any differences between the first and second consistency
points (508). A positive response to the determination at step
(508) is followed by identifying the specific differences
(510). More specifically, the comparison of the consistency
points at the source site includes searching both metadata as
reflected in inodes, and data as reflected in directory entries
that may have been created, deleted or modified. For any
inode metadata that is identified as having a difference, an
inode output file is created (512) and for any directory entries
that are identified as having a difference, a directory output
file is created (514). In one embodiment, it is not required to
create and store the output file. More specifically, the differ
ence(s) can be queued for replay at a secondary site directly
without using an intermediate file, e.g. the output file. Simi
larly, in one embodiment, the output in either the form of a
queue or file may be created in a single pass. The step of
replaying the output file as a series of filesystem operations
may take place concurrently or in parallel to the target site. In
one embodiment, the filesystem operation(s) may be a stan
dard and/or non-proprietary filesystem operation, such as a
portable operating system interface for UNIX (POSIX) file
system operation. Accordingly, one or more output files are

US 2013/O 1386.15 A1

created or a queue is implemented for replay of the identified
metadata and data differences.
0043. Following creation of any output files at steps (512)
and/or (514), the output files are placed in an in-memory
queue local to the source site (516). At the same time, the
Source site may continue to process read and write operations,
which may include further changes to data and/or metadata.
Following step (516) or a negative response to the determi
nation at step (508), the process continues with a return to step
(504), followed by repetition of creation of subsequent con
sistency points and comparison thereof. In one embodiment,
the application of one or more differences between consis
tency points is not limited to Successive consistency points.
More specifically, the identified differences can be between
any two consistency points. For example, the differences
between two consistency points can be replayed to revert
changes. If S1 and S2 are successive consistency points taken
at times T1 and T2, respectively, and where T1 occurs before
T2, the target site can beata consistency point S1 and brought
forward in time to S2, or the target site can beata consistency
point S2 and moved back in time to S1. The first and second
consistency points are not always Successive in time, the
consistency points can be any two consistency points.
Accordingly, consistency points are created on a periodic
basis, with differences between compared consistency points
identified and placed in a queue for communication to the
target site.
0044. It is recognized that there may be a communication
failure between the source site and the target site. Failures
occur for various reasons, and the details of such failures and
their causes are not the subject of this invention. However, in
the event of failure a disaster recovery is employed to estab
lish or re-establish consistency at both the data and metadata
levels between the source site and the target site. In one
embodiment, the transmission of data in the queue occurs
asynchronously in a continuous manner. If the source site
experiences a node or site failure, the target site will not
receive any changes that may have been in the queue at the
time of failure. Following detection of a communication fail
ure between the source and target sites, an algorithm is
invoked to interpret and execute operations on the Source site.
The execution operations include two aspects associated with
the consistency points, one aspect pertaining to differences of
metadata and a second aspect pertaining to differences of
data.

0045 FIG. 6 is a flow chart (600) illustrating a process for
detection of a failure of communication between the source
and target site, and the first aspect of management of a recov
ery to bring the target site up to date with the data and meta
data in the source site. For eachinode referenced in the most
recent consistency point at the Source site, it is determined if
the inode was present in a prior consistency point at the Source
site (602). A negative response to the determination at step
(602) is an indication that the subject inode is a new inode
(604). The attributes of the new inode at the source site are
ascertained (606), and a temporary new inode is create at the
target site and mapped to the referenced new inode at the
source site (608). Accordingly, for each new inode referenced
in the most recent consistency point at the source node, a new
inode is temporarily created at the target site.
0046. If at step (602), it is determined that the subject
inode was present in the prior consistency point, then by
reference this inode exists at the target site. The reference to
the Subject inode indicates that an existing file pertaining to

May 30, 2013

the subjectinode has been modified (610). Following either of
steps (608) or (610), a hard link of the subject inode to the
mapped targetinode is established (612). In one embodiment,
a hard link is a directory entry that associates a name with an
existing file on a filesystem. Once the hard link is established,
it is then determined if there is new data referenced in the
Subject consistency point and associated with the Subject
inode (614). A positive response to the determination at step
(614) is followed by placing new data in the queue at the
Source site and writing the data to the targetinode via the hard
link (616). Details of updating the data on the target site are
shown in FIG. 7 described below. A negative response to the
determination at step (614) is followed by determining if
there is new metadata referenced in the Subject consistency
point and associated with the subject inode (618). If the
response to the determination at step (618) is negative, the
reconciliation process of the metadata concludes (620). Con
versely, a positive response to the determination at step (618)
is followed by updating all of the metadata attributes from the
consistency point in the source site to the target site (622).
Accordingly, metadata consistency is maintained and recon
ciled between the source and target sites following a commu
nication failure.

0047. As referenced in FIG. 6, the differences between
two consistency points at the source site may be present with
respect to the data. FIG. 7 is a flow chart (700) illustrating a
process for reconciling directory entries in two consistency
points at the source site. For each identified changed directory
(702), the source inode is mapped to the targetinode (704). It
is then determined if the subject directory is in the most recent
consistency point (706). A negative response to the determi
nation at step (706) is an indication that the subject directory
has been either removed or renamed (708). A link for the
subject directory is established from the source site to the
target site (710). Accordingly, for each directory identified in
the consistency point comparison to have been removed or
renamed, a link is establish between the two site for commu
nication of the changes from the source site to the target site.
0048 However, a positive response to the determination at
step (708) is an indication that the directory has already been
established at the target site. As such, a positive response to
the determination at step (706) is followed by looking up the
subject directory at the mapped inode at the target site (712).
It is then determined if the subject directory is present in the
mapped inode (714). If the directory is not present, the direc
tory is created at the target site and link to the Subject directory
at the source site (716). However, if the directory is present, it
is then determined if there is a change at the file level noted in
the consistency point comparison at the source site (718). A
negative response to the determination at step (716) is an
indication that the change was at the directory level (720).
Conversely, a positive response to the determination at step
(718) shows that the change is at the data level and a link from
the Source to the target is established to update the appropriate
target inode and directory with the changed data (720).
Accordingly, data consistency between the source and target
sites is maintained at the directory level.
0049 All filesystem operations performed at the source
site are replayed in the same order at the target site, thereby
guaranteeing write order and read stability. More specifically,
identified differences between the source and target site con
sistency points are applied from the Source site as a filesystem
operation.

US 2013/O 1386.15 A1

0050. As demonstrated in the flow charts of FIGS. 4-7, a
method is employed to support synchronization of data from
a source site to a target site. More specifically, sequential
consistency points are created, differences between the con
sistency points are identified, and the differences are replayed
from the source site to a target site as a filesystem operation.
In one embodiment, tools to Support the synchronization,
including creation of the consistency points, ascertaining dif
ferences between sequential consistency points, and convert
ing the ascertained differences into filesystem operations for
communication to the target site are all local to the source site.
FIG. 8 is a block diagram (800) illustrating tools embedded in
a computer system to Support the synchronization of data as
described above. More specifically, a shared pool of config
urable computer resources is shown with a first data center
(810) and a second data center (850). For purposes of descrip
tion, the first data center (810) is referred to as a source site
and the second data center (850) is referred to as a target site.
Although only two data centers are shown in the example
herein, the invention should not be limited to this quantity of
data centers in the computer system. Accordingly, two or
more data centers may be employed to Support data synchro
nization.

0051 Each of the data centers in the system is provided
with at least one server in communication with data storage.
More specifically, the first data center (810) is provided with
a server (820) having a processing unit (822), in communi
cation with memory (824) across a bus (826), and in commu
nication with first local storage (828), and the second data
center (850) is provided with a server (860) having a process
ing unit (862), in communication with memory (864) across
a bus (866), and in communication with third local storage
(868).
0052. In the example shown herein, an application (880)
processes read and write operations local to the first data
center (810). Read operations are supported with data in the
first local storage (828). Similarly, data from write operations
are written to the first local storage (828). Several tools are
provided to support synchronization of write data from the
first data center (810) to the second data center (850). More
specifically, a functional unit (830) is provided local to the
first data center (810) in the shared pool and in communica
tion with memory (824) of the server (820). The functional
unit (830) manages the tools that support the data synchroni
Zation. The tools include, but are not limited to a data manager
(832), a delta manager (834), and a data mover (836). The
data manager (832) functions to process data at the Source site
(810) through the use of consistency points. More specifi
cally, the data manager (832) creates consistency points of the
filesystem, i.e. source filesystem, local to the source site (810)
on a periodic basis.
0053. Each of the created consistency points represents
filesystem data and metadata at a point-in-time and function
to establish a recovery point in the event of a failure. At a
minimum, the data manager (832) creates a first consistency
point at a first point-in-time and a second consistency point at
a second point-in-time. In one embodiment, after the second
consistency point is generated and replicated to the target site
(850) the first consistency point may be deleted from the
source site (810). Accordingly, the data manager (832) func
tions to capture at least two images of the source filesystem at
different points in time.
0054 As there are at least two consistency points of the
Source filesystem, the consistency points need to be commu

May 30, 2013

nicated to the second data center (850) in the event of a
communication failure between the first and second data cen
ter (810) and (850). To mitigate bandwidth utilization, the
communication may be limited to the differences between the
two consistency points. The delta manager (834) is provided
in communication with the data manager (832), with the
functionality of the delta manager (834) to support identifi
cation and management of Such differences. More specifi
cally, the delta manager (834) compares the first consistency
point with the second consistency point and identifies any
differences between the first and second consistency points.
Accordingly, the delta manager (834) functions to identify
differences at both the metadata and data level between two
consistency points.
0055 Finally, a data mover (836) is provided in commu
nication with the delta manager (834) to manage application
of the differences between the two consistency points as
identified by the delta manager (834). More specifically, the
data mover (836) generates an output file containing the iden
tified differences, places the identified differences in a queue,
and replays the output file as a filesystem operation. In one
embodiment, the filesystem operation is replayed from the
source site (810) to the target site (850) with the operation
including multiple filesystem operations in a simultaneous
manner. The filesystem operation employed by the data
mover (836) replays only those changes that are reflected in
the exact deltas as created by the delta manager (834). In one
embodiment, the data mover (836) allows two or more file
updates to be coalesced and transient metadata operations,
e.g. temporary files, to be ignored. Because the data mover
(836) replaces filesystem operations to communicate filesys
tem changes, the source site (810) and the target site (850) are
not limited to homogeneous filesystems. In one embodiment,
the source site (810) and the target site (850) may be hetero
geneous filesystems. Accordingly, the data mover (836) is
responsible for communicating the identified filesystem
changes from the source site (810) to a target site (850) in the
form of a filesystem operation.
0056. As shown herein, filesystem changes are identified
and synchronized from a source site (810) in a shared pool of
resources to a target site (850). More specifically, the syn
chronization is Supported by the data manager (832), delta
manager (834), and data mover (836). In one embodiment,
the synchronization of data from the source site (810) takes
place in response to a fault in communication from the source
site (810) to ensure that a consistent version of data at the
target site (850) is maintained and progressing. Accordingly,
consistency of data is maintained at two locations in the cloud
to ensure that a replica of data from the source site is available
at a secondary location.
0057. As shown, the tools (832)-(836) are provided in the
shared pool of configurable computer resources i.e. cloud,
local to the source site (810). In one embodiment, the target
site does not require any additional tools for computer pro
gram code to Support the synchronization functionality. As
identified above, the data manager, delta manager, and data
mover, (832), (834), and (836) respectively, are shown resid
ing in memory (824) of the server (820) local to the source
data center (810). Although in one embodiment, the data
manager, delta manager, and data mover (832), (834), and
(836) respectively, may reside as hardware tools external to
memory (824) of server (820), or they may be implemented as
a combination of hardware and software. Similarly, in one
embodiment, the managers (832)-(836) may be combined

US 2013/O 1386.15 A1

into a single functional item that incorporates the functional
ity of the separate items. As shown herein, each of the man
ager(s) are shown local to one data center. However, in one
embodiment they may be collectively or individually distrib
uted across the shared pool of configurable computer
resources and function as a unit to manage synchronization of
consistent data from the source site to the target site. Accord
ingly, the managers may be implemented as Software tools,
hardware tools, or a combination of software and hardware
tools.
0058 As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0059 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0060 A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0061 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0062 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language

May 30, 2013

or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0063 Aspects of the present invention are described above
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0064. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0065. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0066 Referring now to FIG. 9 is a block diagram (900)
showing a system for implementing an embodiment of the
present invention. The computer system includes one or more
processors, such as a processor (902). The processor (902) is
connected to a communication infrastructure (904) (e.g., a
communications bus, cross-over bar, or network). The com
puter system can include a display interface (906) that for
wards graphics, text, and other data from the communication
infrastructure (904) (or from a frame buffer not shown) for
display on a display unit (908). The computer system also
includes a main memory (910), preferably random access
memory (RAM), and may also include a secondary memory
(912). The secondary memory (912) may include, for
example, a hard disk drive (914) and/or a removable storage
drive (916), representing, for example, a floppy disk drive, a
magnetic tape drive, or an optical disk drive. The removable
storage drive (916) reads from and/or writes to a removable
storage unit (918) in a manner well known to those having
ordinary skill in the art. Removable storage unit (918) repre
sents, for example, a floppy disk, a compact disc, a magnetic
tape, oran optical disk, etc., which is read by and written to by

US 2013/O 1386.15 A1

removable storage drive (916). As will be appreciated, the
removable storage unit (918) includes a computer readable
medium having Stored thereincomputer Software and/or data.
0067. In alternative embodiments, the secondary memory
(912) may include other similar means for allowing computer
programs or other instructions to be loaded into the computer
system. Such means may include, for example, a removable
storage unit (920) and an interface (922). Examples of such
means may include a program package and package interface
(such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, and other removable storage units (920) and interfaces
(922) which allow software and data to be transferred from
the removable storage unit (920) to the computer system.
0068. The computer system may also include a communi
cations interface (924). Communications interface (924)
allows software and data to be transferred between the com
puter system and external devices. Examples of communica
tions interface (924) may include a modem, a network inter
face (Such as an Ethernet card), a communications port, or a
PCMCIA slot and card, etc. Software and data transferred via
communications interface (924) are in the form of signals
which may be, for example, electronic, electromagnetic, opti
cal, or other signals capable of being received by communi
cations interface (924). These signals are provided to com
munications interface (924) via a communications path (i.e.,
channel) (926). This communications path (926) carries sig
nals and may be implemented using wire or cable, fiber
optics, a phone line, a cellular phone link, a radio frequency
(RF) link, and/or other communication channels.
0069. In this document, the terms “computer program
medium.” “computer usable medium, and “computer read
able medium' are used to generally refer to media Such as
main memory (910) and secondary memory (912), removable
storage drive (916), and a hard disk installed inhard disk drive
(914).
0070 Computer programs (also called computer control
logic) are stored in main memory (910) and/or secondary
memory (912). Computer programs may also be received via
a communication interface (924). Such computer programs,
when run, enable the computer system to perform the features
of the present invention as discussed herein. In particular, the
computer programs, when run, enable the processor (902) to
perform the features of the computer system. Accordingly,
Such computer programs represent controllers of the com
puter system.
0071. The flowcharts and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowcharts
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the

May 30, 2013

specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0072 The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises' and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0073. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated. Accordingly, the enhanced
cloud computing model Supports flexibility with respect to
application processing and disaster recovery, including, but
not limited to, Supporting separation of the location of the
data from the application location and selection of an appro
priate recovery site.

Alternative Embodiment

0074. It will be appreciated that, although specific
embodiments of the invention have been described hereinfor
purposes of illustration, various modifications may be made
without departing from the spirit and scope of the invention.
In particular, the system can be configured to Support planned
and unplanned synchronization of data and metadata operat
ing at the first data center. Accordingly, the scope of protec
tion of this invention is limited only by the following claims
and their equivalents.

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. A system comprising:
a server having memory in communication with a process

ing unit, and associated with a filesystem;
the server in communication with a shared pool of config

urable computer resources;
a functional unit in communication with the processing

unit, the functional unit comprising:
a data manager to process data at a source site in the

shared pool, including periodic creation of a consis
tency point in a source filesystem of the Source site at

US 2013/O 1386.15 A1

a file set level, each consistency point to represent
Source filesystem data and metadata at a point-in-time
to establish a recovery point, including the data man
ager to create a first consistency point at a first point
in-time and a second consistency point at a second
point-in-time;

a delta manager in communication with the data man
ager, the delta manager to compare the first consis
tency point with the second consistency point, includ
ing identification of any differences between the first
and second consistency points; and

a data mover in communication with the delta manager,
the data mover to apply the identified differences
between the first and second consistency points,
including a replay of the identified differences based
upon a mapping of file system objects.

11. The system of claim 10, wherein the data mover
employs a map of a source filesystem inode to a target file
system inode to apply the identified differences.

12. The system of claim 10, wherein application of the
identified differences by the data mover includes identifica
tion of filesystem operations on filesystem objects using file
aCS.

13. The system of claim 10, wherein the delta manager
produces an exact delta from the identified differences, the
exact delta including any metadata change and any data
change, and the data mover to replay only those changes
reflected in the exact delta.

14. The system of claim 10, further comprising the data
mover to generate an output file for the identified difference
and to Support a concurrent replay of a series of filesystem
operation to a target site.

15. The system of claim 10, further comprising the data
mover to replay the output file after communication failure
between the source site and a target site.

16. A computer program product comprising a non-transi
tory computer readable storage medium having computer
readable program code embodied therewith, the computer
readable program code comprising:

computer readable program code configured to process
data at a source site in a shared pool of configurable
resources, including periodic creation of a consistency
point in a source filesystem of the source site at a file set
level, each consistency point to represent source filesys
tem data and metadata at a point-in-time to establish a
recovery point, the periodic creation of the consistency

May 30, 2013

point including the creation of a first consistency point at
a first point-in-time and a second consistency point at a
second point-in-time;

computer readable program code configured to compare
the first consistency point with the second consistency
point, including identification of any differences
between the first and second consistency points;

computer readable program code configured to map file
system objects; and

computer readable program code configured to apply the
identified differences between the first and second con
sistency points, including replaying the identified differ
ences as one or more filesystem operations based upon
the mapping of the filesystem objects.

17. The computer program product of claim 16, wherein
the program code to apply the identified differences employs
a mapping of a source filesystem inode to a target filesystem
inode.

18. The computer program product of claim 16, wherein
the program code to apply the identified differences includes
program code to identify filesystem operations on filesystem
objects using file names.

19. The computer program product of claim 16, wherein
the code configured to apply the identified differences
between the first and second consistency points produces an
exact delta of any metadata change and any data change, and
replays only those changes reflected in the exact delta.

20. The computer program produce of claim 16, further
comprising computer program code configured to generate an
output file for the identified differences and to concurrently
apply the identified differences between the first and second
consistency points to Support multiple concurrent filesystem
operations.

21. The computer program product of claim 16, further
comprising computer program code configured to replay the
output file after communication failure between the source
site and a target site.

22. The computer program product of claim 16, wherein
the first and second consistency points are not limited to
Successive consistency points.

23. The computer program product of claim 16, further
comprising computer program code configured to revert
changes at the target filesystem by moving to an older con
sistency point.

24. (canceled)
25. (canceled)

