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(57) ABSTRACT 

A distributed database system providing data and space man 
agement methodology. In one embodiment, for example, a 
method for transferring a data structure in cache at a first 
database server to a second database server in a distributed 
database system comprises steps of determining a first data 
base server having a data structure in cache in response to a 
request for the data structure from a second database server, 
the request including a request for a lock on the data structure; 
providing the request for the data structure to the first data 
base server, in response, sending the data structure from the 
first database server to the second database server; and receiv 
ing and using the data structure at the second database server 
without waiting for the lock request to be explicitly granted. 
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DISTRIBUTED DATABASE SYSTEM 
PROVIDING DATA AND SPACE 

MANAGEMENT METHODOLOGY 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application is related to and claims the 
benefit of priority of the following commonly-owned, pres 
ently-pending nonprovisional application(s): application Ser. 
No. 10/904.263 (Docket No. SYB/0115.00), filed Nov. 1, 
2004, entitled “Distributed Database System Providing Data 
and Space Management Methodology', of which the present 
application is a Divisional application thereof. The disclosure 
of the foregoing application is hereby incorporated by refer 
ence in its entirety, including any appendices or attachments 
thereof, for all purposes. 

COPYRIGHT STATEMENT 

0002. A portion of the disclosure of this patent document 
contains material which is subject to copyright protection. 
The copyright owner has no objection to the facsimile repro 
duction by anyone of the patent document or the patent dis 
closure as it appears in the Patent and Trademark Office patent 
file or records, but otherwise reserves all copyright rights 
whatsoever. 

BACKGROUND OF INVENTION 

0003 1. Field of the Invention 
0004. The present invention relates generally to data pro 
cessing environments and, more particularly, to a distributed 
database system providing optimized data transfer, space 
management, timestamp management, and deadlock detec 
tion with optimal messaging 
0005 2. Description of the Background Art 
0006 Computers are very powerful tools for storing and 
providing access to vast amounts of information. Computer 
databases are a common mechanism for storing information 
on computer systems while providing easy access to users. A 
typical database is an organized collection of related infor 
mation stored as “records' having “fields” of information. As 
an example, a database of employees may have a record for 
each employee where each record contains fields designating 
specifics about the employee. Such as name, home address, 
salary, and the like. 
0007 Between the actual physical database itself (i.e., the 
data actually stored on a storage device) and the users of the 
system, a database management system or DBMS is typically 
provided as a software cushion or layer. In essence, the 
DBMS shields the database user from knowing or even caring 
about the underlying hardware-level details. Typically, all 
requests from users for access to the data are processed by the 
DBMS. For example, information may be added or removed 
from data files, information retrieved from or updated in such 
files, and so forth, all without user knowledge of the under 
lying system implementation. In this manner, the DBMS 
provides users with a conceptual view of the database that is 
removed from the hardware level. The general construction 
and operation of database management systems is well 
known in the art. See e.g., Date, C., “An Introduction to 
Database Systems, Seventh Edition. Addison Wesley, 2000. 
0008 Increasingly, businesses run mission-critical sys 
tems which store information using database management 
systems. These systems have long since moved from a cen 
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tralized mainframe environment to a de-centralized or dis 
tributed environment. One or more PC "client’ systems, for 
instance, may be connected via a network to one or more 
server-based database systems (e.g., SQL database server), to 
form a client/server database system. Multiple tier database 
systems including clients, application servers, and database 
servers connected by networks are also currently in wide use. 
0009. As computer systems and networks become increas 
ingly complex and critical to business operations, the need to 
have high availability of these systems is becoming corre 
spondingly important. Data networks, and especially the 
Internet, are uniting the world into a single global market 
place that never closes. Employees, sales representatives, and 
Suppliers in far-flung regions need access to mission-critical 
systems every hour of the day. Furthermore, increasingly 
Sophisticated customers expect twenty-four hour per day 
sales and service from a Web site. As a result, tremendous 
competitive pressure is placed on businesses to keep their 
systems running continuously. 
0010 Today, an increasing number of users need their 
systems to be continuously available, with no downtime. 
However, while current “high availability” solutions provide 
high levels of availability, these solutions do not currently 
provide continuous availability. Instead, current high avail 
ability solutions require some amount of downtime for per 
forming maintenance, adding upgrades, and the like. For 
example, if a high availability system is resource constrained, 
it would typically need to be brought downto allow for adding 
additional CPU and/or memory resources. A better approach 
providing increased levels of availability is desired. 
0011. Another recent trend is towards the use of “blade 
servers', which is an architecture that provides for modular, 
efficient, and cost-effective systems. This type of architecture 
typically includes virtualized storage and a network using a 
high speed interconnect switched fabric. Blade servers may, 
for instance, be implemented using Intel processors and the 
Linux operating system. The Linux operating system has 
matured in terms of reliability, availability, scalability, and 
manageability, so as to facilitate administration of the blade 
servers. The price/performance of the Intel/Linux platform 
makes it a compelling platform for running mission critical 
applications like database servers and enterprise resource 
planning (ERP) applications in a distributed fashion. How 
ever, this type of environment requires that the DBMS 
engines have the ability to provide the necessary scalability 
and transparent availability. 
0012 What is needed is a solution that enables a customer 
to run applications at multiple clustered servers with the 
clustered servers accessing data in databases shared amongst 
the servers in the cluster. For example, Suppose that a cus 
tomer runs into a scalability problem with a database system 
because the customer runs out of CPU power in the machine 
(s) on which the database system is operated. The clustered 
server Solution should enable the customer to quickly and 
easily address this scalability problem by simply adding 
another machine to the configuration. The Solution should be 
easily expandable, so that customers may simply add addi 
tional servers in order to increase system capacity and provide 
improved performance without major data restructuring and 
the associated System downtime that is common in current 
systems. This type of Solution enables the customer to pur 
chase hardware in Smaller increments as needed to keep up 
with growth. This is advantageous compared with buying 
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larger machines in advance based on anticipated future 
demand for resources (e.g., disk, memory, CPU, and the like). 
0013 The solution should also provide for transparent, 
continuous availability of the applications run on the cluster 
with instantaneous fail-over amongst servers in the cluster. 
When one server is down (e.g., for upgrading the CPU) the 
applications should be able to operate using the remaining 
machines in the cluster. Even if one node fails, applications 
should be able to access the other nodes, so that a continu 
ously available solution is provided. 
0014. At the same time, the solution should provide trans 
parency to users so that they need not be concerned with all of 
the internal details of running multiple database servers. For 
instance, the solution should provide a single server appear 
ance to applications. Also, an infrastructure should be pro 
vided which enables server processes to run against shared 
disks while resolving cache coherency issues in transparent 
fashion. Ideally, the solution should facilitate operational 
administration of the infrastructure necessary to manage the 
distributed database environment while also minimizing the 
number of messages sent between nodes so that Such mes 
sages do not adversely affect system performance. The opera 
tional administration that is provided should include detec 
tion of deadlocks between nodes competing for shared 
resources and efficient management space utilization and 
timestamps in the distributed system. The present invention 
provides a solution to these and other needs. 

SUMMARY OF INVENTION 

0015. A distributed database system providing data and 
space management methodology is described. In one 
embodiment, for example, a method of the present invention 
is described for transferring a data structure in cache at a first 
database server to a second database server in a distributed 
database system, the method comprises steps of determining 
a first database server having a data structure in cache in 
response to a request for the data structure from a second 
database server, providing the request for the data structure to 
the first database server, in response, sending the data struc 
ture and a message containing an address where the data 
structure needs to be copied on the second database server to 
the second database server, and receiving the data structure at 
the second database server using the data structure address 
included with the message. 
0016. In another embodiment, for example, a method of 
the present invention is described for transferring a data struc 
ture in cache at a first database server to a second database 
server in a distributed database system, the method comprises 
steps of determining a first database server having a data 
structure in cache in response to a request for the data struc 
ture from a second database server, the request including a 
request for a lock on the data structure; providing the request 
for the data structure to the first database server; in response, 
sending the data structure from the first database server to the 
second database server; and receiving and using the data 
structure at the second database server without waiting for the 
lock request to be explicitly granted. 
0017. In yet another embodiment, for example, in a dis 
tributed database system of the present invention having a 
plurality of database servers, a system for transferring a data 
structure in cache at a first database server to a second data 
base server is described that comprises: a resource master for 
determining a first database server having a data structure in 
cache in response to a request for the data structure from a 
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second database server, the request including a request for a 
lock on the data structure and for providing the request for the 
data structure to the first database server; a first database 
server which sends the data structure to the second database 
server in response to the request received from the resource 
master; and a second database server which receives and uses 
the data structure sent by the first database server without 
waiting for the lock request to be explicitly granted. 
0018. In another embodiment, for example, in a distrib 
uted database system comprises a plurality of nodes sharing 
access to data, a method of the present invention is described 
for regulating access to data objects in cache at nodes of the 
distributed database system, the method comprises steps of 
providing a lock master at one of the plurality of nodes for 
regulating access to data objects in cache at the plurality of 
nodes; Submitting a lock request for a given data object 
requested at a first node of the distributed database system to 
the lock master, the lock request including an address to 
which the given data object is to reside at the first node: 
forwarding the lock request from the lock master to a second 
node having the given data object in cache; and in response, 
transferring the data object from the second node to the first 
node using the address included with the lock request without 
waiting for the lock request to be explicitly granted. 

BRIEF DESCRIPTION OF DRAWINGS 

0019 FIG. 1 is a very general block diagram of a computer 
system (e.g., an IBM-compatible system) in which software 
implemented processes of the present invention may be 
embodied. 
0020 FIG. 2 is a block diagram of a software system for 
controlling the operation of the computer system. 
0021 FIG. 3 illustrates the general structure of a client/ 
server database system. 
0022 FIG. 4 is a high-level block diagram of an environ 
ment illustrating an example of a four node shared disk cluster 
accessed by a plurality of clients. 
0023 FIG. 5 is a block diagram illustrating components of 
an instance of a clustered database server implementing the 
shared disk cluster system and methodology of the present 
invention. 
0024 FIG. 6 is a block diagram illustrating the distribution 
of the lock queues and lock management information in a 
shared disk cluster environment. 

0025 FIGS. 7A-F illustrate six tables which are used for 
lock management in the currently preferred embodiment of 
the present invention. 
0026 FIG. 8 is a high-level flow diagram illustrating the 
“triangle optimization' provided by the present invention. 
0027 FIG. 9A is a diagram illustrating an example of the 
space usage of a segment on two clustered servers. 
0028 FIG.9B illustrates three user defined thresholds and 
a free page count at two different times. 
0029 FIG. 10 is a block diagram illustrating the clustered 
servers and the direction of adjustment request messages 
among clustered servers. 
0030 FIG. 11 is a flowchart illustrating an example of the 
handling of an adjustment request (e.g., emergency request) 
sent by a clustered server. 
0031 FIG. 12 is a high-level flow diagram illustrating the 
method steps of the present invention for single page deallo 
cation during crash recovery. 



US 2008/029.4648 A1 

0032 FIGS. 13 A-B comprise a single high-level flow dia 
gram illustrating the method steps of the present invention for 
single page deallocation during node recovery. 

DETAILED DESCRIPTION 

0033 Glossary 
0034. The following definitions are offered for purposes of 
illustration, not limitation, in order to assist with understand 
ing the discussion that follows. 
0035 Allocation Page: The allocation page (AP) is the 

first page in an allocation unit (chunk of 256 contiguous 
pages) that keeps track of the data pages that are allocated, 
being deallocated, and free. A pair of bits, the alloc bit and the 
dealloc bit in the allocation page represent the state of the data 
page. 
0036 AST: AST refers to the ASynchronous Trap used by 
the cluster lock manager (CLM) to deliver an asynchronous 
completion notification to the lock requester for non-blocking 
requests. The ASTs can be delivered through client’s callback 
handler in CLM daemon's context or in the client context 
through polling. 
0037 BAST: BAST refers to the Blocking ASynchronous 
Trap used by the cluster lock manager (CLM) to deliver an 
asynchronous blocking notification to the lock owner when 
another clustered server in the cluster is requesting for the 
lock in conflicting lock mode. The BASTs can be delivered 
through client’s callback handler in CLM daemon's context 
or in the client context through polling. 
0038 Buffer: Buffer refers to metadata information to 
maintain a page on disk in memory. 
0039 CES: The cluster event service (CES) is a cluster 
infrastructure component of the present invention that pro 
vides global and local event Subscription and publishing Ser 
W1CS 

0040 CLM: The cluster lock manager (CLM) is a server 
module of the present invention that provides the distributed 
locking service to allow the sharing of logical locks, global 
objects, and cached database data and metadata among the 
clustered servers. 
0041 CLR: CLR refers to compensation log record, 
which is an “undo record logged during transaction rollback. 
CLRs are usually redo-only log records which are not 
undone. 
0.042 Cluster: Cluster refers to a collection of more than 
one networked (and usually homogeneous) nodes, which 
function as a single system. Each node usually contains its 
own CPU and memory. All the nodes in the cluster commu 
nicate with each other, typically through private intercon 
nectS. 

0043 Cluster Coordinator: The coordinating clustered 
server that is responsible for view updates at cluster member 
ship changes. The clustered server that bootstraps the cluster 
is the default cluster coordinator. A new coordinator may be 
selected in the event of a coordinator failure. 
0044 Cluster Configuration File: A cluster configuration 

file contains a clustered server configuration to run in a shared 
disk cluster environment. The cluster configuration file typi 
cally includes information about path name to quorum disk 
and cluster and member server definitions including the pri 
mary and secondary interprocess communication (IPC) con 
figuration. 
0.045 Clustered Server: A clustered server refers to a data 
base server which runs on a shared-disk cluster and jointly 
manages a single installation of the databases on the shared 
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disks. Currently, a clustered server is identified by a clustered 
server number, which is a number uniquely identifying a 
named clustered server in a shared disk cluster. The clustered 
server number is assigned to a named clustered server as part 
of the cluster configuration. Currently, the number can range 
from one to maximum configurable clustered servers and, 
similar to the clustered server name, cannot be changed while 
the cluster is running. 
0046 ClusterView: A cluster view is a runtime data struc 
ture about active clustered servers in the cluster and server 
States. 

0047 CMS: The cluster membership service (CMS) is the 
module of the cluster infrastructure of the present invention 
that Supports the cluster configuration and membership man 
agement for a shared disk cluster environment. 
0048 Crash Recovery: Crash recovery refers to the recov 
ery that follows after a database cluster is shutdown normally 
or abnormally. 
0049 Disk Piece: A disk piece is a unit of contiguous 
database storage, which is currently described by a single 
entry in masterdbo.sysusages and by a single entry in the 
databases disk map. 
0050. Dedicated Log Segment: A dedicated log segment 
refers to the disk pieces that belong to the log segment and are 
not for any other segment (i.e., space on the disk pieces that is 
only used for the log). 
0051 INDOUBT: An INDOUBT state is one of the pos 
sible states for a lock resource. A lock can be marked as 
INDOUBT during a cluster-wide lock re-master and rebuild 
if it was held in exclusive mode by a failed clustered server, or 
its resource master failed and its lock state cannot be recon 
structed from the surviving clustered servers. 
0.052 Interfaces File: Interfaces file refers to a standard 
database interfaces file or any other directory control layer 
(e.g., LDAP or the like) from which connection related infor 
mation for a dataserver (such as the database server name, 
host name/IP address, protocol, port number, security 
options, and so forth) is obtained. 
0053 Local Lock Manager (LLM): A Local Lock Man 
ager Supports logical lock, physical lock and object lock API 
for local clients, manages local lock queues with task owner 
ship, and interacts with Cluster Lock Manager to acquire, 
downgrade and release the retention locks with node owner 
ship. 
0054 Logical Cluster: Logical cluster refers to a logical 
cluster feature which facilitates logical partitioning of the 
database shared disk cluster into Smaller functional groups of 
clustered servers, with each functional group serving a dis 
tinct set of client application and databases. 
0055 Mixed-log-data database: In a mixed-log-data data 
base, the diskpieces that belong to a log segment are also used 
for other segments. In other words, a mixed-log-data database 
has no fixed space dedicated for the log and one allocation 
unit can have extents allocated to both data and log. 
0056 Nested Top Action (NTA): A nested top action is a 
part of a transaction that is committed or rolled back indepen 
dent of the transaction. Nested top actions are typically used 
by the index manager for page splits and shrinks. 
0057 Node Recovery: The terms node recovery and 
failover recovery refer to the recovery that follows after a 
node (clustered server) is shutdown normally or abnormally 
due to a hardware or software fault. Typically, another node 
recovers the server running on the failed node. 
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0058 OAM: OAM refers to Object Allocation Map, which 
is a map maintaining information about the allocation of an 
object. 
0059 GAM: GAM refers to Global Allocation Map, 
which is a map maintaining information about allocation of a 
database. 
0060 OCM: The Object Coherency Manager (OCM) is a 
server infrastructure module of the present invention that 
deals with the coherency issues related to sharing and trans 
ferring metadata and global variables/data structures among 
different clustered servers in a shared disk cluster environ 
ment 

0061. Object Lock: An object lock is a lock maintained by 
the clusterlock manager to establish ownership of a metadata 
object such as a dbtable or a global data structure/variable. 
0062 Page: A page refers to a physical page on disk. All 
data in a typical database system is stored in pages on a 
secondary storage device, usually a hard disk. Typically, these 
pages may range in size from 2. Kb to 16 Kb, with the most 
common page sizes being 2 Kb and 4. Kb. 
0063 Physical Cluster: Physical cluster refers to the data 
base shared disk cluster as defined in the cluster configuration 
file, with specific quorum disk, member servers, and inter 
connect information. All servers in the physical cluster have 
direct access to a single installation of the databases and are 
monitored and managed by the cluster membership Service. 
0064 Physical Lock: A physical lock is a lock maintained 
by the cluster lock manager to establish ownership of a page 
in the shared disk cluster environment. Physical locks are 
server-specific and are held by a clustered server as long as 
there are no conflicting requests in the cluster. 
0065 PRTS: PRTS refers to a page's timestamp the first 
time it is dirtied and before it is flushed. The PRTS value is 
maintained so that recovery can know the appropriate re-start 
point for that page. 
0066 PTS: PTS refers to a page's current timestamp. The 
PTS value is maintained to ensure validity of the page. 
0067 Recovery checkpoint: Recovery checkpoint refers 

to the last successful checkpoint record written to the trans 
action log of the database before a database server was shut 
down normally or abnormally. 
0068 Recovery vbit map: A variable bitmap used by 
recovery where each bit in the map corresponds to one allo 
cation page is referred to as the recovery vbit map. This map 
is used during recovery to keep track of the allocation pages 
requiring a cleanup of its deallocation bits in its extents. 
0069 Redo Pass: The redo pass is a recovery pass where 

all log records encountered in the scan starting from the oldest 
active transaction pointed to by the recovery-checkpoint 
record until the end of the log are redone, regardless of the 
ending status of the transaction that the log record is part of 
0070 Relational database: A relational database is a col 
lection of data items organized as a set of formally-described 
tables from which data can be accessed or reassembled in 
many different ways without having to reorganize the data 
base tables. The relational database was invented by E. F. 
Codd at IBM in 1970. A relational database employs a set of 
tables containing data fitted into predefined categories. Each 
table (which is sometimes called a relation) contains one or 
more data categories in columns. The standard user and appli 
cation program interface to a relational database is the struc 
tured query language (SQL), defined below. 
(0071 Resource Master or LockMaster (RM): The Cluster 
Lock Manager that is responsible for managing the global 
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lock queue with node ownership, including resolving con 
flicts, reclaiming locks from the owning servers (i.e., the Lock 
Owner), and granting locks to the requesting servers (or the 
Lock Requester). 
0072 Retention Lock: A retention lock refers to a global 
lock that has clustered server ownership and can be acquired 
and retained by the clustered server. Retention locks are man 
aged by cluster lock manager. 
(0073 SEMAWAIT queue: A Lock Manager uses a 
SEMAWAIT queue to maintain all local locking requests for 
an object. SEMAWAIT defines a position in the queue, the 
LOCKREC corresponds for a particular task's lock request. 
Since there can be shared locks, there might be more than one 
request at a given queue position in other words there might 
be more than one LOCKREC on a SEMAWAIT. 
0074 Shared Disk Cluster: In this document, the term 
shared disk cluster shall (unless otherwise indicated) refer 
broadly to a cluster configuration where all nodes have direct 
access to a shared disk subsystem. The distributed database 
system of the present invention, in its currently preferred 
embodiment, runs on a hardware shared disk cluster, with all 
of the clustered servers having direct access to the set of 
database devices and jointly managing a single installation of 
the databases. The clustered servers on each node communi 
cate with each other through redundant private interconnects 
and synchronize their database accesses using a shared buffer 
cache and distributedlock management. The system provides 
very high availability, since the database is available as long 
as there is at least one clustered server is alive. Shared data 
base device fault tolerance can also be obtained by imple 
menting RAID on the shared disk subsystem. 
0075 SQL: SQL stands for Structured Query Language. 
The original version called SEQUEL (structured English 
query language) was designed by IBM in the 1970's. SQL-92 
(or SQL/92) is the formal standard for SQL as set out in a 
document published by the American National Standards 
Institute in 1992; see e.g., “Information Technology—Data 
base Languages—SQL, published by the American 
National Standards Institute as American National Standard 
ANSI/ISO/IEC9075: 1992, the disclosure of which is hereby 
incorporated by reference. SQL-92 was superseded by SQL 
99 (or SQL3) in 1999; see e.g., “Information Technology— 
Database Languages—SQL, Parts 1-5’ published by the 
American National Standards Institute as American National 
Standard INCITS/ISO/IEC 9075-(1-5)-1999 (formerly 
ANSI/ISO/IEC 9075-(1-5) 1999), the disclosure of which is 
hereby incorporated by reference. 
0076 Undo Pass: The undo pass is a recovery pass in 
which log records from transactions that did not complete are 
undone. Compensation log records (CLRs) are logged for 
each log record that is undone 

Introduction 

0077 Referring to the figures, exemplary embodiments of 
the invention will now be described. The following descrip 
tion will focus on the presently preferred embodiment of the 
present invention, which is implemented in desktop and/or 
server Software (e.g., driver, application, or the like) operating 
in an Internet-connected environment running under an oper 
ating system, such as the Microsoft Windows operating sys 
tem. The present invention, however, is not limited to any one 
particular application or any particular environment. Instead, 
those skilled in the art will find that the system and methods 
of the present invention may be advantageously embodied on 
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a variety of different platforms, including Macintosh, Linux, 
Solaris, UNIX, FreeBSD, and the like. Therefore, the descrip 
tion of the exemplary embodiments that follows is for pur 
poses of illustration and not limitation. The exemplary 
embodiments are primarily described with reference to block 
diagrams or flowcharts. As to the flowcharts, each block 
within the flowcharts represents both a method step and an 
apparatus element for performing the method step. Depend 
ing upon the implementation, the corresponding apparatus 
element may be configured in hardware, Software, firmware, 
or combinations thereof. 

Computer-Based Implementation 

0078 Basic System Hardware and Software (e.g., for 
Desktop and Server Computers) 
007.9 The present invention may be implemented on a 
conventional or general-purpose computer system, such as an 
IBM-compatible personal computer (PC) or server computer. 
FIG. 1 is a very general block diagram of a computer system 
(e.g., an IBM-compatible system) in which Software-imple 
mented processes of the present invention may be embodied. 
As shown, system 100 comprises a central processing unit(s) 
(CPU) or processor(s) 101 coupled to a random-access 
memory (RAM) 102, a read-only memory (ROM) 103, a 
keyboard 106, a printer 107, a pointing device 108, a display 
or video adapter 104 connected to a display device 105, a 
removable (mass) storage device 115 (e.g., floppy disk, CD 
ROM, CD-R, CD-RW, DVD, or the like), a fixed (mass) 
storage device 116 (e.g., hard disk), a communication 
(COMM) port(s) or interface(s) 110, a modem 112, and a 
network interface card (NIC) or controller 111 (e.g., Ether 
net). Although not shown separately, a real time system clock 
is included with the system 100, in a conventional manner. 
0080 CPU 101 comprises a processor of the Intel Pentium 
family of microprocessors. However, any other Suitable pro 
cessor may be utilized for implementing the present inven 
tion. The CPU 101 communicates with other components of 
the system via a bi-directional system bus (including any 
necessary input/output (I/O) controller circuitry and other 
“glue” logic). The bus, which includes address lines for 
addressing system memory, provides data transfer between 
and among the various components. Description of Pentium 
class microprocessors and their instruction set, bus architec 
ture, and control lines is available from Intel Corporation of 
Santa Clara, Calif. Random-access memory 102 serves as the 
working memory for the CPU 101. In a typical configuration, 
RAM of sixty-four megabytes or more is employed. More or 
less memory may be used without departing from the scope of 
the present invention. The read-only memory (ROM) 103 
contains the basic input/output system code (BIOS)—a set of 
low-level routines in the ROM that application programs and 
the operating systems can use to interact with the hardware, 
including reading characters from the keyboard, outputting 
characters to printers, and so forth. 
0081 Mass storage devices 115, 116 provide persistent 
storage on fixed and removable media, Such as magnetic, 
optical or magnetic-optical storage systems, flash memory, or 
any other available mass storage technology. The mass Stor 
age may be shared on a network, or it may be a dedicated mass 
storage. As shown in FIG. 1, fixed storage 116 stores a body 
of program and data for directing operation of the computer 
system, including an operating system, user application pro 
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grams, driver and other Support files, as well as other data files 
of all sorts. Typically, the fixed storage 116 serves as the main 
hard disk for the system. 
0082 In basic operation, program logic (including that 
which implements methodology of the present invention 
described below) is loaded from the removable storage 115 or 
fixed storage 116 into the main (RAM) memory 102, for 
execution by the CPU 101. During operation of the program 
logic, the system 100 accepts user input from a keyboard 106 
and pointing device 108, as well as speech-based input from 
a voice recognition system (not shown). The keyboard 106 
permits selection of application programs, entry of keyboard 
based input or data, and selection and manipulation of indi 
vidual data objects displayed on the screen or display device 
105. Likewise, the pointing device 108, such as a mouse, track 
ball, pen device, or the like, permits selection and manipula 
tion of objects on the display device. In this manner, these 
input devices Support manual user input for any process run 
ning on the system. 
I0083. The computer system 100 displays text and/or 
graphic images and other data on the display device 105. The 
video adapter 104, which is interposed between the display 
105 and the system's bus, drives the display device 105. The 
video adapter 104, which includes video memory accessible 
to the CPU 101, provides circuitry that converts pixel data 
stored in the video memory to a raster signal Suitable for use 
by a cathode ray tube (CRT) raster or liquid crystal display 
(LCD) monitor. A hard copy of the displayed information, or 
other information within the system 100, may be obtained 
from the printer 107, or other output device. Printer 107 may 
include, for instance, an HP LaserJet printer (available from 
Hewlett Packard of Palo Alto, Calif.), for creating hard copy 
images of output of the system. 
I0084. The system itself communicates with other devices 
(e.g., other computers) via the network interface card (NIC) 
111 connected to a network (e.g., Ethernet network, Blue 
tooth wireless network, or the like), and/or modem 112 (e.g., 
56K baud, ISDN, DSL, or cable modem), examples of which 
are available from 3Com of Santa Clara, Calif. The system 
100 may also communicate with local occasionally-con 
nected devices (e.g., serial cable-linked devices) via the com 
munication (COMM) interface 110, which may include a 
RS-232 serial port, a Universal Serial Bus (USB) interface, or 
the like. Devices that will be commonly connected locally to 
the interface 110 include laptop computers, handheld orga 
nizers, digital cameras, and the like. 
I0085 IBM-compatible personal computers and server 
computers are available from a variety of vendors. Represen 
tative vendors include Dell Computers of Round Rock, Tex., 
Hewlett-Packard of Palo Alto, Calif., and IBM of Armonk, 
N.Y. Other suitable computers include Apple-compatible 
computers (e.g., Macintosh), which are available from Apple 
Computer of Cupertino, Calif., and Sun Solaris workstations, 
which are available from Sun Microsystems of Mountain 
View, Calif. 
I0086 Basic System Software 
I0087 FIG. 2 is a block diagram of a software system for 
controlling the operation of the computer system 100. As 
shown, a computer software system 200 is provided for 
directing the operation of the computer system 100. Software 
system 200, which is stored in system memory (RAM) 102 
and on fixed storage (e.g., hard disk) 116, includes a kernel or 
operating system (OS) 210. The OS 210 manages low-level 
aspects of computer operation, including managing execution 
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of processes, memory allocation, file input and output (I/O), 
and device I/O. One or more application programs, such as 
client application software or “programs' 201 (e.g., 201a, 
201b, 201c, 201d) may be “loaded” (i.e., transferred from 
fixed storage 116 into memory 102) for execution by the 
system 100. The applications or other software intended for 
use on the computer system 100 may also be stored as a set of 
downloadable processor-executable instructions, for 
example, for downloading and installation from an Internet 
location (e.g., Web server). 
0088 Software system 200 includes a graphical user inter 
face (GUI) 215, for receiving user commands and data in a 
graphical (e.g., "point-and-click”) fashion. These inputs, in 
turn, may be acted upon by the system 100 in accordance with 
instructions from operating system 210, and/or client appli 
cation module(s) 201. The GUI 215 also serves to display the 
results of operation from the OS 210 and application(s) 201, 
whereupon the user may supply additional inputs or terminate 
the session. Typically, the OS 210 operates in conjunction 
with device drivers 220 (e.g., “Winsock' driver Windows 
implementation of a TCP/IP stack) and the system BIOS 
microcode 230 (i.e., ROM-based microcode), particularly 
when interfacing with peripheral devices. OS 210 can be 
provided by a conventional operating system, Such as 
Microsoft Windows 9x, Microsoft Windows NT, Microsoft 
Windows 2000, or Microsoft Windows XP, all available from 
Microsoft Corporation of Redmond, Wash. Alternatively, OS 
210 can also be an alternative operating system, such as the 
previously mentioned operating systems. 
I0089 Client/Server Database System 
0090 FIG. 3 illustrates the general structure of a client/ 
server database system 300. As shown, the system 300 com 
prises one or more client(s) 310 connected to a server 330 via 
a network 320. Specifically, the client(s) 310 comprise one or 
more standalone terminals 311 connected to a database server 
system 340 using a conventional network. In an exemplary 
embodiment, the terminals 311 may themselves comprise a 
plurality of standalone workStations, dumb terminals, or the 
like, or comprise personal computers (PCs) such as the above 
described system 100. Typically, such units would operate 
under a client operating system, such as a Microsoft(R) Win 
dows client operating system (e.g., Microsoft(R) Windows 
95/98, Windows 2000, or Windows XP). 
0091. The database server system 340, which comprises 
Sybase R Adaptive Server Enterprise (available from Sybase, 
Inc. of Dublin, Calif.) in an exemplary embodiment, gener 
ally operates as an independent process (i.e., independently of 
the clients), running under a server operating system Such as 
Microsoft(R) Windows NT, Windows 2000, or Windows XP 
(all from Microsoft Corporation of Redmond, Wash.), UNIX 
(Novell), Solaris (Sun), or Linux (Red Hat). The network320 
may be any one of a number of conventional network systems, 
including a Local Area Network (LAN) or Wide Area Net 
work (WAN), as is known in the art (e.g., using Ethernet, IBM 
Token Ring, or the like). The network 320 includes function 
ality for packaging client calls in the well-known Structured 
Query Language (SQL) together with any parameter infor 
mation into a format (of one or more packets) Suitable for 
transmission to the database server system 340. 
0092 Client/server environments, database servers, and 
networks are well documented in the technical, trade, and 
patent literature. For a discussion of Sybase(R) branded data 
base servers and client/server environments generally, see, 
e.g., Nath, A., “The Guide to SQL Server'. Second Edition, 
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Addison-Wesley Publishing Company, 1995. For a descrip 
tion of Sybase R Adaptive Server(R) Enterprise, see, e.g., 
“Adaptive Server Enterprise 12.5.1 Collection: (1) Core 
Documentation Set and (2) Installation and Configuration.” 
available from Sybase, Inc. of Dublin, Calif. This product 
documentation is available via the Internet (e.g., currently at 
Sybooks. Sybase.com/as.html). The disclosures of the forego 
ing are hereby incorporated by reference. 
0093. In operation, the client(s) 310 store data in, or 
retrieve data from, one or more database tables 350, as shown 
at FIG. 3. Data in a relational database is stored as a series of 
tables, also called relations. Typically resident on the server 
330, each table itself comprises one or more “rows’ or 
“records” (tuples) (e.g., row 355 as shown at FIG. 3). A 
typical database will contain many tables, each of which 
stores information about a particular type of entity. A table in 
a typical relational database may contain anywhere from a 
few rows to millions of rows. A row is divided into fields or 
columns; each field represents one particular attribute of the 
given row. A row corresponding to an employee record, for 
example, may include information about the employee's ID 
Number, Last Name and First Initial, Position, Date Hired, 
Social Security Number, and Salary. Each of these categories, 
in turn, represents a database field. In the foregoing employee 
table, for example, Position is one field, Date Hired is another, 
and so on. With this format, tables are easy for users to 
understand and use. Moreover, the flexibility of tables permits 
a user to define relationships between various items of data, as 
needed. Thus, a typical record includes several categories of 
information about an individual person, place, or thing. Each 
row in a table is uniquely identified by a record ID (RID), 
which can be used as a pointer to a given row. 
0094. Most relational databases implement a variant of the 
Structured Query Language (SQL), which is a language 
allowing users and administrators to create, manipulate, and 
access data stored in the database. The syntax of SQL is well 
documented; see, e.g., the above-mentioned "An Introduction 
to Database Systems. SQL statements may be divided into 
two categories: data manipulation language (DML), used to 
read and write data; and data definition language (DDL), used 
to describe data and maintain the database. DML statements 
are also called queries. In operation, for example, the clients 
310 issue one or more SQL commands to the server 330. SQL 
commands may specify, for instance, a query for retrieving 
particular data (i.e., data records meeting the query condition) 
from the database table(s) 350. In addition to retrieving the 
data from database server table(s) 350, the clients 310 also 
have the ability to issue commands to insert new rows of data 
records into the table(s), or to update and/or delete existing 
records in the table(s). 
0.095 SQL statements or simply "queries' must be parsed 
to determine an access plan (also known as “execution plan” 
or "query plan') to satisfy a given query. In operation, the 
SQL statements received from the client(s) 310 (via network 
320) are processed by the engine 360 of the database server 
system 340. The engine 360 itself comprises a parser 361, a 
normalizer 363, a compiler 365, an execution unit 369, and an 
access methods 370. Specifically, the SQL statements are 
passed to the parser 361 which converts the statements into a 
query tree—a binary tree data structure which represents the 
components of the query in a format selected for the conve 
nience of the system. In this regard, the parser 361 employs 
conventional parsing methodology (e.g., recursive descent 
parsing). 
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0096. The query tree is normalized by the normalizer 363. 
Normalization includes, for example, the elimination of 
redundant data. Additionally, the normalizer 363 performs 
error checking, such as confirming that table names and col 
umn names which appear in the query are valid (e.g., are 
available and belong together). Finally, the normalizer 363 
can also look-up any referential integrity constraints which 
exist and add those to the query. 
0097. After normalization, the query tree is passed to the 
compiler 365, which includes an optimizer 366 and a code 
generator 367. The optimizer 366 is responsible for optimiz 
ing the query tree. The optimizer 366 performs a cost-based 
analysis for formulating a query execution plan. The opti 
mizer will, for instance, select the join order of tables (e.g., 
when working with more than one table), and will select 
relevant indexes (e.g., when indexes are available). The opti 
mizer, therefore, performs an analysis of the query and selects 
the best execution plan, which in turn results in particular 
access methods being invoked during query execution. It is 
possible that a given query may be answered by tens of 
thousands of access plans with widely varying cost charac 
teristics. Therefore, the optimizer must efficiently select an 
access plan that is reasonably close to an optimal plan. The 
code generator 367 translates the query execution plan 
selected by the query optimizer 366 into executable form for 
execution by the execution unit 369 using the access methods 
370. 

0098 All data in a typical relational database system is 
stored in pages on a secondary storage device, usually a hard 
disk. Typically, these pages may range in size from 2 Kb to 16 
Kb, with the most common page sizes being 2. Kb and 4. Kb. 
All input/output operations (I/O) against Secondary storage 
are done in page-sized units—that is, the entire page is read/ 
written at once. Pages are also allocated for one purpose at a 
time: a database page may be used to store table data or used 
for virtual memory, but it will not be used for both. The 
memory in which pages that have been read from disk reside 
is called the cache or buffer pool. 
0099 I/O to and from the disk tends to be the most costly 
operation in executing a query. This is due to the latency 
associated with the physical media, in comparison with the 
relatively low latency of main memory (e.g., RAM). Query 
performance canthus be increased by reducing the number of 
I/O operations that must be completed. This can be done by 
using data structures and algorithms that maximize the use of 
pages that are known to reside in the cache. Alternatively, it 
can be done by being more selective about what pages are 
loaded into the cache in the first place. An additional consid 
eration with respect to I/O is whether it is sequential or ran 
dom. Due to the construction of hard disks, sequential I/O is 
much faster then random access I/O. Data structures and 
algorithms encouraging the use of sequential I/O can realize 
greater performance. 
0100 For enhancing the storage, retrieval, and processing 
of data records, the server 330 maintains one or more database 
indexes 345 on the database tables 350. Indexes 345 can be 
created on columns or groups of columns in a table. Such an 
index allows the page containing rows that match a certain 
condition imposed on the index columns to be quickly located 
on disk, rather than requiring the engine to scan all pages in a 
table to find rows that fulfill some property, thus facilitating 
quick access to the data records of interest. Indexes are espe 
cially useful when satisfying equality and range predicates in 
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queries (e.g., a column is greater than or equal to a value) and 
“orderby' clauses (e.g., show all results in alphabetical order 
by a given column). 
0101. A database index allows the records of a table to be 
organized in many different ways, depending on a particular 
user's needs. An index key value is a data quantity composed 
of one or more fields from a record which are used to arrange 
(logically) the database file records by some desired order 
(index expression). Here, the column or columns on which an 
index is created form the key for that index. An index may be 
constructed as a single disk file storing index key values 
together with unique record numbers. The record numbers are 
unique pointers to the actual storage location of each record in 
the database file. 

0102 Indexes are usually implemented as multi-level tree 
structures, typically maintained as a B-Tree data structure. 
Pointers to rows are usually stored in the leafnodes of the tree, 
So an index scan may entail reading several pages before 
reaching the row. In some cases, a leaf node may contain the 
data record itself. Depending on the data being indexed and 
the nature of the data being stored, a given key may or may not 
be intrinsically unique. A key that is not intrinsically unique 
can be made unique by appending a RID. This is done for all 
non-unique indexes to simplify the code for index access. The 
traversal of an index in search of a particular row is called a 
probe of the index. The traversal of an index in search of a 
group of rows fulfilling some condition is called a scan of the 
index. Index scans frequently look for rows fulfilling equality 
or inequality conditions; for example, an index scan would be 
used to find all rows that begin with the letter A. 
0103) The above-described computer hardware and soft 
ware are presented for purposes of illustrating the basic 
underlying desktop and server computer components that 
may be employed for implementing the present invention. For 
purposes of discussion, the following description will present 
examples in which it will be assumed that there exists at least 
one 'server” (e.g., database server) that communicates with 
one or more "clients” (e.g., personal computers such as the 
above-described system 100). The present invention, how 
ever, is not limited to any particular environment or device 
configuration. Instead, the present invention may be imple 
mented in any type of system architecture or processing envi 
ronment capable of Supporting the methodologies of the 
present invention presented in detail below. 

Overview of Shared Disk Cluster Database System 

0104. The present invention provides a shared disk cluster 
Solution in which the clustered servers share access to data 
bases on a disk subsystem. FIG. 4 is a high-level block dia 
gram of an environment 400 illustrating an example of a four 
node (servers 411,412,413, 414) shared disk cluster accessed 
by a plurality of clients (clients 401, 402, 403). The term 
“cluster” refers to a collection of more than one networked 
(and usually homogeneous) nodes, which function as a single 
system. Each node generally contains its own CPU and 
memory resources. The term “clustered server” refers to a 
database server (currently implemented using SybaseR) 
Adaptive Server R. Enterprise (ASE) available from 
assignee Sybase of Dublin, Calif.) which runs on a shared 
disk cluster (cluster DB 430) and jointly manages a single 
installation of the databases on the shared disk storage 435. 
As shown, the environment 400 also includes a quorum disk 
439. The quorum disk is a shared disk device used for cluster 
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membership arbitration. The quorum disk also maintains a 
history of run time cluster view changes. 
0105. The shared disk cluster solution can be implemented 
using low cost “blade servers' such as Intel/Linux machines. 
In the presently preferred embodiment, nodes in the cluster 
communicate with each other through private interconnects 
(e.g., private interconnect 425). As shown at FIG.4, the nodes 
are interconnected via redundant high-speed interconnects 
with each node also having a direct connection to all data 
bases on a disk subsystem. Gigabit Ethernet and Infiniband 
may be used to provide these high-speed interconnects. The 
storage Subsystem may be implemented using raw device 
support with a storage area network (SAN 429) or with a file 
system Support (e.g., through use of a clustered file system 
such as those from Veritas or Polyserv). 
0106 The shared disk cluster solution of the present 
invention provides several advantages compared to prior art 
systems. Among these advantages are that the clustered 
server system is expandable. Customers may easily add addi 
tional servers in order to increase system capacity and provide 
improved performance without major data restructuring and 
the associated system downtime. This enables the customerto 
purchase hardware in Smaller increments as needed to keep 
up with growth. 
0107. Other advantages of a shared disk cluster architec 
ture include lower total cost of ownership (TCO), continuous 
availability, high performance, and single system presenta 
tion. The present invention provides for transparent, continu 
ous availability with instantaneous fail-over amongst servers 
in the cluster. Even if one node fails, applications are able to 
access the other nodes. The shared disk cluster solution also 
provides transparency to users so that the users do not need to 
worry about all of the internal details of running multiple 
servers against disks maintaining shared data. It provides a 
single server appearance to applications. The system of the 
present invention also includes an infrastructure enabling 
server processes to run against shared disks while resolving 
cache coherency issues in transparent fashion. 
0108. In its currently preferred embodiment, the present 
invention is implemented using an engine-based architecture 
in which each of the database engines is implemented using a 
single operating system (OS) process. Other database sys 
tems generally do not have this type of engine-based archi 
tecture. In other database systems, every thread typically 
becomes a process which means that the database system has 
to depend on the operating system to manage the system's 
resources. The system of the present invention generally per 
forms its own scheduling without having to rely on the oper 
ating system. This is an advantage as it provides the database 
system with greater control overits resources. For example, if 
a database system leaves scheduling to the operating system, 
the operating system may perform some operations ineffi 
ciently, thereby adversely affecting database system perfor 
aCC. 

0109 The engine-based architecture utilized by the 
present invention provides advantages in more efficiently 
managing resources, as the database manages its own 
resources. In implementing the system, it is generally recom 
mended that one OS process should be spawned for each 
CPU. For instance, suppose a customer had a machine with 8 
CPUs. In this case it is recommended that only 8 processes be 
spawned, with each process bound to one of the CPUs. In 
operation, this enables the CPU and other resources to be 
managed by the database system in an intelligent fashion. The 
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above-described engine-based architecture also enables more 
efficient implementation of some of the features and methods 
of the present invention as hereinafter described. 
0110. The present invention includes several features or 
aspects for implementation of a distributed database solution 
in a shared data cluster environment. These include mecha 
nisms for optimized distributed deadlock detection with 
minimal messaging, efficient implementation of distributed 
timestamps, data and lock transfer optimizations, and 
improved space and threshold management in a cluster sys 
tem. Each of these features or aspects will next be briefly 
Summarized. 

0111. In a shared data cluster or other distributed database 
environment, multiple servers may compete for the same 
data. For example, a first server/process may request a lock on 
page 10 and then request page 20. A second server/process 
may request a lock on page 20 and then ask for page 10. This 
may create a deadlock situation unless a mechanism is pro 
vided to detect and avoid it. In a simple non-distributed sys 
tem, it is relatively easy to detect deadlocks by traversing the 
system's lock records and looking for a loop indicating a 
deadlock condition. The deadlock condition can then be 
resolved by "killing one of the processes (e.g., the second 
process which is selected as the “victim’) and granting a lock 
on these pages to the other (first) process. Once the first 
process is done, the second process can resubmit the transac 
tion and obtain access to the page(s). 
0112 Efficient deadlock detection is, however, more dif 
ficult to perform in a distributed system. In a distributed 
system, the locking of pages is managed in a distributed 
manner. In this environment, information must be obtained 
(exchanged) to detect occurrence of a deadlock. It is desirable 
to exchange information in an efficient manner so as not to 
slow the performance of the distributed system. The present 
invention includes mechanisms for optimized distributed 
deadlock detection which provide for efficiently sending 
messages between nodes in a distributed environment. 
0113 Another problem in implementing a shared disk 
cluster relates to the updating of pages by different nodes. In 
a database system, a database server accesses underlying data 
which is typically maintained in fixed-size units referred to as 
'pages'. In a distributed system, access to data pages is 
shared by multiple nodes and changes to the data needs to be 
coordinated to ensure data consistency. For example, one 
node may update a certain page and Subsequently another 
node may update the same page. To provide for proper data 
base recovery (e.g., in the event of a system crash), the data 
base system records (or logs) information about these opera 
tions in log records. When logging is performed, the 
timestamp on the page being updated is typically tracked so 
that one can determine, in the event of a system crash, pre 
cisely the point at which one needs to start recovery opera 
tions. 

0114. In a distributed database system, a mechanism is 
needed to give a consistent timestamp on pages. In particular, 
if a page moves from one node to another node a mechanism 
is needed to give a consistent timestamp on the page. One 
existing approach is to utilize a 'global timestamp. In other 
words, every time a node modifies a page, the node needs to 
go to a common place to get a "global timestamp. A draw 
back with this approach is that obtaining a global timestamp 
can become a very expensive operation (in terms of system 
performance) in a distributed database system that has a num 
ber of nodes. 
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0115. Another existing approach is to provide a timestamp 
local to each page. Every time a change is made to a page, one 
or more local timestamps for the page are updated or incre 
mented. This approach works satisfactorily as long as no 
truncate table or drop table operations are performed. How 
ever, if a table is dropped or truncated, this operation may 
affect (e.g., delete) multiple pages. As a result, one may have 
no context for determining what is the timestamp that one 
should start with the next time the page is read from disk. 
0116. The present invention provides a solution to this 
problem of distributed timestamps, enablingtimestamps to be 
applied in a consistent manner while avoiding the use of a 
“global system-wide timestamp. The present invention can 
be used in a distributed environment in which one or more of 
the nodes may be performing truncate table and drop table 
operations. 
0117. In a distributed system, the components of the sys 
tem must also communicate with one another so that action is 
taken in a consistent, coordinated manner. Components of a 
distributed system generally use messaging to communicate. 
For example, one node may use messaging to obtain infor 
mation from another node. However, if a large number of 
messages are sent the efficiency of the system can be 
adversely impacted. Accordingly, efficient messaging is 
important to providing good performance in a distributed 
system. The present invention provides methodology for opti 
mizing messaging between nodes of the cluster. This meth 
odology includes optimizing the number of messages sent 
amongst nodes as well as "piggybacking messages so that 
multiple messages can be delivered to a node in one packet. 
0118. The present invention provides methodology to 
avoid copying in the user space while transferring a page from 
buffer cache in one database server to another buffer cache in 
another database server. If a socket transport mechanism is 
utilized, the page transfer mechanism simulates remote direct 
memory access using Sockets. After receiving the lock 
request the resource master passes the address of the page to 
the owner. The owner sends the address as a short message 
and the page as an IO Vector. At the node waiting for the page 
to be transferred, the CIPC (cluster interprocess communica 
tion) thread reads the Small message and then uses the address 
passed in to receive the page. This methodology avoids an 
extra copy in the user space in addition to avoiding an extra 
message. In addition this has a minimum number of context 
Switches. 

0119) Another concern in a database system is managing 
space utilization. In a cluster or other distributed system, a 
particular concern is with the allocation of pages across mul 
tiple nodes (e.g., all nodes of the cluster). This problem may 
be illustrated by example. Assume, for instance, that a data 
base may have 100 data pages, with 60 of those pages allo 
cated. In other words the database has only 40 pages free. The 
present invention includes threshold management methodol 
ogy for tracking the number of free pages and comparing the 
number of free pages to certain “thresholds’ for determining 
when certain actions should be taken. For example, when the 
number of free pages goes below a threshold of 30 pages, the 
system may take action by alerting the system's database 
administrator (DBA) and informing him or her that the sys 
tem is running low on space. The DBA may then take action 
by freeing up some space or adding more resources to the 
system. 
0120. As another example, the system of the present 
invention currently includes a “last chance' threshold. This 
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“last chance threshold provides for putting all the database 
processes to sleep when the “last chance' threshold (limit) is 
reached. For instance, the last chance threshold may be con 
figured to be 10 free pages. Assume that the DBA is notified 
when the first limit of 30 pages is reached but no action is 
taken to remedy the problem. If the number of free pages then 
goes below the configured “last chance' threshold (e.g., 10 
pages in this example), the system puts the database processes 
to sleep (i.e., in a stall state) until the space limitation problem 
is addressed by the DBA. 
I0121 The space and threshold management features of the 
present invention also provide that when one node runs low 
on space, a determination is made as to whether space may be 
available from another node. The present invention provides 
an optimized solution for maintaining user defined thresholds 
on space usages of these database devices. The Solution mini 
mizes the number of clustered database server instances 
involved in balancing the space usage. This is achieved by 
having a fixed partner for each server instance, and when the 
space usage on any server instance goes beyond the pre 
assigned safe range, it will seek help from its partner. This is 
done in a manner that does not affect the ongoing transactions 
at any of the nodes. The information exchange (messaging) 
between nodes in allocating space is also optimized in an 
intelligent manner. Also, the present invention provides for 
determining available space in an optimal fashion. For 
example, when a node starts (e.g., after fail-over) the system 
of the present invention does not simply put the entire data 
base on hold while calculating the available space. The com 
ponents of the currently preferred embodiment of the present 
invention and the operations of these components is described 
below in greater detail. 

System Components 

0.122 FIG. 5 is a block diagram illustrating components of 
an instance of a clustered database server 500 implementing 
the shared disk cluster systemand methodology of the present 
invention. As shown, components of an instance of a clustered 
database server 500 includes data service level components 
and database server kernel level components. For simplicity, 
other conventional modules of the database system which 
have not been modified for implementation of the shared disk 
cluster system of the present invention are not shown at FIG. 
5. Also, the diagram shown at FIG. 5 does not attempt to 
illustrate the inter-dependencies among the cluster-aware 
components in a data server and in the kernel. 
I0123. The components provided at the database kernel 
level include a single system presentation 521, a cluster mem 
bership service module 522, a cluster event service 523, and 
a reliable cluster interconnect module 524. These compo 
nents are native cluster infrastructure components that enable 
the clustered database servers to run in a shared disk cluster 
environment. The cluster membership service module 522 
maintains cluster membership and detects member failure. A 
responsibility of cluster membership service 522 is to detect 
cluster membership changes and maintain a reliable and con 
sistent run time cluster view to all clustered servers. The 
cluster interconnect module 524 provides messaging services 
and an interconnect abstraction layer to allow clustered serv 
ers to communicate with each other via redundant intercon 
nects. The cluster event service 523 supports a generic event 
publishing and Subscription mechanism for cluster-wide 
events. The single system presentation module 521 Supports 
single database presentation to clients and redirects client 
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connections based on workload of the clustered servers and/ 
or other criteria, Such as application partitioning. 
0.124. The database kernel level components also include a 
basis I/O and platform abstraction module 530 and an inter 
connect I/O abstraction module 535. An I/O abstraction layer 
is provided on top of the cluster platform specific private 
interconnects. It also Supports redundant cluster intercon 
nects (if available) with automatic fail-overs in the event of a 
link failure. The redundant cluster interconnects can be used 
to achieve both load balancing and high availability. As also 
shown at FIG. 5, several protocols are also supported under 
the I/O abstraction layer, including UDP (datagram socket), 
TCP (stream socket), VIA (Virtual Interface Architecture) 
and SDP (Socket Direct Protocol for Infiniband). 
0.125. At the database data service level, components 
include a cluster logging and recovery module 511, a cluster 
space/threshold management module 512, a buffer cache 
coherency module (“BCM) 513, a cluster lock management 
module 514, and an object coherency module (“OCM) 515. 
The cluster lock management module 514 (or cluster lock 
manager which is sometimes referred to herein as the 
“CLM) supports distributed locking for coherency control 
across the shared disk cluster. The buffer cache coherency 
module 513 deals with the coherency issues related to shared 
buffer cache and cache to cache page transfer for allocation 
pages, index pages, data pages and OAM/GAM pages. The 
object coherency module 515 deals with the coherency issues 
related to sharing and transferring metadata and global Vari 
ables in the shared disk cluster environment. The cluster 
logging and recovery module 511 deals with the issue of 
single logging from all clustered servers and fail-over data 
base recovery. The cluster space and threshold management 
module 512 handles space utilization and implements thresh 
old management methodology of the present invention. The 
operations of these modules in implementing methodology of 
the present invention are described below in greater detail. 

Detailed Operation 

0126 The following description presents method steps 
that may be implemented using processor-executable instruc 
tions, for directing operation of a device under processor 
control. The processor-executable instructions may be stored 
on a computer-readable medium, such as CD, DVD, flash 
memory, or the like. The processor-executable instructions 
may also be stored as a set of downloadable processor-ex 
ecutable instructions, for example, for downloading and 
installation from an Internet location (e.g., Web server). 
0127. Introduction to Distributed Deadlock Detection and 
Resolution Methodology 
0128. The present invention includes deadlock search and 
detection methodology for detecting and resolving deadlocks 
in a distributed database system. Before describing the meth 
odology of the present invention for deadlock detection in a 
distributed system environment, the general process used for 
detection of deadlocks in a standalone database system will 
be described. 

0129. A typical search method for detecting deadlocks in 
a standalone database system provides for searching for dead 
locks by detecting cycles in a transaction wait-for graph 
(TWFG) involving the task (or transaction) that initiated the 
search. The method treats a family of threads as a single node 
in the lock wait-for graph, as the database server system uses 
a parallel model of query execution. 
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0.130. The method generally works as follows. When a 
task is about to be blocked waiting for a lock regulating access 
to data, it obtains the next sleep sequence number and is 
appended to the end of a 'sleeptask queue. A process ini 
tiates a deadlock search either at the deadlock timer expira 
tion or at the time of blocking. When the search starts, the 
sleep sequence number of the initiator is updated to the latest 
sequence number. The sleep sequence number is used to 
detect and discard edges that were formed after the search 
started. Any entry added to the queue after the search started 
will have a sequence number greater than the sequence num 
ber when the search started. 

I0131 The initiator creates a list of sleeping owners from 
the owners of the lock records at the head of a “semawait” 
queue. The search is then recursively performed for each of 
the sleeping owners, to create the next level of sleeping own 
ers list from its blocking lock. The search may, for example, 
recurse up to 20 levels. 
0.132. A task is recorded as a sleeping owner if the follow 
ing conditions are met: 
1) It has a granted lock record on this semaphore; 
2) It went to sleep on another lock before the deadlock search 
started; and 
3) This is the first time it is being encountered by the search. 
0.133 When a deadlock cycle is found, a “victim' (i.e., a 
task to be suspended or killed) is selected from the list of tasks 
involved in the cycle. The victim is typically selected based 
on criteria Such as the following: 
1) If the maximum number of possible deadlocks for this 
initiator has been exceeded, choose the initiator as the victim 
in order to break all the cycles together; 
2) The victim cannot be a backout task; and 
3) The victim should have consumed the least amount of CPU 
time within its transaction or statement. Parallel query option 
considers the cumulative family CPU time for a deadlocked 
thread belonging to a family of threads. 
I0134. Although the above-described approach can detect 
deadlocks starting at all levels, it usually detects only up to a 
maximum of two cycles of deadlock involving the initiator in 
order to contain the cost of the search. This type of deadlock 
detection method works well in a standalone database server 
as the TWFG can be easily constructed from the lock queues 
in the global shared memory segment, and the monotonically 
incremented local sleep sequence number can be used to limit 
the depth and width of the TWFG to only include edges which 
existed before the start of the search. 

I0135) In the shared disk cluster distributed database sys 
tem of the present invention, however, all database servers 
share the responsibility for managing all lock resources in the 
cluster and taskS/transactions on any server can issue requests 
for logical locks that are mastered by any server in the cluster. 
Accordingly, the responsibility for managing logical locks is 
divided, with the local lock managers managing local lock 
queues with locally owned taskS/transactions and the 
resource master CLMS (cluster lock managers) managing the 
cluster lock queues with server ownership. 
0.136. As the lock queues in a cluster are distributed in 
nature, the construction of the TWFG for an initiator also 
needs to be distributed across the servers. When a local task/ 
transaction is blocked waiting for a remote lock, the construc 
tion of the TWFG must be extended beyond the local server to 
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access remote lock queue information. Remote messaging is 
needed to explore the number of edges and nodes in the next 
level and continue the construction of the TWFG at the 
remote servers with granted locks. Specifically, a local lock 
manager (LLM) with a blocking task/transaction must first 
consult the resource master CLM for the granted servers 
information in the cluster lock queue before it can consult the 
granted servers for the sleeping owners information in their 
local lock queues. 
0.137 Correct deadlock detection requires that all dead 
locks should eventually be detected, and every detected dead 
lock should really exist. The design of a deadlock detection 
feature in a cluster environment must also consider its impact 
on database system performance, in terms of the number and 
size of remote messages, and its resource usage, in terms of 
the space required to maintain and construct the global 
TWFG. A centralized deadlock detection approach typically 
involves the construction of the global TWFG at one server, 
which may satisfy the correctness requirement but is too 
costly on system performance in most environments as it 
requires a series of request/reply messages to discover the 
remote edges and nodes in the TWFGs, and also considerable 
space to merge the TWFGs from the remote servers. The 
present invention provides a distributed methodology that 
satisfies the correctness requirement but only follows those 
paths potentially leading to cycles yields better performance 
and reduced resource usage. The optimized distributed dead 
lock detection methodology of the present invention is 
described below. 

0138 Global TWFG Construction 
0139 FIG. 6 is a block diagram illustrating the distribution 
of the lock queues and lock management information in a 
shared disk cluster environment. As shown, the environment 
includes four severs: (requester/owner) server 601, (resource 
master) server 602, (owner/requester) server 603, and (re 
source owner) server 604. For ease of reference in the follow 
ing discussion, these four servers are referred to as server S1 
(or S1), server 2 (or S2), server 3 (or S3), and server 4 (or S4), 
respectively. Also note that in the following discussion nota 
tion such as G(31) refers to task 1 on server S3. In FIG. 6, the 
cluster-wide table locks T1 and T2 are mastered by server S2 
(resource master), with lock T1 owned by servers S2 and S4 
and requested by (requester/owner) server S1, and lock T2 
owned by server S1 but requested by server S3. Within server 
S1, the local lock manager (LLM) maintains a local lock 
queue for lock T1 with a pending locking request from task 
11, and a local lock queue for lock T2 with a granted lock to 
task 11. The LLM for server S3 maintains a local lock queue 
for lock T1 with granted locks to tasks 31 and 32, and a local 
lock queue for lock T2 with pending locking requests from 
tasks 33 and 31. Within server S4, the local lock manager 
maintains a local lock queue for lock T1, with grantedlocks to 
tasks 41 and 42. 

0140. As shown in FIG. 6, there is a cycle from task 11 of 
server S1 to task31 of server S3 and back to task 11 of server 
S1. In this cycle, task 11 of server S1 owns table lock T2 but 
is blocked waiting for table lock T1. Task 31 of server S3 
owns table lock T1 but is blocked waiting fortable lock T1. In 
order to construct the TWFG to detect such a cycle, all four 
clustered servers (i.e., servers S1-S4) are traversed. 
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0.141. The following notation is used to describe the task 
dependency information. Tn denotes Table lock n, G (Sn, tm) 
denotes granted owner information, and C (Sn, tm) denotes 
blocking task. Also, Sn denotes task in on server S, and tim 
denotes task m on servert. 

T1: G(31,32.4142) C(1) 
T2: G(11)C(31.33) 
0142. When the deadlock detection method is initiated by 
the sleeping task 11 at server S1, a remote message needs to 
be sent to the resource master server S2 to locate the servers 
that currently have the granted lock for T1, (i.e., servers S3 
and S4). Two remote messages are then sent to servers S3 and 
S4 to find all the tasks/transactions that are at the head of the 
semawait chain of the granted lock T1. Server S3 locates tasks 
31 and 32 and finds that task31 is blocked on the clusterlock 
T2. Server S4 locates tasks 41 and 42 and finds that they both 
are not blocking. Server S3 sends a message to the resource 
master server S2 to locate the server that currently has the 
granted lock for T2. (i.e., server S1). When the message is 
finally sent back to server S1 to locate the owner of T2, a cycle 
from task 11 of server S1 to task31 of server S3 to task 11 of 
server S1 is detected. 
0143. The sequence for constructing the global TWFG is 
as follows: 

At Server S1: 

Construct 11->T1/S2 (TWFG-1) 
Send 11->T1/S2 

At Server S2: 

Received 11->T1/S2 

Found S3 and S4 

Send 11->T1/S3 

Send 11->T1/S4 

At Server S3: 

Received 11->T1/S3 

Found 31 and 32 

Construct 11->31->T2/S2 (TWFG-2) 
Send 11->31->T2/S2 

0144 Construct 11->32 (non blocking) 

At Server S2: 

Received 11->31->T2/S2 

Found S1 

Send 11->31->T2/S1 

At Server S1: 

Received 11->31->T2/S1 

Found 11 

Construct 11->31->11 (TWFG-3) 
(0145 Cycle found! 
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At Server S4: 

Received 11->T1/S4 

Found 41 and 42 

0146 Construct 11->41 (non blocking) 
Construct 11->42 (non blocking) 
0147 The global TWFG that leads to the detection of the 
cycle 11/S1->31/S3->11/S1 is dynamically constructed as 
the deadlock detection message traverses from the initiators 
to resource masters to granted servers. As explained in the 
example above, a distributed deadlock search can detect a 
cycle by simply following the paths in the TWFG that can 
potentially lead to a cycle. Other paths that do not potentially 
lead to a cycle are discarded. As the deadlock detection mes 
sage traverses to each server, the server can look up the lock 
in question and construct the local TWFG from the list of 
sleeping owners on those locks. At the end of the local TWFG 
construction, the server does one of the following: 
1) Stops the traversal if either no sleeping owners can be 
found or none of them are blocked waiting for cluster locks: 
2) Stops the traversal if the server that initiated the deadlock 
search received the detection message and a cycle involving 
the initiating task is found; 
3) Forwards the message to all servers with a granted cluster 
lock, if the server that receives the message is the resource 
master for the lock in question; or 
4) If a sleeping owner is blocked waiting for a clusterlock, the 
server appends the local path to the path originated from the 
initiator and forwards the message to the resource master of 
the cluster lock. 
0148 While a cycle can be detected by simply following 
the paths that can potentially lead to a cycle involving the 
initiator, several additional issues need to be resolved. These 
issues include detecting the end of a deadlock search, whether 
to allow more than one initiation of global deadlock searches 
in the cluster, how to avoid false deadlocks, whether to 
resolve deadlocks that do not involve the initiator, and how to 
select a deadlock victim in a cycle. 
014.9 The following discussion presents these issues and 
the solution provided by the present invention using several 
examples. Some alternative approaches are also discussed. In 
this scenario, T1 is granted to task 21 and 41 and waited by 
task 11, T2 is granted to task 11 but waited by task 21 and 31, 
and T3 is granted to task 31 and waited by task 41 as illus 
trated below: 

T1: G(21,41)C(11) 
T2: G (11) C (21,31) 
T3: G(31)C(41) 
0150. One issue concerns how to detect the end of a dead 
lock search. Although a distributed deadlock search can 
detect a cycle by following the paths of the global TWFG that 
can potentially lead to a cycle, the initiator does not know 
when the search ends. This is because the depth and width of 
the global TWFG is explored dynamically and is unknown 
when the search starts. 
0151. It is important for the initiator to know the end of a 
search so that a new search can be initiated for the next 
sleeping task in a server. Even if a second search starts with 
out waiting for the first one, one still needs to know when a 
deadlock search ends to avoid the detection of a false dead 
lock. A false deadlock can happen if the same cycle is 
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detected by multiple initiations of a deadlock search. Once 
the cycle is broken by one initiator, the same cycle detected by 
the other initiators is no longer valid. 
0152 One possible solution to this problem is to carry the 
depth and width information along the path and require each 
server at the end of a path to send a path-traversed message 
along with the depth and width information back to the ini 
tiator. In this case, the initiator and the intermediate servers 
append the depth and width information as the deadlock 
search message traverses from one server to another. The 
depth is only incremented when the dependency graph must 
span across a server boundary. Servers with sleeping owners 
waiting for remote locks would record the number of remote 
locks as the width at the next level, and lock masters would 
record the number of granted owners as the width at the next 
level. All servers that terminate the paths need to send a 
path-traversed message with the depth and width information 
to the initiator. This would allow the initiator to detect the end 
of a deadlock search once it receives all expected path mes 
Sages. 
0153. The following example will use the previously 
depicted scenario to illustrate the solution. 
The scenario is as follows: 

T1: G(21,41)C(11) 
T2: G (11) C (21,31) 
T3: G(31)C(41) 

0154 Assume a deadlock search starts on server S1 for 
task 11. As task 11 is waiting on lock T1 that is currently 
granted to two servers S2 and S4, the path 11->T1 with the 
width information up to the current level 1->2 is sent to both 
servers S2 and S4. 

0155 Task 21 on server S2 is waiting on lock T2 that is 
currently granted to server S1. Accordingly, the path 11->21 
>T2 with the width information 1->2->1 is sent to server S1. 
At server S1, a cycle is detected since the initiator (i.e., task 
11) owns the lock T2. From the path message, server S1 also 
knows that the deadlock detection search has not ended as 
there is another path at level 2. 
0156 Task 41 on server S4 is waiting on lock T3 that is 
currently granted to server S3. Therefore, the path 11->41 
>T3 with the width information 1->2->1 is sent to server S3. 
Server S3 in turn sends the path 11->41->31->T2 and the 
width information 1->2->1->1 to server S1. At server S1, 
another cycle is detected and server S1 also detects the end of 
deadlock detection for task II since it has received all 
expected messages. 
0157 With respect to whether more than one initiator of a 
global deadlock search in the cluster may be allowed, in the 
cluster environment both the sleep task queue and deadlock 
check timer are maintained locally to avoid penalizing taskS/ 
transactions that are blocked by local owners. The initiation 
of a local deadlock search continues to be serialized as in prior 
art systems (e.g., SMP server systems). Serializing a dead 
lock search across a cluster, however, is not desirable. One 
reason this is undesirable is because of the fact that perform 
ing deadlock searches for some tasks can take a long time 
when the searches span across servers. Each server must 
independently make forward progress in detecting deadlocks 
involving the local sleeping tasks. Allowing all servers to 
initiate deadlock searches, however, may lead to the detection 
of false deadlocks. 
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0158. This false deadlock problem can be illustrated using 
the above scenario as follows: 

T1: G(21,41)C(11) 
T2: G (11) C (21,31) 
T3: G(31)C(41) 
0159. If server S4 initiates a search for task 41: 
41->31->11->41 

and server S3 initiates a search for task 31: 

and server S2 initiates a search for task 21: 

and server S1 initiates a search for task 11: 

11->21->11 
0160. In this example, each server can detect one or more 
deadlock cycles at the end of the search. Each server can also 
potentially choose to victimize a distinct task to break the 
cycle. However, as soon as one of the servers chooses a task 
(e.g., task 11) as the victim to break the cycle, all the other 
cycles become invalid (i.e., false deadlocks). 
0161 The present invention provides a solution to this 
false deadlock problem by keeping track of the tasks in the 
path of a global deadlock searchand terminating a new search 
leading to a task in the path of an earlier deadlock search. The 
general approach of the present invention is as follows. When 
a server must extend a search path to a remote server at the 
next level, it sets all processes in the path in a search bitmap. 
When a deadlock search is performed at a server, the search 
bitmap is checked to discard edges leading to a task that is 
currently in the path of the other global deadlock search. 
Additionally, when the initiator of a global deadlock search 
detects the end of a search, it broadcasts the paths to all 
servers involved in the deadlock search, which then clears the 
global scan array accordingly. 
0162 Distributed Deadlock Detection and Resolution 
Operations 
0163 The following is a high-level description of the dis 
tributed deadlock detection and resolution methodology of 
the present invention. Each node (clustered server) includes a 
deadlock check timer which periodically checks if all pro 
cesses have performed a deadlock search. If there are still 
processes that have not yet performed the search, the timer 
sets the waiting spid in rdlc inprogress, sets STCHECK 
DEADLOCK, clears PL SLEEP and wakes up the blocking 
process. After being awakened with STCHECKDEAD 
LOCK, the process sets PL SLEEP, clears STCHECK 
DEADLOCK, sets STDONE, and finally updates its sleep 
sequence number and global rdlc lockwait seqno with the 
latest sequence number so that the most recent dependency 
graph is checked for cycles. 
0164. Each server has an array of search bitmaps (one for 
each server in the cluster and a global search bitmap). The per 
server search bitmap records all local processes traversed by 
the global deadlock search initiated from that server. The 
global search bitmap contains the union of all server search 
bitmaps to facilitate a fast lookup. 
0165. After a deadlock search is initiated at a server, the 
initiator follows the blocking dependency to build the local 
TWFG. When a search path leads to a sleeping owner block 
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ing on a remote lock, all tasks in the search path are noted in 
the per-server search bitmap and the global search bitmap. 
The initiator then sends a message to the resource master with 
the blocking server and remote lock information. The recur 
sion for this search path is considered terminated at this level. 
Once the deadlock check for all sleeping owners at level 1 is 
terminated, if all paths were terminated locally, the deadlock 
search is completed without a cycle. If a local cycle is 
detected involving the initiator, the initiator attempts to 
resolve the local cycle. Otherwise, the deadlock search must 
have been spanned across remote servers. The task remains at 
the head of the sleep queue and is marked as a deadlock Search 
pending. The task can be taken out of the pending state if the 
lock is granted or if the task is aborted before the remote 
deadlock search is completed. If the task is woken up prior to 
the completion of the deadlock search, the task broadcasts a 
message to all servers to discard the current global deadlock 
search. 

(0166 When a remote master receives the deadlock search 
request, it looks up the lock object. Since the grant and dead 
lock check messages could race, the master returns with no 
deadlock immediately. Otherwise, the master looks up all 
owners from the grant queue and forwards the request to each 
of the granted owners. Note that there may be more than one 
message sent since the lock could be held in a shared mode by 
more than one server. The master attaches the width and depth 
information to allow the initiator to detect the end of a dead 
lock search. 

0167. When a server receives the deadlock search request, 
it looks up the lock object and checks to determine if there is 
any sleeping owner. If no sleeping owner can be found, the 
server sends a message back to the initiator with the path 
traversed and current width and depth information. Other 
wise, the server would start the deadlock search for the remote 
request by traversing the TWFG for each sleeping owner, 
when no other deadlock search is active. 

0168 A search path is terminated if either no sleeping 
owner can be found or if a sleeping owner is found in the 
global search bitmap (i.e., in the path of a global deadlock 
search started earlier). After all local dependencies for all 
sleeping owners are explored by the server, a message is sent 
to the initiator if all of the paths are terminated without a 
sleeping owner or if one of the paths was terminated prema 
turely from visiting a task that is already part of another 
deadlock search (i.e., in global TWFG). The initiator must 
retry the deadlock search at a later time for the latter case. 
0169. If a sleeping owner is found blocking on a remote 
lock, the edges in a local dependency graph leading to the 
remote lock are appended to the end of the global search path 
and forwarded to the resource master of the remote lock. If a 
cycle is formed while following the local dependency, the 
server terminates that search path but continues to complete 
the remote global deadlock search request. 
0170 The initiator eventually detects the end of a dead 
lock search using the depth and width information sent from 
the servers at the terminal nodes of the global TWFG. One or 
more cycles may be detected when the search ends. If one or 
more cycles is detected, the initiator proceeds with choosing 
a victim to break the cycles. At the end of the deadlock 
detection and resolution, the initiator broadcasts a message to 
all servers to cleanup the global search bitmap before starting 
the next deadlock search. 
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0171 An example of the format of a distributed deadlock 
detection message is as follows: 

1: fi 
2: :::::: 

3: :::::: 

4: * This message is used during a distributed deadlock search to 
carry the information about the search path in the TWFG graph. It is 
used for conducting the search from Initiator to LockMaster, from 
Lock Master to Lock Owner, and from the next Sleeping Owner to its 
Lock Master. At each hop, the server appends its own information to 
the message and forwards the entire message to the next server. The 
message is eventually forwarded back to the initiator, when either a 
cycle is formed or when a leaf node detects no deadlock on that 
path.*/ 
5: typedefstruct clim dlcheck req 
6: { 
7: struct climhdr Imhdr: 
the next granted 
8: * lock to perform a deadlock search 

CLM DLCHECK REQ 

f* message header that identifies 

14 
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0.175 One approach is to use a cluster sequence generator 
to generate a cluster wide timestamp. A cluster sequence 

9: * 
10: void *lmopaque; f* opaque carried for the initiator */ 
11: CSVRMAP medgemap: f* bitmap for edgeid info */ 
12: char lmstatus; f* status of the deadlock search * 
13: BYTE Imrmtdepth: f* current number of remote hops */ 
14: BYTE lmdlclevel: f* current recursion level *. 
15: BYTE Imrmtedges MAX HOPS: f* # edges at each hop */ 
16: BYTE Imrmtedgeid MAX HOPS: f* edge id at each hop*/ 
17: int16 Imrmtpgid MAX HOPS: /* history info for TWFG */ 
18: Struct clmdlcpath Imdlcpath MAX HOPS: /* history info 
for TWFG *f 
19:} CLM DLCHECK REQ; 
2O: 
21: typedefstruct climdlcpath 
22: { 
23: cSVrid twaiterCSVrid; f* waiter server id* 
24: spid twaiterspid: f* waiter process id */ 
25: } CLMDLCPATH: 

0172 
0173. In prior art database systems, the database times 
tamp is typically synchronized by means of a SPINLOCK. 
However, this approach does not scale well in a distributed 
environment (i.e., in the shared disk cluster environment of 
the present invention). Accordingly, the present invention 
provides an alternative approach. Initially, in addressing the 
problem of providing timestamps in a distributed environ 
ment, it was observed that it is not necessary that database 
timestamps be unique across the database. A timestamp that is 
unique across the database could be useful in enabling times 
tamps to serve as a stand-in for the log sequence number 
(LSN). However, with the use of a private log cache (PLC) in 
the currently preferred embodiment of the present invention, 
timestamps are not ordered in the log anymore. For recovery 
semantics it is only necessary to ensure that timestamps are 
increasing throughout the life of a page. There is no strict 
requirement that timestamps be unique across the database. 
0174 A log record that captures a change to a page gen 
erally contains a “before timestamp, an “after timestamp, 
and the change made to the page. A log record is applied to a 
page if the page timestamp is the oldest timestamp in the log 
record. The real requirement in recovery is that the new times 
tamp (on the updated page) be greater than the old timestamp 
(before the update). The monotonically increasing unique 
timestamp is an easy way to ensure that rule. That, however, 
does not preempt using means other than a unique timestamp 
to enforce the same rule. 

Distributed Timestamps generator is a cluster lock manager (CLM) construct which 
uses an object lock. The sequence value is stored in the value 
block of the lock. To obtain the next sequence value the CLM 
is invoked, which internally acquires an instant duration 
exclusive lock on behalf of the client on the object, incre 
ments the sequence value, releases the lock, and returns the 
incremented sequence number to the client. Thus the 
sequencer lock combines the lock-unlock call with the set 
ting/getting of the value. This involves two messages: a lock 
request and a value return from the CLM. As the timestamp is 
one of the hot spots in the database, this approach is too 
expensive in terms of its impact on system performance. 
0176 The approach of the present invention makes use of 
a local timestamp. A local timestamp is a sequence main 
tained in the local DBTABLE. For each database each node 
has its own timestamp sequence. Timestamps can be granted 
locally on the node under a SPINLOCK, as in prior art data 
base systems (e.g., SMP systems). The issue to be addressed 
then is how to ensure that timestamps retain their integrity for 
database recovery without an attempt to keep them synchro 
nized via messaging. 
0177. Other than recovery uses, there are two other uses of 
the unique timestamp. Both are optimizations. A "commit 
timestamp' is used to rapidly establish whether the data on a 
page is committed (i.e., no need to get a lock on the page). A 
“last log page timestamp' is used as a high bound to quickly 
determine the highest timestamp in the rest of the log chain. 
When there is a need to instantiate the database timestamp 
during recovery, only the last log page header and the log 
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records in that page are scanned to determine the highest 
timestamp so far logged in the database. 
0.178 Each node maintains its own timestamp sequence 
independent of other nodes, (i.e., no messages are generated 
in the cluster when a timestamp is grabbed locally in a node). 
Synchronizations of timestamps across nodes via messaging 
happen only in the rarest of cases. The simple timestamp 
check for redoing a log record still holds good, and times 
tamps do not go back on a page, even for undo. The method 
ology of the present invention for implementing distributed 
timestamps is described below. 
0179 High-Level Methodology for Implementing Dis 
tributed Timestamps 
0180. At the outset, all of the nodes have their local times 
tamp (dbts) set to the same value, which is the highest times 
tamp across all the nodes (e.g., all nodes start off with 1000). 
Recovery can determine the highest timestamp at each node, 
and then find the highest among them. 
0181. When a page is updated, the next timestamp from 
the local dbts is grabbed and put on the page. For example: 

getnewts() { 
dbts++: return dbts 

0182. If the node timestamps do not progress uniformly, 
the timestamp on a page regresses. 
For example: 
Node1 dbts=5000, Node2 dbts=2000 
Page P1 has timestamp 100. 
Node1 updates P1. After the update, 
P1 timestamp-5001, Node1 dbts=5001. 
Node2 updates the page. After the update, 
P1 timestamp=2001. Node2 dbts=2001. 
The timestamp on P1 has regressed. 
0183) To solve the problem of the regressing timestamp, 
the node inflates the local timestamp to a value required to 
ensure that the page timestamp does not regress. An updater 
passes the current timestamp on the page as the input times 
tamp when it asks for a new timestamp. If that current times 
tamp is higher than the node's timestamp, the nodetimestamp 
gets incremented to the input timestamp. In this way, the 
passed in timestamp is a floor to the node's timestamp. For 
example: 

getnewts (in ts){ 
if (dbts < in ts) then dbts = in ts; 
dbts++; return (dbts) 

0184 As shown above, if the dbts (local timestamp) is less 
than the input timestamp (in ts), the dbts is set to equal the 
input timestamp and is then incremented. In the above 
example, after the update in Node2, the P1 timestamp is equal 
to 5002 and the Node2 timestamp is also equal to 5002. 
0185. Another issue concerns what happens when there is 
no input timestamp when allocating and deallocating a page. 
For example: 
Node1 dbts=5000, Node2 dbts=2000 
Page P1 has timestamp 100 (e.g., on disk) 
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Node 1 updates P1. After the update, 
P1 timestamp-5001, Node1 dbts=5001 
0186 Node1 now deallocates the page and the buffer is 
destroyed. Assume that the page was never flushed, and page 
P1 on disk has timestamp equal to 100. Node2 now allocates 
the page. Allocation does not read the page from disk. After 
allocation, P1 has a timestamp equal to 2001 and Node2 has 
a timestamp equal to 2001. The page timestamp has 
regressed. One simple solution to this problem is to flush the 
page when it is deallocated, and read the page when it is 
allocated. In this manner the node always gets the floor value. 
The problem with this solution is that it adds the cost of an I/O 
to both allocation and deallocation, which is not an acceptable 
Solution. 
0187. Abetter solution is to set a cluster-wide deallocation 
floor. The deallocation floor is a cluster object, and it main 
tains a timestamp, which is called the “deallocation clock”. 
On start-up, the deallocation clock is set to the highest value 
of the timestamp across the cluster (along with the timestamp 
for all nodes). Whenever a deallocation happens, the deallo 
cator first grabs a timestamp from the deallocation clock, 
passing in the page's timestamp at the time of deallocation as 
the floor value. This floors the deallocation clock to the page's 
current timestamp (i.e., the timestamp at the time of its deal 
location). Therefore, the deallocation clock has a timestamp 
higher than that on any page that has been deallocated. There 
is no free page in the database with a timestamp higher than 
the deallocation clock. It should be noted that there could be 
pages in the database with a higher timestamp than the deal 
location clock, but none of those pages are free. 
0188 The deallocation clock (Dclock) is set when the 
allocation page is modified (i.e., after the deallocation is 
logged). For example, assume the following at startup: 
Node 1 dbts=2000, Node2 dbts=2000, Dclock=2000 
Later, after some activity assume that: 
Node1 dbts=5000, Node2 dbts=2000, Dclock=2000 
Page P1 has timestamp 100. 
Node 1 updates P1. After the update: 
P1 timestamp-5001, Node1 dbts=5001 
Node 1 deallocates P1. The deallocation grabs a timestamp 
from the Dclock. After deallocation: 
Node1 dbts=5001, Node2dbts=2000, Dclock=5002 (because 
it is floored with P1’s 5001). The bufferis destroyed. The page 
was never flushed, and P1 on disk has timestamp=100. 
0189 Another issue that is addressed is that page deallo 
cation needs a global sequencer and two messages to set the 
deallocation clock. Allocation with the deallocation clock 
involves the following procedures. With the premise as pre 
viously discussed that all free pages have a lesser timestamp 
than the deallocation clock, when a page is allocated a times 
tamp is grabbed thereby passing in the value from the deal 
location clock as the floor value. Continuing the example 
from above assume that Node2 now allocates a page. The 
allocation reads the Dclock value of 5002, and passes in that 
value as the floor value when grabbing the page's new times 
tamp. Then: 
Node2 timestamp=5003. (floored with Dclock's 5002) 
P1 timestamp=5003. Dclock-5002 
0190. Alternatively, a timestamp may be grabbed from the 
Dclock also passing a floor value of Zero, instead of reading 
the Dclock. In this instance, the Dclock lock does not have to 
deal with readers and writers. In that case the allocation grabs 
a timestamp from the Dclock. After allocation, it passes Zero 
as the floor value. 
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P1 timestamp-5004. Dclock=5003, 
Node2 timestamp=5004. (floored with Dclock's 5003) 
0191 The allocation page must be latched and the Dclock 
value grabbed. Write-ahead logging dictates that the alloca 
tion be logged first. A message is sent and one must wait for 
a reply while holding the allocation page latch. This should be 
distinguished from deallocation. To log the allocation the 
Dclock value must be known. Even if one were able to solve 
this problem and send the message without holding the latch, 
the messaging cannot be eliminated. 
0.192 The deallocation clock does not represent an event 
time line. It only acts as a high watermark timestamp value, 
above which a newly allocated page can be safely assigned 
timestamps. A deallocation clock is significantly above the 
timestamp of the page being deallocated. For example, a page 
P1 with timestamp 2000 and a page P2 with timestamp 5000 
are being deallocated, in nodes N3 and N4. The deallocation 
clock is at 1000. If P2 gets deallocated first, the Dclock is set 
to 5001 (floored with P1’s 5000). Assume that P1 is subse 
quently deallocated. In this event, the Dclock value is set to 
5002 (floored with 2000, so there is no inflation to the floor 
value). 
0193 Additionally, a node timestamp is already above the 
deallocation clock. For example, let P1 be allocated in node 
N2 and assume that the N2 timestamp is at 6000. The Dclock 
value passed in as the floor when grabbing the timestamp for 
the page allocation is 5002. After allocation of P1, the N2 
timestamp is equal to 6001 and the P1 timestamp is also equal 
to 6001 (floored with 5002, so there is no inflation). 
0194 An issue with the deallocation clock is the messag 
ing involved in deallocation and allocation, especially during 
allocation as messaging happens while holding the allocation 
page latch. To address this issue the deallocation clock is 
localized. The localization of the deallocation clock is done 
via the ALLOCATION PAGE. Each allocation page (and 
hence each allocation unit) has a timestamp that is called the 
“aclock”. This consumes eight bytes in the allocation page. 
Everything else remains the same as the deallocation clock, 
except that instead of utilizing the Dclock the aclock is used 
when deallocating and allocating a page. The basic axiom still 
applies with respect to an allocation unit basis, (i.e., there is 
no free page in the allocation unit with a timestamp higher 
than that in the allocation unit's aclock). There could be pages 
in the allocation unit with a higher timestamp than the aclock, 
but none of them are free. The advantage of this solution is 
that the allocation page is always available locally when a 
page is being allocated and deallocated. There is no messag 
ing involved when a page is allocated or deallocated. There is 
no SPINLOCK needed for the aclock, as the allocation page 
latch enforces concurrency rules. 
0.195 The following example illustrates the aclock work 
ings. At startup: 
Node1 dbts=2000, Node2 dbts=2000 
Allocation page for P1 is AP1, with aclock 50 
Page P1 has timestamp 100. 
Node1 updates P1. After the update: 
P1 timestamp-5001, Node1 dbts=5001 
0196. Assume that Node 1 deallocates page P1. The deal 
location includes grabbing a timestamp from AP1’s aclock. 
After deallocation: 
0197). Node1 dbts=5001, Node2 dbts=2000, AP1’s 
aclock=5002 (because it is floored with P1’s 5001) 
0198 Assume that the buffer is destroyed, the page was 
never flushed, and P1 on disk has timestamp equal to 100. 
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Subsequently, Node2 now allocates the page. The allocation 
reads the timestamp from AP1’s aclock. After allocation: 
P1 timestamp=5003, aclock=5002, Node2 timestamp=5003 
(floored with aclock's 5002). 
0199 An exception to the above discussion involves the 
use of messaging in the case of deallocations without access 
ing the page (e.g., truncate table, drop table, drop index, or the 
like). The same difficulty arises with both the Dclock and 
aclock methods: one may not know the timestamp of the page 
being deallocated. Reading the pages is not viable, as many 
pages would have to be read. To solve this situation one needs 
to determine the highest timestamp in the database and use it 
as a Substitute for the page timestamp for all the pages which 
are being deallocated. 
0200. In a situation involving the use of an aclock, a logi 
cal lock protecting the pages (e.g., the EX TAB in the case of 
DROP TABLE) is first obtained. Next, the method provides 
for getting the highest timestamp across the cluster (high ts). 
Note that this need not be coherent (i.e., there is no need to 
freeze the timestamps and get the highest value). One needs to 
ensure that the timestamp values are obtained after getting the 
logical lock. In this example, at this point there is no page with 
a timestamp higher than high tS in the pages that have been 
locked under the logical lock. When grabbing the timestamp 
from aclock, high tS is then used as the page timestamp. 
Additionally, the aclock may be advanced more than is actu 
ally required to ensure correctness, but this is not an error. 
0201 In the case of the Dclock, similar to the discussion of 
the aclock above, the pages are protected by first getting the 
logical lock and then getting the highest timestamp across the 
cluster (i.e., high ts). The highest timestamp (high ts) is then 
used as a Substitute for the page timestamp, when grabbing 
the timestamp from the deallocation clock. After recovery the 
highest timestamp in each node needs to be reestablished in 
order to Subsequently determine the highest timestamp across 
all nodes. 

0202 There is no special initialization needed for aclock 
at the time of database creation, as the allocation page is 
initialized to Zero. The only requirement is that the database's 
highest timestamp be established and used as the starting 
point for all of the node timestamps before distributed access 
to the database is allowed. The same constraint applies when 
an old dump is loaded or during recovery. 
0203 During recovery, the determination of the highest 
timestamp is inherently tied to the logging scheme used (i.e., 
multiple logs (one per node) or single log (appended to by all 
nodes)). In the multiple log scheme, the highest timestamp in 
each node is found, and then the highest timestamp among the 
nodes is selected as the starting point for all nodes. In a single 
log scheme, one needs to find the last log page allocated by 
each node and examine all other records logged after that 
page because, potentially, one node can append into partially 
full log pages that have been allocated by another node. In 
some instances it can forever be a “freeloader' by living on 
log pages allocated by other nodes without ever allocating a 
log page. This scenario can be addressed by Scanning the log 
and looking at each log record during eitherananalysis and/or 
a redo pass. 
0204 For replication purposes it is desirable to have the 
log page timestamps in increasing order. Replication uses the 
log page timestamp and the row ID of the log record as log 
record markers for replication needs (e.g., restarting a repli 
cation agent (RepAgent) scan). The log page timestamps are 
maintained in increasing order by using the current last log 
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page's timestamp as the floor value if that value is greater than 
the aclock value. For example: 
Node1 has allocated the current log page LP0 and has given it 
a timestamp of 900. 
Node2 is trying to allocate a new log page LP1 from an 
allocation page AP1 that has aclock set to 600. 
Node2 timestamp is currently at 500. 
0205. Applying traditional logic, one would (erroneously) 
read the aclock value of 600 first, and use it as a floor value 
when grabbing the new timestamp for the newly allocated log 
page. After grabbing the timestamp one will end up with: 
Node2 timestamp=601, LP1 timestamp=601. 
0206. Therefore, in this scenario LP1 has a lower times 
tamp than LP0. 
0207 To prevent this type of error, the methodology of the 
present invention provides that, after reading the aclock 
value, the aclock value is compared with the timestamp on the 
current last log page (Ilp ts). If the aclock value is less than 
the timestamp on the current last log page (lp ts), then the 
aclock value is discarded and the Ilp tS is used as the floor 
when grabbing the timestamp for the new log page. 
0208 Determining the Timestamp for Certain DDL 
Operations 
0209. The operations that need to determine the highest 
timestamp in the cluster are the dropping of objects and the 
altering of object level properties such as the locking scheme 
or the estimate row length. The methodology of the present 
invention for determining the timestamp for each of these 
operations is described below. 
0210 Dropping of Objects 
0211. An operation dropping an object needs to find the 
highest timestamp that was used on the object. This times 
tamp is not available other than by reading all the pages 
themselves, as there is no update to the allocation page or the 
object descriptor for every update to the pages of an object. To 
avoid reading all the pages, the present invention provides for 
1) determining a safetimestamp for the drop object operation; 
and 2) using the safe timestamp as the floor value for logging 
the drop operation. The safe timestamp is one which is guar 
anteed to be at least equal to the highest timestamp present on 
the pages belonging to the object. 
0212. The dropping node obtains an exclusive logical lock 
on the object being dropped. This blocks all changes to the 
object by any other activity on any node. The dropping node 
(requester) then broadcasts a get timestamp request to all 
nodes. The get timestamp request returns the current local 
timestamp value of each node timestamp. Every node reads 
the current value of its own local timestamp at the instant the 
message is processed in that node. The read value is sent back 
to the requester. Timestamp generation is not blocked at all 
other than during the instant it is read locally. 
0213. The requester calculates the highest of all the 
returned values (including its own local value) and sets this as 
the safetimestamp for the drop operation. The drop operation, 
as described earlier, does not read all the pages of the object 
being dropped, but only marks the allocation page to indicate 
that the pages are free. This change is made using the safe 
timestamp as the floor value. 
0214. Altering of Objects 
0215. Altering of an existing object requires that all sub 
sequent operations are logged with a higher timestamp than 
the highest timestamp that existed on any of the pages of the 
object before the object was altered. This is necessary so that 
when redoing the log, by comparing the timestamp in the log 
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record and the object alteration timestamp, the log record can 
be interpreted to match the object state that existed at the state 
indicated by the log timestamp. The basic approach is to 
bump up the timestamp on every page to this highest value. 
The present invention provides a methodology for alternating 
objects which avoids this. 
0216. The alter object methodology of the present inven 
tion is as follows: 
1) Obtain an exclusive logical lock on the object. 
2) Determine the safe timestamp for the object (in the same 
manner as described above for dropping of objects). 
3) Increment the safe timestamp by one, to get the new value. 
This is the “alter timestamp' for the object. 
4) Broadcast a timestamp set request to all nodes. This will 
floor the timestamp in every node with this alter timestamp. 
The altering node will broadcast the alter timestamp to all 
nodes and every node when processing the message, will floor 
their local timestamps with the alter timestamp. Thus all 
nodes will get to have a timestamp which is at the least equal 
to the alter timestamp value. 
5) The object lock is released. 
0217. Any further update to any of the pages of the altered 
object in any node is guaranteed to have a higher timestamp, 
as all nodes now operate with a higher timestamp than the 
alter timestamp. 
0218 Node Joining 
0219. When a node joins the cluster, it is necessary to 
ensure that all set timestamp broadcasts are covered. The 
following protocol is followed to initialize the local times 
tamp of the node, before allowing any update activity in the 
node: 
1) The node initializes its local timestamp to Zero. 
2) The node then starts accepting all set timestamp messages. 
3) The node then obtains a safe timestamp (in the same 
manner as described above for dropping of objects). 
4) After obtaining a safe timestamp, the node floors the local 
value with the safe timestamp. 
0220 Node Leaving 
0221) When a node leaves the cluster, it cannot reply to any 
Subsequent timestamp get messages, as it does not exist in the 
cluster anymore. Thus, the leaving node has to ensure that all 
other nodes are aware of the timestamp at the time it left, 
which is the highest timestamp that was consumed in that 
leaving node. The following protocol is followed as a node 
leaves the cluster: 
1) Wait until all update activity in the leaving node is com 
pleted. 
2) Stop accepting set timestamp messages broadcast by other 
nodes. 
3) Read the local timestamp value—this is the last timestamp 
used in the node. 
4) Send a set timestamp broadcast with the last timestamp 
value. 
5) All other nodes, on receipt of this broadcast will floor their 
local values with this last timestamp value, thereby incorpo 
rating that into their local timestamps. 
0222 Node Failure 
0223) When a node fails, it is not possible to determine the 
highest timestamp in the cluster, until the failed node's log is 
recovered. Thus, all requests to obtain a safe timestamp have 
to block until failover recovery is complete. 
0224 Node recovery will calculate the highest timestamp 
that was logged by the failed node by reading the log. It will 
then perform a set timestamp broadcast with this highest 
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logged value, and thus the failed node's timestamp gets incor 
porated to all the other nodes local timestamps. This times 
tamp recovery is done during the analysis phase of the recov 
ery, and happens before the undo or redo phase of the 
recovery. 
0225. An operation performing a get timestamp broadcast 
will be blocked during a node failure by the cluster member 
ship manager, until timestamp recovery is complete. Once 
timestamp recovery is complete, the failed node's timestamp 
is already incorporated into the local timestamp of the other 
nodes, and the operation doing the get timestamp can pro 
ceed. If the node failure happens during the get timestamp 
broadcast, the broadcast itself will fail, and the operation will 
retry after timestamp recovery is completed. 
0226 Cluster Boot 
0227. When the first node of the cluster is booted, the 
timestamp for that node is established from the log. No node 
can join the cluster till the first node is completely booted and 
recovered, and the highest timestamp is established from the 
log. 
0228 Timestamp Broadcasts 
0229 Currently, all timestamp message broadcasts are 
synchronous (i.e., the initiator of the broadcast waits until 
every other node replies before proceeding). 
0230 Cluster Lock Management 
0231. In the shared disk cluster environment, all database 
devices are directly accessible to all clustered servers and 
database pages and metadata objects are cached and shared 
among all clustered servers. Coherency control to the shared 
buffer cache, metadata cache and global variables presents a 
major challenge. A Cluster Lock Manager (CLM) of the 
present invention provides a distributed locking service to 
allow the sharing of global objects and cached data/metadata 
among the clustered servers. The Cluster Lock Manager dis 
tributes the lock management workload among clustered 
servers, determines how to locate the clustered server that 
provides locking service for a lock object, and minimizes 
remote messaging introduced by distributed locking. This is 
in addition to the role of the CLM in detecting distributed 
deadlocks as described above. 
0232. The CLM uses the concept of a retention lock. 
Retention locks are cluster-wide locks that are granted to the 
clustered servers with lock ownership shared among all pro 
cesses on the granted clustered servers. Retention lock own 
ership can be retained until another cluster server requests for 
a conflicting lock mode or when the resource associated with 
the lock need to be reclaimed. Retention locks reduce the 
need for frequently acquiring and releasing the locks by the 
clustered servers and thus reduce remote messaging. 
0233. Each retention lock object is generally associated 
with a unique name, a lock value block and the lock queues. 
The name of a retention lock object can correspond to a 
database table, object, page or row for the Support of logical 
locks across the Shared Disk Cluster. The name of a retention 
lock object can also correspond to a physical page in the 
shared buffer cache, or correspond to any arbitrarily named 
object for concurrency control of the metadata and global 
variables. The lock value block is provided for sharing of 
object specific information among the locking clients across 
the shared disk cluster environment. The Cluster Lock Man 
ager maintains the status of the lock value block as NOV 
ALUE and INDOUBT to facilitate the initialization and 
recovery of the object protected by the lock, in the event of a 
clustered serverjoin or failure events. The lock queues main 
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tain the lock records associated with the requesting clustered 
servers and are for distributed lock management purpose. 
0234 Three types of retention locks are supported by the 
Cluster Lock Manager. These three types are physical locks, 
logical locks, and object locks. Physical locks are locks main 
tained by the Cluster Lock Manager to establish ownership of 
a page in the shared disk cluster environment. Physical locks 
are also used to facilitate cache-to-cache transfer of pages via 
private interconnect if the lock is owned by another clustered 
server. Similar to latches in an SMP server, physical locks in 
the distributed database system of the present invention are 
held on pages to ensure physical consistency. Unlike latches, 
acquiring physical locks may also incur a page transfer from 
the clustered server that owns the latest copy of the cached 
page. Physical locks are held by the clustered server as long as 
there are no conflicting requests in the cluster. The following 
six lock modes for physical locks are Supported in the cur 
rently preferred embodiment of the present invention: 
NL Null mode locks grant no privilege to the lock holder 
CR concurrent read mode locks allow unprotected read 
aCCCSS 

CW—concurrent write mode locks allow unprotected read 
and write accesses 
PR protected read mode locks allow read access and guar 
antee no other writer 
PW protected write mode locks allow read/write accesses 
and guarantee no other writer 
EX-exclusive mode locks allow read/write access and guar 
antee no other reader/writer 
0235 Logical locks are jointly managed by the local lock 
manager and the Cluster Lock Manager. The logical locks 
managed by the local lock manager have task, cursor or 
transaction ownership. The logical locks managed by the 
Cluster Lock Manager are retention locks and the granted 
lock mode is shared among all tasks, cursors or transactions 
on the clustered server. 
0236. Object locks are locks maintained by the Cluster 
Lock Manager to establish ownership of a metadata object 
such as dbtable or a global data structure/variable. Similar to 
physical locks, object locks facilitate the cache-to-cache 
transfer of metadata cache among all clustered servers via 
private interconnect if the lock is owned by another clustered 
server. Access to a metadata object and/or a global variable 
normally requires object lock protection. Object locks can be 
acquired in one of the six lock modes as provided for the 
physical locks. 
0237 FIGS. 7A-F illustrate six tables which are used for 
lock management in the currently preferred embodiment of 
the present invention. The lock sufficiency tables 701, lock 
conflict table 702, and lock downgrade table 703 shown at 
FIG. 7A, FIG. 7B, and FIG. 7C, respectively, provide for 
Support of physical and object locks. The lock Sufficiency 
table 701 shown at FIG. 7A is used for lock sufficiency 
checking based on the lock held by an instance and the lock 
requested by the instance. The lock conflict table 702 shown 
at FIG. 7B is used for lock conflict checking based on lock 
held by another instance and the lock requested by the 
instance. The lock downgrade table 703 is shown at FIG.7C. 
The lock master will request a lock owner to downgrade a 
lock to a lock mode looked up from the BAST lock down 
grade table 703. As shown, table 703 is based on the lock held 
and the lock requested. 
0238 A set of tables for supporting logical locks is illus 
trated at FIGS. 7D-F. These include a logical lock sufficiency 
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table 704, a logical conflict table 705, and a logical lock 
downgrade table 706 as shown at FIG. 7D, FIG. 7E, and FIG. 
7F, respectively. The local lock manager uses a logical lock 
Sufficiency table and a logical lock conflict table to grant the 
locks with task/transaction ownership to the local requesters. 
A Cluster Lock Manager uses a logical lock conflict table to 
grant locks with instance ownership and uses a logical lock 
downgrade table to reclaim the lock ownership. More particu 
larly, the logical lock sufficiency table 704 shown at FIG. 7D 
is used to determine if the lock held is sufficient to cover the 
new locking request. The logical lock conflict table 704 
shown at FIG. 7E is used when searching for a compatible 
SEMAWAIT to queue the locking request. In the normal 
LOCK ACQUIRE mode, the local lock manager starts at the 
tail of the SEMAWAIT queue looking for a compatible 
SEMAWAIT to queue the new LOCKREC structure on. In 
LOCK REQUEUE mode, the local lock manager searches 
forward in the queue, from the current position of the LOCK 
REC, to look for a better position to queue the LOCKREC. 
The lock master will request the lock owner to downgrade the 
lock looked up from the BAST logical lock downgrade table 
706 as shown at FIG. 7F. 

Data and Lock Transfer Triangle Optimization 

0239. The components of the distributed database system 
of the present invention use messaging to communicate with 
each other so that action is taken in a consistent, coordinated 
manner. Efficient messaging is important to providing good 
performance in a distributed system. 
0240 The present invention optimizes messaging 
between nodes of the cluster, including optimizing the num 
ber of messages sent amongst nodes as well as "piggyback 
ing' messages so that multiple messages can be delivered to 
a node in one packet. 
0241 The present invention includes an optimization for 
reducing the number of messages and the latencies involved 
in a shared disk cluster environment which is referred to 
hereinas a “triangle optimization'. This triangle optimization 
is used when obtaining a typical cluster lock (i.e., from the 
CLM master) and the corresponding data (from the node 
currently owning the cluster lock which has the latest data) 
being protected by the clusterlock. The triangle optimization 
applies to the various types of locks supported by the CLM, 
including logical locks, physical locks, and object locks. 
0242 FIG. 8 is a high-level flow diagram illustrating the 
“triangle optimization' provided by the present invention for 
object locks (managed by the OCM). As shown at FIG. 8, the 
“receiver' is node 801 which is trying to obtain the object and 
corresponding latest data, the “sender is node 802 which 
currently owns the object lock of interest and has the latest 
data, and the “CLM master' is node 803 which is the CLM 
master for the object lock. Note that, the CLM master is 
designated as a different node from the sender or receiver in 
this example. However, the CLM master could also be imple 
mented on either the receiver or sender nodes. Without the 
triangle optimization, the process of obtaining the object lock 
and corresponding data will generally include the following 
six messages: 
1. The receiver sends message (1) to the CLM master request 
ing ownership for the object lock; which is typically EX mode 
to get read and write access, and PR mode to get read-only 
aCCCSS, 
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2. The CLM master sends message (2) to the sender (i.e., the 
currentlock owner) to downgrade the lock mode (to NL or PR 
as needed for the requested lock mode), so that it can grant the 
lock to the requesting node. 
3. The sender downgrades the lock, resulting in another mes 
sage (message (3)) to the CLM master. 
4. The CLM master sends message (4) to the receivergranting 
the object lock, and informing the receiver which is the sender 
node that has the latest data. 
5. The receiver sends message (5) to the sender requesting the 
latest data. 

6. The sender sends message (6) to the receiver with the latest 
data. 
0243 The triangle optimization provides an improved 
approach by reducing both the number of messages and the 
latency involved in obtaining the lock and data at the receiver 
node. It is summarized as follows. As shown at (1) at FIG. 8, 
a first node 801 sends a lock request message to the Cluster 
Lock Manager (CLM) at node 803. In response, at (2) at FIG. 
8 the CLM Master issues a CLM message to node 802 
instructing it to transfer data to Node 801 and to downgrade 
its lock. At (3), node 802 issues an OCM MSG for data 
transfer to node 801. At (4), a CLM message is sent from node 
802 to the CLM Master node 803 to downgrade the lock. At 
(5), node 803 issues a CLM message to node 801 indicating 
the grant of the lock and initiation of data transfer. 
0244. The triangle optimization eliminates one message 
and reduces the latency of obtaining the latest data at the 
receiver node by three messages. Further, this optimization 
also helps in eliminating additional house-keeping effort at 
the sender node to maintain the latest data at least until it is 
requested by the receiver node, even though the sender node 
is not holding a valid lock. Additionally, the efficiency of this 
optimization is increased as CLM of the present invention 
includes a provision to attach a “remote cookie' with the 
clusterlock to pass any relevant information from the receiver 
to the Sender. Typically, the processing modules on the 
receiver and the sender are same, such as OCM for object 
locks, and the “remote cookie' is used to contain control 
information for the required data transfer. For example, for 
object locks, the OCM sends the address of the OCB (which 
is a data-structure maintained by the OCM for a given object 
lock) in the remote cookie to avoid unnecessary processing 
when it receives the data transfer from the sender node. Also, 
for physical locks, the BCM stores the address at which the 
to-be-received data transfer page is Supposed to reside in the 
requesting node. 
0245. This triangle optimization is a base optimization on 
top of which additional lock type specific (Physical/Logical/ 
Object locks) optimizations are made. These optimizations 
are described below in more detail. 

0246 
0247. In the currently preferred embodiment of the present 
invention, the page transfer mechanism uses the Virtual Inter 
face Architecture (VIA), if available, or sockets as the trans 
port mechanism. The Virtual Interface Architecture (VIA) 
defines a high-bandwidth, low-latency networking architec 
ture that was designed for creating clusters of servers and 
SANs (Storage Area Networks). The VIA is an attempt to 
standardize the interface for high-performance clustering. 
The interface specifies logical and physical components, as 
well as connection setup and data transfer operations. The 
VIA includes Support for a remote direct memory access 

Page Transfer Mechanism 
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(RDMA) model where the sender directly writes to a speci 
fied region in the target space. 
0248. With either transport mechanism (i.e., VIA or sock 
ets) one basic approach for page transfer is as follows. The 
client obtains a physical lock before accessing a page. When 
the lock is granted the lock manager indicates if the node is 
available to be read on the network and also returns the owner 
of the page. The client uses this information to request a page 
from the owner. A disadvantage of this approach is that it 
involves two round trips to get a page (the first to the resource 
master to get the lock, and the second to the owner node to get 
the page). Accordingly, the present invention includes an 
optimization that provides initiation of page transfer simul 
taneously (in parallel) to granting the lock request. When a 
client requests a physical lock, it also passes in the address at 
which the page is Supposed to reside in the requesting node. 
The lock manager passes this along to the owner of the page 
in parallel with granting the lock request to the client. If the 
transport mechanism is VIA, once the page becomes avail 
able on the owner, the BCM thread can directly write to the 
requesting node. 
0249. If a socket transport mechanism is utilized, the page 
transfer mechanism simulates remote direct memory access 
on top of sockets. After receiving a lock request the resource 
master passes the address of the page to the owner. The BCM 
on the owner sends the address as a short message and the 
page as an I/O vector (using scatter gather I/O). At the node 
waiting for the page to be transferred, the CIPC (cluster 
interprocess communication) thread reads the Small message 
and then uses the address passed in to receive the page. This 
approach avoids an extra copy in the user space in addition to 
avoiding an extra message. In addition, this mechanism has 
the least number of context switches possible both at the 
sender and receiver nodes with sockets. 

0250. The following discussion details the operations on 
the sending and receiving side during a page transfer. On the 
sending side, once the page becomes available the BCM 
thread queues the page on the CIPC queue. Once the buffer is 
queued the BCM thread can either downgrade the lock 
request or indicate to the lock manager that the page transfer 
is complete. The lock manager can then grant the lock to the 
receiving side. The buffer is not available for re-use until the 
CIPC thread sends the page across the network. All client 
tasks can access the buffer in a compatible mode. However, 
upgrade?downgrade requests are queued behind the current 
lock request. Once the CIPC manager is done sending the 
buffer (and receives acknowledgment that the page is queued 
on the receiving side), it executes a notification routine to 
indicate that the transfer is complete. The buffer is now avail 
able for re-use on the sending side. 
0251 On the receiving side, the client task goes to sleep 
waiting for the buffer. After receiving the page, the CIPC 
thread executes the completion routine. The completion rou 
tine marks the buffer as available and notifies all tasks waiting 
on the buffer. All clients have a time-out mechanism, and a 
check is made to determine if the client has been granted the 
lock. If the lock is not granted, the client task goes to sleep. 
Otherwise, if the lock is granted, the client task checks if the 
node is down. If the node is down the client task issues a CIPC 
flush call to flushall buffers in the CIPC queue from the failed 
node. It is possible that after the flush the page that the task is 
waiting on is already on the node. In this case there is nothing 
more to do. If the page has not been received, then the lock is 
released and the whole page transfer is initiated again. Except 
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for the very first call, all other calls are lightweight and may 
potentially involve verification. 
(0252) Obtaining OCM Locks and Data Faster 
0253) The present invention provides a solution for 
improving the process of obtaining OCM locks and data by 
utilizing an implicit lock granted message or removing a lock 
granted message if the OCM can convey the message to local 
CLM on the receiver node (depending the design of the 
CLM). The Object Coherency Manager (OCM) uses a CLM's 
object locks, and are referred to as “OCM locks'. As CLM 
object locks have node level ownership, the OCM manages 
sharing the obtained CLM locks among various tasks in a 
node, and coordinates with the CLM to share the object locks 
across multiple cluster servers. On top of the base triangle 
optimization, the following enhancements to OCM locks 
reduce network messages and speed up the resumption of 
tasks waiting for lockS/data at the receiver node. 
0254 Generally, the receiver waits until it receives both 
lock granted and data transfer messages. This is done for two 
reasons: to receive first hand information from the CLM that 
the lock is granted, and to obtain the latest version number 
from the CLM to validate the transfer message. Typically, 
following the sequence of messages as explained above in the 
discussion of the triangle optimization, the data transfer mes 
sage reaches the receiver before the lock granted message 
(unless the messaging/networking channels are loaded differ 
ently and impact the message delivery latencies). The sender 
directly sends the data transfer to the receiver at message (3) 
as illustrated in FIG. 8, while the lock granted message 
reaches the receiver node at message (5) as shown in FIG. 8. 
As the transfer is initiated by the CLM (at message 2), the 
transfer message also conveys that the CLM is processing the 
receiver's lock request, and the lock is about to be granted. 
Thus, the present invention provides for implying the grant 
ing of a lock granted from the data transfer message (3), and 
wakes up the client tasks as soon as it receives the latest data 
(instead of waiting for the actual lock granted message from 
the CLM). 
0255. The second reason to wait for both the lock granted 
and data transfer messages is to validate the transfer message 
received. The version number cannot be used for this valida 
tion because it is inefficient to wait for the lock granted 
message (which gives the latest version number). 
0256 The present invention provides for the receiver to 
accept a transfer message from the sender if the version 
number in the message is greater than the local version. A 
strict restriction is required to ensure that no duplicate (and 
hence stale) messages are floating around in the system. This 
is achieved by following an OCM level protocol for sending 
the data transfer messages between the receiver and the 
sender, and by flushing the messaging/networking channels 
in the case of errors or crashes to properly remove or complete 
the processing of in-transit messages. 
0257 An advantage of this approach is that the client tasks 
obtain locks and data, and resume faster, by a time equivalent 
to the latency of two network messages. The following dis 
cussion describes how the present invention handles various 
crash scenarios. 

0258 Sender Node Crash 
0259. If the sender node crashes there are two general 
scenarios depending upon whether OCM locks are acquired 
in EX or PR modes. If the sender node is holding an EX lock 
at the time of crash, there are four possible cases depending on 
what is the status of the messages (i.e., messages 3 and 4 as 
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shown at FIG. 8) that are sent by this node at the time of crash. 
Note that messages 1 and 2 as shown at FIG.8 must have been 
successfully delivered before the crash, otherwise the crashed 
node would not be considered as a 'sender node. These four 
possible cases involving a sender node holding an EX lock at 
the time of crash are summarized as follows (with all refer 
ences referring to messages (3) and/or (4) referring to the 
messages illustrated at FIG. 8): 
1) Message (3) and message (4) not received. The first case is 
if both the data transfer message (3) to the receiver and the 
downgrade message (4) to the CLM master are not received. 
In this case the CLM master notices that sender has crashed 
holding an EX lock, and marks the object lock INDOUBT. 
The receiver continues to wait for the lock/data. After recov 
ery, when the INDOUBT state is cleared, the CLM will grant 
the lock to receiver with NOVALUE in the lock value block. 
The receiver node will initialize, generate, or read the latest 
recovered data from disk. 
2) Message (3) not received and message (4) received. The 
next case is if the data transfer message (3) to the receiver is 
not received, but the downgrade message (4) to the CLM 
master is received. The CLM grants the lock to receiver, and 
the lock will not be marked INDOUBT. When receiver times 
out waiting for the data, it suspects that the sender is crashed. 
Then, before taking any error-recovery actions, the OCM on 
the receiver waits until the CMS confirms that the sender node 
has indeed crashed and is removed from the cluster view. 
Otherwise, it may not be possible to distinguish the difference 
between a sender crash, and message delay because of system 
load. Further, note that as long as the sender and the receiver 
are alive, the messaging channel (e.g., CIPC messaging chan 
nel) between them will make sure that the data transfer mes 
sage is successfully delivered. Once it is confirmed that the 
sender has crashed, the OCM flushes its CIPC end-points to 
the sender node and makes Sure the awaited data transfer 
message is not already received. Then it sends a broadcast 
message to all of its OCM peers on other nodes to inquire if 
they have latest data of the lock. In this manner, the latest data 
can be obtained if any of the other nodes were granted a PR 
lock just before the crash, and may have received the data 
transfer. If no other node in the cluster has valid data, then the 
OCM client's callback is invoked to initialize or generate the 
lock-data. 
3) Message (3) received, but message (4) not received. In the 
case that the data transfer message (3) is received, but the 
downgrade message (4) to the CLM master is not received, 
the CLM assumes that the sender has crashed holding the EX 
lock and marks the object lock INDOUBT. The receiver node 
resumes various tasks as the data transfer is received and the 
lock is implicitly granted. During recovery of the sender 
node, the INDOUBT state of the lock is cleared and the lock 
is granted to the receiver node. The present invention also 
provides another improvement (described below) for elimi 
nating much of this complexity where OCM on the receiver 
node informs CLM that it has received data transfer and is 
implicitly assuming a lock granted message. With this 
improved approach, the CLM does not mark the object lock 
INDOUBT as it is aware of the new owner, thus avoiding 
most the complexity of this mechanism. 
4) Message (3) received and message (4) received. The 
receiver resumes its tasks as soon as it receives the data 
transfer, and the CLM grants the lock to receiver. 
0260. The second scenario is that the sender node is hold 
ing a PR lock at the time of crash. In this case, the object lock 
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will not be marked INDOUBT. However, one interesting 
situation is when the data transfer reaches the receiver but the 
downgrade message does not reach the CLM master. In this 
event, the receiver will resume its tasks, but the CLM may 
initiate another data transfer if it finds another sender node 
that has the latest data. Thus, depending on whether the sec 
ond sender has data or not, and whether the receiver has 
already received the data transfer from the first sender, the 
receiver node may end up receiving the data twice. Alterna 
tively, it may never receive the data. If the data is not received, 
an OCM error-recovery process will initiate as described 
above (i.e., in the above discussion of case (2)). If the data is 
received twice, the second data transfer that is received is 
ignored. 
0261 
0262. In the event a receiver node crashes, a new version of 
the data may or may not have been created before the crash, 
depending upon whether or not the data is received and the 
tasks are resumed on the receiver node. Thus, when the 
receiver node crashes before the CLM master has actually 
sent the lock granted message (message 5 as illustrated in 
FIG. 8), one problem is to decide whether or not to mark the 
corresponding object INDOUBT. This is decided as follows: 
1) If the sender node has not yet sent the data transfer, then 
CLM master will cancel the receiver request, the sender will 
cancel the data transfer, and the object lock is not marked 
INDOUBT. 

2) If the sender has already sent the data transfer to the 
receiver node, then the object lock markedINDOUBT only if 
the receiver has requested the lock in EX mode. Otherwise the 
object lock is not marked INDOUBT. 
0263 
0264. One interesting case, which forms an exception to 
the scheme of implicit lock granted messages, is when a 
receiver node is requesting an EX lock (currently holding NL 
lock) and the sender (and possibly other nodes in the cluster) 
areholding a PR lock. In this case, the receiver cannot implic 
itly assume the lock is granted when the data transfer is 
received from the sender node, because the transfer implies 
only that the sender node has downgraded the lock to NL. 
However, there may be other nodes in the cluster which have 
not yet downgraded their PR locks to NL mode. Accordingly, 
the receiver node must wait for the explicit lock granted 
message from the CLM in this situation. To identify this case 
on the receiver end, the sender node includes the lock mode it 
is holding when sending the data transfer. If that lock mode is 
EX, then the receiver can assume an implicit lock granted 
message. Otherwise, the receiver must wait for the explicit 
lock granted message from the CLM, unless the receiver itself 
is requesting the lock in PR mode. 
0265. In the above optimization discussion where a lock 
granted message is implied from the data transfer message, 
the lock granted message is still sent. This means that even 
though client tasks on the receiver node are woken up before 
actually receiving the lock granted message, the receiver 
OCM still receives the message and processes it. Another 
optimization is to remove this message as OCM does not need 
the message. But note that the CLM may want to send the 
message to the receiver node to update the local CLM on the 
receiver node. In this case the message can be avoided by 
OCM on the receiver node informing its local CLM that it has 
received the data transfer (and hence to mean that lock is 
granted). 

Receiver Node Crash 

Exception to Implicit Lock Granted Message 
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0266 Distributed Space and Threshold Management 
0267. The space management that is currently performed 
in prior art database systems is enhanced in the system of the 
present invention to support the cluster system design. In 
prior art systems, space management information is kept and 
managed by an in memory structure for each database with 
access to this information synchronized by a threshold spin 
lock. In the shared disk cluster system of the present inven 
tion, the use of space by each of the clustered servers also 
needs to be globally managed as all clustered servers get 
space from the same set of devices (i.e., the shared disk 
storage). However, the space management mechanism should 
be performed in the memory of the local clustered server as 
much as possible, so as to avoid the transmission of external 
messages each time space is needed by a given server. 
0268. The present invention includes space and threshold 
methodology that localizes space management as much as 
possible in the context of a shared disk cluster system. The 
methodology of the present invention includes thresholds 
defined based on space usage by all clustered servers. The 
system uses thresholds to monitor free space in databases 
enabling appropriate action to be taken when space gets low. 
Thresholds are generally defined per segment. A segment is a 
logical grouping of "disk pieces” and each disk piece can be 
assigned to store data for Zero or more segments. A "disk 
piece” refers to one unit of contiguous database storage, 
which is currently described by a single entry in master.dbo. 
sySusages and by a single entry in the database's disk map. 
Database objects may be assigned to a particular segment, 
meaning that new space allocations for that object can only be 
obtained from disk pieces that can store that segment. For 
instance, the disk pieces that are assigned to a dedicated log 
segment are not for use by any other segment (i.e., the 
assigned space on the disk pieces is only for the log). Cur 
rently, each database can have up to 32 segments. Also, each 
database currently has three segments by default which are 
referred to as the system segment, the default segment, and 
the log segment. Each segment can have Zero or more thresh 
olds. 

0269. While one clustered server is being recovered, there 
will usually be online activities in the same database from 
other Surviving clustered servers. The present invention pro 
vides that the following principles are maintained: (1) the 
thresholds are active and maintained even at recovery time; 
(2) the log space that the failed clustered server had already 
reserved is not used by other online activities (i.e., the recov 
ery process does not run out of space); and (3) the total 
unreserved page count is made correct by the end of recovery 
without too much interference to other online activities. Per 
formance is another issue to consider. The database fail-over 
process will necessarily involve some rearrangements of the 
space management information, during which time the online 
activities and recovery process will be affected. Accordingly, 
the solution should minimize this impact as much as possible. 
0270. In a cluster environment, the present invention pro 
vides that “segacct' and “unreserved map' structures, which 
are constantly updated during space usage, are maintained 
locally. Each segment in a database is represented by a “seg 
acct' structure. Some of the information regarding a segment 
is kept coherent across the clustered servers, (e.g., the current 
two thresholds active on the segment). Some other informa 
tion is only for the local clustered server (e.g., a sg unre 
servedpgs field). The Segacct structure is discussed below in 
greater detail. 
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0271 The unreserved map structure is a list of unreserved 
page counts, one for each disk piece. When a change to a disk 
piece occurs, the corresponding entry in the map needs to be 
updated. Therefore, the unreserved map structure is used to 
keep track of space changes at physical disk level. When the 
dbtable is scavenged or when the cluster is being politely 
shutdown, the unreserved map is written back to SySusages. 
Since that is not a frequent event, the system can aggregate 
some of the unreserved counts from all clustered servers 
before writing to disk when it occurs. 
0272 Examples of Space and Threshold Management 
Methodology 
0273. The following discussion will use an example to 
illustrate the space and threshold management mechanisms 
of the present invention. This example assumes that there is 
one user defined segment name “user seg” (segment number 
is 3) with an unreserved count in the segment of 1000 pages. 
This segment contains two disk pieces (Disk 1 and Disk 2), 
with Disk 1 having 400 unreserved pages and Disk 2 having 
600 unreserved pages. Also assume that each disk piece con 
tains three allocation units and that the segment has two 
thresholds with levels of 400 and 1500. In addition, in this 
example the cluster includes three clustered servers (referred 
to herein as server 1 (or S1), server 2 (or S2), and server 3 (or 
S3). Also assume that clustered server 1 initially serves as the 
coordinator. 
0274 The methodology of the present invention provides 
for maintaining thresholds based on the free page count (sg. 
unreservedpgs) in the segacct structure. All of the clustered 
servers share the same set of disks, and therefore share seg 
ments. Accordingly, thresholds are based on the total space 
usage of the segments. This design reduces the external mes 
sages between clustered servers while maintaining the thresh 
olds. 

0275. The present invention includes a distributed control 
with pre-assignment methodology for threshold manage 
ment. A distributed control approach is utilized rather than a 
dedicated cluster server coordinating free pages on the clus 
tered servers. The clustered servers communicate with each 
other or with a fixed partner. Pre-assignment refers to pre 
assigning free pages to each clustered server instead of keep 
ing an absolute free page count only at a coordinator server 
and deltas at other clustered servers. The distributed control 
with pre-assignment methodology of the present invention 
enhances runtime performance while addressing implemen 
tation complexity and recovery issues as described below. 
Before discussing this methodology in greater detail, a gen 
eral buffer Zone optimization provided by the present inven 
tion will first be described. 
(0276 Buffer Zone Optimization 
0277. In order to maintain the thresholds used by the 
present invention, some limits are maintained on the space 
usage on each clustered server. When the space usage reaches 
any of these limits, at least the space usage on this segment on 
this clustered server is put on pause (i.e., frozen). These limits 
ensure that even if all of the clustered servers reach the limits 
at the same time, the total free page count will not go far 
beyond the threshold level (exactly how far depends on the 
tolerance level on the threshold). When a segment is in a 
frozen (or “Freeze') state, the activities on the clustered serv 
ers will not be affected except for the processes that need to 
update the space usage. 
0278 If the space usage is not equally distributed among 

all clustered servers, it is possible that when one clustered 
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server reaches a limit other clustered servers can rescue this 
server out of the Freeze state by performing a space adjust 
ment. Performance of the system can be improved by reduc 
ing the frequency and duration of the Freeze state and the 
number of clustered servers that are involved in the adjust 
ment. In addition, the pre-assignment of free pages method 
ology provides that when the free page count is approaching 
the limits (i.e., thresholds) there are an increasing number of 
adjustments between clustered servers. These adjustments 
may causea lot of messages between the clustered servers and 
thereby impact system performance. Accordingly, a mecha 
nism is provided to reduce this oscillation. 
0279. The present invention uses the following buffer Zone 
optimization to resolve both the Freeze state and oscillation 
issues. Initially, a fixed buffer Zone is defined for the limits. 
When space usage goes into the buffer Zone, the clustered 
server takes appropriate actions without use of a Freeze state 
to get out of the buffer Zone. Traditionally, if before the action 
is taken the space usage on the requesting clustered server 
reaches the limit, the segment would be put to a Freeze state. 
This would ensure that the space usage never got beyond the 
hard limit. The present invention provides for the clustered 
server to call for help before it reaches the limit, enabling 
space adjustment to be performed without putting the server 
into a Freeze state. 
0280. If all clustered servers are in the buffer Zone, the 
present invention uses one of two approaches. The first 
approach provides for declaring the threshold to be crossed. 
The second provides for implementing a serialized way of 
using the space while the threshold level is strictly maintained 
(e.g., in case of the last chance threshold). Each of these 
alternatives will be briefly described. 
0281. If the threshold is declared crossed, the maximum 
distance between the real free page count and the hard thresh 
old limit is (BN), where B is the size of the buffer Zone and 
N is the number of servers in this cluster system (e.g., three 
servers). When the threshold is considered crossed, the maxi 
mum distance between the user defined threshold level and 
the real total free page count is called the “tolerance level of 
the threshold. 
0282 FIG. 9A is a diagram illustrating an example of the 
space usage of a segment on two clustered servers (server 901 
and server 902). Each server has a low limit count L, a high 
limit count H, a buffer Zone size B, and a local free page count 
X. As shown at FIG. 9A, the free page count on clustered 
server 902 (i.e., X2) is already in the buffer Zone of the low 
limit (i.e., between L (the lower limit) and L plus B (the lower 
limit plus the buffer). 
0283. It is suggested to set the buffer Zone limit to be close 
to the hard limits to avoid unnecessary adjustments or mes 
sages. For example, in the currently preferred embodiment 
ten logical pages is used as the size for the buffer Zone given 
these considerations, although those skilled in the art will 
appreciate that other buffer Zone sizes may be used, as 
desired. This buffer Zone size is sufficient so that the clustered 
server will usually receive adjustment responses back before 
actually reaching the hard limit. 
0284. The distance between two thresholds is another con 
sideration which influences the size of a buffer Zone. Current 
systems usually require at least 128 logical pages between 
two thresholds on the same segment. With the buffer Zone 
optimization provided by the present invention, a threshold is 
triggered at maximum (BN) logical pages away from the 
actual user defined threshold level. When there are many 
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clustered servers in a cluster system, (BN) can be more than 
128 logical pages. Thus, to prevent a threshold from being 
triggered when the free page count is above the next higher 
level threshold, the distance between the two thresholds is 
another factor which should be considered in determining the 
buffer Zone size. Based on this consideration, another buffer 
Zone size (B) calculation is made as follows: B-(distance 
between two thresholds)/N (where N is the number of servers 
in the cluster system). 
0285. In the currently preferred embodiment, the smaller 
of the above two results is used as the buffer Zone size. For 
example, for two thresholds T1 and T2, where the threshold 
level of T1 is lower than T2, if the distance between T1 and T2 
is 200 pages and the number of servers in the cluster system 
is 32, the buffer Zone size based on the distance is (200/32)=6. 
Since 6 is smaller than 10, 6 will be used as the buffer Zone 
size when the total free page count is between T1 and T2. 
(This implies that the buffer Zone size can be changed when 
the threshold pointers are moved because one of the two 
thresholds is crossed.) 
0286 The present invention also provides that when a high 
threshold is crossed, the high threshold is made the new low 
threshold, and the threshold with the next higher level is made 
the new high threshold on the segment (if there is a higher 
level). The present invention also includes mechanisms to 
avoid oscillation. The total buffer Zone for the hard limits is 
(BN), and when the free page count drops below (BN+ 
low threshold level), the low threshold is considered 
crossed. If the same buffer pool is used for the high threshold, 
the following situation could occur. FIG.9B illustrates three 
user defined thresholds (T1, T2, T3) and a free page count (X) 
at two different times (time 1 and time 2). As shown, if (BN) 
is used as the buffer Zone for the high threshold, threshold T2 
is considered crossed when the free page count goes between 
T2 and the buffer Zone as shown at time 2 at FIG.9B. T2 will 
then become the new low threshold and T3 will become the 
new high threshold. In this case, without any space usage, the 
current free page count (X) is actually already in the buffer 
Zone of the new low threshold (T2), and it is considered 
crossed. 

0287 To resolve this, a high threshold is not considered 
crossed and enabled as the new low threshold unless the 
current free page count is at least more than (BN+high 
threshold level). However, even with this approach oscilla 
tion could continue to occur. If the total free page count equals 
(th level+B*N), the high threshold will be considered 
crossed and therefore it is made the new low threshold. The 
very next "net deduction of free space' could make every 
clustered server freeze and trigger this new low threshold. In 
order to avoid oscillation, a hysteresis cutoff is used when the 
high limit for each clustered server is calculated. In the cur 
rently preferred embodiment of the present invention, 64 
pages is used as the predefined hysteresis cutoff value. Thus, 
the high limit on each clustered server is (B+(high threshold 
level+hysteresis)/N), and the low limit is (low threshold 
level/N), where N is the number of clustered servers. 
0288 The high limit is given a buffer Zone for the same 
reason as the low limit was given a buffer Zone. For example, 
if the buffer Zone is B, when the high threshold is considered 
crossed and made the new low threshold, the distance 
between the real time free page count and the user-defined 
high threshold level is between (BN+hysteresis) and 
(2GBN)+hysteresis). The tolerance level for the high thresh 
old is therefore (2*(B*N)+hysteresis). 
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0289. The present invention provides for runtime thresh 
old management to be maintained using a distributed control 
scheme with pre-assignment of free pages. The scheme has 
no coordinator, and each clustered server has a fixed partner to 
communicate with when there is a need for adjustment. 
0290 FIG. 10 is a block diagram illustrating the clustered 
servers and the direction of adjustment request messages 
among clustered servers. As shown, the cluster 1000 includes 
four servers 1001, 1002, 1003, 1004. The arrows shown at 
FIG. 10 indicate the direction of adjustment request messages 
among the four servers. For example, server 1001 sends 
adjustment messages to server 1002. Most of the time, the 
thresholds and segments are managed locally within each 
clustered server (i.e., each clustered server works within their 
pre-assigned range of free pages). Each clustered server sends 
adjustment requests to its partner only when either the free 
page count is within a buffer Zone (referred to as a “normal 
request'), or the free page count hits a "hard' pre-assigned 
limit (referred to as an “emergency request'). The purpose of 
these adjustment messages (i.e., normal requests and emer 
gency requests) is to balance the free pages so that the activi 
ties on all clustered servers can continue until the total free 
page count crosses the threshold. When a normal request is 
sent out, the space usage activities do not stop. However, 
before an emergency request is sent out, the space usage on 
the affected segment is put into a Freeze state. The segment 
will be cleared from the Freeze state when the free page count 
is back within the allowed free page range. This can only 
happen upon receiving an adjustment reply message. The 
state of the segment is controlled in a status field in the Segacct 
Structure. 

0291. If the free page count goes into the buffer Zone, a 
clustered server will send a “normal request message to its 
partner for adjustment to balance the clustered servers pro 
actively, thereby reducing the chance of a Freeze. The space 
usage on this clustered server will continue up to the limit. 
When a clustered server picks up a normal request message, 
it looks at its own free page count, and assumes the “worst 
case' on the requester when it does the calculation. The 
“worst case” on the requester is that when the calculation is 
performed, the free page count on the requesting clustered 
server is assumed to have hit the hard limit (i.e., L for lower 
bound, and H+B for higher bound). If the free page count on 
the receiving clustered server can enable both clustered serv 
ers to be out of the buffer Zone, the receiving server will give 
half of the free pages to the requester. However, if the free 
page count on the receiving clustered server does not enable 
it to help (i.e., provide pre-allocated free pages to) the 
requester, the recipient will reply with 0 (zero) as the delta 
adjustment. No request forwarding is performed for normal 
requests. 
0292. In the normal request process, each clustered server 
sends an adjustment request to its partner only when the free 
page count is within a buffer Zone. This communication 
requests an adjustment to balance the free pages so that the 
activities on all clustered servers can continue until the total 
free page count crosses the threshold. A normal request does 
not cause the space usage activities to stop. For example, the 
free page count on server 1001 (as shown at FIG. 10) may go 
into the lower bound buffer Zone (i.e., the free page count 
x1<=(L+B)). In response, server 1001 sends a normal request 
message to server 1002. When server 1002 picks up the 
adjustment request message from server 1001, it looks at its 
own free page count (x2) under spinlock. Server 1002 
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assumes at this point that the free page count on server 1001 
has hit the low limit L. Accordingly, if (x2+L)>2*(L+B), it 
can help by sharing half of its extra free pages (X2-(L+B))/2 
with the requester (server 1001). If this is the case, server 
1002 reduces its free page count to (x2-delta) and sends a 
reply message to server 1001 containing a delta (additional 
free page count for server 1001). When server 1001 picks up 
the reply message it applies the delta in the message to the 
current free page count (under spinlock). 
0293 As described in the above example, if a “partner 
server can assist a requester, the partner generally calculates 
the delta by distributing the extra free pages equally between 
itself and the requester. The partner then sends an adjustment 
reply message(s) to the requester containing the delta to apply 
to the free page count on the requester. A problem may arise, 
however, when the partner itself is very close to (or in) the 
buffer Zone, and therefore cannot assist the requester. Assume 
for example, the partner (e.g., server 1002 in FIG. 10 using the 
same example as above) receives an emergency request (e.g., 
from server 1001) when the partner itself is in (or near) the 
buffer Zone. The present invention addresses this problem by 
providing for the partner (server 1002 in the above example) 
to bundle its own request with the original emergency request 
(from server 1001) and forward the bundled request to the 
next clustered server (e.g., server 1003 as shown at FIG. 10). 
Note that the intermediate clustered servers are not put into a 
Freeze state (i.e., non-freeze propagation). Since the interme 
diate clustered servers are not in a Freeze state when the 
emergency request is bundled and forwarded, it is possible 
that when the threshold is determined to be crossed, the 
real-time total free page count is actually more than the “tol 
erance level. The spinlock is released right after the thresh 
old is determined to be crossed and the space count is updated 
immediately. Therefore, when a user sees the action of the 
threshold procedure, the real time free page count has already 
changed and can be beyond the threshold level. 
0294 Since an intermediate clustered server will still be 
updating the space usage, it cannot contribute all of its current 
“extra free pages (i.e., "extra free pages=current free 
pages-the hard limit) in response to the request because this 
would have the same effect as putting the intermediate server 
into a Freeze state. Alternatively, if the intermediate server 
does not contribute any of its extra free pages, the whole 
cluster system will lose too many free pages. Therefore, the 
present invention provides that the intermediate clustered 
server contributes its current extra free pages until its free 
page count is B/2 away from the hard limit. This makes the 
space usage go into the buffer Zone, but since the segment 
already has an outstanding request pending (the forwarded 
emergency request), no adjustment request message is sent 
out in this circumstance. In the request message a count is 
maintained of accumulated extra pages contributed by the 
intermediate clustered servers. When a server receives such a 
request and performs the check to see if it can help the 
requesters, it will count both the accumulated extra pages and 
the total free pages from all requesters. Since the intermediate 
server was not put into a Freeze State, the worst case is 
assumed which is that by the time the partner receives the 
request, the requester has reached the Freeze state. In another 
words, the limit value is used as the current free page count; 
although at that time the server still is B/2 away from the limit. 
0295 FIG. 11 is a flowchart 1100 illustrating an example 
of the handling of an adjustment request (e.g., emergency 
request) sent by a clustered server. The clustered server may, 
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for example, send the request when the free page count hits a 
pre-assigned threshold. In the following example, there are 
three servers which are referred to as server 1, server 2, and 
server 3. In the following discussion X refers to the free page 
count, L refers to the low limit value (threshold), H refers to 
the high limit value (threshold), and B refers to the size of the 
buffer Zone. Assume at the outset that server 1 has a free page 
count that reaches its low limit (i.e., x1=L). At this point, 
clustered server 2 is still in the allowed range: (L+B)<x2<H. 
Clustered server 3 is also still in the allowed range: (L+B) 
<X3<H. 

0296. In response to reaching the low level limit value 
(threshold), at step 1101 server 1 sets the Freeze state in the 
segment and sends an adjustment request message (emer 
gency request) to server 2. The adjustment message (R1 
(server 1, X1, 0)) includes the source of the message (server 
1), and the free page count at server 1 (x1). At step 1102, when 
the threshold daemon thread on server 2 picks up the message 
R1, it looks at its current free page count (i.e., the current free 
page count X2 at server 2) to determine if it can help clustered 
server 1. Assume in this case that server 2 cannot help because 
it does not have Sufficient free pages calculated as follows: 
(x1+x2+0)<=2*(L+B). At step 1103, server 2 reduces its free 
page count (by an amount equal to (L+B/2)), modifies the 
message with its contributed free page count (which is equal 
(X2-(L+B/2)), increments the total free page count by L. and 
records server 2 in the requester bitmap (i.e., the request 
bitmap of the modified message). At step 1104, server 2 sends 
the modified request message to server 3. The modified mes 
sage (R1) now includes the following: ((server 1, server 2), 
x1+L, (x2-(L+B/2))). 
0297. At step 1105, server 3 picks up (receives) the modi 
fied request message and looks at its own free page count to 
determine if it can help (i.e., give free pages to) the other two 
servers (server 1 and server 2). More particularly, server 3 
checks to determine if it can give free pages to the two 
requesters based on the following: if totalpgs in requesters+ 
(x2-(L+B/2))+X3)>3*(L+B)). If server 3 can help, at step 
1106 server 3 calculates the deltas by distributing its extra free 
pages plus the accumulated extra free pages (i.e., those indi 
cated in request message) amongst all three servers. At step 
1107, server 3 sends adjustment messages directly to server 1 
and server 2 with the delta for each of them. Server 1 and 
server 2 pick up the reply message (i.e., the adjustment mes 
sage sent by server 3) and apply the delta indicated in the 
message. The Freeze state in the segment is cleared if the new 
free page count is in the allowed range (i.e., (L+B)<x<H). 
0298. It should be noted that the propagation of requests 
among clustered servers will stop when one clustered server 
finds out that its partner is actually one of the previous 
requesters. In this case, the clustered server will check with 
the threshold level and consider the threshold crossed. For 
instance, using the same example described above, assume 
that clustered server 3 determines that it does not have free 
pages that it can give to server 1 and server 2 (i.e., if (totalpgs 
in request--(x2-(L+B/2))+X3)<=3*(L+B), server 3 cannot 
help the other servers). In this case, server 3 reduces its free 
page count to (L+B/2), modifies the request message to con 
tain its request, and sends the modified request message (R1") 
to server 1. The modified message includes the following: 
((server 1, server 2, server 3), x1+2L, x2+x3-2(L+B/2)). 
When server 1 picks up this message, server 1 determines that 
it is actually one of the previous requesters. Therefore, server 
1 checks the total free page count in the request and compares 
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it with the threshold level to determine that the threshold is 
crossed. Server 1 will apply the accumulated extra free pages 
to its local free page count and then it will fire the procedure, 
adjust the thresholds, and calculate the new limits. Server 1 
will then send a reply message to all the requesters (i.e., server 
2 and server 3) with the new threshold index numbers and the 
new limits. If there is no remaining threshold to adjust, it will 
set the new limits to the absolute low (i.e., 0) and absolute 
high (i.e., the segment size) for the segment. 
0299. At any time, a clustered server can have multiple 
adjustment requests that it needs to send out (i.e., to other 
server(s)). For instance, when a clustered server receives an 
emergency request it is possible that the same server has sent 
out a requestandis waiting for a reply (the request could bean 
emergency request in which case the segment will be in a 
Freeze state, or a normal request). In another case, after a 
clustered server has sent out a normal request and before it 
gets the adjustment to move out of the buffer Zone, it may 
reach the hard limit (threshold) which requires the server to 
send an emergency request. In both cases, when the clustered 
server tries to deal with the second request, the result of the 
calculation can be made invalid because of the reply to the 
first request. In other words, the clustered server cannot nec 
essarily make a correct decision about whetherit can give free 
pages in response to the second request until it receives a reply 
to the first request. 
0300 Consider the following scenario in which a clus 
tered server has multiple requests that it needs to send. The 
same example of three clustered servers is used for purposes 
of this discussion. At the outset, assume that server 1 and 
server 3 are within the allowed range (i.e., (L+B)<x1<H and 
(L+B)<x3<<H, with X3==L+3B). Also, clustered server 2 has 
reached the hard limit, with X2==L. When server 2 reaches 
the lower limit, it sends an emergency message R1 to clus 
tered server 3 (R1 (server 2, x2)). 
0301 Meanwhile, the free page count on server 1 goes into 
the buffer Zone and server 1 sends a normal adjustment mes 
sage to server 2. Since server 2 is in a Freeze state, it cannot 
help server 1, so server 1 goes on without any adjustment. 
Subsequently, server 1 also reaches a hard limit (e.g., x1=L) 
and sends an emergency request (R2) to server 2. When server 
2 picks up the emergency request (R2), server 2 determines 
that it cannot help as server 2 is in Freeze state. Server 2 then 
modifies the emergency request message (now, R2) to 
include server 2 and sends the modified message to server 3 
((server 1, server 2), x1+x2, 0). At the same time, server 3 
picks up the first adjustment request message (R1) from 
server 2. In this case, server 3 has a number of free pages that 
can be provided to server 2 (i.e., since (x2+X3)=2L+3B>2* 
(L+B), server 3 can give free pages to server 2 in response to 
R1). Accordingly, server 3 distributes the available free pages 
between server 2 and server 3 in response to the first request. 
As a result, X3 becomes L+1.5B and the reply sent to server 2 
includes L+1.5B as the new free page count. When server 2 
receives the reply, it applies the delta to its free page count 
(i.e., L+1.5B). After applying the delta, server 2 is out of the 
buffer Zone and clears the Freeze state. At the same time, 
server 3 picks up the second request which was modified and 
sent by server 2 (R2). Server 3 examines its free page count 
and determines that it cannot help (i.e., based on (X3+X1+X2) 
=3L+1.5B-3*(L+B)). Server 3 then forwards the request to 
server 1. Since server 1 is one of the previous requesters, the 
threshold is considered crossed. However, at this point the 
whole cluster system actually has 3L+3B free pages which is 
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enough for all three clustered servers to run. In this case the 
decision made at server 2 to forward the second request 
(emergency request R2) was incorrect because the first 
request R1 was still pending. 
0302) The present invention provides a solution to the 
above-described problem of multiple requests. When there is 
a pending request on a particular clustered server, the particu 
lar server does not deal with an incoming request or send out 
a request until the pending request is resolved. In this way, the 
decision made on the particular server is based on a count that 
will not be changed by a reply to a pending request. 
0303. The present invention provides for different treat 
ment of multiple requests depending on the circumstances. 
When a clustered server picks up an emergency request from 
the receive queue, and it already has a pending request, it 
stores the emergency request locally until the reply comes 
back for the pending request. Alternatively, if the second 
requestis a normal request (instead of an emergency request), 
the clustered server does not wait for the reply for the pending 
request. Instead, it replies without any adjustment. If a client 
process determines that the hard limit is hit, and there is 
already a pending request for this segment, it sets the Freeze 
state to prevent other processes from using more space, and 
then waits until the pending request is resolved. When the 
pending request is resolved, the free page count is examined 
again to determine if the server needs to send an emergency 
request. If the process at a given server finds that it is in the 
buffer Zone when there is already a pending request, it does 
not send out the request and simply continues. 
0304 Another issue addressed by the present invention is 
the possibility of deadlocks in the distributed threshold man 
agement process. For instance, using the same example of 
three servers, all three clustered servers may hit the hard limit 
in the same segment at the same time. Each server then sets 
the Freeze state, the pending request state, and sends an 
emergency message to its partner. This can result in a dead 
lock situation as follows. For example, clustered server 1 may 
pick up a request (R3) from server 3. Since server 1 is in a 
Freeze state and has a pending request, it waits for its request 
(R1) to be resolved. Clustered server 2 then picks up a request 
from server 1 (request R1). As server 2 is also in a Freeze state 
and has a pending request, it waits for its request (R2) to be 
resolved. However, clustered server 3 is also in a Freeze state 
and has a pending request, when it picks up a request (R2) 
from server 2. As a result, server 3 also waits for its request 
(R3) to be resolved. The result of these multiple requests is a 
deadlock as this group of clustered servers are arranged in a 
circular way in terms of request direction. The Solution pro 
vided by the present invention to prevent this type of deadlock 
situation is that the request direction is predetermined to 
always be from the server with the smaller ID to the server 
with the bigger ID. An exception is the clustered server with 
the biggest ID whose partner will be the clustered server with 
the smallest ID. This request direction can be used to prevent 
deadlock. 

0305 The present invention also uses a status in the seg 
ment for solving this deadlock problem. When the space 
usage at a server hits a hard limit, the segment has the Freeze 
status set and an emergency request is sent. If an intermediate 
clustered server cannot provide free pages in response to its 
partner's emergency request, the intermediate server for 
wards the request to its own partner and a “Forward' status is 
set in the segment. When the clustered server with the small 
est ID picks up an emergency request while having a pending 
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request, instead of waiting for the pending request to be 
resolved, this server (i.e., the one having the smallest ID) 
broadcasts a poll message to all other servers to ask for their 
status on this segment. If all other clustered servers reply with 
eithera Freeze status or a Forward status, this clustered server 
determines the threshold is crossed. Otherwise, it waits for 
resolution of the pending request. Some of the data structures 
used in implementing the methodology of the present inven 
tion will next be described. 
(0306 Unreserved Map 
0307. A clustered server is chosen as the coordinator, 
which instantiates the unreserved map by Scanning all the 
devices or directly loading the saved information (e.g., from 
SySusages). The scan during boot time does not require the 
synchronization that is needed during fail-over recovery. The 
coordinator then makes all of the other clustered servers have 
0 as the start value for the unreserved page count for each disk 
piece. At runtime, the clustered servers keep deltas of space 
changes on the unreserved map. 
0308 The following illustrates the unreserved map for 
both disk pieces, after boot. Clustered server 1, which is the 
coordinator, has an unreserved page count (dbt dunresvd) of 
400 on disk 1 and 600 on disk2. Clustered server 2 and 
clustered server 3 both have an unreserved page count (dbt 
dunresVd) of 0 (zero) on disk 1 and an unreserved page count 
of 0 (zero) on disk2. The process of defining thresholds and 
distributing free pages will next be described. 
(0309 Segacct Structure 
0310 All of the thresholds defined for a database system 
are loaded into a dbt thresholds structure. The Segacct struc 
ture for each segment is filled in the following way. The 
coordinator clustered server in the cluster system (e.g., server 
1 in this example) calculates the number of free pages for each 
segment based on the unreserved counts. For each segment, 
the coordinator determines the two thresholds that are imme 
diately above and below the free page count and sets the 
appropriate status bits in the thresholds. The indices of these 
two thresholds in the dbt thresholds array are stored in the 
Segacct structure. If no threshold is defined for a segment, 
these are not set. If there is only one threshold for a segment, 
both indices are the same. The coordinator also calculates the 
low and high limits based on the thresholds levels and the 
buffer Zone size. The coordinator equally distributes the free 
pages to each clustered server. The cached thresholds as well 
as the two threshold indices and the two limits are also sent to 
all clustered servers. 
0311. An example of the segacct structure for a clustered 
server is as follows. For instance, at the end of boot recovery 
on clustered server 1: 
1) All thresholds are loaded into an array dbt thresholds. This 
is an array of structure THRESHCACHE. Each row in 
Systhresholds is converted to an element of the array. For 
instance, the two thresholds on “user seg” (the example 
referred to above in this document) with levels 400 and 1500 
are stored in slots 2 and 3, respectively, in the array. 
2) The Segacct unreserved pages are calculated based on the 
unreserved map as follows: 400+600–1000. 
3) Search for thresholds on this segment. When the two 
thresholds (i.e., 400 at slot 2 and 1500 at slot 3) are found, set 
Sg thbelow idx to 2 and sg. thabove idx to 3. 
4) Calculate the high and low limits based on the threshold 
levels and the buffer zones. For example: sg low limit=400/ 
3=133; and sg high limit=TH BUF ZONE+(1500+hyster 
esis)/3=10+521=531. 
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5) Calculate the free pages to be distributed to each clustered 
server. For example: assigned space=1000/3=333; and 
sg, unreservedpgs=1000-(333*2)=334 (the free page count 
on the coordinator). 
6) The coordinator propagates these in memory structures 
including dbt thresholds and the index number of the thresh 
olds cached in the segment. The coordinator also sends each 
clustered server the assigned free space and the high and low 
limits. The following illustrates the above segacct structure 
on each cluster server based on the above example: 
server 1: Sg low limit 133, Sg high limit 531, Sg unre 
servedpgs 334 
server 2: Sg low limit 133, Sg high limit 531, Sg unre 
servedpgs 333 
server 3: sg low limit 133, sg high limit 531, sg unre 
servedpgs 333 
0312. After the assignment is done, each clustered server 
works within its assigned space until there is a need for 
adjustment. When the threshold is crossed, the clustered 
server that determined a threshold has been crossed adjusts 
the threshold's pointers, recalculates the limits, and broad 
casts the information to the other clustered servers. 

0313 At runtime, each clustered server updates only its 
local unreserved map. For each allocation the count is 
decreased, and for each deallocation the count is increased. 
Note that normally the count change is at extent level, (i.e., 
eight pages at a time, or seven pages if the extent is the first 
extent in an allocation unit.) When the system is politely 
shutdown the local counts are aggregated and unreserved 
information is written to SySusages. Additionally, unreserved 
count is aggregated and the result is returned when a user 
issues an explicit query on the current unreserved page counts 
using a built-in function “curunreservedpgs()'. 
0314. In the case of a shutdown, no synchronization is 
needed because the system is down and there is no online 
activity. The coordinator gets all the unreserved counts from 
the participating clustered servers and calculates the total 
unreserved count for each disk piece. In the case of a runtime 
query, the database's space accounting does not need to be put 
into a Freeze state during the period of query. Instead, each 
clustered server retrieves the corresponding unreserved count 
under spinlock, and sends the result to the clustered server 
from which the query was issued. That clustered server cal 
culates the total count under spinlock. For example, the fol 
lowing steps occur when a user queries the current unreserved 
count for disk piece disk1 from clustered server 2. 
1) Clustered server 2 sends messages to all other clustered 
servers to ask for the current unreserved map for Disk 1. 
2) Upon receiving Sucha message, all clustered servers, under 
spinlock, get the unreserved count for the disk piece and send 
the count back to server 2 in a reply message. 
3) Clustered server 2 adds the counts up after receiving all 
replies. 
4) Clustered server 2 then returns the results to the client. 
0315. A slight drawback of this approach is that the dif 
ference between the result and the real time count may be 
Somewhat larger than in prior art systems because of the 
exchange of messages among clustered servers. However, 
this is a minor issue given that some difference already exists 
in prior systems and users expect some lag between the count 
returned and the real time count. 
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0316 Runtime Threshold Management in the Segacct 
Structure 
0317. The methodology of the present invention for 
threshold management relies on maintaining space account 
ing information locally, with adjustments made based on the 
periodic exchange of adjustment messages among servers in 
the cluster. After initial assignment, each clustered server 
controls the space accounting locally. The following will 
illustrate an example of free page count adjustments for three 
clustered servers (server 1, server 2, server 3). For example, 
assume the established thresholds include a low limit (L) of 
133, a high limit (H) of 531, and a buffer Zone size (B) of 10. 
0318. At the outset (time 0), assume that server 1 has 148 
free pages (sg. unreservedpgS-148), server 2 has 400 free 
pages, and server 3 has 140 free pages. Based on the 140 free 
pages, the threshold of 133, and the buffer of 10, server 3 sets 
a “pending request' status bit and sends a normal request R1 
to server 1, its partner. At time 1, server 1 picks up the request 
R1 and determines whether it can provide pages to server 3. It 
uses the “worst case' count for server 3 (i.e., the lower limit of 
133) as follows: (148+133)<=143*2. In this case, it deter 
mines that it cannot help server 3, and replies to server 3 with 
0 (zero) as the delta. Assume that at time 1. Some deallocation 
also occurred at server 3 and its free page count is equal to 
156. 
0319. At time 2, the count of free pages at server 1 is 140 
(sg unreservedpgS=140). Server 1 sets “pending request' 
and sends a normal request R2 to server 2. Server 2 continues 
to have sg unreservedpgs=400. At server 3, it picks up the 
reply from server 1 at time 2 and clears the pending request 
bit. The count of free pages at server 3 is 156 at this point 
based on the delta (0) received in the reply (sg. 
unreservedpgs: Sg unreservedpgs+adjust delta pgs=156). 
At time 3, the count of free pages at server 1 drops to 132 and 
the “Freeze' bit is set in the segment. Since the “pending 
request bit is on, server 1 waits for the reply to request R2 
from server 2. Also at time 3, server 2 picks up request R2. 
Server 2 examines the local count of free pages and deter 
mines that it can give pages to server 1 (as 400+133> 143*2). 
It calculates the free pages that can be allocated as follows: 
sg, unreservedpgs=(400+133)/2=266; and adjust delta 
pgs=400-266–134. Based on these calculations, server 2 
sends a reply to request R2 to server 1. 
0320 At time 4, server 1 picks up the reply to request R2. 

It adds the delta indicated by server 2 to its count of free pages 
(sg unreservedpgS-Sg unreservedpgs+adjust delta 
pgS-266). The pending request bit is cleared at server 1 and 
the process that has been waiting (i.e., waiting for the reply to 
R2) is woken up. After the client process is woken up, the 
Freeze bit is cleared as the page count is now greater than the 
threshold (266>143). 
0321) Another example will illustrate the operations that 
occur when a “hard' threshold is crossed. In this example, 
assume that at time 0 server 1 has 132 free pages, server 2 has 
148 free pages, and server 3 has 148 free pages. Based on the 
132 free pages, the count at server 1 has crossed the threshold 
(lower limit) of 133 free pages. In response, server 1 sets a 
“Freeze' status in the segment and sends an emergency 
request R1 (server 1, 132,0) to server 2, its partner. 
0322. At time 1, server 2 picks up the request R1 and 
determines whether it can provide free pages to server 1. 
Server 2 uses the count for server 1 (i.e., 132) and its own free 
page count (i.e., 148) for determining if it can help as follows: 
(148+132).<=143*2. In this case, it determines that it cannot 
help server 1, but it has extra pages it can contribute calculated 
as follows: 148-133-5-10. Server 2 sets its count of free 
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pages to 138 (148-10-138) and creates a modified request 
R1' which includes the following information: (server 1, 
server 3), 132+133–265, 10. Server 2 sends the modified 
request R1' to server 3. 
0323. At time 2, server 3 picks up the modified request R1' 
and determines that it cannot give free pages to server 1 and 
server 2 (148+265+10)<=3*143). It creates a modified 
request R1" (server 1, server 2, server 3), 265+133=398, 20) 
and sends the modified request R1" to server 1. Server 1 picks 
up the modified request R1" at time 3. Server 1 determines 
that it is one of the requesters. As a result, server 1 knows that 
all clustered servers have received the request. Server 1 
checks the total free page count against the threshold level 
(398+20-400)<=3*10) and declares the threshold crossed. It 
applies the accumulated extra pages to the local free page 
count as follows: sg unreservedpgs=132+20=152. Since 
there is no lower threshold, it makes the threshold of 400 the 
high threshold and calculates the new high limit=(400+64)/ 
3+10=164. The new low limit is set to zero (0). These values 
are set in the local Segacct structure. Server 1 then sends 
replies to the other requesters (i.e., server 2 and server 3). 
0324. At time 4, the lower threshold is set to zero and the 
higher threshold is set to 164 at all three servers. Also at this 
time the Freeze state is cleared as the count of free pages at all 
three servers is between the new low limit (O) and the new 
high limit (164). The adjustment is now complete and space 
usage may continue. The recovery time operations of the 
system will next be described. 
0325 Recovery Time 
0326. A threshold manager daemon thread provided by 
the present invention registers to receive notification of a 
NODE DOWN affecting a clustered server. When a clus 
tered server is down the threshold manager thread on each of 
the Surviving clustered servers performs the following opera 
tions after CLM recovery: 
1) sets a DBTH FREEZE bit to suspend all activities involv 
ing space accounting and threshold management in the data 
base. 
2) a clustered server responsible coordinating for fail-over 
recovery is chosen. In the currently preferred embodiment, if 
the threshold coordinator server is still alive, it is selected as 
the clustered server responsible for fail-over recovery. If the 
failed clustered server was the coordinator, the new cluster 
coordinator server will coordinate the threshold manager 
recovery; 
3) the chosen coordinator forms new requesting relationships 
among the clustered servers and broadcasts the coordinator 
information as well as the requesting relationship to all clus 
tered servers; 
4) each clustered server, when receiving the new relationship 
message, checks to see if its partner has changed. If a clus 
tered server's partner has changed, this means that the old 
partner of this clustered server failed. This clustered server 
then checks each segment's status. For segments that are in a 
Freeze and Pending request state, this clustered server clears 
the pending request state and sets the Resend status, which 
makes it resend its request to its new partner after a short 
period of time if there is no other request going out; and 
5) all clustered servers clear the DBTH FREEZE bit to allow 
space usage to continue. 
During database recovery, activities involving space account 
ing are allowed to continue but the space accounting is 
handled differently than at runtime. A concurrent scan of all 
disk pieces is performed on the coordinator clustered server 
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without blocking other activities. During the scan, special 
synchronization exists between the Scanner and the other 
online activities. After the scan is complete, space accounting 
activities are suspended for a short period of time while the 
correct free space is calculated for each segment and the new 
assignment is preformed, after which the space accounting 
and threshold management are considered fully recovered 
and run as runtime. 
0327. The unreserved counts must be “recovered to the 
correct values by the end of database recovery. During runt 
ime operations, every clustered server, other than the coordi 
nator, has only a delta representing the changes which hap 
pened locally since the last reset. The coordinator has the base 
value plus the local delta. 
0328. The correct total unreserved counts are calculated 
based on information from all of the clustered servers. Since 
a portion of the unreserved map on the failed clustered server 
was lost, either the delta value on the failed clustered server at 
the time of the crash needs to be “recovered’ or all devices 
need to be scanned to count the total unreserved pages, as a 
system boot would accomplish. Halting all clustered servers 
while performing a scan of all devices is inefficient. Similarly, 
recovering the delta is very difficult because it is hard to 
establish a synchronous point in the log as a starting point to 
recover the counts. Therefore, the present invention provides 
for concurrent Scanning of disk pieces with appropriate Syn 
chronization between the Scanner and the concurrent updat 
CS 

0329. The following approach assumes that the disk 
pieces in the database are in the order of the logical page 
numbers. As previously described, each disk piece is a con 
tinuous block of physical storage containing one or more 
allocation units. Concurrent scanning dictates that the coor 
dinator clustered server starts the scan after the redo pass of 
the database recovery is completed. The recovery process 
wakes up the threshold manager daemon thread to start the 
Scan. (To avoid an external message, the clustered server for 
recovery and the coordinator clustered server are the same.) 
Before the scan starts, the coordinator sets the local unre 
served count for each disk piece to the maximum free space 
the disk piece can have. The scan is performed by scanning 
the allocation units for each diskpiece. The scanner maintains 
a “scan pointer for each database (i.e., dbt scan), which is the 
logical page number of the allocation page for the allocation 
unit that is currently being scanned or was just scanned. Each 
time the scan pointer is changed, the information is broadcast 
to all clustered servers which allows each of the clustered 
servers to cache it locally. The concurrent scan does not affect 
the performance of runtime activities. 
0330. The scan pointer is maintained in the following 
al 

1) the scan pointer is set to MAXPGID during runtime. 
Before scan starts, the scan pointers on all servers are set to 
-1, the unreserved count on the server that does the scan are 
set to the total free space on the disk piece, and the corre 
sponding unreserved counts for this disk piece on other serv 
ers are set to 0; 
2) when the scan is active, the scan pointer is advanced under 
threshold spinlock to a new position after the scanner gets the 
SH LATCH on the allocation page. The new scan pointer is 
broadcast to all clustered servers, and they Subsequently 
update the local copy under threshold spinlock. Note that this 
broadcast is done asynchronously, (i.e., scan on this alloca 
tion unit starts without waiting for the responses to come 
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back.) However, before a SH LATCH on this allocation page 
is released, all responses must be received back; 
3) the scan process updates the local unreserved count for the 
disk that contains this allocation unit. First it counts the num 
ber of reserved pages in this allocation unit. All pages in an 
extent are counted as reserved pages when the objid on the 
extent is nonzero, except for the first extent in the allocation 
unit. The allocation page itself is not counted even if the first 
extent is allocated. Second, under threshold spinlock, the 
unreserved count is decremented by this amount; 
4) after the scan is complete on the current allocation unit the 
SH LATCH is released, and the scan pointer remains 
unchanged until the next allocation page is latched; and 
5) after all disk pieces are scanned the scan pointer is set to 
MAXPGID again. 
0331. The synchronization between the scanner and the 
updater (allocator/deallocator) is performed using the exist 
ing latching scheme on the allocation page. Before scanning 
an allocation unit, the scanner gets a SH LATCH on the 
allocation page and holds the latch until the scan is done. 
Allocation and deallocation get an unconditional 
EX LATCH on the allocation page before doing space 
accounting, and in the case of dedicated log databases the 
latch is not released until space accounting and the allocation 
page change are done. Thus, the latch is Sufficient to block 
updaters from updating the space count for an allocation unit 
while it is being scanned. 
0332 The allocations/deallocations (i.e., updates) that 
occur during the scan are grouped into three potential catego 
ries. The synchronization and space accounting scenario for 
each category is as follows: 
1) update is in the allocation unit that is being scanned. This 
is not possible because the latch on the allocation page that is 
held by the Scanner blocks the change; 
2) update is in an allocation unit that has been scanned. The 
scanner has performed the Scan, updated the local unreserved 
count with the result of the scan, and released the 
SH LATCH. The scan pointer is either advanced or is yet to 
be advanced to the next allocation unit. Thus, the allocation 
page number of this allocation unit is less than or equal to the 
scan pointer. Space accounting is done for this change (i.e., 
the local unreserved count is updated); and 
3) update is in an allocation unit that is yet to be scanned. The 
allocation page number must be greater than the scan pointer. 
The space accounting will not be done for this change because 
the change will be counted by the scan later when this allo 
cation unit is scanned. 

0333. In the currently preferred embodiment of the present 
invention the scan is started after the redo pass is completed. 
In the current allocation/deallocation scheme, recovery can 
not make an assumption about whether the allocation page 
change was done at runtime or not when seeing an alloc-type 
(allocation type) record. In other words, when redoing Such a 
record and trying to make a space change to an “already 
scanned allocation unit, recovery is unable to determine if 
the space change has already been counted by the scan, (in 
which case the allocation page change was on disk before the 
crash), or not. This is the case because the allocation page 
change is not timestamped. Even if a timestamp is applied to 
the allocation page change, since Some locks on the allocation 
pages could be marked IN-DOUBT by the CLM recovery, 
and these IN-DOUBT locks can only be granted to recovery 

29 
Nov. 27, 2008 

processes, the scanner will not be able to get these locks and 
therefore will be blocked. The IN-DOUBT locks are released 
at the end of the redo pass. 
0334. During recovery, the segment threshold guards the 
free space. One limitation this introduces is that during recov 
ery, before the scan is complete, a user cannot query the 
current unreserved counts because the counts have not been 
recovered yet. The pseudo-code for a scanner is as follows: 

1: FOREACH DISKMAP(DBT DISKMAP(dbt), dmap, index) 
2: { 
3: for (allocpg= DMAP LSTART(dmap); 
4: allocpg < DMAP NEXT LSTART(dmap); 
5 allocpg += PGS IN ALLOC) 
6: { 
7 allocbuf=pg get alloc page(alloc Sdes, allocpg, 

SH LATCH): 
8: P SPINLOCK(dbt->dbt thresh spin); 
9: dbt->dbt Scan = allocpg: 

10: V SPINLOCK(dbt->dbt thresh spin); 
11: 
12: async broadcast this change to all clustered servers. 
13: reservedpgS = pg allocpg extent count(...); 
14: P SPINLOCK(dbt->dbt thresh spin); 
15: local unreserved count-= reservedpgs: 
16: V SPINLOCK(dbt->dbt thresh spin); 
17: 
18: check to make Sure the broadcast message has been successfully 
delivered: 

19: pg release alloc page(alloc Sdes, allocbuf); 
20: } 
21: } 
22: 
23: P SPINLOCK(dbt->dbt thresh spin): 
24: dbt->dbt scan = MAXPGID: 
25: V SPINLOCK(dbt->dbt thresh spin); 
26: broadcast this change to all clustered servers. 

0335 The pseudo-code for runtime allocation is as fol 
lows: 

1: pg allocate near target(...) orpg allocate log pg (...) 
2: { 
3: while (newpgno >= 0) 
4: { 
5: allocbuf=pg get alloc page(alloc Sdes, allocpg, 

EX LATCH): 
6: .... 
7: if (allocated a new extent) 
8: { 
9: pg th reserve...) to reserve 8 pages; 

10: 

11: } 
12: } 
13: 
14: pg th reserve...) 
15: { 
16: if (recovery process) 
17: { 
18: return; 
19: } 
20: Verify allocation page is latched; 
21: th accounting (...); 

23: 
24: th accounting (...) 
25: { 
26: P SPINLOCK(thresh spin): 
27: if (allocpgno <= dbt->dbt Scan) 
28: { 
29: update unrSwd count 
30: } 
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-continued 

31: check segment threshold; 
32: V SPINLOCK(thresh spin): 
33: } 

0336 Note that the pseudo-code for runtime deallocation 
is similar, except that space accounting is handled in a differ 
ent function, pg th unreserved. 
0337 Special Synchronization During Scan for Mixed 
Log-Data Segment 
0338. The present invention provides for special synchro 
nization during a scan for mixed-log-data (M-L-D) segments. 
In M-L-D segments, during allocation the latch on an alloca 
tion page is released after the count is updated and before 
getting the buffer for the new page. The latch is then reac 
quired and the allocation page change is made. This creates a 
window between the time when the count is updated and 
when the allocation page is made. For example, consider the 
following scenario with time flowing from time t0 to time t5: 
t0: T1 tries to allocate a page. It latches the allocation page P1 
and finds a new extent. 

t1: T1 calls the threshold function to register this allocation. 
Since the scan pointer is lower than P1 (dbt scan =P0), it 
does not update the unreserved count. 
t2: T1 sets the reserved bit for this page in the extent which 
prevents the extent or page to be allocated by others. It then 
releases the latch on P1, and goes ahead and logs the alloca 
tion. 
t3: The scanner moves to this allocation unit. The scanner gets 
the latch on P1 and starts reading the allocation page. Since 
the allocation by T1 has not modified the allocation page yet, 
it does not count that extent that was allocated by T1. 
t4: Scanner completes the scan of P1 and releases the latch. 
t5: T1 gets the latch on P1 again to modify P1 to reflect this 
allocation. However, it will not update the count for this 
allocation again. 
0339. The net result is that this allocation by T1 is not 
counted by the Scanner. To address this problem, the system 
of the present invention provides a status bit that is used to 
prevent the scanner from starting a scan if an allocation on a 
M-L-D segment is in process. 
0340. A status field is provided in the physical lock object 
for allocation pages. Before an allocator releases the latch on 
an allocation page, it sets the PG MLD ALLOC bit in the 
status field in the lock value block in the physical lock for this 
allocation page. Before a scanner tries to get the latch on an 
allocation page, it first gets the lock value block for this page 
and checks on the bit. If the PG MLD ALLOC bit is set, it 
does not get the latch, but rather waits for some period of time 
and then retries. If the bit is not set, it gets the latch, checks the 
status in the lock value block again, and goes ahead and scans 
the allocation page. 
0341 Pseudo-code for data allocation in a M-L-D seg 
ment is as follows: 

1: pg allocate near target(...) 
2: { 
3: while (newpgno >= 0) 
4: { 
5 if (MLD) 
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-continued 

clim get value(lock on allocpg, status); 
if (status & PG MLD ALLOC) 
{ 

goto retry; 

allocbuf=pg get alloc page(alloc Sdes, allocpg, 
EX LATCH): 
if (MLD) 
{ 

clim get value(lock on allocpg, status); 
if (status & PG MLD ALLOC) 

release latch on allocpg: 
goto retry; 

if (allocated a new extent) 

pg th reserve...) to reserve 8 pages; 

pg allocate completion 

pg getpgbuf() to get the buffer for the new page: 
{ 

if (MLD) 
{ 

alloc status = PG MLD ALLOC: 
clim set Value(lock on allocpg, alloc status); 
release latch on allocpg: 

pg log page allocation() to log the ALLOC; 

if (MLD) 
{ 
allocbuf=pg get alloc page(alloc Sdes, allocpg, 
EX LATCH): 

pg. pgalloc() to modify AP to reflect this allocation. 

if (MLD) 
{ 

alloc status &= -(PG MLD ALLOC); 
clim set Value(lock on allocpg, alloc status); 

release latch on allocpg: 

Pseudo-code for the scanner is as follows: 

OREACH DISKMAP(DBT DISKMAP(dbt), dmap, index) 

for (allocpg= DMAP LSTART(dmap); 
allocpg < DMAP NEXT LSTART(dmap); 
allocpg += PGS IN ALLOC) 

retry: 
(MLD) 

clim get value(lock on allocpg, status); 
if (status & PG MLD ALLOC) 
{ 

uppause(0.5 seconds); 
goto retry; 
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-continued 

17: allocbuf=pg get alloc page(alloc Sdes, allocpg, 
SH LATCH): 

18: 
19: if (MLD) 
2O: { 
21: clim get value(lock on allocpg, status); 
22: if (status & PG MLD ALLOC) 
23: { 
24: release latch on allocpg: 
25: uppause(0.5 seconds); 
26: goto retry; 
27: 
28: 
29: 
30: P SPINLOCK(dbt->dbt thresh spin); 
31: dbt->dbt scan = allocpg: 
32: V SPINLOCK(dbt->dbt thresh spin); 
33: 
34: async broadcast this change to all clustered servers. 
35: reservedpgS = pg allocpg extent count(...); 
36: P SPINLOCK(dbt->dbt thresh spin); 
37: local unreserved count-= reservedpgs: 
38: V SPINLOCK(dbt->dbt thresh spin); 
39: 
40: check to make Sure the broadcast message has been successfully 
delivered: 

41: pg release alloc page(alloc Sdes, allocbuf); 
42: } 
43: } 
44: 
45: P SPINLOCK(dbt->dbt thresh spin): 
46: dbt->dbt scan = MAXPGID: 
47: V SPINLOCK(dbt->dbt thresh spin): 
48: broadcast this to all clustered servers. 

0343 Segment Count Recovery 
0344) The present invention also provides a method for 
segment count recovery. When a clustered server crashes the 
current free page count (sg. unreservedpgs) in the local seg 
acct structure is lost. However, the clustered server does not 
exceed the limits at the time of the crash. Since recovery does 
not require more space than what has already been accounted 
for at runtime, during recovery the failed clustered server is 
assumed to have reached the low limit. The surviving clus 
tered servers perform the adjustments among themselves. 
The recovery process does not update the Segacct space 
accounting for data segments because it is already accounted 
for. As for log segments, the redo pass of recovery will reserve 
space needed for rolling back incomplete transactions and the 
reserved space is remembered in dbt plcspace, but the allo 
cation/deallocation does not update the Segacct structure. 
0345. After a redo pass, the scan starts and scans all the 
devices to get the correct unreserved page count for each disk 
piece. After the disk scan is complete, the database is set to a 
DBTH FREEZE state again, the unreserved map is aggre 
gated, and the coordinator calculates the unreserved page 
count for each disk piece as well as for each segment, after 
which a new assignment is performed by the coordinator. The 
methodology of the present inventionallows the online activi 
ties to run while a failed clustered server is being recovered, 
but it could potentially cause false threshold firings because 
all of the last assigned space to the failed clustered server is 
considered reserved until the redo is complete. 
0346 Special Space Management for Log Segment 
0347 The present invention provides a special space man 
agement methodology forlog segments. In addition to normal 
allocation/deallocation, another runtime activity also 
changes the free page count in the log segment, which is a log 
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space reservation. At the end of fail-over recovery when the 
coordinator determines how much space to give to each clus 
tered server for each segment, it considers the reserved log 
space for a log segment. The free space on the dedicated log 
segment is calculated and maintained differently than for 
other segments. Instead of using the unreserved counts of the 
disks belonging to this segment, an optimized approach is 
taken to measure the free space on the dedicated log segment. 
In the cluster system of the present invention this optimiza 
tion is implemented as described below. 
0348. At runtime, a global object lock controls the end of 
the log in addition to the log semaphore, which controls 
concurrent access to the end of the log. The lock value block 
of this global object lock contains the value for dbt logallocs 
field (i.e., “dbt logallocs'.) This field has type PERPETU 
AL COUNTER (8 bytes). 
0349 When a clustered server acquires this lock, it gets 
the dbt logallocs value from the lock value block and put it in 
local dbt. When log pages are allocated, the value of this field 
is incremented. When the object lock is released, the dbt 
logallocs indbt is copied back to the lock value block. 
0350. There are no changes at checkpoint time. When the 
checkpoint record is made permanent in the log (i.e., the node 
has already obtained an EX lock on this end-of-log object 
lock), the value in the dbt logallocs indbt is copied to dbinfo 
>dbi logallocs at ckpt when the checkpoint marker is made 
to dbinfo->dbi checkpt. 
0351 Log deallocation does not require much change 
compared to prior art systems. The log deallocation happens 
at the clustered server where the dump tran is issued and as 
part of the dump tran transaction, as does the update of dbi 
logdealloc indbinfo. 
0352. The runtime threshold management for dedicated 
log segments is the same as for other segments (i.e., after 
initial assignment each clustered server records the space 
usage locally). If the local limit is hit, adjustment is done or 
the threshold is fired. 
0353. The method for log space reservation at runtime 
remains similar to that of prior art systems (e.g., SMP sys 
tems). The space is consumed from the local sg unreserved 
pgs from the log segment. 
0354. During fail-over recovery, all other steps taken for 
the log segment are the same as for other segments, except for 
how and when the total free space is calculated. For dedicated 
log segments, the log free space is calculated before the 
database recovery with the help from the cluster lock man 
agement (CLM). This calculation is performed at the coordi 
nator clustered server. For mixed-data-log segments, the free 
log space is obtained the same way as other data segments 
(i.e., by scanning the disk pieces). However, an additional 
Solution is needed to address the issue of the space usage by 
the log space reservation in log segments. 
0355 The space usage by the log space reservation is not 
accounted for by the disk piece scan (in the case of mixed 
log-data) or by the value in dbt logallocs (in the case of 
dedicated log segments). The value of free log pages is only 
what is available on disk. Some portion of this free space is 
taken away by the log space reservation and it needs to be 
accounted for as used space when the space is assigned to 
each clustered server. The number of log pages that are 
reserved in one clustered server is obtainable from dbt->dbt 
plcspace. For runtime activities, the log space reservation is 
remembered in dbt->dbt plcspace. This is done locally. The 
recovery process makes log reservations for the CLRS during 
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the redo pass for each log record that belongs to an incomplete 
transaction. (Note there is no need to do log space reservation 
for PLCs because the records are already in the log.) The 
present invention provides that when the recovery process 
does the reservation it does not update the corresponding free 
page count (sg. unreservedpgs) in the log segment, but only 
updates the dbt->dbt plcspace in the recovery clustered 
SeVe. 

0356. The pseudo-code change forth log lct reserve?) is 
as follows: 

log lict reserveC) 

P SPINLOCK(thresh spinlock); 
if (Not RECOVERY process) 
{ 

segp = &dbt->dbt seg|LOG SEGMENT: 
th check(...); 

10: dbt->dbt plcspace += alloc; 
11:... 

12: } 

0357 For other segments, the assigned space is calculated 
based on the total free page count and the threshold level. For 
log segments, the dbt->dbt plcspace also plays a part in the 
calculation. Consider the following example which assumes 
the threshold level for the log segment is 100. In this example 
the free log space on disk on server 1 is 400 (i.e., Sg unre 
servedpgs=400 and dbt->dbt plcspace is 10. On server 3, the 
free log space is not available as free log space is only calcu 
lated on the coordinator clustered server. Also, dbt->dbt 
plcspace is 5 on server 3. The assigned log space on each 
clustered server is still calculated based on the free log space 
on disk (e.g., sg unreservedpgs=400/2=200). However, 
among the assigned space the portion represented by dbt 
plcspace is already used, so it is taken out of the free space on 
each clustered server (i.e., Sg unreservedpgs assigned 
space-dbt plc.space (for a clustered server)). Accordingly, 
sg, unreservedpgs is equal to 190 for clustered server 1 (200 
10–190) and is equal to 195 for clustered server 3 (200 
5–195). 
0358. The process of calculating the free log space for a 
single log generally proceeds as follows: 
1) before recovery starts (i.e., the database is in DBTH 
FREEZE state and the CLM does not grant any locks) the 
coordinator clustered server calculates the most current dbt 
logallocs while identifying the last log page. (The CLM has 
information on where the end-of-log object lock was when 
the crash happened). If the lock was held by the failed clus 
tered server the CLM marks the lock IN-DOUBT. Then, a 
rec logbounds() function is called to determine the correct 
last log page. It uses the Stale value in the lock value block as 
the start of the scan and follows the log page chain to the end 
of the chain. It updates the local dbt->dbt logallocs with the 
number of log pages it scanned and then uses it to update the 
dbt logallocs in the lock value block. Otherwise, if the lock 
was not held by the failed server, the coordinator has the 
information about which clustered server is the current owner 
of the lock. In this case, the clustered server that owns the lock 
updates the dbt logallocs field in the lock value block with 
the local dbt logallocs value to give an exact number of log 
pages allocated. At this point, the dbt logallocs in the value 
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block of the global end-of-log object lock is set correctly and 
the end of the log is identified. 
2) Next, the database's DBTH FREEZE state is cleared. The 
database recovery process, as well as online activities, will 
continue to run. During this period of time, the threshold 
management of the log segment is similar to other data seg 
mentS. 

3)At the end of redo, disk pieces are scanned, new unreserved 
pages for all segments except the dedicated log segment are 
calculated, and the free space for the log is calculated. 
4) For the dedicated log segment, the clustered server that 
does the reassignment (i.e., the new cluster coordinator 
server) will acquire the end-of-log object block, and therefore 
get the dbt logallocs value from the lock value block. The 
free log pages are then calculated. 
0359. Overview of Improved Post-Commit Processing 
Methodology 
0360 Another challenge in a database management sys 
tem is the management of data pages. It is common for a 
contiguous chunk of pages to be managed by a single page. 
Such an example is the allocation page in a database server 
that manages a contiguous chunk of 256 pages called an 
allocation unit. The allocation page (AP) keeps track of data 
pages that are allocated, being deallocated, and free. Typi 
cally, a pair of bits, the “alloc bit and the “dealloc bit in the 
allocation page, represent the state of a data page. 
0361 During runtime operation of the database, when a 
page is allocated, the alloc bit in the allocation page is set. 
During deallocation of the page, the dealloc bit is set and the 
alloc bit is cleared. When the transaction commits the dealloc 
bit is cleared. This is known as “post-commit work” or “post 
commit processing. If the transaction were to rollback all 
that is needed is to clear the dealloc bit and set the alloc bit. 

0362. After a crash of a database, recovery has exclusive 
access to the database being recovered. Allocations and deal 
locations are handled by setting and clearing the alloc and/or 
dealloc bits in the allocation page during redo/undo passes of 
recovery. At the end of recovery, the dealloc bits are cleared. 
This approach for post-commit processing works well pro 
vided that recovery is the only one working on the database. 
0363. In a clustered database server environment, when an 
instance of a database server goes down, another instance 
typically recovers the server that went down. During Such a 
recovery (called failover recovery), the databases continue to 
be online and other cluster servers continue to access the 
database. Hence data pages, notably the allocation page, con 
tinue to be accessed by other servers in the cluster of database 
servers. This presents a unique challenge for post-commit 
processing during recovery as recovery does not have exclu 
sive access to the database. A fundamental problem to address 
in this type of distributed environment is how to determine 
when to clear the dealloc bits in the allocation page during 
recovery. 
0364. A simple, non-optimized, way to perform post-com 
mit processing in a distributed environment is to log the 
post-commit processing. During runtime operation of the 
database, one can log the changes made to the allocation page 
as a result of clearing the dealloc bits after a transaction 
commits. During recovery, a decision can be made about 
whether post-commit changes have been affected or not by 
looking at the timestamp on the allocation page. However, 
this approach of using logging adversely impacts system 
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performance as it necessitates logging for every allocation 
page affected for every transaction (as well as managing this 
process). 
0365. The present invention provides an optimized solu 
tion for post-commit processing that avoids logging. The 
system and methodology of the present invention applies a 
series of rules in managing the deallocation of pages in a 
running cluster system to take into account the fact that data 
base server instances may occasionally crash. This approach 
is further optimized by making use of the above-described 
Cluster Lock Manager (CLM) to provide for maximum con 
currency by storing relevant information to determine the 
state of the page in its life cycle at the time of the crash. This 
avoids movement of pages across the cluster and avoids the 
potential for deadlocks. 
0366. At a high level, the rules that are provided by the 
present invention for managing deallocation of pages can be 
summarized as follows. Initially, if the ownership of a dealloc 
bit in an allocation page (AP) can be established to a log 
record, and the dealloc has committed, the dealloc bit can be 
safely cleared. For this rule to correctly apply, the following 
assertions should hold true: 
1) The deallocation (dealloc) has to be committed. 
2) The dealloc bit has to be set. 
3) For the class of dealloc log records, determine if the allo 
cation page (AP) needs to be redone. If the AP needs to be 
redone during recovery, then the AP is from the present and 
post-commit work needs to be performed. 
4) During failover recovery, consult the CLM to determine 
the existence and State of the data page in the cluster. This 
approach exploits the assertion that there can be no deallo 
cated page in the cluster with a timestamp higher than the 
timestamp on the allocation page. 
0367 Allocation of Pages. During Runtime Operation of 
Database 
0368. In a non-clustered database server environment, 
post-commit processing (i.e., the above-described changes to 
an allocation page) is typically performed without logging as 
recovery generally has exclusive access to the database being 
recovered. Allocations and deallocations are handled by set 
ting and clearing the alloc/dealloc bits in the allocation page 
during the redofundo passes of recovery. At the end of recov 
ery, the dealloc bits are cleared and extent Zapped if neces 
sary. This process for post-commit processing works well in 
this environment as recovery is the only instance working on 
the database. 

0369. In a clustered environment, however, when a clus 
tered server is being recovered, the database continues to be 
online and other servers may continue to access the database. 
Hence, pages (notably the allocation pages) continue to be 
accessed by other servers in the cluster. As a result, the afore 
mentioned approach will not work correctly in many 
instances as illustrated by the following examples. 
0370. In the first example (Example 1), Transaction T1 
allocates page P1 on Node N1. It does some work and then 
deallocates the same page P1. As part of the deallocation, the 
dealloc bit is set and the alloc bit is cleared on the allocation 
page (AP). Assume that the timestamp on the AP due to this 
change moves from 1000->1010. The transaction then com 
mits. Before post-commit work is performed, more work is 
done by other transactions on the allocation page of P1. This 
work may, for example, be due to allocation and deallocation 
of other pages in this allocation unit that are not related to 
Transaction T1. As a result of these other transactions, the 
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timestamp on the allocation page may, for instance, change to 
1100. Also assume that the server then crashes before the 
post-commit work is performed on the AP as illustrated in the 
following table: 

EXAMPLE 1. 

0371 

Action Page TS AP TS 

Begin Tran T1 on Node N1 
ALLOCP1 . . . 
DEALLOC P1 100 
COMMITT1 
More work on AP 1100 
Node N1 Crashes 

1OOO->1010 

0372. As a second example (Example 2), assume that 
Transaction T1 allocates page P1 on node N1. It does some 
work and then deallocates the same page P1. As part of the 
deallocation, the dealloc bit is set and the alloc bit is cleared 
on the allocation page (AP). Consider the timestamp on the 
AP due to this change to be moving from 1000->1010. The 
transaction then commits and post-commit work is per 
formed. Note that since this is a non-logged operation, the 
timestamp does not go forward. Assume that the node N1 then 
crashes. The page P1 gets allocated in Node N2 by a transac 
tion T2. It also gets deallocated in Node N2 and transaction 
T2 commits. Due to changes in the AP by this transaction and 
by other transactions the timestamp is considered to have 
moved to 1100 as illustrated below: 

EXAMPLE 2 

0373 

Action Page TS AP TS 

Begin Tran T1 on Node N1 
ALLOC P1 

DEALLOC P1 100 
COMMIT 
post-commit WORK 
More work on AP 
Node N1 Crashes 
Begin Tran T2 (in Node 
N2) 
ALLOC P1 in Node N2 
DEALLOC P1 1100 
COMMITT2 

1OOO->1010 

0374. After the crash, the system cannot determine based 
on AP timestamps whether the dealloc bit set on the allocation 
page is due to Transaction T1 whose post-commit work is not 
yet completed as in Example 1, or possibly to another Trans 
action T2 as in Example 2. Those skilled in the art will 
appreciate that there are a number of other variations of the 
above examples that may also involve this problem of deter 
mining when to clear the dealloc bits in the allocation page 
during recovery. The present invention provides a solution to 
this problem which can be defined as follows: “During recov 
ery, how can one decide when to clear the dealloc bits in the 
allocation page? 
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0375. Design of Post-Commit Processing Solution 
0376. The following observations can be made with 
regards to addressing the above problem of determining when 
to clear the dealloc bits in the allocation page during recovery. 
An initial observation is that this problem exists only for 
committed transactions and does not apply to aborted trans 
actions and incomplete transactions. During recovery, 
aborted transactions are addressed by the CLRs in the redo 
pass and the CLRS logged in the undo pass address the incom 
plete transactions. 
0377 Also, any solution to this problem needs to handle 
multiple page/extent deallocations as indicated by log records 
such as XREC DEALLOCM, XREC DROPEXTSMAP 
XREC SOPGDEALLOC, XREC LOGDEALLOC in addi 
tion to the single page deallocations represented by the 
XREC DEALLOC log records. This complete group of log 
records is referred to in the following discussion as “the class 
of dealloc records'. 
0378. The solution provided by the present invention can 
be summarized as follows. For committed transactions, dur 
ing redo, the following question is asked for the class of 
dealloc records if one sees the deallocation bit set in the 
allocation page: Does this deallocation bit (also referred to 
herein as the “dealloc bit or “deal bit) represent the changes 
due to this log record? If so, since the transaction is commit 
ted, the dealloc bit is cleared. This can be expressed in a rule 
as “if the ownership of a dealloc bit in an AP can be estab 
lished to a log record, and the dealloc has committed, then the 
dealloc bit can be safely cleared'. 
0379 For the above rule to be correctly applied, the fol 
lowing assertions should hold true. The system and method 
ology of the present invention provides for traversing through 
these assertions to establish the rule: 
1) The dealloc has to be committed. 
2) The dealloc bit has to be set. 
3) A basic integrity check (objid/indid/ptnid) between the log 
record and the extent should hold true. 
0380. The present invention also uses two optimizations to 
help determine the correct application of the rule: 
1) For processing the class of dealloc log records determine if 
the AP needs to be redone. If the AP needs to be redone during 
recovery, then the AP is from the present and post-commit 
work should be performed. 
2) During node recovery, the CLM is consulted to determine 
the existence and State of the data page in the cluster. The 
present invention exploits the assertion from the distributed 
timestamp methodology of the present invention that “there 
can be no deallocated page in the cluster with a timestamp 
higher than the timestamp on the allocation page'. 
0381. The approach of the present invention is based on 
identifying only those deallocations that need post-commit 
processing. The solution leverages the fact that allocation 
pages are time stamped in the cluster server. It follows a 
logical approach and avoids additional logging (and the per 
formance overhead associated with logging). The Solution 
provides for maintaining a transaction table for committed 
transactions with deallocations (deallocs). By restricting this 
table to only transactions with deallocations, the size of the 
table is limited. Given that post-commit processing is only 
done on an as-needed basis, the solution has no significant 
impact on system performance. 
0382 Single Page and Multiple Page Deallocations 
0383. The following discussion describes the high-level 
design of the solution, addressing single page deallocations 
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first and extending the solution to multiple page dealloca 
tions. For each, both crash recovery, after the whole cluster 
comes down, and node recovery, where one node fails and a 
second node recovers the failed node, are discussed. 
(0384. The XREC DEALLOC log record represents 
single page deallocations. The page header of the page to be 
deallocated at the time of deallocation is stored in the XREC 
DEALLOC log record. The log record also stores the alloca 
tion page's old and new timestamps. 
0385. The log records that involve multiple page deallo 
cations include the following: 
XREC DEALLOCM: multiple page deallocations in an allo 
cation unit, caused by online index reorganization. 
XREC DROPEXTSMAP: Multiple extents dropped during 
drop table or truncate table. 
XREC SOPGDEALLOC: Deallocation of pages during sort 
or other actions. 
XREC LOGDEALLOC: Log page deallocations during log 
truncation. 
0386 For multiple page deallocations, the log records 
store the bitmap of pages being deallocated (XREC DEAL 
LOCM) in an allocation unit or the allocation/deallocation 
maps (XREC DROPEXTSMAP). Also, as part of the above 
described distributed timestamp methodology of the present 
invention, allocation pages are time stamped. In addition, the 
allocation page timestamp is incorporated into the XREC 
DROPEXTSMAP and XREC SOPGDEALLOC log 
records. 
(0387. Single Page Reallocations During Crash Recovery 
(0388 FIG. 12 is a high-level flow diagram 1200 illustrat 
ing the method steps of the present invention for a single page 
deallocation during crash recovery. During processing of the 
dealloc record in the redo pass, a check is made as shown at 
1220 to determine whether the dealloc is committed and AP 
changes need to be redone. The check made at 1220 deter 
mines if AP changes need to be redone by checking whether 
the dealloc is committed. If the dealloc is committed, then the 
dealloc is redone and necessary post-commit work is also 
performed for committed deallocs as illustrated at 1222. 
0389. However, if the dealloc is not committed at 1220, 
then only the dealloc work is done at 1221. It should be noted 
that for aborted or incomplete transactions only the dealloc is 
redone and the approach of the present invention is to let the 
undo pass (or redo of CLRs) handle further processing in the 
case of aborted or incomplete transactions. 
0390 Referring back to 1201 at FIG. 12, if an allocation 
page (AP) does not need to be redone, then the AP is from the 
future. In this event, the methodology of the present invention 
provides for determining if post-commit processing needs to 
be performed. First, a fundamental integrity check is per 
formed as shown at 1210 at FIG. 12 to determine if the 
objid/indid/ptnid in the extent matches the one in the log 
record. If the integrity check fails, the process ends (exits) as 
provided at 1211 as the fact that the log record does not match 
the extent information indicates that the wrong point in time 
is being examined. However, in the event of a match at 1210, 
a check is made at 1213 to determine if the dealloc is com 
mitted. 
0391) If the dealloc is committed at 1213, the dealloc bit 
(deal bit) is examined at 1217. If the dealloc bit is set (i.e., deal 
bit set to 1), ownership needs to be established by finding out 
if this is the dealloc record that should be associated with the 
bit or if it is in the future. For example, this dealloc bit may 
represent a future deallocation that is not committed. Note 
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that since post-commit is not a time stamped action, there is 
no way of physically determining if post-commit processing 
has been completed. Hence, an approach of setting a bit for 
this alloc unit in the recovery vbit map is used as provided at 
1219. In addition, the status of the transaction is associated 
with the extent. These allocation units are visited at the end of 
redo and undo passes to clean up the deallocation bits. If the 
dealloc is not committed, there is nothing further to do from 
a post-commit processing perspective and the process ends 
(exits) as provided at 1214-1216. 
0392 The following summarizes the result of the above 
steps when an AP does not require redo. At 1219, the dealloc 
bit is set for a committed deallocation. This can be from the 
future or the remnants of an uncompleted post-commit opera 
tion. The vbit is marked and will be cleared at the end of the 
redo pass for extents touched by completed transactions and 
at the end of undo pass for all transactions. At 1218, there is 
nothing more to do as the dealloc bit is not set for a committed 
dealloc. 
0393 At 1216, the dealloc bit is set (i.e., deal bit=1) for an 
uncommitted dealloc. The present invention provides for con 
tinuing and letting undo handle the rollback of the dealloc if 
necessary. At 1215, the dealloc bit is not set (i.e., deal bit=0) 
for a transaction that is not committed. The transaction can be 
aborted or incomplete. Note that the AP did not need redo, as 
that is an AP version from the future and one can just con 
tinue. It should be noted that when the AP does not need a redo 
and the dealloc is not committed, the process can just con 
tinue irrespective of the deal bit. Both 1215 and 1216 repre 
sent assertions that it is proper to continue with performing 
post-commit processing in these instances. 
0394 Single Page Deallocations During Node Recovery 
0395. When a node crashes, and is recovered, the pages 
recovered by the node may be worked on by other nodes in a 
cluster. In other words, the database is still active. The 
approach of the present invention for node recovery is similar 
to that described above for crash recovery, but with some 
additional steps resulting from the fact that other nodes in the 
cluster remain active. 
0396 FIGS. 13 A-B comprise a single high-level flow dia 
gram 1300 illustrating the method steps of the present inven 
tion for a single page deallocation during node recovery. 
During processing of the dealloc record in the redo pass of 
recovery, a check is made as shown at 1301 at FIG. 13A to 
determine if AP changes need to be redone. If this check 
determines that AP changes need to be redone then the pro 
cess proceeds to 1320. 
0397) If AP changes need to be performed, then post 
commit changes may also need to be done. In this case, a 
check is made at 1320 in the same fashion as described above 
for crash recovery. If the dealloc is committed at 1320, the 
dealloc is redone and the post-commit work is also performed 
for committed deallocs as provided at 1322. However, for 
aborted or incomplete transactions only the dealloc is redone 
as provided at 1321. Further processing for aborted or incom 
plete transactions is left for handling by the undo pass (or redo 
of CLRs). 
0398. A more difficult case is when the allocation page 
(AP) does not need redo. Referring again to FIG. 13A, if the 
allocation page (AP) does not require redo during node recov 
ery at 1301, the method proceeds to 1310. In this case, the first 
step is to perform the fundamental integrity check at 1310. If 
the check fails, one can exit (end) the process as provided at 
1311. However, if the integrity check at 1310 is successful, 
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then a check is made at 1313 to determine if the dealloc is 
committed. If the dealloc is not committed, there is no post 
commit processing to do and the method ends as provided at 
1315. However, if the dealloc is committed, the deal bit is 
examined as shown at 1317 at FIG. 13B. If the deal bit is not 
set (i.e., deal bit-0), there is no processing to do and the 
method exits (ends) as provided at 1318. However, if the deal 
bit is set (i.e., deal bit=1), ownership needs to be established. 
In other words, a determination is made as to whether this deal 
bit belongs to this log record, or if this is a remnant of not 
doing post-commit processing for a deallocation that is com 
mitted. One way to determine this is to request a shared lock 
on the page and fetch the page (either from another node or 
from disk). If the timestamp on the page is greater than the 
log's new timestamp on the allocation page, then the page has 
moved forward (i.e., the page was allocated again and is in a 
different life cycle). In this case one can conclusively deter 
mine that this dealloc bit does not belong to this log record 
and exit as it can be assumed that post-commit processing for 
this log record is completed. However, if the timestamp is 
less, then this dealloc log record's post-commit work is not 
yet complete. In this case it is safe to do the post-commit work 
and clear the bit. 
0399. Instead of fetching the page, the present invention 
provides an optimization by consulting lock status informa 
tion for the data page available from the CLM as shown at 
1319 at FIG. 13B. The CLM can provide the following infor 
mation: 

1) Valid value. A valid lock exists on another node for the 
page. This indicates that the page has moved forward in time. 
Post-commit processing has completed and the page has been 
allocated to a different node. No further processing is needed 
and the method ends (exit) as provided at 1321. 
2) No value. No lock exists which indicates that the page on 
disk is the latest. As provided at 1322, the page can be read in 
from disk and a timestamp (TS) check can be performed to 
determine the ownership as above. 
3) In-doubt. If the lock is in-doubt, this indicates that the node 
that crashed held the lock before going down. It is important 
to note that a page can have undergone multiple life cycles in 
the recoverable log. A life cycle is denoted by an allocation 
deallocation cycle of a page. To illustrate this consider the 
following: 

Page Timestamp (Transaction) 

ALLOC P1 100 (T1) 
300 (T1) 

DEALLOC P1 300 (T1) 
COMMITT1 
ALLOC P1 400 (T2) 

500 (T2) 
DEALLOCP1 500 (T2) 
COMMITT2(post-commit not performed) 
Crash 

0400. In the above situation, one needs to ensure that post 
commit processing is done only for the deallocation for trans 
action T2 and not for transaction T1. In other words it is 
necessary to track the life cycle of the page. Otherwise, the 
dealloc bit can be incorrectly cleared for Transaction T1. 
04.01. Once the life cycle of the page has been identified, 
the timestamp on the page can be compared with the AP log 
new timestamp to determine the ownership of the dealloc bit 
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with the log record. The log record is the owner if Page 
TSCAP log new TS. The AP timestamp is floored with the 
timestamp on the page during deallocation. If the page times 
tamp is higher, then the page has been reallocated and is in a 
different life cycle and therefore one can exit (end) the pro 
cess as no further action is necessary. 
0402. The CLM maintains for every lock, a lock value that 
contains the timestamp on the page. This value is updated at 
the following stages: 
1) Page allocation. 

2) Lock Downgrade. 
0403. 3) Buffer gets destroyed (part of post-commit). 
04.04 Since the value is updated during allocation, one can 
consider that as a boundary to establish the life cycle of a 
page. The methodology of the present invention will consider 
establishing ownership only if the AP new timestamp (AP 
new TS) as seen in the log record is in the current life cycle as 
determined from the lock value block. For every lock in the 
cluster, there is a node that contains the resource master. This 
maintains the information about the lock and has the times 
tamp stored in the value block. 
04.05 There are two cases to consider: 
1) The lock master is not on the crashed node. The lock value 
block is available. In this case, for every dealloc log record, in 
order to establish the ownership of the dealloc bit with the log 
record, the timestamp from the log record is compared with 
the timestamp in the lock value block. Post-commit process 
ing will not be considered if the timestamp in the lock value 
block is greater than the AP new TS as seen in the log record. 
A higher timestamp indicates that the page has been reallo 
cated again and is in a different life cycle. 
2) The lock master is in the crashed node. The lock value 
block is not available. One of the first things done on node 
recovery is to reconstruct the lock master. It will have an 
invalid value for the lock value block (timestamp). The times 
tamp in the last life cycle during the analysis pass is then 
determined (i.e., reconstruct the lock value block in the lock 
master). Thus, at the end of the analysis pass one has the 
timestamp at the last allocation of the page. 
0406. During redo, a dealloc will not be considered for 
post-commit processing if the lock value timestamp is greater 
than the AP new timestamp as determined from the log 
record. Once the ownership is determined, then based on the 
other assertions the dealloc bit can be cleared. 
0407. The following summarizes the result of the above 
processing: 
0408. If the dealloc is not committed at 1313 as shown at 
FIG. 13A, the method can terminate (exit) as provided at 
1315. 

04.09. If the dealloc is committed at 1313, but the deal bit 
is not set at 1317 at FIG. 13B, exit (end) as provided at 1318. 
0410. If the dealloc is committed and the deal bit is set at 
1317, determine if the deal bit belongs to this log record or is 
from the future. In this case, the CLM is consulted for the 
latest version of the page as provided at 1319 at FIG. 13B. The 
values of interest at 1319 areas follows: a lock exists (VALID 
VALUE), a lock does not exist (NOVALUE), and the lock is 
IN-DOUBT. The method proceeds to 1321, 1322, or 1323, 
respectively, based on these values. 
0411. If there is a valid lock on the page in another node 
with a valid status (VALID VALUE), then this deal bit does 
not belong to this log record (e.g., the page is in another node) 
as provided at 1321. 
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0412. If no lock is held by any node (NOVALUE), then the 
page on disk is the latest. As provided at 1322, the page is read 
and the timestamp (TS) is checked. If the page timestamp is 
not greater than the log new AP timestamp (TS), the bit is 
cleared. 
0413 If the lock is IN-DOUBT, then this node held the 
latest version of the page before crash. A check is made as 
illustrated at 1323 to determine if the log record reflects the 
last incarnation of the page. If not, the process is exited 
(ended) as provided at 1324. 
0414. If the check at 1323 determines that the log record 
belongs to the last incarnation of the page, the timestamp on 
the page is compared with the AP new timestamp in the log 
record as provided at 1330. If the page timestamp (TS) is 
greater than the AP new timestamp (TS) in the log record at 
1330, then this is from the future and the process ends (exits) 
as provided at 1331. Otherwise, the bit is cleared as provided 
at 1332. 
0415 Multiple Page Deallocations 
0416 For multiple page deallocations, the same approach 
and methodology discussed above for single page allocations 
is applied, with the following modifications: 
1) The extent-log record check encompasses all the extents 
denoted in a log record if the log record affects multiple 
eXtentS. 

2) In order to associate the dealloc record and the post-com 
mit work, a check is made to determine if all the dealloc bits 
as specified by the log record are set. 
0417. Furthermore, in order to conclusively ascertain that 
the operation has not been recycled (to ensure that one is not 
seeing the same set of operations from the future), the times 
tamp of one of the pages specified in the bitmap is checked 
against the new timestamp of the AP in the log record. If the 
timestamp on the page is greater, then the page has gone 
forward and a future version is being examined. Examining 
one of the pages is Sufficient because if one page has moved 
forward in time then it can be assumed that all pages have 
moved forward in time given the same deallocation bitmap. 
As discussed previously, there can be no free page with a 
timestamp greater than the allocation page. The optimization 
of using the CLM can also be extended to cover multiple 
pageS. 
0418 Determining that Deallocation has Committed 
0419. It should be noted that completed transactions in 
phase-1 recovery are removed from the transaction table dur 
ing the analysis pass. Also note that completed transactions 
include committed and aborted transactions. Hence, a list of 
committed transactions is maintained and used during the 
post-commit processing. 
0420. A dealloc belonging to a committed transaction is 
not necessarily a committed dealloc, for the dealloc may be 
rolled back in cases such as “rollback to savepoint'. For 
example, the following can be a log sequence due to rollback 
to savepoint: 

: Begin Tran T1 

: Save tran foo 
: dealloc P1 
: dealloc P2 
: CLR 
: CLR 
: Commit Tran 
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0421 Although the transaction has committed, the deal 
location of pages P1 and P2 are rolled back. There is no 
restriction on the number of savepoints in a transaction. 
0422 To address these issues a transaction table is main 
tained for committed transactions. This table contains a log 
record from the class of dealloc log records. For each trans 
actionalist of rollback blocks is maintained to address deal 
locations that are rolled back. A dealloc is a committed deal 
loc if the transaction is committed and the dealloc is not part 
of a rollback block. Deallocations that are part of committed 
NTAs (nested top actions) are considered committed deallocs 
irrespective of the status of the outer transaction. Thus each 
committed Xitem will have an array of rollback blocks and an 
array of committed NTAs. 
0423 Recover Only In-Doubt Pages 
0424 One of the conditions in failover recovery is that 
only in-doubt pages will be recovered. This means that only 
log records belonging to changes in in-doubt pages will be 
processed. If a page is not in-doubt, then the page changes 
should be on disk. Recovery routines that fetch pages will 
check if they are in-doubt and processing will proceed only 
for the in-doubt pages. 
0425. While the invention is described in some detail with 
specific reference to a single-preferred embodiment and cer 
tain alternatives, there is no intent to limit the invention to that 
particular embodiment or those specific alternatives. For 
instance, those skilled in the art will appreciate that modifi 
cations may be made to the preferred embodiment without 
departing from the teachings of the present invention. 
What is claimed is: 
1. A method for transferring a data structure in cache at a 

first database server to a second database server in a distrib 
uted database system, the method comprising: 

determining a first database server having a data structure 
in cache in response to a request for the data structure 
from a second database server, 

providing the request for the data structure to the first 
database server, 

in response, sending the data structure and a message con 
taining an address where the data structure needs to be 
copied on the second database server to the second data 
base server; and 

receiving the data structure at the second database server 
using the data structure address included with the mes 
Sage. 

2. The method of claim 1, wherein the data structure com 
prises a data page. 

3. The method of claim 1, wherein said request for the data 
structure includes a lock request for the data structure from 
the second database server. 

4. The method of claim 3, wherein said sending step 
includes granting the lock request based on sending the mes 
sage including the data structure address. 

5. The method of claim 1, further comprising: 
providing a resource master for tracking data structures in 

cache at database servers in the distributed database 
system. 

6. The method of claim 5, wherein said determining step 
includes consulting the resource master for determining the 
first database server having the data structure in cache. 

7. The method of claim 5, wherein said providing step 
includes receiving a lock request for the data structure from 
the second database server at the resource master and sending 
the lock request to the first database server. 
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8. The method of claim 7, wherein said resource master 
determines whether to grant the lock request. 

9. The method of claim 7, wherein the resource master 
sends a lock downgrade message to the first database server. 

10. The method of claim 9, wherein the resource master 
sends a lock granted message to the second database server 
after receiving a reply from the first database server that it has 
downgraded the lock. 

11. A computer-readable medium having processor-ex 
ecutable instructions for performing the method of claim 1. 

12. A method for transferring a data structure in cache at a 
first database server to a second database server in a distrib 
uted database system, the method comprising: 

determining a first database server having a data structure 
in cache in response to a request for the data structure 
from a second database server, the request including a 
request for a lock on the data structure; 

providing the request for the data structure to the first 
database server; 

in response, sending the data structure from the first data 
base server to the second database server; and 

receiving and using the data structure at the second data 
base server without waiting for the lock request to be 
explicitly granted. 

13. The method of claim 12, wherein said sending step 
includes indicating the request for a lock on the data structure 
is to be granted to the second database server. 

14. The method of claim 12, further comprising: 
providing a resource master for tracking data structures in 

cache at database servers in the distributed database 
system. 

15. The method of claim 14, wherein said determining step 
includes consulting the resource master for determining the 
first database server having the data structure in cache. 

16. The method of claim 14, wherein said providing step 
includes receiving the request for a lock on the data structure 
at the resource master and sending the lock request to the first 
database server. 

17. The method of claim 16, wherein said resource master 
determines whether to grant the request for a lock. 

18. The method of claim 16, wherein the resource master 
sends a lock downgrade message to the first database server. 

19. The method of claim 18, wherein the resource master 
sends a lock granted message to the second database server 
after receiving a reply from the first database server that it has 
downgraded the lock. 

20. A computer-readable medium having processor-ex 
ecutable instructions for performing the method of claim 12. 

21. In a distributed database system having a plurality of 
database servers, a system for transferring a data structure in 
cache at a first database server to a second database server, the 
system comprising: 

a resource master for determining a first database server 
having a data structure in cache in response to a request 
for the data structure from a second database server, the 
request including a request for a lock on the data struc 
ture and for providing the request for the data structure to 
the first database server; 

a first database server which sends the data structure to the 
second database server in response to the request 
received from the resource master, and 

a second database server which receives and uses the data 
structure sent by the first database server without waiting 
for the lock request to be explicitly granted. 
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22. The system of claim 21, wherein the resource master 
determines whether the request for a lock on the data structure 
is to be granted to the second database server. 

23. The system of claim 21, wherein the resource master 
tracks data structures in cache at a plurality of database serv 
ers of the distributed database system. 

24. The system of claim 21, wherein said resource master 
determines whether to grant the request for a lock received 
from the second database server. 

25. The system of claim 24, wherein the resource master 
sends the lock request received to the first database server if it 
grants the request for the lock received from the second data 
base server. 

26. The system of claim 24, wherein the resource master 
sends a lock downgrade message to the first database server if 
it grants the request for the lock received from the second 
database server. 

27. The system of claim 26, wherein the resource master 
sends a lock granted message to the second database server 
after receiving a reply from the first database server that it has 
downgraded the lock. 

28. In a distributed database system comprising a plurality 
of nodes sharing access to data, a method for regulating 
access to data objects in cache at nodes of the distributed 
database system, the method comprising: 

providing a lock master at one of said plurality of nodes for 
regulating access to data objects in cacheat said plurality 
of nodes; 

Submitting a lock request for a given data object requested 
at a first node of the distributed database system to the 
lock master, the lock request including an address to 
which the given data object is to reside at the first node: 
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forwarding the lock request from the lock master to a 
second node having the given data object in cache; and 

in response, transferring the data object from the second 
node to the first node using the address included with the 
lock request without waiting for the lock request to be 
explicitly granted. 

29. The method of claim 28, wherein the data object com 
prises a data page. 

30. The method of claim 28, wherein said lock master 
determines whether to grant the lock request. 

31. The method of claim 30, wherein said lock master 
determines whether to grant the lock request based, at least in 
part, on whether a lock is maintained on the given data object 
at the second node. 

32. The method of claim 31, wherein said lock master 
determines whether to grant the lock request based, at least in 
part, on type of lock maintained on the given data object. 

33. The method of claim 31, wherein said forwarding step 
includes implicitly granting the lock request based on for 
warding the lock request to the second node. 

34. The method of claim 28, wherein said forwarding step 
includes sending a lock downgrade message to the second 
node together with the lock request. 

35. The method of claim 34, further comprising: 
sending a lock granted message to the first node after the 

lock master receives a reply from the second node to the 
lock downgrade message. 

36. The method of claim 28, wherein the lock master runs 
at a selected one of the first node, the second node and a third 
node. 

37. A computer-readable medium having processor-ex 
ecutable instructions for performing the method of claim 28. 
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