
(19) United States
US 2008029.4648A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0294648 A1
Lin et al. (43) Pub. Date: Nov. 27, 2008

(54) DISTRIBUTED DATABASE SYSTEM
PROVIDING DATA AND SPACE
MANAGEMENT METHODOLOGY

(75) Inventors: Mei-Lin Linda Lin, San Jose, CA
(US); Fei Zhou, Glenview, IL (US);
Joe Francis, Fremont, CA (US);
Srikanth Sampath, Fremont, CA
(US); Satya N. Ramachandran,
Fremont, CA (US); Gangavara
Prasad Varakur, Pleasanton, CA
(US)

Correspondence Address:
JOHN A. SMART
201 LOS GATOS, SARATOGARD, #161
LOS GATOS, CA 95030-5308 (US)

(73) Assignee: Sybase, Inc., Dublin, CA (US)

(21) Appl. No.: 12/037,791

(22) Filed: Feb. 26, 2008

201a 201b.

APPLICATION APPLICATION BROWSER
PROGRAM1 PROGRAM2 PROGRAM

Related U.S. Application Data

(62) Division of application No. 10/904.263, filed on Nov.
1, 2004, now Pat. No. 7,403,945.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/10; 707/E17.01
(57) ABSTRACT

A distributed database system providing data and space man
agement methodology. In one embodiment, for example, a
method for transferring a data structure in cache at a first
database server to a second database server in a distributed
database system comprises steps of determining a first data
base server having a data structure in cache in response to a
request for the data structure from a second database server,
the request including a request for a lock on the data structure;
providing the request for the data structure to the first data
base server, in response, sending the data structure from the
first database server to the second database server; and receiv
ing and using the data structure at the second database server
without waiting for the lock request to be explicitly granted.

201C 2010

APPLICATION 201
PROGRAMM

BIOS
(MICROCODE)

DEVICE DRIVERS
(e.g., WINSOCK)

OPERATING SYSTEM
(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC OS, ORLIKE)

GRAPHICAL
USER INTERFACE

210

DISPLAY MONITOR
NETWORKINTERFACE
COMMPORT
KEYBOARD
MODEM
MOUSE
DISKS
PRINTER

| || ||

(S) LINnX|\,|OWA LEN

Patent Application Publication

Patent Application Publication Nov. 27, 2008 Sheet 2 of 16 US 2008/029.4648 A1

201a 2010 201C 201d

APPLICATION APPLICATION BROWSER APPLICATION 2O1
PROGRAM 1 PROGRAM 2 PROGRAM PROGRAMN

OPERATING SYSTEM
(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC OS, OR LIKE)

GRAPHICAL
USER INTERFACE

220 215 210

DEVICE DRIVERS
(e.g., WINSOCK)

230

BIOS
(MICROCODE)

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD
MODEM
MOUSE
DISKS
PRINTER

FIG. 2

US 2008/029.4648 A1

005

Patent Application Publication

Patent Application Publication Nov. 27, 2008 Sheet 4 of 16 US 2008/029.4648 A1

CLIENT 401 CLIENT 4.02 CLIENT 4.03

/

PRIVATE INTERCONNECT STORAGE AREA
425 NETWORK (SAN) 429

SHARED
DISK

STORAGE
435

Patent Application Publication Nov. 27, 2008 Sheet 5 of 16 US 2008/029.4648 A1

500

CLUSTER CLUSTER SPACE /
LOGGING AND THRESHOLD
RECOVERY MANAGEMENT

511 512

BUFFER CACHE CLUSTER LOCK OBJECT
CONCURRENCY MANAGEMENT COHERENCY

513 514 515

DATASERVICE

DATABASE KERNEL

SINGLE SYSTEM MSERsip CLUSTEREVENT
PRESENTATION SERVICE

SERVICE
521 522 523

RELIABLE
CLUSTER

INTERCONNECT
524

BASIS ICD AND PLATFORM
ABSTRACTION 530 INTERCONNECT I/O ABSTRACTION 535

OPERATING SYSTEM |

FIG. 5

Patent Application Publication Nov. 27, 2008 Sheet 6 of 16 US 2008/029.4648 A1

SERVER 1 - REOUESTER/OWNER

SERVER 2 -- RESOURCE MASTER 602

CLUSTER
LOCK

SERVER 4 -- RESOURCE OWNER

T1
G

1 LOGICAL
LOCK

PROCESS
(TASK)

SERVER

Patent Application Publication Nov. 27, 2008 Sheet 7 of 16 US 2008/029.4648 A1

LOCK SUFFICIENCY TABLE 701

LOCK Held Lock Re quested

LOCK CONFLICT TABLE 702

Lock Held Lock Re quested
PR CW

LOCK DOWNGRADE TABLE 703

LOCK Held

Patent Application Publication Nov. 27, 2008 Sheet 8 of 16 US 2008/029.4648 A1

LOGICAL LOCK SUFFICIENCY TABLE 704

requested mode
EX TABSH TABEX INT SHINTEX PAGESH PAGE UP_PAGE EX ROW SHROW UP ROWSHNKL
yes yes yes yes yes yes yes yes yes yes yes m m m

: no

x X

FIG. 7D

LOGICAL LOCK CONFLICT TABLE 705

EX TABSHTABEX In

Patent Application Publication Nov. 27, 2008 Sheet 9 of 16 US 2008/029.4648 A1

LOGICAL LOCK DOWNGRADE TABLE 706

ExTAESH.TABEX INTSHINTEXPAGESHPAGEUPPAGEEx ROWSHROWUP ROWSHNL

Patent Application Publication Nov. 27, 2008 Sheet 10 of 16 US 2008/029.4648 A1

803

CLM MASTER

(4) CLM MSG:
Downgrade lock.

(4) Lock name = mylock

(2) CLM MSG:Xfer (?)
data to NOde 801 and
downgrade.
Lock name = mylock
LOCal Cookie F OCb2

(1) Lock Request Msg: Remote COOkie F OCb1 802
Lock name = mylock
wer F 22
COOkie F OCb1

(1) (5)
(5) CLM MSG: Lock SENDER
granted. Data transfer
initiated.
Lock name = mylock
LOCal COOkie F OCb1
wer = 23

801
(3)

(3) OCM MSG: Data Xfer
Lock name = mylock

RECEIVER wer F 23
loCal COOkie F OCb1

map(mylock) = Ocb1

FIG. 8

Patent Application Publication Nov. 27, 2008 Sheet 11 of 16 US 2008/029.4648 A1

EXAMPLE OF SPACE USAGE OF SEGMENT ON TWO CLUSTERED SERVERS

SERVER 901 SERVER 902

L. L - B H H+ B
X

BUFFER BUFFER BUFFER BUFFER
ZONE ZONE ZONE ZONE

FIG. 9A

B * N B* N
BUFFER BUFFER
ZONE ZONE

B* N B* N
BUFFER BUFFER
ZONE ZONE

FIG. 9B

Patent Application Publication Nov. 27, 2008 Sheet 12 of 16 US 2008/029.4648 A1

SERVER SERVER SERVER
1001 1002 1003

FIG 10

SERVER
1004

Patent Application Publication Nov. 27, 2008 Sheet 13 of 16 US 2008/029.4648 A1

1100

UPON REACHING THRESHOLD, SERVER 1 SETS FREEZE STATE
INSEGMENT AND SENDS ADJUSTMENT REQUEST MESSAGE TO

SERVER 2

1102

SERVER 2 RECEIVES REOUEST MESSAGE AND CHECKS FREE
PAGE COUNT TO DETERMINE F SERVER 2 CAN GIVE FREE

PAGES TO SERVER 1

1103

IF SERVER 2 CANNOT GIVE FREE PAGES TO SERVER 1, SERVER
2 REDUCES ITS FREE PAGE COUNT (TOL + B/2), MODIFIES THE

REGUEST MESSAGE BY ADDING SERVER 2 AND ITS
CONTRIBUTED FREE PAGE COUNT (EQUAL TO (x2- (L+ B/2)) AND

INCREMENTS THE TOTAL FREE PAGE COUNT (BYL)

1 104

SERVER 2 SENDS MODIFIED REO UEST MESSAGE TO SERVER 3

1105

SERVER 3 RECEIVES MODIFIED REOUEST MESSAGE AND
CHECKS ITS FREE PAGE COUNT TO DETERMINE F SERVER 3

CAN GIVE FREE PAGES TO SERVER 1 AND SERVER 2

1106

IF SERVER 3 CAN GIVE FREE PAGES, SERVER 3 CALCULATES
DELTAS BASED ON DISTRIBUTING EXTRA FREE PAGES AMONG

ALL THREE SERVERS

1107

SERVER 3 SENDS ADJUSTMENT MESSAGES WITH DELTAS TO
SERVER 1 AND SERVER 2: SERVER 1 AND SERVER2APPLY

DELTAS

DONE

FIG. 11

Patent Application Publication Nov. 27, 2008 Sheet 14 of 16

BEGIN

1201

NO YES ALLOCATION
PAGE (AP) REDO2

1210

EXTENT
OBJD/INDD/PTNID
MATCH THAT IN

LOG?
NO YES NO

1221

1211
DO ONLY
DEALLOC

WORK. UNDO END 1213

CARE OF THE
IS DEALLOC
COMMITTED2

REST.
YES ALLOC/

DEALLOC BITS
ONAP: 110=>011

NO

1214

EXAMINEDEAL

EXAMINEDEAL

1215 O BIT

1218 1219
END

1216 MARK iN
END VBIT

END

FIG. 12

IS DEALLOC
COMMITTED?

WILL TAKE 1222

US 2008/029.4648 A1

1220

YES

DO DEALLOC
PLUS POST

COMMIT WORK.
ALLOCI

DEALLOC BITS
ONAP:

110=>Of 1=>O/O

Patent Application Publication Nov. 27, 2008 Sheet 15 of 16 US 2008/029.4648 A1

1300
BEGIN

1301

NO ALLOCATION YES

PAGE (AP) REDO?

1320 1310

EXTENT
OBJD/INDD/PTND IS DEALLOC

COMMITTED? NO MATCH THAT IN YES NO YES
LOGP

1321

1311
DO ONLY

1313 DEALLOC 1322
WORK. UNDO

END IS BALL, WILL TAKE
COMMITTED CARE OF THE DO DEALLOC

REST. PLUS POST
ALLOC/ COMMIT WORK.

1315 DEALLOC BITS ALLOC/
ONAP: 1/O=>011 DEALLOC BITS

ONAP:
1/O=>Of 1 =>O/O

END

TO
FIG. 13B

FIG. 13A

Patent Application Publication

FROM
FG. 13A

EXAMINEDEAL BIT

1318 O

CONSULT CLM
FOR LOCK

END STATUS FOR
DATA PAGE

(1) VALID
VALUE

(1) (2)
1321 (2) NO

VALUE

PAGE IS IN
ANOTHER
NODE.

PAGE ON DISKS
LATEST. READ IN

PAGE, DO
TIMESTAMP (TS)
CHECK, AND
CLEAR THE BIT

YES END

YES

1331

FIG. 13B

Nov. 27, 2008 Sheet 16 of 16

DO TIMESTAMP
(TS) CHECK. PAGETS > AP

LOG NEW TS?

US 2008/029.4648 A1

1317

1319

(3) IN
(3) DOUBT

1323

DOES LOG
RECORD BELONG TO

CURRENT LIFE
CYCLEP

NO

1332

US 2008/029.4648 A1

DISTRIBUTED DATABASE SYSTEM
PROVIDING DATA AND SPACE

MANAGEMENT METHODOLOGY

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application is related to and claims the
benefit of priority of the following commonly-owned, pres
ently-pending nonprovisional application(s): application Ser.
No. 10/904.263 (Docket No. SYB/0115.00), filed Nov. 1,
2004, entitled “Distributed Database System Providing Data
and Space Management Methodology', of which the present
application is a Divisional application thereof. The disclosure
of the foregoing application is hereby incorporated by refer
ence in its entirety, including any appendices or attachments
thereof, for all purposes.

COPYRIGHT STATEMENT

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF INVENTION

0003 1. Field of the Invention
0004. The present invention relates generally to data pro
cessing environments and, more particularly, to a distributed
database system providing optimized data transfer, space
management, timestamp management, and deadlock detec
tion with optimal messaging
0005 2. Description of the Background Art
0006 Computers are very powerful tools for storing and
providing access to vast amounts of information. Computer
databases are a common mechanism for storing information
on computer systems while providing easy access to users. A
typical database is an organized collection of related infor
mation stored as “records' having “fields” of information. As
an example, a database of employees may have a record for
each employee where each record contains fields designating
specifics about the employee. Such as name, home address,
salary, and the like.
0007 Between the actual physical database itself (i.e., the
data actually stored on a storage device) and the users of the
system, a database management system or DBMS is typically
provided as a software cushion or layer. In essence, the
DBMS shields the database user from knowing or even caring
about the underlying hardware-level details. Typically, all
requests from users for access to the data are processed by the
DBMS. For example, information may be added or removed
from data files, information retrieved from or updated in such
files, and so forth, all without user knowledge of the under
lying system implementation. In this manner, the DBMS
provides users with a conceptual view of the database that is
removed from the hardware level. The general construction
and operation of database management systems is well
known in the art. See e.g., Date, C., “An Introduction to
Database Systems, Seventh Edition. Addison Wesley, 2000.
0008 Increasingly, businesses run mission-critical sys
tems which store information using database management
systems. These systems have long since moved from a cen

Nov. 27, 2008

tralized mainframe environment to a de-centralized or dis
tributed environment. One or more PC "client’ systems, for
instance, may be connected via a network to one or more
server-based database systems (e.g., SQL database server), to
form a client/server database system. Multiple tier database
systems including clients, application servers, and database
servers connected by networks are also currently in wide use.
0009. As computer systems and networks become increas
ingly complex and critical to business operations, the need to
have high availability of these systems is becoming corre
spondingly important. Data networks, and especially the
Internet, are uniting the world into a single global market
place that never closes. Employees, sales representatives, and
Suppliers in far-flung regions need access to mission-critical
systems every hour of the day. Furthermore, increasingly
Sophisticated customers expect twenty-four hour per day
sales and service from a Web site. As a result, tremendous
competitive pressure is placed on businesses to keep their
systems running continuously.
0010 Today, an increasing number of users need their
systems to be continuously available, with no downtime.
However, while current “high availability” solutions provide
high levels of availability, these solutions do not currently
provide continuous availability. Instead, current high avail
ability solutions require some amount of downtime for per
forming maintenance, adding upgrades, and the like. For
example, if a high availability system is resource constrained,
it would typically need to be brought downto allow for adding
additional CPU and/or memory resources. A better approach
providing increased levels of availability is desired.
0011. Another recent trend is towards the use of “blade
servers', which is an architecture that provides for modular,
efficient, and cost-effective systems. This type of architecture
typically includes virtualized storage and a network using a
high speed interconnect switched fabric. Blade servers may,
for instance, be implemented using Intel processors and the
Linux operating system. The Linux operating system has
matured in terms of reliability, availability, scalability, and
manageability, so as to facilitate administration of the blade
servers. The price/performance of the Intel/Linux platform
makes it a compelling platform for running mission critical
applications like database servers and enterprise resource
planning (ERP) applications in a distributed fashion. How
ever, this type of environment requires that the DBMS
engines have the ability to provide the necessary scalability
and transparent availability.
0012 What is needed is a solution that enables a customer
to run applications at multiple clustered servers with the
clustered servers accessing data in databases shared amongst
the servers in the cluster. For example, Suppose that a cus
tomer runs into a scalability problem with a database system
because the customer runs out of CPU power in the machine
(s) on which the database system is operated. The clustered
server Solution should enable the customer to quickly and
easily address this scalability problem by simply adding
another machine to the configuration. The Solution should be
easily expandable, so that customers may simply add addi
tional servers in order to increase system capacity and provide
improved performance without major data restructuring and
the associated System downtime that is common in current
systems. This type of Solution enables the customer to pur
chase hardware in Smaller increments as needed to keep up
with growth. This is advantageous compared with buying

US 2008/029.4648 A1

larger machines in advance based on anticipated future
demand for resources (e.g., disk, memory, CPU, and the like).
0013 The solution should also provide for transparent,
continuous availability of the applications run on the cluster
with instantaneous fail-over amongst servers in the cluster.
When one server is down (e.g., for upgrading the CPU) the
applications should be able to operate using the remaining
machines in the cluster. Even if one node fails, applications
should be able to access the other nodes, so that a continu
ously available solution is provided.
0014. At the same time, the solution should provide trans
parency to users so that they need not be concerned with all of
the internal details of running multiple database servers. For
instance, the solution should provide a single server appear
ance to applications. Also, an infrastructure should be pro
vided which enables server processes to run against shared
disks while resolving cache coherency issues in transparent
fashion. Ideally, the solution should facilitate operational
administration of the infrastructure necessary to manage the
distributed database environment while also minimizing the
number of messages sent between nodes so that Such mes
sages do not adversely affect system performance. The opera
tional administration that is provided should include detec
tion of deadlocks between nodes competing for shared
resources and efficient management space utilization and
timestamps in the distributed system. The present invention
provides a solution to these and other needs.

SUMMARY OF INVENTION

0015. A distributed database system providing data and
space management methodology is described. In one
embodiment, for example, a method of the present invention
is described for transferring a data structure in cache at a first
database server to a second database server in a distributed
database system, the method comprises steps of determining
a first database server having a data structure in cache in
response to a request for the data structure from a second
database server, providing the request for the data structure to
the first database server, in response, sending the data struc
ture and a message containing an address where the data
structure needs to be copied on the second database server to
the second database server, and receiving the data structure at
the second database server using the data structure address
included with the message.
0016. In another embodiment, for example, a method of
the present invention is described for transferring a data struc
ture in cache at a first database server to a second database
server in a distributed database system, the method comprises
steps of determining a first database server having a data
structure in cache in response to a request for the data struc
ture from a second database server, the request including a
request for a lock on the data structure; providing the request
for the data structure to the first database server; in response,
sending the data structure from the first database server to the
second database server; and receiving and using the data
structure at the second database server without waiting for the
lock request to be explicitly granted.
0017. In yet another embodiment, for example, in a dis
tributed database system of the present invention having a
plurality of database servers, a system for transferring a data
structure in cache at a first database server to a second data
base server is described that comprises: a resource master for
determining a first database server having a data structure in
cache in response to a request for the data structure from a

Nov. 27, 2008

second database server, the request including a request for a
lock on the data structure and for providing the request for the
data structure to the first database server; a first database
server which sends the data structure to the second database
server in response to the request received from the resource
master; and a second database server which receives and uses
the data structure sent by the first database server without
waiting for the lock request to be explicitly granted.
0018. In another embodiment, for example, in a distrib
uted database system comprises a plurality of nodes sharing
access to data, a method of the present invention is described
for regulating access to data objects in cache at nodes of the
distributed database system, the method comprises steps of
providing a lock master at one of the plurality of nodes for
regulating access to data objects in cache at the plurality of
nodes; Submitting a lock request for a given data object
requested at a first node of the distributed database system to
the lock master, the lock request including an address to
which the given data object is to reside at the first node:
forwarding the lock request from the lock master to a second
node having the given data object in cache; and in response,
transferring the data object from the second node to the first
node using the address included with the lock request without
waiting for the lock request to be explicitly granted.

BRIEF DESCRIPTION OF DRAWINGS

0019 FIG. 1 is a very general block diagram of a computer
system (e.g., an IBM-compatible system) in which software
implemented processes of the present invention may be
embodied.
0020 FIG. 2 is a block diagram of a software system for
controlling the operation of the computer system.
0021 FIG. 3 illustrates the general structure of a client/
server database system.
0022 FIG. 4 is a high-level block diagram of an environ
ment illustrating an example of a four node shared disk cluster
accessed by a plurality of clients.
0023 FIG. 5 is a block diagram illustrating components of
an instance of a clustered database server implementing the
shared disk cluster system and methodology of the present
invention.
0024 FIG. 6 is a block diagram illustrating the distribution
of the lock queues and lock management information in a
shared disk cluster environment.

0025 FIGS. 7A-F illustrate six tables which are used for
lock management in the currently preferred embodiment of
the present invention.
0026 FIG. 8 is a high-level flow diagram illustrating the
“triangle optimization' provided by the present invention.
0027 FIG. 9A is a diagram illustrating an example of the
space usage of a segment on two clustered servers.
0028 FIG.9B illustrates three user defined thresholds and
a free page count at two different times.
0029 FIG. 10 is a block diagram illustrating the clustered
servers and the direction of adjustment request messages
among clustered servers.
0030 FIG. 11 is a flowchart illustrating an example of the
handling of an adjustment request (e.g., emergency request)
sent by a clustered server.
0031 FIG. 12 is a high-level flow diagram illustrating the
method steps of the present invention for single page deallo
cation during crash recovery.

US 2008/029.4648 A1

0032 FIGS. 13 A-B comprise a single high-level flow dia
gram illustrating the method steps of the present invention for
single page deallocation during node recovery.

DETAILED DESCRIPTION

0033 Glossary
0034. The following definitions are offered for purposes of
illustration, not limitation, in order to assist with understand
ing the discussion that follows.
0035 Allocation Page: The allocation page (AP) is the

first page in an allocation unit (chunk of 256 contiguous
pages) that keeps track of the data pages that are allocated,
being deallocated, and free. A pair of bits, the alloc bit and the
dealloc bit in the allocation page represent the state of the data
page.
0036 AST: AST refers to the ASynchronous Trap used by
the cluster lock manager (CLM) to deliver an asynchronous
completion notification to the lock requester for non-blocking
requests. The ASTs can be delivered through client’s callback
handler in CLM daemon's context or in the client context
through polling.
0037 BAST: BAST refers to the Blocking ASynchronous
Trap used by the cluster lock manager (CLM) to deliver an
asynchronous blocking notification to the lock owner when
another clustered server in the cluster is requesting for the
lock in conflicting lock mode. The BASTs can be delivered
through client’s callback handler in CLM daemon's context
or in the client context through polling.
0038 Buffer: Buffer refers to metadata information to
maintain a page on disk in memory.
0039 CES: The cluster event service (CES) is a cluster
infrastructure component of the present invention that pro
vides global and local event Subscription and publishing Ser
W1CS

0040 CLM: The cluster lock manager (CLM) is a server
module of the present invention that provides the distributed
locking service to allow the sharing of logical locks, global
objects, and cached database data and metadata among the
clustered servers.
0041 CLR: CLR refers to compensation log record,
which is an “undo record logged during transaction rollback.
CLRs are usually redo-only log records which are not
undone.
0.042 Cluster: Cluster refers to a collection of more than
one networked (and usually homogeneous) nodes, which
function as a single system. Each node usually contains its
own CPU and memory. All the nodes in the cluster commu
nicate with each other, typically through private intercon
nectS.

0043 Cluster Coordinator: The coordinating clustered
server that is responsible for view updates at cluster member
ship changes. The clustered server that bootstraps the cluster
is the default cluster coordinator. A new coordinator may be
selected in the event of a coordinator failure.
0044 Cluster Configuration File: A cluster configuration

file contains a clustered server configuration to run in a shared
disk cluster environment. The cluster configuration file typi
cally includes information about path name to quorum disk
and cluster and member server definitions including the pri
mary and secondary interprocess communication (IPC) con
figuration.
0.045 Clustered Server: A clustered server refers to a data
base server which runs on a shared-disk cluster and jointly
manages a single installation of the databases on the shared

Nov. 27, 2008

disks. Currently, a clustered server is identified by a clustered
server number, which is a number uniquely identifying a
named clustered server in a shared disk cluster. The clustered
server number is assigned to a named clustered server as part
of the cluster configuration. Currently, the number can range
from one to maximum configurable clustered servers and,
similar to the clustered server name, cannot be changed while
the cluster is running.
0046 ClusterView: A cluster view is a runtime data struc
ture about active clustered servers in the cluster and server
States.

0047 CMS: The cluster membership service (CMS) is the
module of the cluster infrastructure of the present invention
that Supports the cluster configuration and membership man
agement for a shared disk cluster environment.
0048 Crash Recovery: Crash recovery refers to the recov
ery that follows after a database cluster is shutdown normally
or abnormally.
0049 Disk Piece: A disk piece is a unit of contiguous
database storage, which is currently described by a single
entry in masterdbo.sysusages and by a single entry in the
databases disk map.
0050. Dedicated Log Segment: A dedicated log segment
refers to the disk pieces that belong to the log segment and are
not for any other segment (i.e., space on the disk pieces that is
only used for the log).
0051 INDOUBT: An INDOUBT state is one of the pos
sible states for a lock resource. A lock can be marked as
INDOUBT during a cluster-wide lock re-master and rebuild
if it was held in exclusive mode by a failed clustered server, or
its resource master failed and its lock state cannot be recon
structed from the surviving clustered servers.
0.052 Interfaces File: Interfaces file refers to a standard
database interfaces file or any other directory control layer
(e.g., LDAP or the like) from which connection related infor
mation for a dataserver (such as the database server name,
host name/IP address, protocol, port number, security
options, and so forth) is obtained.
0053 Local Lock Manager (LLM): A Local Lock Man
ager Supports logical lock, physical lock and object lock API
for local clients, manages local lock queues with task owner
ship, and interacts with Cluster Lock Manager to acquire,
downgrade and release the retention locks with node owner
ship.
0054 Logical Cluster: Logical cluster refers to a logical
cluster feature which facilitates logical partitioning of the
database shared disk cluster into Smaller functional groups of
clustered servers, with each functional group serving a dis
tinct set of client application and databases.
0055 Mixed-log-data database: In a mixed-log-data data
base, the diskpieces that belong to a log segment are also used
for other segments. In other words, a mixed-log-data database
has no fixed space dedicated for the log and one allocation
unit can have extents allocated to both data and log.
0056 Nested Top Action (NTA): A nested top action is a
part of a transaction that is committed or rolled back indepen
dent of the transaction. Nested top actions are typically used
by the index manager for page splits and shrinks.
0057 Node Recovery: The terms node recovery and
failover recovery refer to the recovery that follows after a
node (clustered server) is shutdown normally or abnormally
due to a hardware or software fault. Typically, another node
recovers the server running on the failed node.

US 2008/029.4648 A1

0058 OAM: OAM refers to Object Allocation Map, which
is a map maintaining information about the allocation of an
object.
0059 GAM: GAM refers to Global Allocation Map,
which is a map maintaining information about allocation of a
database.
0060 OCM: The Object Coherency Manager (OCM) is a
server infrastructure module of the present invention that
deals with the coherency issues related to sharing and trans
ferring metadata and global variables/data structures among
different clustered servers in a shared disk cluster environ
ment

0061. Object Lock: An object lock is a lock maintained by
the clusterlock manager to establish ownership of a metadata
object such as a dbtable or a global data structure/variable.
0062 Page: A page refers to a physical page on disk. All
data in a typical database system is stored in pages on a
secondary storage device, usually a hard disk. Typically, these
pages may range in size from 2. Kb to 16 Kb, with the most
common page sizes being 2 Kb and 4. Kb.
0063 Physical Cluster: Physical cluster refers to the data
base shared disk cluster as defined in the cluster configuration
file, with specific quorum disk, member servers, and inter
connect information. All servers in the physical cluster have
direct access to a single installation of the databases and are
monitored and managed by the cluster membership Service.
0064 Physical Lock: A physical lock is a lock maintained
by the cluster lock manager to establish ownership of a page
in the shared disk cluster environment. Physical locks are
server-specific and are held by a clustered server as long as
there are no conflicting requests in the cluster.
0065 PRTS: PRTS refers to a page's timestamp the first
time it is dirtied and before it is flushed. The PRTS value is
maintained so that recovery can know the appropriate re-start
point for that page.
0066 PTS: PTS refers to a page's current timestamp. The
PTS value is maintained to ensure validity of the page.
0067 Recovery checkpoint: Recovery checkpoint refers

to the last successful checkpoint record written to the trans
action log of the database before a database server was shut
down normally or abnormally.
0068 Recovery vbit map: A variable bitmap used by
recovery where each bit in the map corresponds to one allo
cation page is referred to as the recovery vbit map. This map
is used during recovery to keep track of the allocation pages
requiring a cleanup of its deallocation bits in its extents.
0069 Redo Pass: The redo pass is a recovery pass where

all log records encountered in the scan starting from the oldest
active transaction pointed to by the recovery-checkpoint
record until the end of the log are redone, regardless of the
ending status of the transaction that the log record is part of
0070 Relational database: A relational database is a col
lection of data items organized as a set of formally-described
tables from which data can be accessed or reassembled in
many different ways without having to reorganize the data
base tables. The relational database was invented by E. F.
Codd at IBM in 1970. A relational database employs a set of
tables containing data fitted into predefined categories. Each
table (which is sometimes called a relation) contains one or
more data categories in columns. The standard user and appli
cation program interface to a relational database is the struc
tured query language (SQL), defined below.
(0071 Resource Master or LockMaster (RM): The Cluster
Lock Manager that is responsible for managing the global

Nov. 27, 2008

lock queue with node ownership, including resolving con
flicts, reclaiming locks from the owning servers (i.e., the Lock
Owner), and granting locks to the requesting servers (or the
Lock Requester).
0072 Retention Lock: A retention lock refers to a global
lock that has clustered server ownership and can be acquired
and retained by the clustered server. Retention locks are man
aged by cluster lock manager.
(0073 SEMAWAIT queue: A Lock Manager uses a
SEMAWAIT queue to maintain all local locking requests for
an object. SEMAWAIT defines a position in the queue, the
LOCKREC corresponds for a particular task's lock request.
Since there can be shared locks, there might be more than one
request at a given queue position in other words there might
be more than one LOCKREC on a SEMAWAIT.
0074 Shared Disk Cluster: In this document, the term
shared disk cluster shall (unless otherwise indicated) refer
broadly to a cluster configuration where all nodes have direct
access to a shared disk subsystem. The distributed database
system of the present invention, in its currently preferred
embodiment, runs on a hardware shared disk cluster, with all
of the clustered servers having direct access to the set of
database devices and jointly managing a single installation of
the databases. The clustered servers on each node communi
cate with each other through redundant private interconnects
and synchronize their database accesses using a shared buffer
cache and distributedlock management. The system provides
very high availability, since the database is available as long
as there is at least one clustered server is alive. Shared data
base device fault tolerance can also be obtained by imple
menting RAID on the shared disk subsystem.
0075 SQL: SQL stands for Structured Query Language.
The original version called SEQUEL (structured English
query language) was designed by IBM in the 1970's. SQL-92
(or SQL/92) is the formal standard for SQL as set out in a
document published by the American National Standards
Institute in 1992; see e.g., “Information Technology—Data
base Languages—SQL, published by the American
National Standards Institute as American National Standard
ANSI/ISO/IEC9075: 1992, the disclosure of which is hereby
incorporated by reference. SQL-92 was superseded by SQL
99 (or SQL3) in 1999; see e.g., “Information Technology—
Database Languages—SQL, Parts 1-5’ published by the
American National Standards Institute as American National
Standard INCITS/ISO/IEC 9075-(1-5)-1999 (formerly
ANSI/ISO/IEC 9075-(1-5) 1999), the disclosure of which is
hereby incorporated by reference.
0076 Undo Pass: The undo pass is a recovery pass in
which log records from transactions that did not complete are
undone. Compensation log records (CLRs) are logged for
each log record that is undone

Introduction

0077 Referring to the figures, exemplary embodiments of
the invention will now be described. The following descrip
tion will focus on the presently preferred embodiment of the
present invention, which is implemented in desktop and/or
server Software (e.g., driver, application, or the like) operating
in an Internet-connected environment running under an oper
ating system, such as the Microsoft Windows operating sys
tem. The present invention, however, is not limited to any one
particular application or any particular environment. Instead,
those skilled in the art will find that the system and methods
of the present invention may be advantageously embodied on

US 2008/029.4648 A1

a variety of different platforms, including Macintosh, Linux,
Solaris, UNIX, FreeBSD, and the like. Therefore, the descrip
tion of the exemplary embodiments that follows is for pur
poses of illustration and not limitation. The exemplary
embodiments are primarily described with reference to block
diagrams or flowcharts. As to the flowcharts, each block
within the flowcharts represents both a method step and an
apparatus element for performing the method step. Depend
ing upon the implementation, the corresponding apparatus
element may be configured in hardware, Software, firmware,
or combinations thereof.

Computer-Based Implementation

0078 Basic System Hardware and Software (e.g., for
Desktop and Server Computers)
007.9 The present invention may be implemented on a
conventional or general-purpose computer system, such as an
IBM-compatible personal computer (PC) or server computer.
FIG. 1 is a very general block diagram of a computer system
(e.g., an IBM-compatible system) in which Software-imple
mented processes of the present invention may be embodied.
As shown, system 100 comprises a central processing unit(s)
(CPU) or processor(s) 101 coupled to a random-access
memory (RAM) 102, a read-only memory (ROM) 103, a
keyboard 106, a printer 107, a pointing device 108, a display
or video adapter 104 connected to a display device 105, a
removable (mass) storage device 115 (e.g., floppy disk, CD
ROM, CD-R, CD-RW, DVD, or the like), a fixed (mass)
storage device 116 (e.g., hard disk), a communication
(COMM) port(s) or interface(s) 110, a modem 112, and a
network interface card (NIC) or controller 111 (e.g., Ether
net). Although not shown separately, a real time system clock
is included with the system 100, in a conventional manner.
0080 CPU 101 comprises a processor of the Intel Pentium
family of microprocessors. However, any other Suitable pro
cessor may be utilized for implementing the present inven
tion. The CPU 101 communicates with other components of
the system via a bi-directional system bus (including any
necessary input/output (I/O) controller circuitry and other
“glue” logic). The bus, which includes address lines for
addressing system memory, provides data transfer between
and among the various components. Description of Pentium
class microprocessors and their instruction set, bus architec
ture, and control lines is available from Intel Corporation of
Santa Clara, Calif. Random-access memory 102 serves as the
working memory for the CPU 101. In a typical configuration,
RAM of sixty-four megabytes or more is employed. More or
less memory may be used without departing from the scope of
the present invention. The read-only memory (ROM) 103
contains the basic input/output system code (BIOS)—a set of
low-level routines in the ROM that application programs and
the operating systems can use to interact with the hardware,
including reading characters from the keyboard, outputting
characters to printers, and so forth.
0081 Mass storage devices 115, 116 provide persistent
storage on fixed and removable media, Such as magnetic,
optical or magnetic-optical storage systems, flash memory, or
any other available mass storage technology. The mass Stor
age may be shared on a network, or it may be a dedicated mass
storage. As shown in FIG. 1, fixed storage 116 stores a body
of program and data for directing operation of the computer
system, including an operating system, user application pro

Nov. 27, 2008

grams, driver and other Support files, as well as other data files
of all sorts. Typically, the fixed storage 116 serves as the main
hard disk for the system.
0082 In basic operation, program logic (including that
which implements methodology of the present invention
described below) is loaded from the removable storage 115 or
fixed storage 116 into the main (RAM) memory 102, for
execution by the CPU 101. During operation of the program
logic, the system 100 accepts user input from a keyboard 106
and pointing device 108, as well as speech-based input from
a voice recognition system (not shown). The keyboard 106
permits selection of application programs, entry of keyboard
based input or data, and selection and manipulation of indi
vidual data objects displayed on the screen or display device
105. Likewise, the pointing device 108, such as a mouse, track
ball, pen device, or the like, permits selection and manipula
tion of objects on the display device. In this manner, these
input devices Support manual user input for any process run
ning on the system.
I0083. The computer system 100 displays text and/or
graphic images and other data on the display device 105. The
video adapter 104, which is interposed between the display
105 and the system's bus, drives the display device 105. The
video adapter 104, which includes video memory accessible
to the CPU 101, provides circuitry that converts pixel data
stored in the video memory to a raster signal Suitable for use
by a cathode ray tube (CRT) raster or liquid crystal display
(LCD) monitor. A hard copy of the displayed information, or
other information within the system 100, may be obtained
from the printer 107, or other output device. Printer 107 may
include, for instance, an HP LaserJet printer (available from
Hewlett Packard of Palo Alto, Calif.), for creating hard copy
images of output of the system.
I0084. The system itself communicates with other devices
(e.g., other computers) via the network interface card (NIC)
111 connected to a network (e.g., Ethernet network, Blue
tooth wireless network, or the like), and/or modem 112 (e.g.,
56K baud, ISDN, DSL, or cable modem), examples of which
are available from 3Com of Santa Clara, Calif. The system
100 may also communicate with local occasionally-con
nected devices (e.g., serial cable-linked devices) via the com
munication (COMM) interface 110, which may include a
RS-232 serial port, a Universal Serial Bus (USB) interface, or
the like. Devices that will be commonly connected locally to
the interface 110 include laptop computers, handheld orga
nizers, digital cameras, and the like.
I0085 IBM-compatible personal computers and server
computers are available from a variety of vendors. Represen
tative vendors include Dell Computers of Round Rock, Tex.,
Hewlett-Packard of Palo Alto, Calif., and IBM of Armonk,
N.Y. Other suitable computers include Apple-compatible
computers (e.g., Macintosh), which are available from Apple
Computer of Cupertino, Calif., and Sun Solaris workstations,
which are available from Sun Microsystems of Mountain
View, Calif.
I0086 Basic System Software
I0087 FIG. 2 is a block diagram of a software system for
controlling the operation of the computer system 100. As
shown, a computer software system 200 is provided for
directing the operation of the computer system 100. Software
system 200, which is stored in system memory (RAM) 102
and on fixed storage (e.g., hard disk) 116, includes a kernel or
operating system (OS) 210. The OS 210 manages low-level
aspects of computer operation, including managing execution

US 2008/029.4648 A1

of processes, memory allocation, file input and output (I/O),
and device I/O. One or more application programs, such as
client application software or “programs' 201 (e.g., 201a,
201b, 201c, 201d) may be “loaded” (i.e., transferred from
fixed storage 116 into memory 102) for execution by the
system 100. The applications or other software intended for
use on the computer system 100 may also be stored as a set of
downloadable processor-executable instructions, for
example, for downloading and installation from an Internet
location (e.g., Web server).
0088 Software system 200 includes a graphical user inter
face (GUI) 215, for receiving user commands and data in a
graphical (e.g., "point-and-click”) fashion. These inputs, in
turn, may be acted upon by the system 100 in accordance with
instructions from operating system 210, and/or client appli
cation module(s) 201. The GUI 215 also serves to display the
results of operation from the OS 210 and application(s) 201,
whereupon the user may supply additional inputs or terminate
the session. Typically, the OS 210 operates in conjunction
with device drivers 220 (e.g., “Winsock' driver Windows
implementation of a TCP/IP stack) and the system BIOS
microcode 230 (i.e., ROM-based microcode), particularly
when interfacing with peripheral devices. OS 210 can be
provided by a conventional operating system, Such as
Microsoft Windows 9x, Microsoft Windows NT, Microsoft
Windows 2000, or Microsoft Windows XP, all available from
Microsoft Corporation of Redmond, Wash. Alternatively, OS
210 can also be an alternative operating system, such as the
previously mentioned operating systems.
I0089 Client/Server Database System
0090 FIG. 3 illustrates the general structure of a client/
server database system 300. As shown, the system 300 com
prises one or more client(s) 310 connected to a server 330 via
a network 320. Specifically, the client(s) 310 comprise one or
more standalone terminals 311 connected to a database server
system 340 using a conventional network. In an exemplary
embodiment, the terminals 311 may themselves comprise a
plurality of standalone workStations, dumb terminals, or the
like, or comprise personal computers (PCs) such as the above
described system 100. Typically, such units would operate
under a client operating system, such as a Microsoft(R) Win
dows client operating system (e.g., Microsoft(R) Windows
95/98, Windows 2000, or Windows XP).
0091. The database server system 340, which comprises
Sybase R Adaptive Server Enterprise (available from Sybase,
Inc. of Dublin, Calif.) in an exemplary embodiment, gener
ally operates as an independent process (i.e., independently of
the clients), running under a server operating system Such as
Microsoft(R) Windows NT, Windows 2000, or Windows XP
(all from Microsoft Corporation of Redmond, Wash.), UNIX
(Novell), Solaris (Sun), or Linux (Red Hat). The network320
may be any one of a number of conventional network systems,
including a Local Area Network (LAN) or Wide Area Net
work (WAN), as is known in the art (e.g., using Ethernet, IBM
Token Ring, or the like). The network 320 includes function
ality for packaging client calls in the well-known Structured
Query Language (SQL) together with any parameter infor
mation into a format (of one or more packets) Suitable for
transmission to the database server system 340.
0092 Client/server environments, database servers, and
networks are well documented in the technical, trade, and
patent literature. For a discussion of Sybase(R) branded data
base servers and client/server environments generally, see,
e.g., Nath, A., “The Guide to SQL Server'. Second Edition,

Nov. 27, 2008

Addison-Wesley Publishing Company, 1995. For a descrip
tion of Sybase R Adaptive Server(R) Enterprise, see, e.g.,
“Adaptive Server Enterprise 12.5.1 Collection: (1) Core
Documentation Set and (2) Installation and Configuration.”
available from Sybase, Inc. of Dublin, Calif. This product
documentation is available via the Internet (e.g., currently at
Sybooks. Sybase.com/as.html). The disclosures of the forego
ing are hereby incorporated by reference.
0093. In operation, the client(s) 310 store data in, or
retrieve data from, one or more database tables 350, as shown
at FIG. 3. Data in a relational database is stored as a series of
tables, also called relations. Typically resident on the server
330, each table itself comprises one or more “rows’ or
“records” (tuples) (e.g., row 355 as shown at FIG. 3). A
typical database will contain many tables, each of which
stores information about a particular type of entity. A table in
a typical relational database may contain anywhere from a
few rows to millions of rows. A row is divided into fields or
columns; each field represents one particular attribute of the
given row. A row corresponding to an employee record, for
example, may include information about the employee's ID
Number, Last Name and First Initial, Position, Date Hired,
Social Security Number, and Salary. Each of these categories,
in turn, represents a database field. In the foregoing employee
table, for example, Position is one field, Date Hired is another,
and so on. With this format, tables are easy for users to
understand and use. Moreover, the flexibility of tables permits
a user to define relationships between various items of data, as
needed. Thus, a typical record includes several categories of
information about an individual person, place, or thing. Each
row in a table is uniquely identified by a record ID (RID),
which can be used as a pointer to a given row.
0094. Most relational databases implement a variant of the
Structured Query Language (SQL), which is a language
allowing users and administrators to create, manipulate, and
access data stored in the database. The syntax of SQL is well
documented; see, e.g., the above-mentioned "An Introduction
to Database Systems. SQL statements may be divided into
two categories: data manipulation language (DML), used to
read and write data; and data definition language (DDL), used
to describe data and maintain the database. DML statements
are also called queries. In operation, for example, the clients
310 issue one or more SQL commands to the server 330. SQL
commands may specify, for instance, a query for retrieving
particular data (i.e., data records meeting the query condition)
from the database table(s) 350. In addition to retrieving the
data from database server table(s) 350, the clients 310 also
have the ability to issue commands to insert new rows of data
records into the table(s), or to update and/or delete existing
records in the table(s).
0.095 SQL statements or simply "queries' must be parsed
to determine an access plan (also known as “execution plan”
or "query plan') to satisfy a given query. In operation, the
SQL statements received from the client(s) 310 (via network
320) are processed by the engine 360 of the database server
system 340. The engine 360 itself comprises a parser 361, a
normalizer 363, a compiler 365, an execution unit 369, and an
access methods 370. Specifically, the SQL statements are
passed to the parser 361 which converts the statements into a
query tree—a binary tree data structure which represents the
components of the query in a format selected for the conve
nience of the system. In this regard, the parser 361 employs
conventional parsing methodology (e.g., recursive descent
parsing).

US 2008/029.4648 A1

0096. The query tree is normalized by the normalizer 363.
Normalization includes, for example, the elimination of
redundant data. Additionally, the normalizer 363 performs
error checking, such as confirming that table names and col
umn names which appear in the query are valid (e.g., are
available and belong together). Finally, the normalizer 363
can also look-up any referential integrity constraints which
exist and add those to the query.
0097. After normalization, the query tree is passed to the
compiler 365, which includes an optimizer 366 and a code
generator 367. The optimizer 366 is responsible for optimiz
ing the query tree. The optimizer 366 performs a cost-based
analysis for formulating a query execution plan. The opti
mizer will, for instance, select the join order of tables (e.g.,
when working with more than one table), and will select
relevant indexes (e.g., when indexes are available). The opti
mizer, therefore, performs an analysis of the query and selects
the best execution plan, which in turn results in particular
access methods being invoked during query execution. It is
possible that a given query may be answered by tens of
thousands of access plans with widely varying cost charac
teristics. Therefore, the optimizer must efficiently select an
access plan that is reasonably close to an optimal plan. The
code generator 367 translates the query execution plan
selected by the query optimizer 366 into executable form for
execution by the execution unit 369 using the access methods
370.

0098 All data in a typical relational database system is
stored in pages on a secondary storage device, usually a hard
disk. Typically, these pages may range in size from 2 Kb to 16
Kb, with the most common page sizes being 2. Kb and 4. Kb.
All input/output operations (I/O) against Secondary storage
are done in page-sized units—that is, the entire page is read/
written at once. Pages are also allocated for one purpose at a
time: a database page may be used to store table data or used
for virtual memory, but it will not be used for both. The
memory in which pages that have been read from disk reside
is called the cache or buffer pool.
0099 I/O to and from the disk tends to be the most costly
operation in executing a query. This is due to the latency
associated with the physical media, in comparison with the
relatively low latency of main memory (e.g., RAM). Query
performance canthus be increased by reducing the number of
I/O operations that must be completed. This can be done by
using data structures and algorithms that maximize the use of
pages that are known to reside in the cache. Alternatively, it
can be done by being more selective about what pages are
loaded into the cache in the first place. An additional consid
eration with respect to I/O is whether it is sequential or ran
dom. Due to the construction of hard disks, sequential I/O is
much faster then random access I/O. Data structures and
algorithms encouraging the use of sequential I/O can realize
greater performance.
0100 For enhancing the storage, retrieval, and processing
of data records, the server 330 maintains one or more database
indexes 345 on the database tables 350. Indexes 345 can be
created on columns or groups of columns in a table. Such an
index allows the page containing rows that match a certain
condition imposed on the index columns to be quickly located
on disk, rather than requiring the engine to scan all pages in a
table to find rows that fulfill some property, thus facilitating
quick access to the data records of interest. Indexes are espe
cially useful when satisfying equality and range predicates in

Nov. 27, 2008

queries (e.g., a column is greater than or equal to a value) and
“orderby' clauses (e.g., show all results in alphabetical order
by a given column).
0101. A database index allows the records of a table to be
organized in many different ways, depending on a particular
user's needs. An index key value is a data quantity composed
of one or more fields from a record which are used to arrange
(logically) the database file records by some desired order
(index expression). Here, the column or columns on which an
index is created form the key for that index. An index may be
constructed as a single disk file storing index key values
together with unique record numbers. The record numbers are
unique pointers to the actual storage location of each record in
the database file.

0102 Indexes are usually implemented as multi-level tree
structures, typically maintained as a B-Tree data structure.
Pointers to rows are usually stored in the leafnodes of the tree,
So an index scan may entail reading several pages before
reaching the row. In some cases, a leaf node may contain the
data record itself. Depending on the data being indexed and
the nature of the data being stored, a given key may or may not
be intrinsically unique. A key that is not intrinsically unique
can be made unique by appending a RID. This is done for all
non-unique indexes to simplify the code for index access. The
traversal of an index in search of a particular row is called a
probe of the index. The traversal of an index in search of a
group of rows fulfilling some condition is called a scan of the
index. Index scans frequently look for rows fulfilling equality
or inequality conditions; for example, an index scan would be
used to find all rows that begin with the letter A.
0103) The above-described computer hardware and soft
ware are presented for purposes of illustrating the basic
underlying desktop and server computer components that
may be employed for implementing the present invention. For
purposes of discussion, the following description will present
examples in which it will be assumed that there exists at least
one 'server” (e.g., database server) that communicates with
one or more "clients” (e.g., personal computers such as the
above-described system 100). The present invention, how
ever, is not limited to any particular environment or device
configuration. Instead, the present invention may be imple
mented in any type of system architecture or processing envi
ronment capable of Supporting the methodologies of the
present invention presented in detail below.

Overview of Shared Disk Cluster Database System

0104. The present invention provides a shared disk cluster
Solution in which the clustered servers share access to data
bases on a disk subsystem. FIG. 4 is a high-level block dia
gram of an environment 400 illustrating an example of a four
node (servers 411,412,413, 414) shared disk cluster accessed
by a plurality of clients (clients 401, 402, 403). The term
“cluster” refers to a collection of more than one networked
(and usually homogeneous) nodes, which function as a single
system. Each node generally contains its own CPU and
memory resources. The term “clustered server” refers to a
database server (currently implemented using SybaseR)
Adaptive Server R. Enterprise (ASE) available from
assignee Sybase of Dublin, Calif.) which runs on a shared
disk cluster (cluster DB 430) and jointly manages a single
installation of the databases on the shared disk storage 435.
As shown, the environment 400 also includes a quorum disk
439. The quorum disk is a shared disk device used for cluster

US 2008/029.4648 A1

membership arbitration. The quorum disk also maintains a
history of run time cluster view changes.
0105. The shared disk cluster solution can be implemented
using low cost “blade servers' such as Intel/Linux machines.
In the presently preferred embodiment, nodes in the cluster
communicate with each other through private interconnects
(e.g., private interconnect 425). As shown at FIG.4, the nodes
are interconnected via redundant high-speed interconnects
with each node also having a direct connection to all data
bases on a disk subsystem. Gigabit Ethernet and Infiniband
may be used to provide these high-speed interconnects. The
storage Subsystem may be implemented using raw device
support with a storage area network (SAN 429) or with a file
system Support (e.g., through use of a clustered file system
such as those from Veritas or Polyserv).
0106 The shared disk cluster solution of the present
invention provides several advantages compared to prior art
systems. Among these advantages are that the clustered
server system is expandable. Customers may easily add addi
tional servers in order to increase system capacity and provide
improved performance without major data restructuring and
the associated system downtime. This enables the customerto
purchase hardware in Smaller increments as needed to keep
up with growth.
0107. Other advantages of a shared disk cluster architec
ture include lower total cost of ownership (TCO), continuous
availability, high performance, and single system presenta
tion. The present invention provides for transparent, continu
ous availability with instantaneous fail-over amongst servers
in the cluster. Even if one node fails, applications are able to
access the other nodes. The shared disk cluster solution also
provides transparency to users so that the users do not need to
worry about all of the internal details of running multiple
servers against disks maintaining shared data. It provides a
single server appearance to applications. The system of the
present invention also includes an infrastructure enabling
server processes to run against shared disks while resolving
cache coherency issues in transparent fashion.
0108. In its currently preferred embodiment, the present
invention is implemented using an engine-based architecture
in which each of the database engines is implemented using a
single operating system (OS) process. Other database sys
tems generally do not have this type of engine-based archi
tecture. In other database systems, every thread typically
becomes a process which means that the database system has
to depend on the operating system to manage the system's
resources. The system of the present invention generally per
forms its own scheduling without having to rely on the oper
ating system. This is an advantage as it provides the database
system with greater control overits resources. For example, if
a database system leaves scheduling to the operating system,
the operating system may perform some operations ineffi
ciently, thereby adversely affecting database system perfor
aCC.

0109 The engine-based architecture utilized by the
present invention provides advantages in more efficiently
managing resources, as the database manages its own
resources. In implementing the system, it is generally recom
mended that one OS process should be spawned for each
CPU. For instance, suppose a customer had a machine with 8
CPUs. In this case it is recommended that only 8 processes be
spawned, with each process bound to one of the CPUs. In
operation, this enables the CPU and other resources to be
managed by the database system in an intelligent fashion. The

Nov. 27, 2008

above-described engine-based architecture also enables more
efficient implementation of some of the features and methods
of the present invention as hereinafter described.
0110. The present invention includes several features or
aspects for implementation of a distributed database solution
in a shared data cluster environment. These include mecha
nisms for optimized distributed deadlock detection with
minimal messaging, efficient implementation of distributed
timestamps, data and lock transfer optimizations, and
improved space and threshold management in a cluster sys
tem. Each of these features or aspects will next be briefly
Summarized.

0111. In a shared data cluster or other distributed database
environment, multiple servers may compete for the same
data. For example, a first server/process may request a lock on
page 10 and then request page 20. A second server/process
may request a lock on page 20 and then ask for page 10. This
may create a deadlock situation unless a mechanism is pro
vided to detect and avoid it. In a simple non-distributed sys
tem, it is relatively easy to detect deadlocks by traversing the
system's lock records and looking for a loop indicating a
deadlock condition. The deadlock condition can then be
resolved by "killing one of the processes (e.g., the second
process which is selected as the “victim’) and granting a lock
on these pages to the other (first) process. Once the first
process is done, the second process can resubmit the transac
tion and obtain access to the page(s).
0112 Efficient deadlock detection is, however, more dif
ficult to perform in a distributed system. In a distributed
system, the locking of pages is managed in a distributed
manner. In this environment, information must be obtained
(exchanged) to detect occurrence of a deadlock. It is desirable
to exchange information in an efficient manner so as not to
slow the performance of the distributed system. The present
invention includes mechanisms for optimized distributed
deadlock detection which provide for efficiently sending
messages between nodes in a distributed environment.
0113 Another problem in implementing a shared disk
cluster relates to the updating of pages by different nodes. In
a database system, a database server accesses underlying data
which is typically maintained in fixed-size units referred to as
'pages'. In a distributed system, access to data pages is
shared by multiple nodes and changes to the data needs to be
coordinated to ensure data consistency. For example, one
node may update a certain page and Subsequently another
node may update the same page. To provide for proper data
base recovery (e.g., in the event of a system crash), the data
base system records (or logs) information about these opera
tions in log records. When logging is performed, the
timestamp on the page being updated is typically tracked so
that one can determine, in the event of a system crash, pre
cisely the point at which one needs to start recovery opera
tions.

0114. In a distributed database system, a mechanism is
needed to give a consistent timestamp on pages. In particular,
if a page moves from one node to another node a mechanism
is needed to give a consistent timestamp on the page. One
existing approach is to utilize a 'global timestamp. In other
words, every time a node modifies a page, the node needs to
go to a common place to get a "global timestamp. A draw
back with this approach is that obtaining a global timestamp
can become a very expensive operation (in terms of system
performance) in a distributed database system that has a num
ber of nodes.

US 2008/029.4648 A1

0115. Another existing approach is to provide a timestamp
local to each page. Every time a change is made to a page, one
or more local timestamps for the page are updated or incre
mented. This approach works satisfactorily as long as no
truncate table or drop table operations are performed. How
ever, if a table is dropped or truncated, this operation may
affect (e.g., delete) multiple pages. As a result, one may have
no context for determining what is the timestamp that one
should start with the next time the page is read from disk.
0116. The present invention provides a solution to this
problem of distributed timestamps, enablingtimestamps to be
applied in a consistent manner while avoiding the use of a
“global system-wide timestamp. The present invention can
be used in a distributed environment in which one or more of
the nodes may be performing truncate table and drop table
operations.
0117. In a distributed system, the components of the sys
tem must also communicate with one another so that action is
taken in a consistent, coordinated manner. Components of a
distributed system generally use messaging to communicate.
For example, one node may use messaging to obtain infor
mation from another node. However, if a large number of
messages are sent the efficiency of the system can be
adversely impacted. Accordingly, efficient messaging is
important to providing good performance in a distributed
system. The present invention provides methodology for opti
mizing messaging between nodes of the cluster. This meth
odology includes optimizing the number of messages sent
amongst nodes as well as "piggybacking messages so that
multiple messages can be delivered to a node in one packet.
0118. The present invention provides methodology to
avoid copying in the user space while transferring a page from
buffer cache in one database server to another buffer cache in
another database server. If a socket transport mechanism is
utilized, the page transfer mechanism simulates remote direct
memory access using Sockets. After receiving the lock
request the resource master passes the address of the page to
the owner. The owner sends the address as a short message
and the page as an IO Vector. At the node waiting for the page
to be transferred, the CIPC (cluster interprocess communica
tion) thread reads the Small message and then uses the address
passed in to receive the page. This methodology avoids an
extra copy in the user space in addition to avoiding an extra
message. In addition this has a minimum number of context
Switches.

0119) Another concern in a database system is managing
space utilization. In a cluster or other distributed system, a
particular concern is with the allocation of pages across mul
tiple nodes (e.g., all nodes of the cluster). This problem may
be illustrated by example. Assume, for instance, that a data
base may have 100 data pages, with 60 of those pages allo
cated. In other words the database has only 40 pages free. The
present invention includes threshold management methodol
ogy for tracking the number of free pages and comparing the
number of free pages to certain “thresholds’ for determining
when certain actions should be taken. For example, when the
number of free pages goes below a threshold of 30 pages, the
system may take action by alerting the system's database
administrator (DBA) and informing him or her that the sys
tem is running low on space. The DBA may then take action
by freeing up some space or adding more resources to the
system.
0120. As another example, the system of the present
invention currently includes a “last chance' threshold. This

Nov. 27, 2008

“last chance threshold provides for putting all the database
processes to sleep when the “last chance' threshold (limit) is
reached. For instance, the last chance threshold may be con
figured to be 10 free pages. Assume that the DBA is notified
when the first limit of 30 pages is reached but no action is
taken to remedy the problem. If the number of free pages then
goes below the configured “last chance' threshold (e.g., 10
pages in this example), the system puts the database processes
to sleep (i.e., in a stall state) until the space limitation problem
is addressed by the DBA.
I0121 The space and threshold management features of the
present invention also provide that when one node runs low
on space, a determination is made as to whether space may be
available from another node. The present invention provides
an optimized solution for maintaining user defined thresholds
on space usages of these database devices. The Solution mini
mizes the number of clustered database server instances
involved in balancing the space usage. This is achieved by
having a fixed partner for each server instance, and when the
space usage on any server instance goes beyond the pre
assigned safe range, it will seek help from its partner. This is
done in a manner that does not affect the ongoing transactions
at any of the nodes. The information exchange (messaging)
between nodes in allocating space is also optimized in an
intelligent manner. Also, the present invention provides for
determining available space in an optimal fashion. For
example, when a node starts (e.g., after fail-over) the system
of the present invention does not simply put the entire data
base on hold while calculating the available space. The com
ponents of the currently preferred embodiment of the present
invention and the operations of these components is described
below in greater detail.

System Components

0.122 FIG. 5 is a block diagram illustrating components of
an instance of a clustered database server 500 implementing
the shared disk cluster systemand methodology of the present
invention. As shown, components of an instance of a clustered
database server 500 includes data service level components
and database server kernel level components. For simplicity,
other conventional modules of the database system which
have not been modified for implementation of the shared disk
cluster system of the present invention are not shown at FIG.
5. Also, the diagram shown at FIG. 5 does not attempt to
illustrate the inter-dependencies among the cluster-aware
components in a data server and in the kernel.
I0123. The components provided at the database kernel
level include a single system presentation 521, a cluster mem
bership service module 522, a cluster event service 523, and
a reliable cluster interconnect module 524. These compo
nents are native cluster infrastructure components that enable
the clustered database servers to run in a shared disk cluster
environment. The cluster membership service module 522
maintains cluster membership and detects member failure. A
responsibility of cluster membership service 522 is to detect
cluster membership changes and maintain a reliable and con
sistent run time cluster view to all clustered servers. The
cluster interconnect module 524 provides messaging services
and an interconnect abstraction layer to allow clustered serv
ers to communicate with each other via redundant intercon
nects. The cluster event service 523 supports a generic event
publishing and Subscription mechanism for cluster-wide
events. The single system presentation module 521 Supports
single database presentation to clients and redirects client

US 2008/029.4648 A1

connections based on workload of the clustered servers and/
or other criteria, Such as application partitioning.
0.124. The database kernel level components also include a
basis I/O and platform abstraction module 530 and an inter
connect I/O abstraction module 535. An I/O abstraction layer
is provided on top of the cluster platform specific private
interconnects. It also Supports redundant cluster intercon
nects (if available) with automatic fail-overs in the event of a
link failure. The redundant cluster interconnects can be used
to achieve both load balancing and high availability. As also
shown at FIG. 5, several protocols are also supported under
the I/O abstraction layer, including UDP (datagram socket),
TCP (stream socket), VIA (Virtual Interface Architecture)
and SDP (Socket Direct Protocol for Infiniband).
0.125. At the database data service level, components
include a cluster logging and recovery module 511, a cluster
space/threshold management module 512, a buffer cache
coherency module (“BCM) 513, a cluster lock management
module 514, and an object coherency module (“OCM) 515.
The cluster lock management module 514 (or cluster lock
manager which is sometimes referred to herein as the
“CLM) supports distributed locking for coherency control
across the shared disk cluster. The buffer cache coherency
module 513 deals with the coherency issues related to shared
buffer cache and cache to cache page transfer for allocation
pages, index pages, data pages and OAM/GAM pages. The
object coherency module 515 deals with the coherency issues
related to sharing and transferring metadata and global Vari
ables in the shared disk cluster environment. The cluster
logging and recovery module 511 deals with the issue of
single logging from all clustered servers and fail-over data
base recovery. The cluster space and threshold management
module 512 handles space utilization and implements thresh
old management methodology of the present invention. The
operations of these modules in implementing methodology of
the present invention are described below in greater detail.

Detailed Operation

0126 The following description presents method steps
that may be implemented using processor-executable instruc
tions, for directing operation of a device under processor
control. The processor-executable instructions may be stored
on a computer-readable medium, such as CD, DVD, flash
memory, or the like. The processor-executable instructions
may also be stored as a set of downloadable processor-ex
ecutable instructions, for example, for downloading and
installation from an Internet location (e.g., Web server).
0127. Introduction to Distributed Deadlock Detection and
Resolution Methodology
0128. The present invention includes deadlock search and
detection methodology for detecting and resolving deadlocks
in a distributed database system. Before describing the meth
odology of the present invention for deadlock detection in a
distributed system environment, the general process used for
detection of deadlocks in a standalone database system will
be described.

0129. A typical search method for detecting deadlocks in
a standalone database system provides for searching for dead
locks by detecting cycles in a transaction wait-for graph
(TWFG) involving the task (or transaction) that initiated the
search. The method treats a family of threads as a single node
in the lock wait-for graph, as the database server system uses
a parallel model of query execution.

Nov. 27, 2008

0.130. The method generally works as follows. When a
task is about to be blocked waiting for a lock regulating access
to data, it obtains the next sleep sequence number and is
appended to the end of a 'sleeptask queue. A process ini
tiates a deadlock search either at the deadlock timer expira
tion or at the time of blocking. When the search starts, the
sleep sequence number of the initiator is updated to the latest
sequence number. The sleep sequence number is used to
detect and discard edges that were formed after the search
started. Any entry added to the queue after the search started
will have a sequence number greater than the sequence num
ber when the search started.

I0131 The initiator creates a list of sleeping owners from
the owners of the lock records at the head of a “semawait”
queue. The search is then recursively performed for each of
the sleeping owners, to create the next level of sleeping own
ers list from its blocking lock. The search may, for example,
recurse up to 20 levels.
0.132. A task is recorded as a sleeping owner if the follow
ing conditions are met:
1) It has a granted lock record on this semaphore;
2) It went to sleep on another lock before the deadlock search
started; and
3) This is the first time it is being encountered by the search.
0.133 When a deadlock cycle is found, a “victim' (i.e., a
task to be suspended or killed) is selected from the list of tasks
involved in the cycle. The victim is typically selected based
on criteria Such as the following:
1) If the maximum number of possible deadlocks for this
initiator has been exceeded, choose the initiator as the victim
in order to break all the cycles together;
2) The victim cannot be a backout task; and
3) The victim should have consumed the least amount of CPU
time within its transaction or statement. Parallel query option
considers the cumulative family CPU time for a deadlocked
thread belonging to a family of threads.
I0134. Although the above-described approach can detect
deadlocks starting at all levels, it usually detects only up to a
maximum of two cycles of deadlock involving the initiator in
order to contain the cost of the search. This type of deadlock
detection method works well in a standalone database server
as the TWFG can be easily constructed from the lock queues
in the global shared memory segment, and the monotonically
incremented local sleep sequence number can be used to limit
the depth and width of the TWFG to only include edges which
existed before the start of the search.

I0135) In the shared disk cluster distributed database sys
tem of the present invention, however, all database servers
share the responsibility for managing all lock resources in the
cluster and taskS/transactions on any server can issue requests
for logical locks that are mastered by any server in the cluster.
Accordingly, the responsibility for managing logical locks is
divided, with the local lock managers managing local lock
queues with locally owned taskS/transactions and the
resource master CLMS (cluster lock managers) managing the
cluster lock queues with server ownership.
0.136. As the lock queues in a cluster are distributed in
nature, the construction of the TWFG for an initiator also
needs to be distributed across the servers. When a local task/
transaction is blocked waiting for a remote lock, the construc
tion of the TWFG must be extended beyond the local server to

US 2008/029.4648 A1

access remote lock queue information. Remote messaging is
needed to explore the number of edges and nodes in the next
level and continue the construction of the TWFG at the
remote servers with granted locks. Specifically, a local lock
manager (LLM) with a blocking task/transaction must first
consult the resource master CLM for the granted servers
information in the cluster lock queue before it can consult the
granted servers for the sleeping owners information in their
local lock queues.
0.137 Correct deadlock detection requires that all dead
locks should eventually be detected, and every detected dead
lock should really exist. The design of a deadlock detection
feature in a cluster environment must also consider its impact
on database system performance, in terms of the number and
size of remote messages, and its resource usage, in terms of
the space required to maintain and construct the global
TWFG. A centralized deadlock detection approach typically
involves the construction of the global TWFG at one server,
which may satisfy the correctness requirement but is too
costly on system performance in most environments as it
requires a series of request/reply messages to discover the
remote edges and nodes in the TWFGs, and also considerable
space to merge the TWFGs from the remote servers. The
present invention provides a distributed methodology that
satisfies the correctness requirement but only follows those
paths potentially leading to cycles yields better performance
and reduced resource usage. The optimized distributed dead
lock detection methodology of the present invention is
described below.

0138 Global TWFG Construction
0139 FIG. 6 is a block diagram illustrating the distribution
of the lock queues and lock management information in a
shared disk cluster environment. As shown, the environment
includes four severs: (requester/owner) server 601, (resource
master) server 602, (owner/requester) server 603, and (re
source owner) server 604. For ease of reference in the follow
ing discussion, these four servers are referred to as server S1
(or S1), server 2 (or S2), server 3 (or S3), and server 4 (or S4),
respectively. Also note that in the following discussion nota
tion such as G(31) refers to task 1 on server S3. In FIG. 6, the
cluster-wide table locks T1 and T2 are mastered by server S2
(resource master), with lock T1 owned by servers S2 and S4
and requested by (requester/owner) server S1, and lock T2
owned by server S1 but requested by server S3. Within server
S1, the local lock manager (LLM) maintains a local lock
queue for lock T1 with a pending locking request from task
11, and a local lock queue for lock T2 with a granted lock to
task 11. The LLM for server S3 maintains a local lock queue
for lock T1 with granted locks to tasks 31 and 32, and a local
lock queue for lock T2 with pending locking requests from
tasks 33 and 31. Within server S4, the local lock manager
maintains a local lock queue for lock T1, with grantedlocks to
tasks 41 and 42.

0140. As shown in FIG. 6, there is a cycle from task 11 of
server S1 to task31 of server S3 and back to task 11 of server
S1. In this cycle, task 11 of server S1 owns table lock T2 but
is blocked waiting for table lock T1. Task 31 of server S3
owns table lock T1 but is blocked waiting fortable lock T1. In
order to construct the TWFG to detect such a cycle, all four
clustered servers (i.e., servers S1-S4) are traversed.

Nov. 27, 2008

0.141. The following notation is used to describe the task
dependency information. Tn denotes Table lock n, G (Sn, tm)
denotes granted owner information, and C (Sn, tm) denotes
blocking task. Also, Sn denotes task in on server S, and tim
denotes task m on servert.

T1: G(31,32.4142) C(1)
T2: G(11)C(31.33)
0142. When the deadlock detection method is initiated by
the sleeping task 11 at server S1, a remote message needs to
be sent to the resource master server S2 to locate the servers
that currently have the granted lock for T1, (i.e., servers S3
and S4). Two remote messages are then sent to servers S3 and
S4 to find all the tasks/transactions that are at the head of the
semawait chain of the granted lock T1. Server S3 locates tasks
31 and 32 and finds that task31 is blocked on the clusterlock
T2. Server S4 locates tasks 41 and 42 and finds that they both
are not blocking. Server S3 sends a message to the resource
master server S2 to locate the server that currently has the
granted lock for T2. (i.e., server S1). When the message is
finally sent back to server S1 to locate the owner of T2, a cycle
from task 11 of server S1 to task31 of server S3 to task 11 of
server S1 is detected.
0143. The sequence for constructing the global TWFG is
as follows:

At Server S1:

Construct 11->T1/S2 (TWFG-1)
Send 11->T1/S2

At Server S2:

Received 11->T1/S2

Found S3 and S4

Send 11->T1/S3

Send 11->T1/S4

At Server S3:

Received 11->T1/S3

Found 31 and 32

Construct 11->31->T2/S2 (TWFG-2)
Send 11->31->T2/S2

0144 Construct 11->32 (non blocking)

At Server S2:

Received 11->31->T2/S2

Found S1

Send 11->31->T2/S1

At Server S1:

Received 11->31->T2/S1

Found 11

Construct 11->31->11 (TWFG-3)
(0145 Cycle found!

US 2008/029.4648 A1

At Server S4:

Received 11->T1/S4

Found 41 and 42

0146 Construct 11->41 (non blocking)
Construct 11->42 (non blocking)
0147 The global TWFG that leads to the detection of the
cycle 11/S1->31/S3->11/S1 is dynamically constructed as
the deadlock detection message traverses from the initiators
to resource masters to granted servers. As explained in the
example above, a distributed deadlock search can detect a
cycle by simply following the paths in the TWFG that can
potentially lead to a cycle. Other paths that do not potentially
lead to a cycle are discarded. As the deadlock detection mes
sage traverses to each server, the server can look up the lock
in question and construct the local TWFG from the list of
sleeping owners on those locks. At the end of the local TWFG
construction, the server does one of the following:
1) Stops the traversal if either no sleeping owners can be
found or none of them are blocked waiting for cluster locks:
2) Stops the traversal if the server that initiated the deadlock
search received the detection message and a cycle involving
the initiating task is found;
3) Forwards the message to all servers with a granted cluster
lock, if the server that receives the message is the resource
master for the lock in question; or
4) If a sleeping owner is blocked waiting for a clusterlock, the
server appends the local path to the path originated from the
initiator and forwards the message to the resource master of
the cluster lock.
0148 While a cycle can be detected by simply following
the paths that can potentially lead to a cycle involving the
initiator, several additional issues need to be resolved. These
issues include detecting the end of a deadlock search, whether
to allow more than one initiation of global deadlock searches
in the cluster, how to avoid false deadlocks, whether to
resolve deadlocks that do not involve the initiator, and how to
select a deadlock victim in a cycle.
014.9 The following discussion presents these issues and
the solution provided by the present invention using several
examples. Some alternative approaches are also discussed. In
this scenario, T1 is granted to task 21 and 41 and waited by
task 11, T2 is granted to task 11 but waited by task 21 and 31,
and T3 is granted to task 31 and waited by task 41 as illus
trated below:

T1: G(21,41)C(11)
T2: G (11) C (21,31)
T3: G(31)C(41)
0150. One issue concerns how to detect the end of a dead
lock search. Although a distributed deadlock search can
detect a cycle by following the paths of the global TWFG that
can potentially lead to a cycle, the initiator does not know
when the search ends. This is because the depth and width of
the global TWFG is explored dynamically and is unknown
when the search starts.
0151. It is important for the initiator to know the end of a
search so that a new search can be initiated for the next
sleeping task in a server. Even if a second search starts with
out waiting for the first one, one still needs to know when a
deadlock search ends to avoid the detection of a false dead
lock. A false deadlock can happen if the same cycle is

Nov. 27, 2008

detected by multiple initiations of a deadlock search. Once
the cycle is broken by one initiator, the same cycle detected by
the other initiators is no longer valid.
0152 One possible solution to this problem is to carry the
depth and width information along the path and require each
server at the end of a path to send a path-traversed message
along with the depth and width information back to the ini
tiator. In this case, the initiator and the intermediate servers
append the depth and width information as the deadlock
search message traverses from one server to another. The
depth is only incremented when the dependency graph must
span across a server boundary. Servers with sleeping owners
waiting for remote locks would record the number of remote
locks as the width at the next level, and lock masters would
record the number of granted owners as the width at the next
level. All servers that terminate the paths need to send a
path-traversed message with the depth and width information
to the initiator. This would allow the initiator to detect the end
of a deadlock search once it receives all expected path mes
Sages.
0153. The following example will use the previously
depicted scenario to illustrate the solution.
The scenario is as follows:

T1: G(21,41)C(11)
T2: G (11) C (21,31)
T3: G(31)C(41)

0154 Assume a deadlock search starts on server S1 for
task 11. As task 11 is waiting on lock T1 that is currently
granted to two servers S2 and S4, the path 11->T1 with the
width information up to the current level 1->2 is sent to both
servers S2 and S4.

0155 Task 21 on server S2 is waiting on lock T2 that is
currently granted to server S1. Accordingly, the path 11->21
>T2 with the width information 1->2->1 is sent to server S1.
At server S1, a cycle is detected since the initiator (i.e., task
11) owns the lock T2. From the path message, server S1 also
knows that the deadlock detection search has not ended as
there is another path at level 2.
0156 Task 41 on server S4 is waiting on lock T3 that is
currently granted to server S3. Therefore, the path 11->41
>T3 with the width information 1->2->1 is sent to server S3.
Server S3 in turn sends the path 11->41->31->T2 and the
width information 1->2->1->1 to server S1. At server S1,
another cycle is detected and server S1 also detects the end of
deadlock detection for task II since it has received all
expected messages.
0157 With respect to whether more than one initiator of a
global deadlock search in the cluster may be allowed, in the
cluster environment both the sleep task queue and deadlock
check timer are maintained locally to avoid penalizing taskS/
transactions that are blocked by local owners. The initiation
of a local deadlock search continues to be serialized as in prior
art systems (e.g., SMP server systems). Serializing a dead
lock search across a cluster, however, is not desirable. One
reason this is undesirable is because of the fact that perform
ing deadlock searches for some tasks can take a long time
when the searches span across servers. Each server must
independently make forward progress in detecting deadlocks
involving the local sleeping tasks. Allowing all servers to
initiate deadlock searches, however, may lead to the detection
of false deadlocks.

US 2008/029.4648 A1

0158. This false deadlock problem can be illustrated using
the above scenario as follows:

T1: G(21,41)C(11)
T2: G (11) C (21,31)
T3: G(31)C(41)
0159. If server S4 initiates a search for task 41:
41->31->11->41

and server S3 initiates a search for task 31:

and server S2 initiates a search for task 21:

and server S1 initiates a search for task 11:

11->21->11
0160. In this example, each server can detect one or more
deadlock cycles at the end of the search. Each server can also
potentially choose to victimize a distinct task to break the
cycle. However, as soon as one of the servers chooses a task
(e.g., task 11) as the victim to break the cycle, all the other
cycles become invalid (i.e., false deadlocks).
0161 The present invention provides a solution to this
false deadlock problem by keeping track of the tasks in the
path of a global deadlock searchand terminating a new search
leading to a task in the path of an earlier deadlock search. The
general approach of the present invention is as follows. When
a server must extend a search path to a remote server at the
next level, it sets all processes in the path in a search bitmap.
When a deadlock search is performed at a server, the search
bitmap is checked to discard edges leading to a task that is
currently in the path of the other global deadlock search.
Additionally, when the initiator of a global deadlock search
detects the end of a search, it broadcasts the paths to all
servers involved in the deadlock search, which then clears the
global scan array accordingly.
0162 Distributed Deadlock Detection and Resolution
Operations
0163 The following is a high-level description of the dis
tributed deadlock detection and resolution methodology of
the present invention. Each node (clustered server) includes a
deadlock check timer which periodically checks if all pro
cesses have performed a deadlock search. If there are still
processes that have not yet performed the search, the timer
sets the waiting spid in rdlc inprogress, sets STCHECK
DEADLOCK, clears PL SLEEP and wakes up the blocking
process. After being awakened with STCHECKDEAD
LOCK, the process sets PL SLEEP, clears STCHECK
DEADLOCK, sets STDONE, and finally updates its sleep
sequence number and global rdlc lockwait seqno with the
latest sequence number so that the most recent dependency
graph is checked for cycles.
0164. Each server has an array of search bitmaps (one for
each server in the cluster and a global search bitmap). The per
server search bitmap records all local processes traversed by
the global deadlock search initiated from that server. The
global search bitmap contains the union of all server search
bitmaps to facilitate a fast lookup.
0165. After a deadlock search is initiated at a server, the
initiator follows the blocking dependency to build the local
TWFG. When a search path leads to a sleeping owner block

Nov. 27, 2008

ing on a remote lock, all tasks in the search path are noted in
the per-server search bitmap and the global search bitmap.
The initiator then sends a message to the resource master with
the blocking server and remote lock information. The recur
sion for this search path is considered terminated at this level.
Once the deadlock check for all sleeping owners at level 1 is
terminated, if all paths were terminated locally, the deadlock
search is completed without a cycle. If a local cycle is
detected involving the initiator, the initiator attempts to
resolve the local cycle. Otherwise, the deadlock search must
have been spanned across remote servers. The task remains at
the head of the sleep queue and is marked as a deadlock Search
pending. The task can be taken out of the pending state if the
lock is granted or if the task is aborted before the remote
deadlock search is completed. If the task is woken up prior to
the completion of the deadlock search, the task broadcasts a
message to all servers to discard the current global deadlock
search.

(0166 When a remote master receives the deadlock search
request, it looks up the lock object. Since the grant and dead
lock check messages could race, the master returns with no
deadlock immediately. Otherwise, the master looks up all
owners from the grant queue and forwards the request to each
of the granted owners. Note that there may be more than one
message sent since the lock could be held in a shared mode by
more than one server. The master attaches the width and depth
information to allow the initiator to detect the end of a dead
lock search.

0167. When a server receives the deadlock search request,
it looks up the lock object and checks to determine if there is
any sleeping owner. If no sleeping owner can be found, the
server sends a message back to the initiator with the path
traversed and current width and depth information. Other
wise, the server would start the deadlock search for the remote
request by traversing the TWFG for each sleeping owner,
when no other deadlock search is active.

0168 A search path is terminated if either no sleeping
owner can be found or if a sleeping owner is found in the
global search bitmap (i.e., in the path of a global deadlock
search started earlier). After all local dependencies for all
sleeping owners are explored by the server, a message is sent
to the initiator if all of the paths are terminated without a
sleeping owner or if one of the paths was terminated prema
turely from visiting a task that is already part of another
deadlock search (i.e., in global TWFG). The initiator must
retry the deadlock search at a later time for the latter case.
0169. If a sleeping owner is found blocking on a remote
lock, the edges in a local dependency graph leading to the
remote lock are appended to the end of the global search path
and forwarded to the resource master of the remote lock. If a
cycle is formed while following the local dependency, the
server terminates that search path but continues to complete
the remote global deadlock search request.
0170 The initiator eventually detects the end of a dead
lock search using the depth and width information sent from
the servers at the terminal nodes of the global TWFG. One or
more cycles may be detected when the search ends. If one or
more cycles is detected, the initiator proceeds with choosing
a victim to break the cycles. At the end of the deadlock
detection and resolution, the initiator broadcasts a message to
all servers to cleanup the global search bitmap before starting
the next deadlock search.

US 2008/029.4648 A1

0171 An example of the format of a distributed deadlock
detection message is as follows:

1: fi
2: ::::::

3: ::::::

4: * This message is used during a distributed deadlock search to
carry the information about the search path in the TWFG graph. It is
used for conducting the search from Initiator to LockMaster, from
Lock Master to Lock Owner, and from the next Sleeping Owner to its
Lock Master. At each hop, the server appends its own information to
the message and forwards the entire message to the next server. The
message is eventually forwarded back to the initiator, when either a
cycle is formed or when a leaf node detects no deadlock on that
path.*/
5: typedefstruct clim dlcheck req
6: {
7: struct climhdr Imhdr:
the next granted
8: * lock to perform a deadlock search

CLM DLCHECK REQ

f* message header that identifies

14
Nov. 27, 2008

0.175 One approach is to use a cluster sequence generator
to generate a cluster wide timestamp. A cluster sequence

9: *
10: void *lmopaque; f* opaque carried for the initiator */
11: CSVRMAP medgemap: f* bitmap for edgeid info */
12: char lmstatus; f* status of the deadlock search *
13: BYTE Imrmtdepth: f* current number of remote hops */
14: BYTE lmdlclevel: f* current recursion level *.
15: BYTE Imrmtedges MAX HOPS: f* # edges at each hop */
16: BYTE Imrmtedgeid MAX HOPS: f* edge id at each hop*/
17: int16 Imrmtpgid MAX HOPS: /* history info for TWFG */
18: Struct clmdlcpath Imdlcpath MAX HOPS: /* history info
for TWFG *f
19:} CLM DLCHECK REQ;
2O:
21: typedefstruct climdlcpath
22: {
23: cSVrid twaiterCSVrid; f* waiter server id*
24: spid twaiterspid: f* waiter process id */
25: } CLMDLCPATH:

0172
0173. In prior art database systems, the database times
tamp is typically synchronized by means of a SPINLOCK.
However, this approach does not scale well in a distributed
environment (i.e., in the shared disk cluster environment of
the present invention). Accordingly, the present invention
provides an alternative approach. Initially, in addressing the
problem of providing timestamps in a distributed environ
ment, it was observed that it is not necessary that database
timestamps be unique across the database. A timestamp that is
unique across the database could be useful in enabling times
tamps to serve as a stand-in for the log sequence number
(LSN). However, with the use of a private log cache (PLC) in
the currently preferred embodiment of the present invention,
timestamps are not ordered in the log anymore. For recovery
semantics it is only necessary to ensure that timestamps are
increasing throughout the life of a page. There is no strict
requirement that timestamps be unique across the database.
0174 A log record that captures a change to a page gen
erally contains a “before timestamp, an “after timestamp,
and the change made to the page. A log record is applied to a
page if the page timestamp is the oldest timestamp in the log
record. The real requirement in recovery is that the new times
tamp (on the updated page) be greater than the old timestamp
(before the update). The monotonically increasing unique
timestamp is an easy way to ensure that rule. That, however,
does not preempt using means other than a unique timestamp
to enforce the same rule.

Distributed Timestamps generator is a cluster lock manager (CLM) construct which
uses an object lock. The sequence value is stored in the value
block of the lock. To obtain the next sequence value the CLM
is invoked, which internally acquires an instant duration
exclusive lock on behalf of the client on the object, incre
ments the sequence value, releases the lock, and returns the
incremented sequence number to the client. Thus the
sequencer lock combines the lock-unlock call with the set
ting/getting of the value. This involves two messages: a lock
request and a value return from the CLM. As the timestamp is
one of the hot spots in the database, this approach is too
expensive in terms of its impact on system performance.
0176 The approach of the present invention makes use of
a local timestamp. A local timestamp is a sequence main
tained in the local DBTABLE. For each database each node
has its own timestamp sequence. Timestamps can be granted
locally on the node under a SPINLOCK, as in prior art data
base systems (e.g., SMP systems). The issue to be addressed
then is how to ensure that timestamps retain their integrity for
database recovery without an attempt to keep them synchro
nized via messaging.
0177. Other than recovery uses, there are two other uses of
the unique timestamp. Both are optimizations. A "commit
timestamp' is used to rapidly establish whether the data on a
page is committed (i.e., no need to get a lock on the page). A
“last log page timestamp' is used as a high bound to quickly
determine the highest timestamp in the rest of the log chain.
When there is a need to instantiate the database timestamp
during recovery, only the last log page header and the log

US 2008/029.4648 A1

records in that page are scanned to determine the highest
timestamp so far logged in the database.
0.178 Each node maintains its own timestamp sequence
independent of other nodes, (i.e., no messages are generated
in the cluster when a timestamp is grabbed locally in a node).
Synchronizations of timestamps across nodes via messaging
happen only in the rarest of cases. The simple timestamp
check for redoing a log record still holds good, and times
tamps do not go back on a page, even for undo. The method
ology of the present invention for implementing distributed
timestamps is described below.
0179 High-Level Methodology for Implementing Dis
tributed Timestamps
0180. At the outset, all of the nodes have their local times
tamp (dbts) set to the same value, which is the highest times
tamp across all the nodes (e.g., all nodes start off with 1000).
Recovery can determine the highest timestamp at each node,
and then find the highest among them.
0181. When a page is updated, the next timestamp from
the local dbts is grabbed and put on the page. For example:

getnewts() {
dbts++: return dbts

0182. If the node timestamps do not progress uniformly,
the timestamp on a page regresses.
For example:
Node1 dbts=5000, Node2 dbts=2000
Page P1 has timestamp 100.
Node1 updates P1. After the update,
P1 timestamp-5001, Node1 dbts=5001.
Node2 updates the page. After the update,
P1 timestamp=2001. Node2 dbts=2001.
The timestamp on P1 has regressed.
0183) To solve the problem of the regressing timestamp,
the node inflates the local timestamp to a value required to
ensure that the page timestamp does not regress. An updater
passes the current timestamp on the page as the input times
tamp when it asks for a new timestamp. If that current times
tamp is higher than the node's timestamp, the nodetimestamp
gets incremented to the input timestamp. In this way, the
passed in timestamp is a floor to the node's timestamp. For
example:

getnewts (in ts){
if (dbts < in ts) then dbts = in ts;
dbts++; return (dbts)

0184 As shown above, if the dbts (local timestamp) is less
than the input timestamp (in ts), the dbts is set to equal the
input timestamp and is then incremented. In the above
example, after the update in Node2, the P1 timestamp is equal
to 5002 and the Node2 timestamp is also equal to 5002.
0185. Another issue concerns what happens when there is
no input timestamp when allocating and deallocating a page.
For example:
Node1 dbts=5000, Node2 dbts=2000
Page P1 has timestamp 100 (e.g., on disk)

Nov. 27, 2008

Node 1 updates P1. After the update,
P1 timestamp-5001, Node1 dbts=5001
0186 Node1 now deallocates the page and the buffer is
destroyed. Assume that the page was never flushed, and page
P1 on disk has timestamp equal to 100. Node2 now allocates
the page. Allocation does not read the page from disk. After
allocation, P1 has a timestamp equal to 2001 and Node2 has
a timestamp equal to 2001. The page timestamp has
regressed. One simple solution to this problem is to flush the
page when it is deallocated, and read the page when it is
allocated. In this manner the node always gets the floor value.
The problem with this solution is that it adds the cost of an I/O
to both allocation and deallocation, which is not an acceptable
Solution.
0187. Abetter solution is to set a cluster-wide deallocation
floor. The deallocation floor is a cluster object, and it main
tains a timestamp, which is called the “deallocation clock”.
On start-up, the deallocation clock is set to the highest value
of the timestamp across the cluster (along with the timestamp
for all nodes). Whenever a deallocation happens, the deallo
cator first grabs a timestamp from the deallocation clock,
passing in the page's timestamp at the time of deallocation as
the floor value. This floors the deallocation clock to the page's
current timestamp (i.e., the timestamp at the time of its deal
location). Therefore, the deallocation clock has a timestamp
higher than that on any page that has been deallocated. There
is no free page in the database with a timestamp higher than
the deallocation clock. It should be noted that there could be
pages in the database with a higher timestamp than the deal
location clock, but none of those pages are free.
0188 The deallocation clock (Dclock) is set when the
allocation page is modified (i.e., after the deallocation is
logged). For example, assume the following at startup:
Node 1 dbts=2000, Node2 dbts=2000, Dclock=2000
Later, after some activity assume that:
Node1 dbts=5000, Node2 dbts=2000, Dclock=2000
Page P1 has timestamp 100.
Node 1 updates P1. After the update:
P1 timestamp-5001, Node1 dbts=5001
Node 1 deallocates P1. The deallocation grabs a timestamp
from the Dclock. After deallocation:
Node1 dbts=5001, Node2dbts=2000, Dclock=5002 (because
it is floored with P1’s 5001). The bufferis destroyed. The page
was never flushed, and P1 on disk has timestamp=100.
0189 Another issue that is addressed is that page deallo
cation needs a global sequencer and two messages to set the
deallocation clock. Allocation with the deallocation clock
involves the following procedures. With the premise as pre
viously discussed that all free pages have a lesser timestamp
than the deallocation clock, when a page is allocated a times
tamp is grabbed thereby passing in the value from the deal
location clock as the floor value. Continuing the example
from above assume that Node2 now allocates a page. The
allocation reads the Dclock value of 5002, and passes in that
value as the floor value when grabbing the page's new times
tamp. Then:
Node2 timestamp=5003. (floored with Dclock's 5002)
P1 timestamp=5003. Dclock-5002
0190. Alternatively, a timestamp may be grabbed from the
Dclock also passing a floor value of Zero, instead of reading
the Dclock. In this instance, the Dclock lock does not have to
deal with readers and writers. In that case the allocation grabs
a timestamp from the Dclock. After allocation, it passes Zero
as the floor value.

US 2008/029.4648 A1

P1 timestamp-5004. Dclock=5003,
Node2 timestamp=5004. (floored with Dclock's 5003)
0191 The allocation page must be latched and the Dclock
value grabbed. Write-ahead logging dictates that the alloca
tion be logged first. A message is sent and one must wait for
a reply while holding the allocation page latch. This should be
distinguished from deallocation. To log the allocation the
Dclock value must be known. Even if one were able to solve
this problem and send the message without holding the latch,
the messaging cannot be eliminated.
0.192 The deallocation clock does not represent an event
time line. It only acts as a high watermark timestamp value,
above which a newly allocated page can be safely assigned
timestamps. A deallocation clock is significantly above the
timestamp of the page being deallocated. For example, a page
P1 with timestamp 2000 and a page P2 with timestamp 5000
are being deallocated, in nodes N3 and N4. The deallocation
clock is at 1000. If P2 gets deallocated first, the Dclock is set
to 5001 (floored with P1’s 5000). Assume that P1 is subse
quently deallocated. In this event, the Dclock value is set to
5002 (floored with 2000, so there is no inflation to the floor
value).
0193 Additionally, a node timestamp is already above the
deallocation clock. For example, let P1 be allocated in node
N2 and assume that the N2 timestamp is at 6000. The Dclock
value passed in as the floor when grabbing the timestamp for
the page allocation is 5002. After allocation of P1, the N2
timestamp is equal to 6001 and the P1 timestamp is also equal
to 6001 (floored with 5002, so there is no inflation).
0194 An issue with the deallocation clock is the messag
ing involved in deallocation and allocation, especially during
allocation as messaging happens while holding the allocation
page latch. To address this issue the deallocation clock is
localized. The localization of the deallocation clock is done
via the ALLOCATION PAGE. Each allocation page (and
hence each allocation unit) has a timestamp that is called the
“aclock”. This consumes eight bytes in the allocation page.
Everything else remains the same as the deallocation clock,
except that instead of utilizing the Dclock the aclock is used
when deallocating and allocating a page. The basic axiom still
applies with respect to an allocation unit basis, (i.e., there is
no free page in the allocation unit with a timestamp higher
than that in the allocation unit's aclock). There could be pages
in the allocation unit with a higher timestamp than the aclock,
but none of them are free. The advantage of this solution is
that the allocation page is always available locally when a
page is being allocated and deallocated. There is no messag
ing involved when a page is allocated or deallocated. There is
no SPINLOCK needed for the aclock, as the allocation page
latch enforces concurrency rules.
0.195 The following example illustrates the aclock work
ings. At startup:
Node1 dbts=2000, Node2 dbts=2000
Allocation page for P1 is AP1, with aclock 50
Page P1 has timestamp 100.
Node1 updates P1. After the update:
P1 timestamp-5001, Node1 dbts=5001
0196. Assume that Node 1 deallocates page P1. The deal
location includes grabbing a timestamp from AP1’s aclock.
After deallocation:
0197). Node1 dbts=5001, Node2 dbts=2000, AP1’s
aclock=5002 (because it is floored with P1’s 5001)
0198 Assume that the buffer is destroyed, the page was
never flushed, and P1 on disk has timestamp equal to 100.

Nov. 27, 2008

Subsequently, Node2 now allocates the page. The allocation
reads the timestamp from AP1’s aclock. After allocation:
P1 timestamp=5003, aclock=5002, Node2 timestamp=5003
(floored with aclock's 5002).
0199 An exception to the above discussion involves the
use of messaging in the case of deallocations without access
ing the page (e.g., truncate table, drop table, drop index, or the
like). The same difficulty arises with both the Dclock and
aclock methods: one may not know the timestamp of the page
being deallocated. Reading the pages is not viable, as many
pages would have to be read. To solve this situation one needs
to determine the highest timestamp in the database and use it
as a Substitute for the page timestamp for all the pages which
are being deallocated.
0200. In a situation involving the use of an aclock, a logi
cal lock protecting the pages (e.g., the EX TAB in the case of
DROP TABLE) is first obtained. Next, the method provides
for getting the highest timestamp across the cluster (high ts).
Note that this need not be coherent (i.e., there is no need to
freeze the timestamps and get the highest value). One needs to
ensure that the timestamp values are obtained after getting the
logical lock. In this example, at this point there is no page with
a timestamp higher than high tS in the pages that have been
locked under the logical lock. When grabbing the timestamp
from aclock, high tS is then used as the page timestamp.
Additionally, the aclock may be advanced more than is actu
ally required to ensure correctness, but this is not an error.
0201 In the case of the Dclock, similar to the discussion of
the aclock above, the pages are protected by first getting the
logical lock and then getting the highest timestamp across the
cluster (i.e., high ts). The highest timestamp (high ts) is then
used as a Substitute for the page timestamp, when grabbing
the timestamp from the deallocation clock. After recovery the
highest timestamp in each node needs to be reestablished in
order to Subsequently determine the highest timestamp across
all nodes.

0202 There is no special initialization needed for aclock
at the time of database creation, as the allocation page is
initialized to Zero. The only requirement is that the database's
highest timestamp be established and used as the starting
point for all of the node timestamps before distributed access
to the database is allowed. The same constraint applies when
an old dump is loaded or during recovery.
0203 During recovery, the determination of the highest
timestamp is inherently tied to the logging scheme used (i.e.,
multiple logs (one per node) or single log (appended to by all
nodes)). In the multiple log scheme, the highest timestamp in
each node is found, and then the highest timestamp among the
nodes is selected as the starting point for all nodes. In a single
log scheme, one needs to find the last log page allocated by
each node and examine all other records logged after that
page because, potentially, one node can append into partially
full log pages that have been allocated by another node. In
some instances it can forever be a “freeloader' by living on
log pages allocated by other nodes without ever allocating a
log page. This scenario can be addressed by Scanning the log
and looking at each log record during eitherananalysis and/or
a redo pass.
0204 For replication purposes it is desirable to have the
log page timestamps in increasing order. Replication uses the
log page timestamp and the row ID of the log record as log
record markers for replication needs (e.g., restarting a repli
cation agent (RepAgent) scan). The log page timestamps are
maintained in increasing order by using the current last log

US 2008/029.4648 A1

page's timestamp as the floor value if that value is greater than
the aclock value. For example:
Node1 has allocated the current log page LP0 and has given it
a timestamp of 900.
Node2 is trying to allocate a new log page LP1 from an
allocation page AP1 that has aclock set to 600.
Node2 timestamp is currently at 500.
0205. Applying traditional logic, one would (erroneously)
read the aclock value of 600 first, and use it as a floor value
when grabbing the new timestamp for the newly allocated log
page. After grabbing the timestamp one will end up with:
Node2 timestamp=601, LP1 timestamp=601.
0206. Therefore, in this scenario LP1 has a lower times
tamp than LP0.
0207 To prevent this type of error, the methodology of the
present invention provides that, after reading the aclock
value, the aclock value is compared with the timestamp on the
current last log page (Ilp ts). If the aclock value is less than
the timestamp on the current last log page (lp ts), then the
aclock value is discarded and the Ilp tS is used as the floor
when grabbing the timestamp for the new log page.
0208 Determining the Timestamp for Certain DDL
Operations
0209. The operations that need to determine the highest
timestamp in the cluster are the dropping of objects and the
altering of object level properties such as the locking scheme
or the estimate row length. The methodology of the present
invention for determining the timestamp for each of these
operations is described below.
0210 Dropping of Objects
0211. An operation dropping an object needs to find the
highest timestamp that was used on the object. This times
tamp is not available other than by reading all the pages
themselves, as there is no update to the allocation page or the
object descriptor for every update to the pages of an object. To
avoid reading all the pages, the present invention provides for
1) determining a safetimestamp for the drop object operation;
and 2) using the safe timestamp as the floor value for logging
the drop operation. The safe timestamp is one which is guar
anteed to be at least equal to the highest timestamp present on
the pages belonging to the object.
0212. The dropping node obtains an exclusive logical lock
on the object being dropped. This blocks all changes to the
object by any other activity on any node. The dropping node
(requester) then broadcasts a get timestamp request to all
nodes. The get timestamp request returns the current local
timestamp value of each node timestamp. Every node reads
the current value of its own local timestamp at the instant the
message is processed in that node. The read value is sent back
to the requester. Timestamp generation is not blocked at all
other than during the instant it is read locally.
0213. The requester calculates the highest of all the
returned values (including its own local value) and sets this as
the safetimestamp for the drop operation. The drop operation,
as described earlier, does not read all the pages of the object
being dropped, but only marks the allocation page to indicate
that the pages are free. This change is made using the safe
timestamp as the floor value.
0214. Altering of Objects
0215. Altering of an existing object requires that all sub
sequent operations are logged with a higher timestamp than
the highest timestamp that existed on any of the pages of the
object before the object was altered. This is necessary so that
when redoing the log, by comparing the timestamp in the log

Nov. 27, 2008

record and the object alteration timestamp, the log record can
be interpreted to match the object state that existed at the state
indicated by the log timestamp. The basic approach is to
bump up the timestamp on every page to this highest value.
The present invention provides a methodology for alternating
objects which avoids this.
0216. The alter object methodology of the present inven
tion is as follows:
1) Obtain an exclusive logical lock on the object.
2) Determine the safe timestamp for the object (in the same
manner as described above for dropping of objects).
3) Increment the safe timestamp by one, to get the new value.
This is the “alter timestamp' for the object.
4) Broadcast a timestamp set request to all nodes. This will
floor the timestamp in every node with this alter timestamp.
The altering node will broadcast the alter timestamp to all
nodes and every node when processing the message, will floor
their local timestamps with the alter timestamp. Thus all
nodes will get to have a timestamp which is at the least equal
to the alter timestamp value.
5) The object lock is released.
0217. Any further update to any of the pages of the altered
object in any node is guaranteed to have a higher timestamp,
as all nodes now operate with a higher timestamp than the
alter timestamp.
0218 Node Joining
0219. When a node joins the cluster, it is necessary to
ensure that all set timestamp broadcasts are covered. The
following protocol is followed to initialize the local times
tamp of the node, before allowing any update activity in the
node:
1) The node initializes its local timestamp to Zero.
2) The node then starts accepting all set timestamp messages.
3) The node then obtains a safe timestamp (in the same
manner as described above for dropping of objects).
4) After obtaining a safe timestamp, the node floors the local
value with the safe timestamp.
0220 Node Leaving
0221) When a node leaves the cluster, it cannot reply to any
Subsequent timestamp get messages, as it does not exist in the
cluster anymore. Thus, the leaving node has to ensure that all
other nodes are aware of the timestamp at the time it left,
which is the highest timestamp that was consumed in that
leaving node. The following protocol is followed as a node
leaves the cluster:
1) Wait until all update activity in the leaving node is com
pleted.
2) Stop accepting set timestamp messages broadcast by other
nodes.
3) Read the local timestamp value—this is the last timestamp
used in the node.
4) Send a set timestamp broadcast with the last timestamp
value.
5) All other nodes, on receipt of this broadcast will floor their
local values with this last timestamp value, thereby incorpo
rating that into their local timestamps.
0222 Node Failure
0223) When a node fails, it is not possible to determine the
highest timestamp in the cluster, until the failed node's log is
recovered. Thus, all requests to obtain a safe timestamp have
to block until failover recovery is complete.
0224 Node recovery will calculate the highest timestamp
that was logged by the failed node by reading the log. It will
then perform a set timestamp broadcast with this highest

US 2008/029.4648 A1

logged value, and thus the failed node's timestamp gets incor
porated to all the other nodes local timestamps. This times
tamp recovery is done during the analysis phase of the recov
ery, and happens before the undo or redo phase of the
recovery.
0225. An operation performing a get timestamp broadcast
will be blocked during a node failure by the cluster member
ship manager, until timestamp recovery is complete. Once
timestamp recovery is complete, the failed node's timestamp
is already incorporated into the local timestamp of the other
nodes, and the operation doing the get timestamp can pro
ceed. If the node failure happens during the get timestamp
broadcast, the broadcast itself will fail, and the operation will
retry after timestamp recovery is completed.
0226 Cluster Boot
0227. When the first node of the cluster is booted, the
timestamp for that node is established from the log. No node
can join the cluster till the first node is completely booted and
recovered, and the highest timestamp is established from the
log.
0228 Timestamp Broadcasts
0229 Currently, all timestamp message broadcasts are
synchronous (i.e., the initiator of the broadcast waits until
every other node replies before proceeding).
0230 Cluster Lock Management
0231. In the shared disk cluster environment, all database
devices are directly accessible to all clustered servers and
database pages and metadata objects are cached and shared
among all clustered servers. Coherency control to the shared
buffer cache, metadata cache and global variables presents a
major challenge. A Cluster Lock Manager (CLM) of the
present invention provides a distributed locking service to
allow the sharing of global objects and cached data/metadata
among the clustered servers. The Cluster Lock Manager dis
tributes the lock management workload among clustered
servers, determines how to locate the clustered server that
provides locking service for a lock object, and minimizes
remote messaging introduced by distributed locking. This is
in addition to the role of the CLM in detecting distributed
deadlocks as described above.
0232. The CLM uses the concept of a retention lock.
Retention locks are cluster-wide locks that are granted to the
clustered servers with lock ownership shared among all pro
cesses on the granted clustered servers. Retention lock own
ership can be retained until another cluster server requests for
a conflicting lock mode or when the resource associated with
the lock need to be reclaimed. Retention locks reduce the
need for frequently acquiring and releasing the locks by the
clustered servers and thus reduce remote messaging.
0233. Each retention lock object is generally associated
with a unique name, a lock value block and the lock queues.
The name of a retention lock object can correspond to a
database table, object, page or row for the Support of logical
locks across the Shared Disk Cluster. The name of a retention
lock object can also correspond to a physical page in the
shared buffer cache, or correspond to any arbitrarily named
object for concurrency control of the metadata and global
variables. The lock value block is provided for sharing of
object specific information among the locking clients across
the shared disk cluster environment. The Cluster Lock Man
ager maintains the status of the lock value block as NOV
ALUE and INDOUBT to facilitate the initialization and
recovery of the object protected by the lock, in the event of a
clustered serverjoin or failure events. The lock queues main

Nov. 27, 2008

tain the lock records associated with the requesting clustered
servers and are for distributed lock management purpose.
0234 Three types of retention locks are supported by the
Cluster Lock Manager. These three types are physical locks,
logical locks, and object locks. Physical locks are locks main
tained by the Cluster Lock Manager to establish ownership of
a page in the shared disk cluster environment. Physical locks
are also used to facilitate cache-to-cache transfer of pages via
private interconnect if the lock is owned by another clustered
server. Similar to latches in an SMP server, physical locks in
the distributed database system of the present invention are
held on pages to ensure physical consistency. Unlike latches,
acquiring physical locks may also incur a page transfer from
the clustered server that owns the latest copy of the cached
page. Physical locks are held by the clustered server as long as
there are no conflicting requests in the cluster. The following
six lock modes for physical locks are Supported in the cur
rently preferred embodiment of the present invention:
NL Null mode locks grant no privilege to the lock holder
CR concurrent read mode locks allow unprotected read
aCCCSS

CW—concurrent write mode locks allow unprotected read
and write accesses
PR protected read mode locks allow read access and guar
antee no other writer
PW protected write mode locks allow read/write accesses
and guarantee no other writer
EX-exclusive mode locks allow read/write access and guar
antee no other reader/writer
0235 Logical locks are jointly managed by the local lock
manager and the Cluster Lock Manager. The logical locks
managed by the local lock manager have task, cursor or
transaction ownership. The logical locks managed by the
Cluster Lock Manager are retention locks and the granted
lock mode is shared among all tasks, cursors or transactions
on the clustered server.
0236. Object locks are locks maintained by the Cluster
Lock Manager to establish ownership of a metadata object
such as dbtable or a global data structure/variable. Similar to
physical locks, object locks facilitate the cache-to-cache
transfer of metadata cache among all clustered servers via
private interconnect if the lock is owned by another clustered
server. Access to a metadata object and/or a global variable
normally requires object lock protection. Object locks can be
acquired in one of the six lock modes as provided for the
physical locks.
0237 FIGS. 7A-F illustrate six tables which are used for
lock management in the currently preferred embodiment of
the present invention. The lock sufficiency tables 701, lock
conflict table 702, and lock downgrade table 703 shown at
FIG. 7A, FIG. 7B, and FIG. 7C, respectively, provide for
Support of physical and object locks. The lock Sufficiency
table 701 shown at FIG. 7A is used for lock sufficiency
checking based on the lock held by an instance and the lock
requested by the instance. The lock conflict table 702 shown
at FIG. 7B is used for lock conflict checking based on lock
held by another instance and the lock requested by the
instance. The lock downgrade table 703 is shown at FIG.7C.
The lock master will request a lock owner to downgrade a
lock to a lock mode looked up from the BAST lock down
grade table 703. As shown, table 703 is based on the lock held
and the lock requested.
0238 A set of tables for supporting logical locks is illus
trated at FIGS. 7D-F. These include a logical lock sufficiency

US 2008/029.4648 A1

table 704, a logical conflict table 705, and a logical lock
downgrade table 706 as shown at FIG. 7D, FIG. 7E, and FIG.
7F, respectively. The local lock manager uses a logical lock
Sufficiency table and a logical lock conflict table to grant the
locks with task/transaction ownership to the local requesters.
A Cluster Lock Manager uses a logical lock conflict table to
grant locks with instance ownership and uses a logical lock
downgrade table to reclaim the lock ownership. More particu
larly, the logical lock sufficiency table 704 shown at FIG. 7D
is used to determine if the lock held is sufficient to cover the
new locking request. The logical lock conflict table 704
shown at FIG. 7E is used when searching for a compatible
SEMAWAIT to queue the locking request. In the normal
LOCK ACQUIRE mode, the local lock manager starts at the
tail of the SEMAWAIT queue looking for a compatible
SEMAWAIT to queue the new LOCKREC structure on. In
LOCK REQUEUE mode, the local lock manager searches
forward in the queue, from the current position of the LOCK
REC, to look for a better position to queue the LOCKREC.
The lock master will request the lock owner to downgrade the
lock looked up from the BAST logical lock downgrade table
706 as shown at FIG. 7F.

Data and Lock Transfer Triangle Optimization

0239. The components of the distributed database system
of the present invention use messaging to communicate with
each other so that action is taken in a consistent, coordinated
manner. Efficient messaging is important to providing good
performance in a distributed system.
0240 The present invention optimizes messaging
between nodes of the cluster, including optimizing the num
ber of messages sent amongst nodes as well as "piggyback
ing' messages so that multiple messages can be delivered to
a node in one packet.
0241 The present invention includes an optimization for
reducing the number of messages and the latencies involved
in a shared disk cluster environment which is referred to
hereinas a “triangle optimization'. This triangle optimization
is used when obtaining a typical cluster lock (i.e., from the
CLM master) and the corresponding data (from the node
currently owning the cluster lock which has the latest data)
being protected by the clusterlock. The triangle optimization
applies to the various types of locks supported by the CLM,
including logical locks, physical locks, and object locks.
0242 FIG. 8 is a high-level flow diagram illustrating the
“triangle optimization' provided by the present invention for
object locks (managed by the OCM). As shown at FIG. 8, the
“receiver' is node 801 which is trying to obtain the object and
corresponding latest data, the “sender is node 802 which
currently owns the object lock of interest and has the latest
data, and the “CLM master' is node 803 which is the CLM
master for the object lock. Note that, the CLM master is
designated as a different node from the sender or receiver in
this example. However, the CLM master could also be imple
mented on either the receiver or sender nodes. Without the
triangle optimization, the process of obtaining the object lock
and corresponding data will generally include the following
six messages:
1. The receiver sends message (1) to the CLM master request
ing ownership for the object lock; which is typically EX mode
to get read and write access, and PR mode to get read-only
aCCCSS,

Nov. 27, 2008

2. The CLM master sends message (2) to the sender (i.e., the
currentlock owner) to downgrade the lock mode (to NL or PR
as needed for the requested lock mode), so that it can grant the
lock to the requesting node.
3. The sender downgrades the lock, resulting in another mes
sage (message (3)) to the CLM master.
4. The CLM master sends message (4) to the receivergranting
the object lock, and informing the receiver which is the sender
node that has the latest data.
5. The receiver sends message (5) to the sender requesting the
latest data.

6. The sender sends message (6) to the receiver with the latest
data.
0243 The triangle optimization provides an improved
approach by reducing both the number of messages and the
latency involved in obtaining the lock and data at the receiver
node. It is summarized as follows. As shown at (1) at FIG. 8,
a first node 801 sends a lock request message to the Cluster
Lock Manager (CLM) at node 803. In response, at (2) at FIG.
8 the CLM Master issues a CLM message to node 802
instructing it to transfer data to Node 801 and to downgrade
its lock. At (3), node 802 issues an OCM MSG for data
transfer to node 801. At (4), a CLM message is sent from node
802 to the CLM Master node 803 to downgrade the lock. At
(5), node 803 issues a CLM message to node 801 indicating
the grant of the lock and initiation of data transfer.
0244. The triangle optimization eliminates one message
and reduces the latency of obtaining the latest data at the
receiver node by three messages. Further, this optimization
also helps in eliminating additional house-keeping effort at
the sender node to maintain the latest data at least until it is
requested by the receiver node, even though the sender node
is not holding a valid lock. Additionally, the efficiency of this
optimization is increased as CLM of the present invention
includes a provision to attach a “remote cookie' with the
clusterlock to pass any relevant information from the receiver
to the Sender. Typically, the processing modules on the
receiver and the sender are same, such as OCM for object
locks, and the “remote cookie' is used to contain control
information for the required data transfer. For example, for
object locks, the OCM sends the address of the OCB (which
is a data-structure maintained by the OCM for a given object
lock) in the remote cookie to avoid unnecessary processing
when it receives the data transfer from the sender node. Also,
for physical locks, the BCM stores the address at which the
to-be-received data transfer page is Supposed to reside in the
requesting node.
0245. This triangle optimization is a base optimization on
top of which additional lock type specific (Physical/Logical/
Object locks) optimizations are made. These optimizations
are described below in more detail.

0246
0247. In the currently preferred embodiment of the present
invention, the page transfer mechanism uses the Virtual Inter
face Architecture (VIA), if available, or sockets as the trans
port mechanism. The Virtual Interface Architecture (VIA)
defines a high-bandwidth, low-latency networking architec
ture that was designed for creating clusters of servers and
SANs (Storage Area Networks). The VIA is an attempt to
standardize the interface for high-performance clustering.
The interface specifies logical and physical components, as
well as connection setup and data transfer operations. The
VIA includes Support for a remote direct memory access

Page Transfer Mechanism

US 2008/029.4648 A1

(RDMA) model where the sender directly writes to a speci
fied region in the target space.
0248. With either transport mechanism (i.e., VIA or sock
ets) one basic approach for page transfer is as follows. The
client obtains a physical lock before accessing a page. When
the lock is granted the lock manager indicates if the node is
available to be read on the network and also returns the owner
of the page. The client uses this information to request a page
from the owner. A disadvantage of this approach is that it
involves two round trips to get a page (the first to the resource
master to get the lock, and the second to the owner node to get
the page). Accordingly, the present invention includes an
optimization that provides initiation of page transfer simul
taneously (in parallel) to granting the lock request. When a
client requests a physical lock, it also passes in the address at
which the page is Supposed to reside in the requesting node.
The lock manager passes this along to the owner of the page
in parallel with granting the lock request to the client. If the
transport mechanism is VIA, once the page becomes avail
able on the owner, the BCM thread can directly write to the
requesting node.
0249. If a socket transport mechanism is utilized, the page
transfer mechanism simulates remote direct memory access
on top of sockets. After receiving a lock request the resource
master passes the address of the page to the owner. The BCM
on the owner sends the address as a short message and the
page as an I/O vector (using scatter gather I/O). At the node
waiting for the page to be transferred, the CIPC (cluster
interprocess communication) thread reads the Small message
and then uses the address passed in to receive the page. This
approach avoids an extra copy in the user space in addition to
avoiding an extra message. In addition, this mechanism has
the least number of context switches possible both at the
sender and receiver nodes with sockets.

0250. The following discussion details the operations on
the sending and receiving side during a page transfer. On the
sending side, once the page becomes available the BCM
thread queues the page on the CIPC queue. Once the buffer is
queued the BCM thread can either downgrade the lock
request or indicate to the lock manager that the page transfer
is complete. The lock manager can then grant the lock to the
receiving side. The buffer is not available for re-use until the
CIPC thread sends the page across the network. All client
tasks can access the buffer in a compatible mode. However,
upgrade?downgrade requests are queued behind the current
lock request. Once the CIPC manager is done sending the
buffer (and receives acknowledgment that the page is queued
on the receiving side), it executes a notification routine to
indicate that the transfer is complete. The buffer is now avail
able for re-use on the sending side.
0251 On the receiving side, the client task goes to sleep
waiting for the buffer. After receiving the page, the CIPC
thread executes the completion routine. The completion rou
tine marks the buffer as available and notifies all tasks waiting
on the buffer. All clients have a time-out mechanism, and a
check is made to determine if the client has been granted the
lock. If the lock is not granted, the client task goes to sleep.
Otherwise, if the lock is granted, the client task checks if the
node is down. If the node is down the client task issues a CIPC
flush call to flushall buffers in the CIPC queue from the failed
node. It is possible that after the flush the page that the task is
waiting on is already on the node. In this case there is nothing
more to do. If the page has not been received, then the lock is
released and the whole page transfer is initiated again. Except

20
Nov. 27, 2008

for the very first call, all other calls are lightweight and may
potentially involve verification.
(0252) Obtaining OCM Locks and Data Faster
0253) The present invention provides a solution for
improving the process of obtaining OCM locks and data by
utilizing an implicit lock granted message or removing a lock
granted message if the OCM can convey the message to local
CLM on the receiver node (depending the design of the
CLM). The Object Coherency Manager (OCM) uses a CLM's
object locks, and are referred to as “OCM locks'. As CLM
object locks have node level ownership, the OCM manages
sharing the obtained CLM locks among various tasks in a
node, and coordinates with the CLM to share the object locks
across multiple cluster servers. On top of the base triangle
optimization, the following enhancements to OCM locks
reduce network messages and speed up the resumption of
tasks waiting for lockS/data at the receiver node.
0254 Generally, the receiver waits until it receives both
lock granted and data transfer messages. This is done for two
reasons: to receive first hand information from the CLM that
the lock is granted, and to obtain the latest version number
from the CLM to validate the transfer message. Typically,
following the sequence of messages as explained above in the
discussion of the triangle optimization, the data transfer mes
sage reaches the receiver before the lock granted message
(unless the messaging/networking channels are loaded differ
ently and impact the message delivery latencies). The sender
directly sends the data transfer to the receiver at message (3)
as illustrated in FIG. 8, while the lock granted message
reaches the receiver node at message (5) as shown in FIG. 8.
As the transfer is initiated by the CLM (at message 2), the
transfer message also conveys that the CLM is processing the
receiver's lock request, and the lock is about to be granted.
Thus, the present invention provides for implying the grant
ing of a lock granted from the data transfer message (3), and
wakes up the client tasks as soon as it receives the latest data
(instead of waiting for the actual lock granted message from
the CLM).
0255. The second reason to wait for both the lock granted
and data transfer messages is to validate the transfer message
received. The version number cannot be used for this valida
tion because it is inefficient to wait for the lock granted
message (which gives the latest version number).
0256 The present invention provides for the receiver to
accept a transfer message from the sender if the version
number in the message is greater than the local version. A
strict restriction is required to ensure that no duplicate (and
hence stale) messages are floating around in the system. This
is achieved by following an OCM level protocol for sending
the data transfer messages between the receiver and the
sender, and by flushing the messaging/networking channels
in the case of errors or crashes to properly remove or complete
the processing of in-transit messages.
0257 An advantage of this approach is that the client tasks
obtain locks and data, and resume faster, by a time equivalent
to the latency of two network messages. The following dis
cussion describes how the present invention handles various
crash scenarios.

0258 Sender Node Crash
0259. If the sender node crashes there are two general
scenarios depending upon whether OCM locks are acquired
in EX or PR modes. If the sender node is holding an EX lock
at the time of crash, there are four possible cases depending on
what is the status of the messages (i.e., messages 3 and 4 as

US 2008/029.4648 A1

shown at FIG. 8) that are sent by this node at the time of crash.
Note that messages 1 and 2 as shown at FIG.8 must have been
successfully delivered before the crash, otherwise the crashed
node would not be considered as a 'sender node. These four
possible cases involving a sender node holding an EX lock at
the time of crash are summarized as follows (with all refer
ences referring to messages (3) and/or (4) referring to the
messages illustrated at FIG. 8):
1) Message (3) and message (4) not received. The first case is
if both the data transfer message (3) to the receiver and the
downgrade message (4) to the CLM master are not received.
In this case the CLM master notices that sender has crashed
holding an EX lock, and marks the object lock INDOUBT.
The receiver continues to wait for the lock/data. After recov
ery, when the INDOUBT state is cleared, the CLM will grant
the lock to receiver with NOVALUE in the lock value block.
The receiver node will initialize, generate, or read the latest
recovered data from disk.
2) Message (3) not received and message (4) received. The
next case is if the data transfer message (3) to the receiver is
not received, but the downgrade message (4) to the CLM
master is received. The CLM grants the lock to receiver, and
the lock will not be marked INDOUBT. When receiver times
out waiting for the data, it suspects that the sender is crashed.
Then, before taking any error-recovery actions, the OCM on
the receiver waits until the CMS confirms that the sender node
has indeed crashed and is removed from the cluster view.
Otherwise, it may not be possible to distinguish the difference
between a sender crash, and message delay because of system
load. Further, note that as long as the sender and the receiver
are alive, the messaging channel (e.g., CIPC messaging chan
nel) between them will make sure that the data transfer mes
sage is successfully delivered. Once it is confirmed that the
sender has crashed, the OCM flushes its CIPC end-points to
the sender node and makes Sure the awaited data transfer
message is not already received. Then it sends a broadcast
message to all of its OCM peers on other nodes to inquire if
they have latest data of the lock. In this manner, the latest data
can be obtained if any of the other nodes were granted a PR
lock just before the crash, and may have received the data
transfer. If no other node in the cluster has valid data, then the
OCM client's callback is invoked to initialize or generate the
lock-data.
3) Message (3) received, but message (4) not received. In the
case that the data transfer message (3) is received, but the
downgrade message (4) to the CLM master is not received,
the CLM assumes that the sender has crashed holding the EX
lock and marks the object lock INDOUBT. The receiver node
resumes various tasks as the data transfer is received and the
lock is implicitly granted. During recovery of the sender
node, the INDOUBT state of the lock is cleared and the lock
is granted to the receiver node. The present invention also
provides another improvement (described below) for elimi
nating much of this complexity where OCM on the receiver
node informs CLM that it has received data transfer and is
implicitly assuming a lock granted message. With this
improved approach, the CLM does not mark the object lock
INDOUBT as it is aware of the new owner, thus avoiding
most the complexity of this mechanism.
4) Message (3) received and message (4) received. The
receiver resumes its tasks as soon as it receives the data
transfer, and the CLM grants the lock to receiver.
0260. The second scenario is that the sender node is hold
ing a PR lock at the time of crash. In this case, the object lock

Nov. 27, 2008

will not be marked INDOUBT. However, one interesting
situation is when the data transfer reaches the receiver but the
downgrade message does not reach the CLM master. In this
event, the receiver will resume its tasks, but the CLM may
initiate another data transfer if it finds another sender node
that has the latest data. Thus, depending on whether the sec
ond sender has data or not, and whether the receiver has
already received the data transfer from the first sender, the
receiver node may end up receiving the data twice. Alterna
tively, it may never receive the data. If the data is not received,
an OCM error-recovery process will initiate as described
above (i.e., in the above discussion of case (2)). If the data is
received twice, the second data transfer that is received is
ignored.
0261
0262. In the event a receiver node crashes, a new version of
the data may or may not have been created before the crash,
depending upon whether or not the data is received and the
tasks are resumed on the receiver node. Thus, when the
receiver node crashes before the CLM master has actually
sent the lock granted message (message 5 as illustrated in
FIG. 8), one problem is to decide whether or not to mark the
corresponding object INDOUBT. This is decided as follows:
1) If the sender node has not yet sent the data transfer, then
CLM master will cancel the receiver request, the sender will
cancel the data transfer, and the object lock is not marked
INDOUBT.

2) If the sender has already sent the data transfer to the
receiver node, then the object lock markedINDOUBT only if
the receiver has requested the lock in EX mode. Otherwise the
object lock is not marked INDOUBT.
0263
0264. One interesting case, which forms an exception to
the scheme of implicit lock granted messages, is when a
receiver node is requesting an EX lock (currently holding NL
lock) and the sender (and possibly other nodes in the cluster)
areholding a PR lock. In this case, the receiver cannot implic
itly assume the lock is granted when the data transfer is
received from the sender node, because the transfer implies
only that the sender node has downgraded the lock to NL.
However, there may be other nodes in the cluster which have
not yet downgraded their PR locks to NL mode. Accordingly,
the receiver node must wait for the explicit lock granted
message from the CLM in this situation. To identify this case
on the receiver end, the sender node includes the lock mode it
is holding when sending the data transfer. If that lock mode is
EX, then the receiver can assume an implicit lock granted
message. Otherwise, the receiver must wait for the explicit
lock granted message from the CLM, unless the receiver itself
is requesting the lock in PR mode.
0265. In the above optimization discussion where a lock
granted message is implied from the data transfer message,
the lock granted message is still sent. This means that even
though client tasks on the receiver node are woken up before
actually receiving the lock granted message, the receiver
OCM still receives the message and processes it. Another
optimization is to remove this message as OCM does not need
the message. But note that the CLM may want to send the
message to the receiver node to update the local CLM on the
receiver node. In this case the message can be avoided by
OCM on the receiver node informing its local CLM that it has
received the data transfer (and hence to mean that lock is
granted).

Receiver Node Crash

Exception to Implicit Lock Granted Message

US 2008/029.4648 A1

0266 Distributed Space and Threshold Management
0267. The space management that is currently performed
in prior art database systems is enhanced in the system of the
present invention to support the cluster system design. In
prior art systems, space management information is kept and
managed by an in memory structure for each database with
access to this information synchronized by a threshold spin
lock. In the shared disk cluster system of the present inven
tion, the use of space by each of the clustered servers also
needs to be globally managed as all clustered servers get
space from the same set of devices (i.e., the shared disk
storage). However, the space management mechanism should
be performed in the memory of the local clustered server as
much as possible, so as to avoid the transmission of external
messages each time space is needed by a given server.
0268. The present invention includes space and threshold
methodology that localizes space management as much as
possible in the context of a shared disk cluster system. The
methodology of the present invention includes thresholds
defined based on space usage by all clustered servers. The
system uses thresholds to monitor free space in databases
enabling appropriate action to be taken when space gets low.
Thresholds are generally defined per segment. A segment is a
logical grouping of "disk pieces” and each disk piece can be
assigned to store data for Zero or more segments. A "disk
piece” refers to one unit of contiguous database storage,
which is currently described by a single entry in master.dbo.
sySusages and by a single entry in the database's disk map.
Database objects may be assigned to a particular segment,
meaning that new space allocations for that object can only be
obtained from disk pieces that can store that segment. For
instance, the disk pieces that are assigned to a dedicated log
segment are not for use by any other segment (i.e., the
assigned space on the disk pieces is only for the log). Cur
rently, each database can have up to 32 segments. Also, each
database currently has three segments by default which are
referred to as the system segment, the default segment, and
the log segment. Each segment can have Zero or more thresh
olds.

0269. While one clustered server is being recovered, there
will usually be online activities in the same database from
other Surviving clustered servers. The present invention pro
vides that the following principles are maintained: (1) the
thresholds are active and maintained even at recovery time;
(2) the log space that the failed clustered server had already
reserved is not used by other online activities (i.e., the recov
ery process does not run out of space); and (3) the total
unreserved page count is made correct by the end of recovery
without too much interference to other online activities. Per
formance is another issue to consider. The database fail-over
process will necessarily involve some rearrangements of the
space management information, during which time the online
activities and recovery process will be affected. Accordingly,
the solution should minimize this impact as much as possible.
0270. In a cluster environment, the present invention pro
vides that “segacct' and “unreserved map' structures, which
are constantly updated during space usage, are maintained
locally. Each segment in a database is represented by a “seg
acct' structure. Some of the information regarding a segment
is kept coherent across the clustered servers, (e.g., the current
two thresholds active on the segment). Some other informa
tion is only for the local clustered server (e.g., a sg unre
servedpgs field). The Segacct structure is discussed below in
greater detail.

22
Nov. 27, 2008

0271 The unreserved map structure is a list of unreserved
page counts, one for each disk piece. When a change to a disk
piece occurs, the corresponding entry in the map needs to be
updated. Therefore, the unreserved map structure is used to
keep track of space changes at physical disk level. When the
dbtable is scavenged or when the cluster is being politely
shutdown, the unreserved map is written back to SySusages.
Since that is not a frequent event, the system can aggregate
some of the unreserved counts from all clustered servers
before writing to disk when it occurs.
0272 Examples of Space and Threshold Management
Methodology
0273. The following discussion will use an example to
illustrate the space and threshold management mechanisms
of the present invention. This example assumes that there is
one user defined segment name “user seg” (segment number
is 3) with an unreserved count in the segment of 1000 pages.
This segment contains two disk pieces (Disk 1 and Disk 2),
with Disk 1 having 400 unreserved pages and Disk 2 having
600 unreserved pages. Also assume that each disk piece con
tains three allocation units and that the segment has two
thresholds with levels of 400 and 1500. In addition, in this
example the cluster includes three clustered servers (referred
to herein as server 1 (or S1), server 2 (or S2), and server 3 (or
S3). Also assume that clustered server 1 initially serves as the
coordinator.
0274 The methodology of the present invention provides
for maintaining thresholds based on the free page count (sg.
unreservedpgs) in the segacct structure. All of the clustered
servers share the same set of disks, and therefore share seg
ments. Accordingly, thresholds are based on the total space
usage of the segments. This design reduces the external mes
sages between clustered servers while maintaining the thresh
olds.

0275. The present invention includes a distributed control
with pre-assignment methodology for threshold manage
ment. A distributed control approach is utilized rather than a
dedicated cluster server coordinating free pages on the clus
tered servers. The clustered servers communicate with each
other or with a fixed partner. Pre-assignment refers to pre
assigning free pages to each clustered server instead of keep
ing an absolute free page count only at a coordinator server
and deltas at other clustered servers. The distributed control
with pre-assignment methodology of the present invention
enhances runtime performance while addressing implemen
tation complexity and recovery issues as described below.
Before discussing this methodology in greater detail, a gen
eral buffer Zone optimization provided by the present inven
tion will first be described.
(0276 Buffer Zone Optimization
0277. In order to maintain the thresholds used by the
present invention, some limits are maintained on the space
usage on each clustered server. When the space usage reaches
any of these limits, at least the space usage on this segment on
this clustered server is put on pause (i.e., frozen). These limits
ensure that even if all of the clustered servers reach the limits
at the same time, the total free page count will not go far
beyond the threshold level (exactly how far depends on the
tolerance level on the threshold). When a segment is in a
frozen (or “Freeze') state, the activities on the clustered serv
ers will not be affected except for the processes that need to
update the space usage.
0278 If the space usage is not equally distributed among

all clustered servers, it is possible that when one clustered

US 2008/029.4648 A1

server reaches a limit other clustered servers can rescue this
server out of the Freeze state by performing a space adjust
ment. Performance of the system can be improved by reduc
ing the frequency and duration of the Freeze state and the
number of clustered servers that are involved in the adjust
ment. In addition, the pre-assignment of free pages method
ology provides that when the free page count is approaching
the limits (i.e., thresholds) there are an increasing number of
adjustments between clustered servers. These adjustments
may causea lot of messages between the clustered servers and
thereby impact system performance. Accordingly, a mecha
nism is provided to reduce this oscillation.
0279. The present invention uses the following buffer Zone
optimization to resolve both the Freeze state and oscillation
issues. Initially, a fixed buffer Zone is defined for the limits.
When space usage goes into the buffer Zone, the clustered
server takes appropriate actions without use of a Freeze state
to get out of the buffer Zone. Traditionally, if before the action
is taken the space usage on the requesting clustered server
reaches the limit, the segment would be put to a Freeze state.
This would ensure that the space usage never got beyond the
hard limit. The present invention provides for the clustered
server to call for help before it reaches the limit, enabling
space adjustment to be performed without putting the server
into a Freeze state.
0280. If all clustered servers are in the buffer Zone, the
present invention uses one of two approaches. The first
approach provides for declaring the threshold to be crossed.
The second provides for implementing a serialized way of
using the space while the threshold level is strictly maintained
(e.g., in case of the last chance threshold). Each of these
alternatives will be briefly described.
0281. If the threshold is declared crossed, the maximum
distance between the real free page count and the hard thresh
old limit is (BN), where B is the size of the buffer Zone and
N is the number of servers in this cluster system (e.g., three
servers). When the threshold is considered crossed, the maxi
mum distance between the user defined threshold level and
the real total free page count is called the “tolerance level of
the threshold.
0282 FIG. 9A is a diagram illustrating an example of the
space usage of a segment on two clustered servers (server 901
and server 902). Each server has a low limit count L, a high
limit count H, a buffer Zone size B, and a local free page count
X. As shown at FIG. 9A, the free page count on clustered
server 902 (i.e., X2) is already in the buffer Zone of the low
limit (i.e., between L (the lower limit) and L plus B (the lower
limit plus the buffer).
0283. It is suggested to set the buffer Zone limit to be close
to the hard limits to avoid unnecessary adjustments or mes
sages. For example, in the currently preferred embodiment
ten logical pages is used as the size for the buffer Zone given
these considerations, although those skilled in the art will
appreciate that other buffer Zone sizes may be used, as
desired. This buffer Zone size is sufficient so that the clustered
server will usually receive adjustment responses back before
actually reaching the hard limit.
0284. The distance between two thresholds is another con
sideration which influences the size of a buffer Zone. Current
systems usually require at least 128 logical pages between
two thresholds on the same segment. With the buffer Zone
optimization provided by the present invention, a threshold is
triggered at maximum (BN) logical pages away from the
actual user defined threshold level. When there are many

Nov. 27, 2008

clustered servers in a cluster system, (BN) can be more than
128 logical pages. Thus, to prevent a threshold from being
triggered when the free page count is above the next higher
level threshold, the distance between the two thresholds is
another factor which should be considered in determining the
buffer Zone size. Based on this consideration, another buffer
Zone size (B) calculation is made as follows: B-(distance
between two thresholds)/N (where N is the number of servers
in the cluster system).
0285. In the currently preferred embodiment, the smaller
of the above two results is used as the buffer Zone size. For
example, for two thresholds T1 and T2, where the threshold
level of T1 is lower than T2, if the distance between T1 and T2
is 200 pages and the number of servers in the cluster system
is 32, the buffer Zone size based on the distance is (200/32)=6.
Since 6 is smaller than 10, 6 will be used as the buffer Zone
size when the total free page count is between T1 and T2.
(This implies that the buffer Zone size can be changed when
the threshold pointers are moved because one of the two
thresholds is crossed.)
0286 The present invention also provides that when a high
threshold is crossed, the high threshold is made the new low
threshold, and the threshold with the next higher level is made
the new high threshold on the segment (if there is a higher
level). The present invention also includes mechanisms to
avoid oscillation. The total buffer Zone for the hard limits is
(BN), and when the free page count drops below (BN+
low threshold level), the low threshold is considered
crossed. If the same buffer pool is used for the high threshold,
the following situation could occur. FIG.9B illustrates three
user defined thresholds (T1, T2, T3) and a free page count (X)
at two different times (time 1 and time 2). As shown, if (BN)
is used as the buffer Zone for the high threshold, threshold T2
is considered crossed when the free page count goes between
T2 and the buffer Zone as shown at time 2 at FIG.9B. T2 will
then become the new low threshold and T3 will become the
new high threshold. In this case, without any space usage, the
current free page count (X) is actually already in the buffer
Zone of the new low threshold (T2), and it is considered
crossed.

0287 To resolve this, a high threshold is not considered
crossed and enabled as the new low threshold unless the
current free page count is at least more than (BN+high
threshold level). However, even with this approach oscilla
tion could continue to occur. If the total free page count equals
(th level+B*N), the high threshold will be considered
crossed and therefore it is made the new low threshold. The
very next "net deduction of free space' could make every
clustered server freeze and trigger this new low threshold. In
order to avoid oscillation, a hysteresis cutoff is used when the
high limit for each clustered server is calculated. In the cur
rently preferred embodiment of the present invention, 64
pages is used as the predefined hysteresis cutoff value. Thus,
the high limit on each clustered server is (B+(high threshold
level+hysteresis)/N), and the low limit is (low threshold
level/N), where N is the number of clustered servers.
0288 The high limit is given a buffer Zone for the same
reason as the low limit was given a buffer Zone. For example,
if the buffer Zone is B, when the high threshold is considered
crossed and made the new low threshold, the distance
between the real time free page count and the user-defined
high threshold level is between (BN+hysteresis) and
(2GBN)+hysteresis). The tolerance level for the high thresh
old is therefore (2*(B*N)+hysteresis).

US 2008/029.4648 A1

0289. The present invention provides for runtime thresh
old management to be maintained using a distributed control
scheme with pre-assignment of free pages. The scheme has
no coordinator, and each clustered server has a fixed partner to
communicate with when there is a need for adjustment.
0290 FIG. 10 is a block diagram illustrating the clustered
servers and the direction of adjustment request messages
among clustered servers. As shown, the cluster 1000 includes
four servers 1001, 1002, 1003, 1004. The arrows shown at
FIG. 10 indicate the direction of adjustment request messages
among the four servers. For example, server 1001 sends
adjustment messages to server 1002. Most of the time, the
thresholds and segments are managed locally within each
clustered server (i.e., each clustered server works within their
pre-assigned range of free pages). Each clustered server sends
adjustment requests to its partner only when either the free
page count is within a buffer Zone (referred to as a “normal
request'), or the free page count hits a "hard' pre-assigned
limit (referred to as an “emergency request'). The purpose of
these adjustment messages (i.e., normal requests and emer
gency requests) is to balance the free pages so that the activi
ties on all clustered servers can continue until the total free
page count crosses the threshold. When a normal request is
sent out, the space usage activities do not stop. However,
before an emergency request is sent out, the space usage on
the affected segment is put into a Freeze state. The segment
will be cleared from the Freeze state when the free page count
is back within the allowed free page range. This can only
happen upon receiving an adjustment reply message. The
state of the segment is controlled in a status field in the Segacct
Structure.

0291. If the free page count goes into the buffer Zone, a
clustered server will send a “normal request message to its
partner for adjustment to balance the clustered servers pro
actively, thereby reducing the chance of a Freeze. The space
usage on this clustered server will continue up to the limit.
When a clustered server picks up a normal request message,
it looks at its own free page count, and assumes the “worst
case' on the requester when it does the calculation. The
“worst case” on the requester is that when the calculation is
performed, the free page count on the requesting clustered
server is assumed to have hit the hard limit (i.e., L for lower
bound, and H+B for higher bound). If the free page count on
the receiving clustered server can enable both clustered serv
ers to be out of the buffer Zone, the receiving server will give
half of the free pages to the requester. However, if the free
page count on the receiving clustered server does not enable
it to help (i.e., provide pre-allocated free pages to) the
requester, the recipient will reply with 0 (zero) as the delta
adjustment. No request forwarding is performed for normal
requests.
0292. In the normal request process, each clustered server
sends an adjustment request to its partner only when the free
page count is within a buffer Zone. This communication
requests an adjustment to balance the free pages so that the
activities on all clustered servers can continue until the total
free page count crosses the threshold. A normal request does
not cause the space usage activities to stop. For example, the
free page count on server 1001 (as shown at FIG. 10) may go
into the lower bound buffer Zone (i.e., the free page count
x1<=(L+B)). In response, server 1001 sends a normal request
message to server 1002. When server 1002 picks up the
adjustment request message from server 1001, it looks at its
own free page count (x2) under spinlock. Server 1002

24
Nov. 27, 2008

assumes at this point that the free page count on server 1001
has hit the low limit L. Accordingly, if (x2+L)>2*(L+B), it
can help by sharing half of its extra free pages (X2-(L+B))/2
with the requester (server 1001). If this is the case, server
1002 reduces its free page count to (x2-delta) and sends a
reply message to server 1001 containing a delta (additional
free page count for server 1001). When server 1001 picks up
the reply message it applies the delta in the message to the
current free page count (under spinlock).
0293 As described in the above example, if a “partner
server can assist a requester, the partner generally calculates
the delta by distributing the extra free pages equally between
itself and the requester. The partner then sends an adjustment
reply message(s) to the requester containing the delta to apply
to the free page count on the requester. A problem may arise,
however, when the partner itself is very close to (or in) the
buffer Zone, and therefore cannot assist the requester. Assume
for example, the partner (e.g., server 1002 in FIG. 10 using the
same example as above) receives an emergency request (e.g.,
from server 1001) when the partner itself is in (or near) the
buffer Zone. The present invention addresses this problem by
providing for the partner (server 1002 in the above example)
to bundle its own request with the original emergency request
(from server 1001) and forward the bundled request to the
next clustered server (e.g., server 1003 as shown at FIG. 10).
Note that the intermediate clustered servers are not put into a
Freeze state (i.e., non-freeze propagation). Since the interme
diate clustered servers are not in a Freeze state when the
emergency request is bundled and forwarded, it is possible
that when the threshold is determined to be crossed, the
real-time total free page count is actually more than the “tol
erance level. The spinlock is released right after the thresh
old is determined to be crossed and the space count is updated
immediately. Therefore, when a user sees the action of the
threshold procedure, the real time free page count has already
changed and can be beyond the threshold level.
0294 Since an intermediate clustered server will still be
updating the space usage, it cannot contribute all of its current
“extra free pages (i.e., "extra free pages=current free
pages-the hard limit) in response to the request because this
would have the same effect as putting the intermediate server
into a Freeze state. Alternatively, if the intermediate server
does not contribute any of its extra free pages, the whole
cluster system will lose too many free pages. Therefore, the
present invention provides that the intermediate clustered
server contributes its current extra free pages until its free
page count is B/2 away from the hard limit. This makes the
space usage go into the buffer Zone, but since the segment
already has an outstanding request pending (the forwarded
emergency request), no adjustment request message is sent
out in this circumstance. In the request message a count is
maintained of accumulated extra pages contributed by the
intermediate clustered servers. When a server receives such a
request and performs the check to see if it can help the
requesters, it will count both the accumulated extra pages and
the total free pages from all requesters. Since the intermediate
server was not put into a Freeze State, the worst case is
assumed which is that by the time the partner receives the
request, the requester has reached the Freeze state. In another
words, the limit value is used as the current free page count;
although at that time the server still is B/2 away from the limit.
0295 FIG. 11 is a flowchart 1100 illustrating an example
of the handling of an adjustment request (e.g., emergency
request) sent by a clustered server. The clustered server may,

US 2008/029.4648 A1

for example, send the request when the free page count hits a
pre-assigned threshold. In the following example, there are
three servers which are referred to as server 1, server 2, and
server 3. In the following discussion X refers to the free page
count, L refers to the low limit value (threshold), H refers to
the high limit value (threshold), and B refers to the size of the
buffer Zone. Assume at the outset that server 1 has a free page
count that reaches its low limit (i.e., x1=L). At this point,
clustered server 2 is still in the allowed range: (L+B)<x2<H.
Clustered server 3 is also still in the allowed range: (L+B)
<X3<H.

0296. In response to reaching the low level limit value
(threshold), at step 1101 server 1 sets the Freeze state in the
segment and sends an adjustment request message (emer
gency request) to server 2. The adjustment message (R1
(server 1, X1, 0)) includes the source of the message (server
1), and the free page count at server 1 (x1). At step 1102, when
the threshold daemon thread on server 2 picks up the message
R1, it looks at its current free page count (i.e., the current free
page count X2 at server 2) to determine if it can help clustered
server 1. Assume in this case that server 2 cannot help because
it does not have Sufficient free pages calculated as follows:
(x1+x2+0)<=2*(L+B). At step 1103, server 2 reduces its free
page count (by an amount equal to (L+B/2)), modifies the
message with its contributed free page count (which is equal
(X2-(L+B/2)), increments the total free page count by L. and
records server 2 in the requester bitmap (i.e., the request
bitmap of the modified message). At step 1104, server 2 sends
the modified request message to server 3. The modified mes
sage (R1) now includes the following: ((server 1, server 2),
x1+L, (x2-(L+B/2))).
0297. At step 1105, server 3 picks up (receives) the modi
fied request message and looks at its own free page count to
determine if it can help (i.e., give free pages to) the other two
servers (server 1 and server 2). More particularly, server 3
checks to determine if it can give free pages to the two
requesters based on the following: if totalpgs in requesters+
(x2-(L+B/2))+X3)>3*(L+B)). If server 3 can help, at step
1106 server 3 calculates the deltas by distributing its extra free
pages plus the accumulated extra free pages (i.e., those indi
cated in request message) amongst all three servers. At step
1107, server 3 sends adjustment messages directly to server 1
and server 2 with the delta for each of them. Server 1 and
server 2 pick up the reply message (i.e., the adjustment mes
sage sent by server 3) and apply the delta indicated in the
message. The Freeze state in the segment is cleared if the new
free page count is in the allowed range (i.e., (L+B)<x<H).
0298. It should be noted that the propagation of requests
among clustered servers will stop when one clustered server
finds out that its partner is actually one of the previous
requesters. In this case, the clustered server will check with
the threshold level and consider the threshold crossed. For
instance, using the same example described above, assume
that clustered server 3 determines that it does not have free
pages that it can give to server 1 and server 2 (i.e., if (totalpgs
in request--(x2-(L+B/2))+X3)<=3*(L+B), server 3 cannot
help the other servers). In this case, server 3 reduces its free
page count to (L+B/2), modifies the request message to con
tain its request, and sends the modified request message (R1")
to server 1. The modified message includes the following:
((server 1, server 2, server 3), x1+2L, x2+x3-2(L+B/2)).
When server 1 picks up this message, server 1 determines that
it is actually one of the previous requesters. Therefore, server
1 checks the total free page count in the request and compares

Nov. 27, 2008

it with the threshold level to determine that the threshold is
crossed. Server 1 will apply the accumulated extra free pages
to its local free page count and then it will fire the procedure,
adjust the thresholds, and calculate the new limits. Server 1
will then send a reply message to all the requesters (i.e., server
2 and server 3) with the new threshold index numbers and the
new limits. If there is no remaining threshold to adjust, it will
set the new limits to the absolute low (i.e., 0) and absolute
high (i.e., the segment size) for the segment.
0299. At any time, a clustered server can have multiple
adjustment requests that it needs to send out (i.e., to other
server(s)). For instance, when a clustered server receives an
emergency request it is possible that the same server has sent
out a requestandis waiting for a reply (the request could bean
emergency request in which case the segment will be in a
Freeze state, or a normal request). In another case, after a
clustered server has sent out a normal request and before it
gets the adjustment to move out of the buffer Zone, it may
reach the hard limit (threshold) which requires the server to
send an emergency request. In both cases, when the clustered
server tries to deal with the second request, the result of the
calculation can be made invalid because of the reply to the
first request. In other words, the clustered server cannot nec
essarily make a correct decision about whetherit can give free
pages in response to the second request until it receives a reply
to the first request.
0300 Consider the following scenario in which a clus
tered server has multiple requests that it needs to send. The
same example of three clustered servers is used for purposes
of this discussion. At the outset, assume that server 1 and
server 3 are within the allowed range (i.e., (L+B)<x1<H and
(L+B)<x3<<H, with X3==L+3B). Also, clustered server 2 has
reached the hard limit, with X2==L. When server 2 reaches
the lower limit, it sends an emergency message R1 to clus
tered server 3 (R1 (server 2, x2)).
0301 Meanwhile, the free page count on server 1 goes into
the buffer Zone and server 1 sends a normal adjustment mes
sage to server 2. Since server 2 is in a Freeze state, it cannot
help server 1, so server 1 goes on without any adjustment.
Subsequently, server 1 also reaches a hard limit (e.g., x1=L)
and sends an emergency request (R2) to server 2. When server
2 picks up the emergency request (R2), server 2 determines
that it cannot help as server 2 is in Freeze state. Server 2 then
modifies the emergency request message (now, R2) to
include server 2 and sends the modified message to server 3
((server 1, server 2), x1+x2, 0). At the same time, server 3
picks up the first adjustment request message (R1) from
server 2. In this case, server 3 has a number of free pages that
can be provided to server 2 (i.e., since (x2+X3)=2L+3B>2*
(L+B), server 3 can give free pages to server 2 in response to
R1). Accordingly, server 3 distributes the available free pages
between server 2 and server 3 in response to the first request.
As a result, X3 becomes L+1.5B and the reply sent to server 2
includes L+1.5B as the new free page count. When server 2
receives the reply, it applies the delta to its free page count
(i.e., L+1.5B). After applying the delta, server 2 is out of the
buffer Zone and clears the Freeze state. At the same time,
server 3 picks up the second request which was modified and
sent by server 2 (R2). Server 3 examines its free page count
and determines that it cannot help (i.e., based on (X3+X1+X2)
=3L+1.5B-3*(L+B)). Server 3 then forwards the request to
server 1. Since server 1 is one of the previous requesters, the
threshold is considered crossed. However, at this point the
whole cluster system actually has 3L+3B free pages which is

US 2008/029.4648 A1

enough for all three clustered servers to run. In this case the
decision made at server 2 to forward the second request
(emergency request R2) was incorrect because the first
request R1 was still pending.
0302) The present invention provides a solution to the
above-described problem of multiple requests. When there is
a pending request on a particular clustered server, the particu
lar server does not deal with an incoming request or send out
a request until the pending request is resolved. In this way, the
decision made on the particular server is based on a count that
will not be changed by a reply to a pending request.
0303. The present invention provides for different treat
ment of multiple requests depending on the circumstances.
When a clustered server picks up an emergency request from
the receive queue, and it already has a pending request, it
stores the emergency request locally until the reply comes
back for the pending request. Alternatively, if the second
requestis a normal request (instead of an emergency request),
the clustered server does not wait for the reply for the pending
request. Instead, it replies without any adjustment. If a client
process determines that the hard limit is hit, and there is
already a pending request for this segment, it sets the Freeze
state to prevent other processes from using more space, and
then waits until the pending request is resolved. When the
pending request is resolved, the free page count is examined
again to determine if the server needs to send an emergency
request. If the process at a given server finds that it is in the
buffer Zone when there is already a pending request, it does
not send out the request and simply continues.
0304 Another issue addressed by the present invention is
the possibility of deadlocks in the distributed threshold man
agement process. For instance, using the same example of
three servers, all three clustered servers may hit the hard limit
in the same segment at the same time. Each server then sets
the Freeze state, the pending request state, and sends an
emergency message to its partner. This can result in a dead
lock situation as follows. For example, clustered server 1 may
pick up a request (R3) from server 3. Since server 1 is in a
Freeze state and has a pending request, it waits for its request
(R1) to be resolved. Clustered server 2 then picks up a request
from server 1 (request R1). As server 2 is also in a Freeze state
and has a pending request, it waits for its request (R2) to be
resolved. However, clustered server 3 is also in a Freeze state
and has a pending request, when it picks up a request (R2)
from server 2. As a result, server 3 also waits for its request
(R3) to be resolved. The result of these multiple requests is a
deadlock as this group of clustered servers are arranged in a
circular way in terms of request direction. The Solution pro
vided by the present invention to prevent this type of deadlock
situation is that the request direction is predetermined to
always be from the server with the smaller ID to the server
with the bigger ID. An exception is the clustered server with
the biggest ID whose partner will be the clustered server with
the smallest ID. This request direction can be used to prevent
deadlock.

0305 The present invention also uses a status in the seg
ment for solving this deadlock problem. When the space
usage at a server hits a hard limit, the segment has the Freeze
status set and an emergency request is sent. If an intermediate
clustered server cannot provide free pages in response to its
partner's emergency request, the intermediate server for
wards the request to its own partner and a “Forward' status is
set in the segment. When the clustered server with the small
est ID picks up an emergency request while having a pending

26
Nov. 27, 2008

request, instead of waiting for the pending request to be
resolved, this server (i.e., the one having the smallest ID)
broadcasts a poll message to all other servers to ask for their
status on this segment. If all other clustered servers reply with
eithera Freeze status or a Forward status, this clustered server
determines the threshold is crossed. Otherwise, it waits for
resolution of the pending request. Some of the data structures
used in implementing the methodology of the present inven
tion will next be described.
(0306 Unreserved Map
0307. A clustered server is chosen as the coordinator,
which instantiates the unreserved map by Scanning all the
devices or directly loading the saved information (e.g., from
SySusages). The scan during boot time does not require the
synchronization that is needed during fail-over recovery. The
coordinator then makes all of the other clustered servers have
0 as the start value for the unreserved page count for each disk
piece. At runtime, the clustered servers keep deltas of space
changes on the unreserved map.
0308 The following illustrates the unreserved map for
both disk pieces, after boot. Clustered server 1, which is the
coordinator, has an unreserved page count (dbt dunresvd) of
400 on disk 1 and 600 on disk2. Clustered server 2 and
clustered server 3 both have an unreserved page count (dbt
dunresVd) of 0 (zero) on disk 1 and an unreserved page count
of 0 (zero) on disk2. The process of defining thresholds and
distributing free pages will next be described.
(0309 Segacct Structure
0310 All of the thresholds defined for a database system
are loaded into a dbt thresholds structure. The Segacct struc
ture for each segment is filled in the following way. The
coordinator clustered server in the cluster system (e.g., server
1 in this example) calculates the number of free pages for each
segment based on the unreserved counts. For each segment,
the coordinator determines the two thresholds that are imme
diately above and below the free page count and sets the
appropriate status bits in the thresholds. The indices of these
two thresholds in the dbt thresholds array are stored in the
Segacct structure. If no threshold is defined for a segment,
these are not set. If there is only one threshold for a segment,
both indices are the same. The coordinator also calculates the
low and high limits based on the thresholds levels and the
buffer Zone size. The coordinator equally distributes the free
pages to each clustered server. The cached thresholds as well
as the two threshold indices and the two limits are also sent to
all clustered servers.
0311. An example of the segacct structure for a clustered
server is as follows. For instance, at the end of boot recovery
on clustered server 1:
1) All thresholds are loaded into an array dbt thresholds. This
is an array of structure THRESHCACHE. Each row in
Systhresholds is converted to an element of the array. For
instance, the two thresholds on “user seg” (the example
referred to above in this document) with levels 400 and 1500
are stored in slots 2 and 3, respectively, in the array.
2) The Segacct unreserved pages are calculated based on the
unreserved map as follows: 400+600–1000.
3) Search for thresholds on this segment. When the two
thresholds (i.e., 400 at slot 2 and 1500 at slot 3) are found, set
Sg thbelow idx to 2 and sg. thabove idx to 3.
4) Calculate the high and low limits based on the threshold
levels and the buffer zones. For example: sg low limit=400/
3=133; and sg high limit=TH BUF ZONE+(1500+hyster
esis)/3=10+521=531.

US 2008/029.4648 A1

5) Calculate the free pages to be distributed to each clustered
server. For example: assigned space=1000/3=333; and
sg, unreservedpgs=1000-(333*2)=334 (the free page count
on the coordinator).
6) The coordinator propagates these in memory structures
including dbt thresholds and the index number of the thresh
olds cached in the segment. The coordinator also sends each
clustered server the assigned free space and the high and low
limits. The following illustrates the above segacct structure
on each cluster server based on the above example:
server 1: Sg low limit 133, Sg high limit 531, Sg unre
servedpgs 334
server 2: Sg low limit 133, Sg high limit 531, Sg unre
servedpgs 333
server 3: sg low limit 133, sg high limit 531, sg unre
servedpgs 333
0312. After the assignment is done, each clustered server
works within its assigned space until there is a need for
adjustment. When the threshold is crossed, the clustered
server that determined a threshold has been crossed adjusts
the threshold's pointers, recalculates the limits, and broad
casts the information to the other clustered servers.

0313 At runtime, each clustered server updates only its
local unreserved map. For each allocation the count is
decreased, and for each deallocation the count is increased.
Note that normally the count change is at extent level, (i.e.,
eight pages at a time, or seven pages if the extent is the first
extent in an allocation unit.) When the system is politely
shutdown the local counts are aggregated and unreserved
information is written to SySusages. Additionally, unreserved
count is aggregated and the result is returned when a user
issues an explicit query on the current unreserved page counts
using a built-in function “curunreservedpgs()'.
0314. In the case of a shutdown, no synchronization is
needed because the system is down and there is no online
activity. The coordinator gets all the unreserved counts from
the participating clustered servers and calculates the total
unreserved count for each disk piece. In the case of a runtime
query, the database's space accounting does not need to be put
into a Freeze state during the period of query. Instead, each
clustered server retrieves the corresponding unreserved count
under spinlock, and sends the result to the clustered server
from which the query was issued. That clustered server cal
culates the total count under spinlock. For example, the fol
lowing steps occur when a user queries the current unreserved
count for disk piece disk1 from clustered server 2.
1) Clustered server 2 sends messages to all other clustered
servers to ask for the current unreserved map for Disk 1.
2) Upon receiving Sucha message, all clustered servers, under
spinlock, get the unreserved count for the disk piece and send
the count back to server 2 in a reply message.
3) Clustered server 2 adds the counts up after receiving all
replies.
4) Clustered server 2 then returns the results to the client.
0315. A slight drawback of this approach is that the dif
ference between the result and the real time count may be
Somewhat larger than in prior art systems because of the
exchange of messages among clustered servers. However,
this is a minor issue given that some difference already exists
in prior systems and users expect some lag between the count
returned and the real time count.

27
Nov. 27, 2008

0316 Runtime Threshold Management in the Segacct
Structure
0317. The methodology of the present invention for
threshold management relies on maintaining space account
ing information locally, with adjustments made based on the
periodic exchange of adjustment messages among servers in
the cluster. After initial assignment, each clustered server
controls the space accounting locally. The following will
illustrate an example of free page count adjustments for three
clustered servers (server 1, server 2, server 3). For example,
assume the established thresholds include a low limit (L) of
133, a high limit (H) of 531, and a buffer Zone size (B) of 10.
0318. At the outset (time 0), assume that server 1 has 148
free pages (sg. unreservedpgS-148), server 2 has 400 free
pages, and server 3 has 140 free pages. Based on the 140 free
pages, the threshold of 133, and the buffer of 10, server 3 sets
a “pending request' status bit and sends a normal request R1
to server 1, its partner. At time 1, server 1 picks up the request
R1 and determines whether it can provide pages to server 3. It
uses the “worst case' count for server 3 (i.e., the lower limit of
133) as follows: (148+133)<=143*2. In this case, it deter
mines that it cannot help server 3, and replies to server 3 with
0 (zero) as the delta. Assume that at time 1. Some deallocation
also occurred at server 3 and its free page count is equal to
156.
0319. At time 2, the count of free pages at server 1 is 140
(sg unreservedpgS=140). Server 1 sets “pending request'
and sends a normal request R2 to server 2. Server 2 continues
to have sg unreservedpgs=400. At server 3, it picks up the
reply from server 1 at time 2 and clears the pending request
bit. The count of free pages at server 3 is 156 at this point
based on the delta (0) received in the reply (sg.
unreservedpgs: Sg unreservedpgs+adjust delta pgs=156).
At time 3, the count of free pages at server 1 drops to 132 and
the “Freeze' bit is set in the segment. Since the “pending
request bit is on, server 1 waits for the reply to request R2
from server 2. Also at time 3, server 2 picks up request R2.
Server 2 examines the local count of free pages and deter
mines that it can give pages to server 1 (as 400+133> 143*2).
It calculates the free pages that can be allocated as follows:
sg, unreservedpgs=(400+133)/2=266; and adjust delta
pgs=400-266–134. Based on these calculations, server 2
sends a reply to request R2 to server 1.
0320 At time 4, server 1 picks up the reply to request R2.

It adds the delta indicated by server 2 to its count of free pages
(sg unreservedpgS-Sg unreservedpgs+adjust delta
pgS-266). The pending request bit is cleared at server 1 and
the process that has been waiting (i.e., waiting for the reply to
R2) is woken up. After the client process is woken up, the
Freeze bit is cleared as the page count is now greater than the
threshold (266>143).
0321) Another example will illustrate the operations that
occur when a “hard' threshold is crossed. In this example,
assume that at time 0 server 1 has 132 free pages, server 2 has
148 free pages, and server 3 has 148 free pages. Based on the
132 free pages, the count at server 1 has crossed the threshold
(lower limit) of 133 free pages. In response, server 1 sets a
“Freeze' status in the segment and sends an emergency
request R1 (server 1, 132,0) to server 2, its partner.
0322. At time 1, server 2 picks up the request R1 and
determines whether it can provide free pages to server 1.
Server 2 uses the count for server 1 (i.e., 132) and its own free
page count (i.e., 148) for determining if it can help as follows:
(148+132).<=143*2. In this case, it determines that it cannot
help server 1, but it has extra pages it can contribute calculated
as follows: 148-133-5-10. Server 2 sets its count of free

US 2008/029.4648 A1

pages to 138 (148-10-138) and creates a modified request
R1' which includes the following information: (server 1,
server 3), 132+133–265, 10. Server 2 sends the modified
request R1' to server 3.
0323. At time 2, server 3 picks up the modified request R1'
and determines that it cannot give free pages to server 1 and
server 2 (148+265+10)<=3*143). It creates a modified
request R1" (server 1, server 2, server 3), 265+133=398, 20)
and sends the modified request R1" to server 1. Server 1 picks
up the modified request R1" at time 3. Server 1 determines
that it is one of the requesters. As a result, server 1 knows that
all clustered servers have received the request. Server 1
checks the total free page count against the threshold level
(398+20-400)<=3*10) and declares the threshold crossed. It
applies the accumulated extra pages to the local free page
count as follows: sg unreservedpgs=132+20=152. Since
there is no lower threshold, it makes the threshold of 400 the
high threshold and calculates the new high limit=(400+64)/
3+10=164. The new low limit is set to zero (0). These values
are set in the local Segacct structure. Server 1 then sends
replies to the other requesters (i.e., server 2 and server 3).
0324. At time 4, the lower threshold is set to zero and the
higher threshold is set to 164 at all three servers. Also at this
time the Freeze state is cleared as the count of free pages at all
three servers is between the new low limit (O) and the new
high limit (164). The adjustment is now complete and space
usage may continue. The recovery time operations of the
system will next be described.
0325 Recovery Time
0326. A threshold manager daemon thread provided by
the present invention registers to receive notification of a
NODE DOWN affecting a clustered server. When a clus
tered server is down the threshold manager thread on each of
the Surviving clustered servers performs the following opera
tions after CLM recovery:
1) sets a DBTH FREEZE bit to suspend all activities involv
ing space accounting and threshold management in the data
base.
2) a clustered server responsible coordinating for fail-over
recovery is chosen. In the currently preferred embodiment, if
the threshold coordinator server is still alive, it is selected as
the clustered server responsible for fail-over recovery. If the
failed clustered server was the coordinator, the new cluster
coordinator server will coordinate the threshold manager
recovery;
3) the chosen coordinator forms new requesting relationships
among the clustered servers and broadcasts the coordinator
information as well as the requesting relationship to all clus
tered servers;
4) each clustered server, when receiving the new relationship
message, checks to see if its partner has changed. If a clus
tered server's partner has changed, this means that the old
partner of this clustered server failed. This clustered server
then checks each segment's status. For segments that are in a
Freeze and Pending request state, this clustered server clears
the pending request state and sets the Resend status, which
makes it resend its request to its new partner after a short
period of time if there is no other request going out; and
5) all clustered servers clear the DBTH FREEZE bit to allow
space usage to continue.
During database recovery, activities involving space account
ing are allowed to continue but the space accounting is
handled differently than at runtime. A concurrent scan of all
disk pieces is performed on the coordinator clustered server

28
Nov. 27, 2008

without blocking other activities. During the scan, special
synchronization exists between the Scanner and the other
online activities. After the scan is complete, space accounting
activities are suspended for a short period of time while the
correct free space is calculated for each segment and the new
assignment is preformed, after which the space accounting
and threshold management are considered fully recovered
and run as runtime.
0327. The unreserved counts must be “recovered to the
correct values by the end of database recovery. During runt
ime operations, every clustered server, other than the coordi
nator, has only a delta representing the changes which hap
pened locally since the last reset. The coordinator has the base
value plus the local delta.
0328. The correct total unreserved counts are calculated
based on information from all of the clustered servers. Since
a portion of the unreserved map on the failed clustered server
was lost, either the delta value on the failed clustered server at
the time of the crash needs to be “recovered’ or all devices
need to be scanned to count the total unreserved pages, as a
system boot would accomplish. Halting all clustered servers
while performing a scan of all devices is inefficient. Similarly,
recovering the delta is very difficult because it is hard to
establish a synchronous point in the log as a starting point to
recover the counts. Therefore, the present invention provides
for concurrent Scanning of disk pieces with appropriate Syn
chronization between the Scanner and the concurrent updat
CS

0329. The following approach assumes that the disk
pieces in the database are in the order of the logical page
numbers. As previously described, each disk piece is a con
tinuous block of physical storage containing one or more
allocation units. Concurrent scanning dictates that the coor
dinator clustered server starts the scan after the redo pass of
the database recovery is completed. The recovery process
wakes up the threshold manager daemon thread to start the
Scan. (To avoid an external message, the clustered server for
recovery and the coordinator clustered server are the same.)
Before the scan starts, the coordinator sets the local unre
served count for each disk piece to the maximum free space
the disk piece can have. The scan is performed by scanning
the allocation units for each diskpiece. The scanner maintains
a “scan pointer for each database (i.e., dbt scan), which is the
logical page number of the allocation page for the allocation
unit that is currently being scanned or was just scanned. Each
time the scan pointer is changed, the information is broadcast
to all clustered servers which allows each of the clustered
servers to cache it locally. The concurrent scan does not affect
the performance of runtime activities.
0330. The scan pointer is maintained in the following
al

1) the scan pointer is set to MAXPGID during runtime.
Before scan starts, the scan pointers on all servers are set to
-1, the unreserved count on the server that does the scan are
set to the total free space on the disk piece, and the corre
sponding unreserved counts for this disk piece on other serv
ers are set to 0;
2) when the scan is active, the scan pointer is advanced under
threshold spinlock to a new position after the scanner gets the
SH LATCH on the allocation page. The new scan pointer is
broadcast to all clustered servers, and they Subsequently
update the local copy under threshold spinlock. Note that this
broadcast is done asynchronously, (i.e., scan on this alloca
tion unit starts without waiting for the responses to come

US 2008/029.4648 A1

back.) However, before a SH LATCH on this allocation page
is released, all responses must be received back;
3) the scan process updates the local unreserved count for the
disk that contains this allocation unit. First it counts the num
ber of reserved pages in this allocation unit. All pages in an
extent are counted as reserved pages when the objid on the
extent is nonzero, except for the first extent in the allocation
unit. The allocation page itself is not counted even if the first
extent is allocated. Second, under threshold spinlock, the
unreserved count is decremented by this amount;
4) after the scan is complete on the current allocation unit the
SH LATCH is released, and the scan pointer remains
unchanged until the next allocation page is latched; and
5) after all disk pieces are scanned the scan pointer is set to
MAXPGID again.
0331. The synchronization between the scanner and the
updater (allocator/deallocator) is performed using the exist
ing latching scheme on the allocation page. Before scanning
an allocation unit, the scanner gets a SH LATCH on the
allocation page and holds the latch until the scan is done.
Allocation and deallocation get an unconditional
EX LATCH on the allocation page before doing space
accounting, and in the case of dedicated log databases the
latch is not released until space accounting and the allocation
page change are done. Thus, the latch is Sufficient to block
updaters from updating the space count for an allocation unit
while it is being scanned.
0332 The allocations/deallocations (i.e., updates) that
occur during the scan are grouped into three potential catego
ries. The synchronization and space accounting scenario for
each category is as follows:
1) update is in the allocation unit that is being scanned. This
is not possible because the latch on the allocation page that is
held by the Scanner blocks the change;
2) update is in an allocation unit that has been scanned. The
scanner has performed the Scan, updated the local unreserved
count with the result of the scan, and released the
SH LATCH. The scan pointer is either advanced or is yet to
be advanced to the next allocation unit. Thus, the allocation
page number of this allocation unit is less than or equal to the
scan pointer. Space accounting is done for this change (i.e.,
the local unreserved count is updated); and
3) update is in an allocation unit that is yet to be scanned. The
allocation page number must be greater than the scan pointer.
The space accounting will not be done for this change because
the change will be counted by the scan later when this allo
cation unit is scanned.

0333. In the currently preferred embodiment of the present
invention the scan is started after the redo pass is completed.
In the current allocation/deallocation scheme, recovery can
not make an assumption about whether the allocation page
change was done at runtime or not when seeing an alloc-type
(allocation type) record. In other words, when redoing Such a
record and trying to make a space change to an “already
scanned allocation unit, recovery is unable to determine if
the space change has already been counted by the scan, (in
which case the allocation page change was on disk before the
crash), or not. This is the case because the allocation page
change is not timestamped. Even if a timestamp is applied to
the allocation page change, since Some locks on the allocation
pages could be marked IN-DOUBT by the CLM recovery,
and these IN-DOUBT locks can only be granted to recovery

29
Nov. 27, 2008

processes, the scanner will not be able to get these locks and
therefore will be blocked. The IN-DOUBT locks are released
at the end of the redo pass.
0334. During recovery, the segment threshold guards the
free space. One limitation this introduces is that during recov
ery, before the scan is complete, a user cannot query the
current unreserved counts because the counts have not been
recovered yet. The pseudo-code for a scanner is as follows:

1: FOREACH DISKMAP(DBT DISKMAP(dbt), dmap, index)
2: {
3: for (allocpg= DMAP LSTART(dmap);
4: allocpg < DMAP NEXT LSTART(dmap);
5 allocpg += PGS IN ALLOC)
6: {
7 allocbuf=pg get alloc page(alloc Sdes, allocpg,

SH LATCH):
8: P SPINLOCK(dbt->dbt thresh spin);
9: dbt->dbt Scan = allocpg:

10: V SPINLOCK(dbt->dbt thresh spin);
11:
12: async broadcast this change to all clustered servers.
13: reservedpgS = pg allocpg extent count(...);
14: P SPINLOCK(dbt->dbt thresh spin);
15: local unreserved count-= reservedpgs:
16: V SPINLOCK(dbt->dbt thresh spin);
17:
18: check to make Sure the broadcast message has been successfully
delivered:

19: pg release alloc page(alloc Sdes, allocbuf);
20: }
21: }
22:
23: P SPINLOCK(dbt->dbt thresh spin):
24: dbt->dbt scan = MAXPGID:
25: V SPINLOCK(dbt->dbt thresh spin);
26: broadcast this change to all clustered servers.

0335 The pseudo-code for runtime allocation is as fol
lows:

1: pg allocate near target(...) orpg allocate log pg (...)
2: {
3: while (newpgno >= 0)
4: {
5: allocbuf=pg get alloc page(alloc Sdes, allocpg,

EX LATCH):
6:
7: if (allocated a new extent)
8: {
9: pg th reserve...) to reserve 8 pages;

10:

11: }
12: }
13:
14: pg th reserve...)
15: {
16: if (recovery process)
17: {
18: return;
19: }
20: Verify allocation page is latched;
21: th accounting (...);

23:
24: th accounting (...)
25: {
26: P SPINLOCK(thresh spin):
27: if (allocpgno <= dbt->dbt Scan)
28: {
29: update unrSwd count
30: }

US 2008/029.4648 A1

-continued

31: check segment threshold;
32: V SPINLOCK(thresh spin):
33: }

0336 Note that the pseudo-code for runtime deallocation
is similar, except that space accounting is handled in a differ
ent function, pg th unreserved.
0337 Special Synchronization During Scan for Mixed
Log-Data Segment
0338. The present invention provides for special synchro
nization during a scan for mixed-log-data (M-L-D) segments.
In M-L-D segments, during allocation the latch on an alloca
tion page is released after the count is updated and before
getting the buffer for the new page. The latch is then reac
quired and the allocation page change is made. This creates a
window between the time when the count is updated and
when the allocation page is made. For example, consider the
following scenario with time flowing from time t0 to time t5:
t0: T1 tries to allocate a page. It latches the allocation page P1
and finds a new extent.

t1: T1 calls the threshold function to register this allocation.
Since the scan pointer is lower than P1 (dbt scan =P0), it
does not update the unreserved count.
t2: T1 sets the reserved bit for this page in the extent which
prevents the extent or page to be allocated by others. It then
releases the latch on P1, and goes ahead and logs the alloca
tion.
t3: The scanner moves to this allocation unit. The scanner gets
the latch on P1 and starts reading the allocation page. Since
the allocation by T1 has not modified the allocation page yet,
it does not count that extent that was allocated by T1.
t4: Scanner completes the scan of P1 and releases the latch.
t5: T1 gets the latch on P1 again to modify P1 to reflect this
allocation. However, it will not update the count for this
allocation again.
0339. The net result is that this allocation by T1 is not
counted by the Scanner. To address this problem, the system
of the present invention provides a status bit that is used to
prevent the scanner from starting a scan if an allocation on a
M-L-D segment is in process.
0340. A status field is provided in the physical lock object
for allocation pages. Before an allocator releases the latch on
an allocation page, it sets the PG MLD ALLOC bit in the
status field in the lock value block in the physical lock for this
allocation page. Before a scanner tries to get the latch on an
allocation page, it first gets the lock value block for this page
and checks on the bit. If the PG MLD ALLOC bit is set, it
does not get the latch, but rather waits for some period of time
and then retries. If the bit is not set, it gets the latch, checks the
status in the lock value block again, and goes ahead and scans
the allocation page.
0341 Pseudo-code for data allocation in a M-L-D seg
ment is as follows:

1: pg allocate near target(...)
2: {
3: while (newpgno >= 0)
4: {
5 if (MLD)

30

0342

1:
2:
3
4:
5:
6
7
8
9:

10:
11:
12:
13:
14:
15:
16:

6:
7:
8
9:

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
2O:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

Nov. 27, 2008

-continued

clim get value(lock on allocpg, status);
if (status & PG MLD ALLOC)
{

goto retry;

allocbuf=pg get alloc page(alloc Sdes, allocpg,
EX LATCH):
if (MLD)
{

clim get value(lock on allocpg, status);
if (status & PG MLD ALLOC)

release latch on allocpg:
goto retry;

if (allocated a new extent)

pg th reserve...) to reserve 8 pages;

pg allocate completion

pg getpgbuf() to get the buffer for the new page:
{

if (MLD)
{

alloc status = PG MLD ALLOC:
clim set Value(lock on allocpg, alloc status);
release latch on allocpg:

pg log page allocation() to log the ALLOC;

if (MLD)
{
allocbuf=pg get alloc page(alloc Sdes, allocpg,
EX LATCH):

pg. pgalloc() to modify AP to reflect this allocation.

if (MLD)
{

alloc status &= -(PG MLD ALLOC);
clim set Value(lock on allocpg, alloc status);

release latch on allocpg:

Pseudo-code for the scanner is as follows:

OREACH DISKMAP(DBT DISKMAP(dbt), dmap, index)

for (allocpg= DMAP LSTART(dmap);
allocpg < DMAP NEXT LSTART(dmap);
allocpg += PGS IN ALLOC)

retry:
(MLD)

clim get value(lock on allocpg, status);
if (status & PG MLD ALLOC)
{

uppause(0.5 seconds);
goto retry;

US 2008/029.4648 A1

-continued

17: allocbuf=pg get alloc page(alloc Sdes, allocpg,
SH LATCH):

18:
19: if (MLD)
2O: {
21: clim get value(lock on allocpg, status);
22: if (status & PG MLD ALLOC)
23: {
24: release latch on allocpg:
25: uppause(0.5 seconds);
26: goto retry;
27:
28:
29:
30: P SPINLOCK(dbt->dbt thresh spin);
31: dbt->dbt scan = allocpg:
32: V SPINLOCK(dbt->dbt thresh spin);
33:
34: async broadcast this change to all clustered servers.
35: reservedpgS = pg allocpg extent count(...);
36: P SPINLOCK(dbt->dbt thresh spin);
37: local unreserved count-= reservedpgs:
38: V SPINLOCK(dbt->dbt thresh spin);
39:
40: check to make Sure the broadcast message has been successfully
delivered:

41: pg release alloc page(alloc Sdes, allocbuf);
42: }
43: }
44:
45: P SPINLOCK(dbt->dbt thresh spin):
46: dbt->dbt scan = MAXPGID:
47: V SPINLOCK(dbt->dbt thresh spin):
48: broadcast this to all clustered servers.

0343 Segment Count Recovery
0344) The present invention also provides a method for
segment count recovery. When a clustered server crashes the
current free page count (sg. unreservedpgs) in the local seg
acct structure is lost. However, the clustered server does not
exceed the limits at the time of the crash. Since recovery does
not require more space than what has already been accounted
for at runtime, during recovery the failed clustered server is
assumed to have reached the low limit. The surviving clus
tered servers perform the adjustments among themselves.
The recovery process does not update the Segacct space
accounting for data segments because it is already accounted
for. As for log segments, the redo pass of recovery will reserve
space needed for rolling back incomplete transactions and the
reserved space is remembered in dbt plcspace, but the allo
cation/deallocation does not update the Segacct structure.
0345. After a redo pass, the scan starts and scans all the
devices to get the correct unreserved page count for each disk
piece. After the disk scan is complete, the database is set to a
DBTH FREEZE state again, the unreserved map is aggre
gated, and the coordinator calculates the unreserved page
count for each disk piece as well as for each segment, after
which a new assignment is performed by the coordinator. The
methodology of the present inventionallows the online activi
ties to run while a failed clustered server is being recovered,
but it could potentially cause false threshold firings because
all of the last assigned space to the failed clustered server is
considered reserved until the redo is complete.
0346 Special Space Management for Log Segment
0347 The present invention provides a special space man
agement methodology forlog segments. In addition to normal
allocation/deallocation, another runtime activity also
changes the free page count in the log segment, which is a log

31
Nov. 27, 2008

space reservation. At the end of fail-over recovery when the
coordinator determines how much space to give to each clus
tered server for each segment, it considers the reserved log
space for a log segment. The free space on the dedicated log
segment is calculated and maintained differently than for
other segments. Instead of using the unreserved counts of the
disks belonging to this segment, an optimized approach is
taken to measure the free space on the dedicated log segment.
In the cluster system of the present invention this optimiza
tion is implemented as described below.
0348. At runtime, a global object lock controls the end of
the log in addition to the log semaphore, which controls
concurrent access to the end of the log. The lock value block
of this global object lock contains the value for dbt logallocs
field (i.e., “dbt logallocs'.) This field has type PERPETU
AL COUNTER (8 bytes).
0349 When a clustered server acquires this lock, it gets
the dbt logallocs value from the lock value block and put it in
local dbt. When log pages are allocated, the value of this field
is incremented. When the object lock is released, the dbt
logallocs indbt is copied back to the lock value block.
0350. There are no changes at checkpoint time. When the
checkpoint record is made permanent in the log (i.e., the node
has already obtained an EX lock on this end-of-log object
lock), the value in the dbt logallocs indbt is copied to dbinfo
>dbi logallocs at ckpt when the checkpoint marker is made
to dbinfo->dbi checkpt.
0351 Log deallocation does not require much change
compared to prior art systems. The log deallocation happens
at the clustered server where the dump tran is issued and as
part of the dump tran transaction, as does the update of dbi
logdealloc indbinfo.
0352. The runtime threshold management for dedicated
log segments is the same as for other segments (i.e., after
initial assignment each clustered server records the space
usage locally). If the local limit is hit, adjustment is done or
the threshold is fired.
0353. The method for log space reservation at runtime
remains similar to that of prior art systems (e.g., SMP sys
tems). The space is consumed from the local sg unreserved
pgs from the log segment.
0354. During fail-over recovery, all other steps taken for
the log segment are the same as for other segments, except for
how and when the total free space is calculated. For dedicated
log segments, the log free space is calculated before the
database recovery with the help from the cluster lock man
agement (CLM). This calculation is performed at the coordi
nator clustered server. For mixed-data-log segments, the free
log space is obtained the same way as other data segments
(i.e., by scanning the disk pieces). However, an additional
Solution is needed to address the issue of the space usage by
the log space reservation in log segments.
0355 The space usage by the log space reservation is not
accounted for by the disk piece scan (in the case of mixed
log-data) or by the value in dbt logallocs (in the case of
dedicated log segments). The value of free log pages is only
what is available on disk. Some portion of this free space is
taken away by the log space reservation and it needs to be
accounted for as used space when the space is assigned to
each clustered server. The number of log pages that are
reserved in one clustered server is obtainable from dbt->dbt
plcspace. For runtime activities, the log space reservation is
remembered in dbt->dbt plcspace. This is done locally. The
recovery process makes log reservations for the CLRS during

US 2008/029.4648 A1

the redo pass for each log record that belongs to an incomplete
transaction. (Note there is no need to do log space reservation
for PLCs because the records are already in the log.) The
present invention provides that when the recovery process
does the reservation it does not update the corresponding free
page count (sg. unreservedpgs) in the log segment, but only
updates the dbt->dbt plcspace in the recovery clustered
SeVe.

0356. The pseudo-code change forth log lct reserve?) is
as follows:

log lict reserveC)

P SPINLOCK(thresh spinlock);
if (Not RECOVERY process)
{

segp = &dbt->dbt seg|LOG SEGMENT:
th check(...);

10: dbt->dbt plcspace += alloc;
11:...

12: }

0357 For other segments, the assigned space is calculated
based on the total free page count and the threshold level. For
log segments, the dbt->dbt plcspace also plays a part in the
calculation. Consider the following example which assumes
the threshold level for the log segment is 100. In this example
the free log space on disk on server 1 is 400 (i.e., Sg unre
servedpgs=400 and dbt->dbt plcspace is 10. On server 3, the
free log space is not available as free log space is only calcu
lated on the coordinator clustered server. Also, dbt->dbt
plcspace is 5 on server 3. The assigned log space on each
clustered server is still calculated based on the free log space
on disk (e.g., sg unreservedpgs=400/2=200). However,
among the assigned space the portion represented by dbt
plcspace is already used, so it is taken out of the free space on
each clustered server (i.e., Sg unreservedpgs assigned
space-dbt plc.space (for a clustered server)). Accordingly,
sg, unreservedpgs is equal to 190 for clustered server 1 (200
10–190) and is equal to 195 for clustered server 3 (200
5–195).
0358. The process of calculating the free log space for a
single log generally proceeds as follows:
1) before recovery starts (i.e., the database is in DBTH
FREEZE state and the CLM does not grant any locks) the
coordinator clustered server calculates the most current dbt
logallocs while identifying the last log page. (The CLM has
information on where the end-of-log object lock was when
the crash happened). If the lock was held by the failed clus
tered server the CLM marks the lock IN-DOUBT. Then, a
rec logbounds() function is called to determine the correct
last log page. It uses the Stale value in the lock value block as
the start of the scan and follows the log page chain to the end
of the chain. It updates the local dbt->dbt logallocs with the
number of log pages it scanned and then uses it to update the
dbt logallocs in the lock value block. Otherwise, if the lock
was not held by the failed server, the coordinator has the
information about which clustered server is the current owner
of the lock. In this case, the clustered server that owns the lock
updates the dbt logallocs field in the lock value block with
the local dbt logallocs value to give an exact number of log
pages allocated. At this point, the dbt logallocs in the value

32
Nov. 27, 2008

block of the global end-of-log object lock is set correctly and
the end of the log is identified.
2) Next, the database's DBTH FREEZE state is cleared. The
database recovery process, as well as online activities, will
continue to run. During this period of time, the threshold
management of the log segment is similar to other data seg
mentS.

3)At the end of redo, disk pieces are scanned, new unreserved
pages for all segments except the dedicated log segment are
calculated, and the free space for the log is calculated.
4) For the dedicated log segment, the clustered server that
does the reassignment (i.e., the new cluster coordinator
server) will acquire the end-of-log object block, and therefore
get the dbt logallocs value from the lock value block. The
free log pages are then calculated.
0359. Overview of Improved Post-Commit Processing
Methodology
0360 Another challenge in a database management sys
tem is the management of data pages. It is common for a
contiguous chunk of pages to be managed by a single page.
Such an example is the allocation page in a database server
that manages a contiguous chunk of 256 pages called an
allocation unit. The allocation page (AP) keeps track of data
pages that are allocated, being deallocated, and free. Typi
cally, a pair of bits, the “alloc bit and the “dealloc bit in the
allocation page, represent the state of a data page.
0361 During runtime operation of the database, when a
page is allocated, the alloc bit in the allocation page is set.
During deallocation of the page, the dealloc bit is set and the
alloc bit is cleared. When the transaction commits the dealloc
bit is cleared. This is known as “post-commit work” or “post
commit processing. If the transaction were to rollback all
that is needed is to clear the dealloc bit and set the alloc bit.

0362. After a crash of a database, recovery has exclusive
access to the database being recovered. Allocations and deal
locations are handled by setting and clearing the alloc and/or
dealloc bits in the allocation page during redo/undo passes of
recovery. At the end of recovery, the dealloc bits are cleared.
This approach for post-commit processing works well pro
vided that recovery is the only one working on the database.
0363. In a clustered database server environment, when an
instance of a database server goes down, another instance
typically recovers the server that went down. During Such a
recovery (called failover recovery), the databases continue to
be online and other cluster servers continue to access the
database. Hence data pages, notably the allocation page, con
tinue to be accessed by other servers in the cluster of database
servers. This presents a unique challenge for post-commit
processing during recovery as recovery does not have exclu
sive access to the database. A fundamental problem to address
in this type of distributed environment is how to determine
when to clear the dealloc bits in the allocation page during
recovery.
0364. A simple, non-optimized, way to perform post-com
mit processing in a distributed environment is to log the
post-commit processing. During runtime operation of the
database, one can log the changes made to the allocation page
as a result of clearing the dealloc bits after a transaction
commits. During recovery, a decision can be made about
whether post-commit changes have been affected or not by
looking at the timestamp on the allocation page. However,
this approach of using logging adversely impacts system

US 2008/029.4648 A1

performance as it necessitates logging for every allocation
page affected for every transaction (as well as managing this
process).
0365. The present invention provides an optimized solu
tion for post-commit processing that avoids logging. The
system and methodology of the present invention applies a
series of rules in managing the deallocation of pages in a
running cluster system to take into account the fact that data
base server instances may occasionally crash. This approach
is further optimized by making use of the above-described
Cluster Lock Manager (CLM) to provide for maximum con
currency by storing relevant information to determine the
state of the page in its life cycle at the time of the crash. This
avoids movement of pages across the cluster and avoids the
potential for deadlocks.
0366. At a high level, the rules that are provided by the
present invention for managing deallocation of pages can be
summarized as follows. Initially, if the ownership of a dealloc
bit in an allocation page (AP) can be established to a log
record, and the dealloc has committed, the dealloc bit can be
safely cleared. For this rule to correctly apply, the following
assertions should hold true:
1) The deallocation (dealloc) has to be committed.
2) The dealloc bit has to be set.
3) For the class of dealloc log records, determine if the allo
cation page (AP) needs to be redone. If the AP needs to be
redone during recovery, then the AP is from the present and
post-commit work needs to be performed.
4) During failover recovery, consult the CLM to determine
the existence and State of the data page in the cluster. This
approach exploits the assertion that there can be no deallo
cated page in the cluster with a timestamp higher than the
timestamp on the allocation page.
0367 Allocation of Pages. During Runtime Operation of
Database
0368. In a non-clustered database server environment,
post-commit processing (i.e., the above-described changes to
an allocation page) is typically performed without logging as
recovery generally has exclusive access to the database being
recovered. Allocations and deallocations are handled by set
ting and clearing the alloc/dealloc bits in the allocation page
during the redofundo passes of recovery. At the end of recov
ery, the dealloc bits are cleared and extent Zapped if neces
sary. This process for post-commit processing works well in
this environment as recovery is the only instance working on
the database.

0369. In a clustered environment, however, when a clus
tered server is being recovered, the database continues to be
online and other servers may continue to access the database.
Hence, pages (notably the allocation pages) continue to be
accessed by other servers in the cluster. As a result, the afore
mentioned approach will not work correctly in many
instances as illustrated by the following examples.
0370. In the first example (Example 1), Transaction T1
allocates page P1 on Node N1. It does some work and then
deallocates the same page P1. As part of the deallocation, the
dealloc bit is set and the alloc bit is cleared on the allocation
page (AP). Assume that the timestamp on the AP due to this
change moves from 1000->1010. The transaction then com
mits. Before post-commit work is performed, more work is
done by other transactions on the allocation page of P1. This
work may, for example, be due to allocation and deallocation
of other pages in this allocation unit that are not related to
Transaction T1. As a result of these other transactions, the

Nov. 27, 2008

timestamp on the allocation page may, for instance, change to
1100. Also assume that the server then crashes before the
post-commit work is performed on the AP as illustrated in the
following table:

EXAMPLE 1.

0371

Action Page TS AP TS

Begin Tran T1 on Node N1
ALLOCP1 . . .
DEALLOC P1 100
COMMITT1
More work on AP 1100
Node N1 Crashes

1OOO->1010

0372. As a second example (Example 2), assume that
Transaction T1 allocates page P1 on node N1. It does some
work and then deallocates the same page P1. As part of the
deallocation, the dealloc bit is set and the alloc bit is cleared
on the allocation page (AP). Consider the timestamp on the
AP due to this change to be moving from 1000->1010. The
transaction then commits and post-commit work is per
formed. Note that since this is a non-logged operation, the
timestamp does not go forward. Assume that the node N1 then
crashes. The page P1 gets allocated in Node N2 by a transac
tion T2. It also gets deallocated in Node N2 and transaction
T2 commits. Due to changes in the AP by this transaction and
by other transactions the timestamp is considered to have
moved to 1100 as illustrated below:

EXAMPLE 2

0373

Action Page TS AP TS

Begin Tran T1 on Node N1
ALLOC P1

DEALLOC P1 100
COMMIT
post-commit WORK
More work on AP
Node N1 Crashes
Begin Tran T2 (in Node
N2)
ALLOC P1 in Node N2
DEALLOC P1 1100
COMMITT2

1OOO->1010

0374. After the crash, the system cannot determine based
on AP timestamps whether the dealloc bit set on the allocation
page is due to Transaction T1 whose post-commit work is not
yet completed as in Example 1, or possibly to another Trans
action T2 as in Example 2. Those skilled in the art will
appreciate that there are a number of other variations of the
above examples that may also involve this problem of deter
mining when to clear the dealloc bits in the allocation page
during recovery. The present invention provides a solution to
this problem which can be defined as follows: “During recov
ery, how can one decide when to clear the dealloc bits in the
allocation page?

US 2008/029.4648 A1

0375. Design of Post-Commit Processing Solution
0376. The following observations can be made with
regards to addressing the above problem of determining when
to clear the dealloc bits in the allocation page during recovery.
An initial observation is that this problem exists only for
committed transactions and does not apply to aborted trans
actions and incomplete transactions. During recovery,
aborted transactions are addressed by the CLRs in the redo
pass and the CLRS logged in the undo pass address the incom
plete transactions.
0377 Also, any solution to this problem needs to handle
multiple page/extent deallocations as indicated by log records
such as XREC DEALLOCM, XREC DROPEXTSMAP
XREC SOPGDEALLOC, XREC LOGDEALLOC in addi
tion to the single page deallocations represented by the
XREC DEALLOC log records. This complete group of log
records is referred to in the following discussion as “the class
of dealloc records'.
0378. The solution provided by the present invention can
be summarized as follows. For committed transactions, dur
ing redo, the following question is asked for the class of
dealloc records if one sees the deallocation bit set in the
allocation page: Does this deallocation bit (also referred to
herein as the “dealloc bit or “deal bit) represent the changes
due to this log record? If so, since the transaction is commit
ted, the dealloc bit is cleared. This can be expressed in a rule
as “if the ownership of a dealloc bit in an AP can be estab
lished to a log record, and the dealloc has committed, then the
dealloc bit can be safely cleared'.
0379 For the above rule to be correctly applied, the fol
lowing assertions should hold true. The system and method
ology of the present invention provides for traversing through
these assertions to establish the rule:
1) The dealloc has to be committed.
2) The dealloc bit has to be set.
3) A basic integrity check (objid/indid/ptnid) between the log
record and the extent should hold true.
0380. The present invention also uses two optimizations to
help determine the correct application of the rule:
1) For processing the class of dealloc log records determine if
the AP needs to be redone. If the AP needs to be redone during
recovery, then the AP is from the present and post-commit
work should be performed.
2) During node recovery, the CLM is consulted to determine
the existence and State of the data page in the cluster. The
present invention exploits the assertion from the distributed
timestamp methodology of the present invention that “there
can be no deallocated page in the cluster with a timestamp
higher than the timestamp on the allocation page'.
0381. The approach of the present invention is based on
identifying only those deallocations that need post-commit
processing. The solution leverages the fact that allocation
pages are time stamped in the cluster server. It follows a
logical approach and avoids additional logging (and the per
formance overhead associated with logging). The Solution
provides for maintaining a transaction table for committed
transactions with deallocations (deallocs). By restricting this
table to only transactions with deallocations, the size of the
table is limited. Given that post-commit processing is only
done on an as-needed basis, the solution has no significant
impact on system performance.
0382 Single Page and Multiple Page Deallocations
0383. The following discussion describes the high-level
design of the solution, addressing single page deallocations

34
Nov. 27, 2008

first and extending the solution to multiple page dealloca
tions. For each, both crash recovery, after the whole cluster
comes down, and node recovery, where one node fails and a
second node recovers the failed node, are discussed.
(0384. The XREC DEALLOC log record represents
single page deallocations. The page header of the page to be
deallocated at the time of deallocation is stored in the XREC
DEALLOC log record. The log record also stores the alloca
tion page's old and new timestamps.
0385. The log records that involve multiple page deallo
cations include the following:
XREC DEALLOCM: multiple page deallocations in an allo
cation unit, caused by online index reorganization.
XREC DROPEXTSMAP: Multiple extents dropped during
drop table or truncate table.
XREC SOPGDEALLOC: Deallocation of pages during sort
or other actions.
XREC LOGDEALLOC: Log page deallocations during log
truncation.
0386 For multiple page deallocations, the log records
store the bitmap of pages being deallocated (XREC DEAL
LOCM) in an allocation unit or the allocation/deallocation
maps (XREC DROPEXTSMAP). Also, as part of the above
described distributed timestamp methodology of the present
invention, allocation pages are time stamped. In addition, the
allocation page timestamp is incorporated into the XREC
DROPEXTSMAP and XREC SOPGDEALLOC log
records.
(0387. Single Page Reallocations During Crash Recovery
(0388 FIG. 12 is a high-level flow diagram 1200 illustrat
ing the method steps of the present invention for a single page
deallocation during crash recovery. During processing of the
dealloc record in the redo pass, a check is made as shown at
1220 to determine whether the dealloc is committed and AP
changes need to be redone. The check made at 1220 deter
mines if AP changes need to be redone by checking whether
the dealloc is committed. If the dealloc is committed, then the
dealloc is redone and necessary post-commit work is also
performed for committed deallocs as illustrated at 1222.
0389. However, if the dealloc is not committed at 1220,
then only the dealloc work is done at 1221. It should be noted
that for aborted or incomplete transactions only the dealloc is
redone and the approach of the present invention is to let the
undo pass (or redo of CLRs) handle further processing in the
case of aborted or incomplete transactions.
0390 Referring back to 1201 at FIG. 12, if an allocation
page (AP) does not need to be redone, then the AP is from the
future. In this event, the methodology of the present invention
provides for determining if post-commit processing needs to
be performed. First, a fundamental integrity check is per
formed as shown at 1210 at FIG. 12 to determine if the
objid/indid/ptnid in the extent matches the one in the log
record. If the integrity check fails, the process ends (exits) as
provided at 1211 as the fact that the log record does not match
the extent information indicates that the wrong point in time
is being examined. However, in the event of a match at 1210,
a check is made at 1213 to determine if the dealloc is com
mitted.
0391) If the dealloc is committed at 1213, the dealloc bit
(deal bit) is examined at 1217. If the dealloc bit is set (i.e., deal
bit set to 1), ownership needs to be established by finding out
if this is the dealloc record that should be associated with the
bit or if it is in the future. For example, this dealloc bit may
represent a future deallocation that is not committed. Note

US 2008/029.4648 A1

that since post-commit is not a time stamped action, there is
no way of physically determining if post-commit processing
has been completed. Hence, an approach of setting a bit for
this alloc unit in the recovery vbit map is used as provided at
1219. In addition, the status of the transaction is associated
with the extent. These allocation units are visited at the end of
redo and undo passes to clean up the deallocation bits. If the
dealloc is not committed, there is nothing further to do from
a post-commit processing perspective and the process ends
(exits) as provided at 1214-1216.
0392 The following summarizes the result of the above
steps when an AP does not require redo. At 1219, the dealloc
bit is set for a committed deallocation. This can be from the
future or the remnants of an uncompleted post-commit opera
tion. The vbit is marked and will be cleared at the end of the
redo pass for extents touched by completed transactions and
at the end of undo pass for all transactions. At 1218, there is
nothing more to do as the dealloc bit is not set for a committed
dealloc.
0393 At 1216, the dealloc bit is set (i.e., deal bit=1) for an
uncommitted dealloc. The present invention provides for con
tinuing and letting undo handle the rollback of the dealloc if
necessary. At 1215, the dealloc bit is not set (i.e., deal bit=0)
for a transaction that is not committed. The transaction can be
aborted or incomplete. Note that the AP did not need redo, as
that is an AP version from the future and one can just con
tinue. It should be noted that when the AP does not need a redo
and the dealloc is not committed, the process can just con
tinue irrespective of the deal bit. Both 1215 and 1216 repre
sent assertions that it is proper to continue with performing
post-commit processing in these instances.
0394 Single Page Deallocations During Node Recovery
0395. When a node crashes, and is recovered, the pages
recovered by the node may be worked on by other nodes in a
cluster. In other words, the database is still active. The
approach of the present invention for node recovery is similar
to that described above for crash recovery, but with some
additional steps resulting from the fact that other nodes in the
cluster remain active.
0396 FIGS. 13 A-B comprise a single high-level flow dia
gram 1300 illustrating the method steps of the present inven
tion for a single page deallocation during node recovery.
During processing of the dealloc record in the redo pass of
recovery, a check is made as shown at 1301 at FIG. 13A to
determine if AP changes need to be redone. If this check
determines that AP changes need to be redone then the pro
cess proceeds to 1320.
0397) If AP changes need to be performed, then post
commit changes may also need to be done. In this case, a
check is made at 1320 in the same fashion as described above
for crash recovery. If the dealloc is committed at 1320, the
dealloc is redone and the post-commit work is also performed
for committed deallocs as provided at 1322. However, for
aborted or incomplete transactions only the dealloc is redone
as provided at 1321. Further processing for aborted or incom
plete transactions is left for handling by the undo pass (or redo
of CLRs).
0398. A more difficult case is when the allocation page
(AP) does not need redo. Referring again to FIG. 13A, if the
allocation page (AP) does not require redo during node recov
ery at 1301, the method proceeds to 1310. In this case, the first
step is to perform the fundamental integrity check at 1310. If
the check fails, one can exit (end) the process as provided at
1311. However, if the integrity check at 1310 is successful,

Nov. 27, 2008

then a check is made at 1313 to determine if the dealloc is
committed. If the dealloc is not committed, there is no post
commit processing to do and the method ends as provided at
1315. However, if the dealloc is committed, the deal bit is
examined as shown at 1317 at FIG. 13B. If the deal bit is not
set (i.e., deal bit-0), there is no processing to do and the
method exits (ends) as provided at 1318. However, if the deal
bit is set (i.e., deal bit=1), ownership needs to be established.
In other words, a determination is made as to whether this deal
bit belongs to this log record, or if this is a remnant of not
doing post-commit processing for a deallocation that is com
mitted. One way to determine this is to request a shared lock
on the page and fetch the page (either from another node or
from disk). If the timestamp on the page is greater than the
log's new timestamp on the allocation page, then the page has
moved forward (i.e., the page was allocated again and is in a
different life cycle). In this case one can conclusively deter
mine that this dealloc bit does not belong to this log record
and exit as it can be assumed that post-commit processing for
this log record is completed. However, if the timestamp is
less, then this dealloc log record's post-commit work is not
yet complete. In this case it is safe to do the post-commit work
and clear the bit.
0399. Instead of fetching the page, the present invention
provides an optimization by consulting lock status informa
tion for the data page available from the CLM as shown at
1319 at FIG. 13B. The CLM can provide the following infor
mation:

1) Valid value. A valid lock exists on another node for the
page. This indicates that the page has moved forward in time.
Post-commit processing has completed and the page has been
allocated to a different node. No further processing is needed
and the method ends (exit) as provided at 1321.
2) No value. No lock exists which indicates that the page on
disk is the latest. As provided at 1322, the page can be read in
from disk and a timestamp (TS) check can be performed to
determine the ownership as above.
3) In-doubt. If the lock is in-doubt, this indicates that the node
that crashed held the lock before going down. It is important
to note that a page can have undergone multiple life cycles in
the recoverable log. A life cycle is denoted by an allocation
deallocation cycle of a page. To illustrate this consider the
following:

Page Timestamp (Transaction)

ALLOC P1 100 (T1)
300 (T1)

DEALLOC P1 300 (T1)
COMMITT1
ALLOC P1 400 (T2)

500 (T2)
DEALLOCP1 500 (T2)
COMMITT2(post-commit not performed)
Crash

0400. In the above situation, one needs to ensure that post
commit processing is done only for the deallocation for trans
action T2 and not for transaction T1. In other words it is
necessary to track the life cycle of the page. Otherwise, the
dealloc bit can be incorrectly cleared for Transaction T1.
04.01. Once the life cycle of the page has been identified,
the timestamp on the page can be compared with the AP log
new timestamp to determine the ownership of the dealloc bit

US 2008/029.4648 A1

with the log record. The log record is the owner if Page
TSCAP log new TS. The AP timestamp is floored with the
timestamp on the page during deallocation. If the page times
tamp is higher, then the page has been reallocated and is in a
different life cycle and therefore one can exit (end) the pro
cess as no further action is necessary.
0402. The CLM maintains for every lock, a lock value that
contains the timestamp on the page. This value is updated at
the following stages:
1) Page allocation.

2) Lock Downgrade.
0403. 3) Buffer gets destroyed (part of post-commit).
04.04 Since the value is updated during allocation, one can
consider that as a boundary to establish the life cycle of a
page. The methodology of the present invention will consider
establishing ownership only if the AP new timestamp (AP
new TS) as seen in the log record is in the current life cycle as
determined from the lock value block. For every lock in the
cluster, there is a node that contains the resource master. This
maintains the information about the lock and has the times
tamp stored in the value block.
04.05 There are two cases to consider:
1) The lock master is not on the crashed node. The lock value
block is available. In this case, for every dealloc log record, in
order to establish the ownership of the dealloc bit with the log
record, the timestamp from the log record is compared with
the timestamp in the lock value block. Post-commit process
ing will not be considered if the timestamp in the lock value
block is greater than the AP new TS as seen in the log record.
A higher timestamp indicates that the page has been reallo
cated again and is in a different life cycle.
2) The lock master is in the crashed node. The lock value
block is not available. One of the first things done on node
recovery is to reconstruct the lock master. It will have an
invalid value for the lock value block (timestamp). The times
tamp in the last life cycle during the analysis pass is then
determined (i.e., reconstruct the lock value block in the lock
master). Thus, at the end of the analysis pass one has the
timestamp at the last allocation of the page.
0406. During redo, a dealloc will not be considered for
post-commit processing if the lock value timestamp is greater
than the AP new timestamp as determined from the log
record. Once the ownership is determined, then based on the
other assertions the dealloc bit can be cleared.
0407. The following summarizes the result of the above
processing:
0408. If the dealloc is not committed at 1313 as shown at
FIG. 13A, the method can terminate (exit) as provided at
1315.

04.09. If the dealloc is committed at 1313, but the deal bit
is not set at 1317 at FIG. 13B, exit (end) as provided at 1318.
0410. If the dealloc is committed and the deal bit is set at
1317, determine if the deal bit belongs to this log record or is
from the future. In this case, the CLM is consulted for the
latest version of the page as provided at 1319 at FIG. 13B. The
values of interest at 1319 areas follows: a lock exists (VALID
VALUE), a lock does not exist (NOVALUE), and the lock is
IN-DOUBT. The method proceeds to 1321, 1322, or 1323,
respectively, based on these values.
0411. If there is a valid lock on the page in another node
with a valid status (VALID VALUE), then this deal bit does
not belong to this log record (e.g., the page is in another node)
as provided at 1321.

36
Nov. 27, 2008

0412. If no lock is held by any node (NOVALUE), then the
page on disk is the latest. As provided at 1322, the page is read
and the timestamp (TS) is checked. If the page timestamp is
not greater than the log new AP timestamp (TS), the bit is
cleared.
0413 If the lock is IN-DOUBT, then this node held the
latest version of the page before crash. A check is made as
illustrated at 1323 to determine if the log record reflects the
last incarnation of the page. If not, the process is exited
(ended) as provided at 1324.
0414. If the check at 1323 determines that the log record
belongs to the last incarnation of the page, the timestamp on
the page is compared with the AP new timestamp in the log
record as provided at 1330. If the page timestamp (TS) is
greater than the AP new timestamp (TS) in the log record at
1330, then this is from the future and the process ends (exits)
as provided at 1331. Otherwise, the bit is cleared as provided
at 1332.
0415 Multiple Page Deallocations
0416 For multiple page deallocations, the same approach
and methodology discussed above for single page allocations
is applied, with the following modifications:
1) The extent-log record check encompasses all the extents
denoted in a log record if the log record affects multiple
eXtentS.

2) In order to associate the dealloc record and the post-com
mit work, a check is made to determine if all the dealloc bits
as specified by the log record are set.
0417. Furthermore, in order to conclusively ascertain that
the operation has not been recycled (to ensure that one is not
seeing the same set of operations from the future), the times
tamp of one of the pages specified in the bitmap is checked
against the new timestamp of the AP in the log record. If the
timestamp on the page is greater, then the page has gone
forward and a future version is being examined. Examining
one of the pages is Sufficient because if one page has moved
forward in time then it can be assumed that all pages have
moved forward in time given the same deallocation bitmap.
As discussed previously, there can be no free page with a
timestamp greater than the allocation page. The optimization
of using the CLM can also be extended to cover multiple
pageS.
0418 Determining that Deallocation has Committed
0419. It should be noted that completed transactions in
phase-1 recovery are removed from the transaction table dur
ing the analysis pass. Also note that completed transactions
include committed and aborted transactions. Hence, a list of
committed transactions is maintained and used during the
post-commit processing.
0420. A dealloc belonging to a committed transaction is
not necessarily a committed dealloc, for the dealloc may be
rolled back in cases such as “rollback to savepoint'. For
example, the following can be a log sequence due to rollback
to savepoint:

: Begin Tran T1

: Save tran foo
: dealloc P1
: dealloc P2
: CLR
: CLR
: Commit Tran

US 2008/029.4648 A1

0421 Although the transaction has committed, the deal
location of pages P1 and P2 are rolled back. There is no
restriction on the number of savepoints in a transaction.
0422 To address these issues a transaction table is main
tained for committed transactions. This table contains a log
record from the class of dealloc log records. For each trans
actionalist of rollback blocks is maintained to address deal
locations that are rolled back. A dealloc is a committed deal
loc if the transaction is committed and the dealloc is not part
of a rollback block. Deallocations that are part of committed
NTAs (nested top actions) are considered committed deallocs
irrespective of the status of the outer transaction. Thus each
committed Xitem will have an array of rollback blocks and an
array of committed NTAs.
0423 Recover Only In-Doubt Pages
0424 One of the conditions in failover recovery is that
only in-doubt pages will be recovered. This means that only
log records belonging to changes in in-doubt pages will be
processed. If a page is not in-doubt, then the page changes
should be on disk. Recovery routines that fetch pages will
check if they are in-doubt and processing will proceed only
for the in-doubt pages.
0425. While the invention is described in some detail with
specific reference to a single-preferred embodiment and cer
tain alternatives, there is no intent to limit the invention to that
particular embodiment or those specific alternatives. For
instance, those skilled in the art will appreciate that modifi
cations may be made to the preferred embodiment without
departing from the teachings of the present invention.
What is claimed is:
1. A method for transferring a data structure in cache at a

first database server to a second database server in a distrib
uted database system, the method comprising:

determining a first database server having a data structure
in cache in response to a request for the data structure
from a second database server,

providing the request for the data structure to the first
database server,

in response, sending the data structure and a message con
taining an address where the data structure needs to be
copied on the second database server to the second data
base server; and

receiving the data structure at the second database server
using the data structure address included with the mes
Sage.

2. The method of claim 1, wherein the data structure com
prises a data page.

3. The method of claim 1, wherein said request for the data
structure includes a lock request for the data structure from
the second database server.

4. The method of claim 3, wherein said sending step
includes granting the lock request based on sending the mes
sage including the data structure address.

5. The method of claim 1, further comprising:
providing a resource master for tracking data structures in

cache at database servers in the distributed database
system.

6. The method of claim 5, wherein said determining step
includes consulting the resource master for determining the
first database server having the data structure in cache.

7. The method of claim 5, wherein said providing step
includes receiving a lock request for the data structure from
the second database server at the resource master and sending
the lock request to the first database server.

37
Nov. 27, 2008

8. The method of claim 7, wherein said resource master
determines whether to grant the lock request.

9. The method of claim 7, wherein the resource master
sends a lock downgrade message to the first database server.

10. The method of claim 9, wherein the resource master
sends a lock granted message to the second database server
after receiving a reply from the first database server that it has
downgraded the lock.

11. A computer-readable medium having processor-ex
ecutable instructions for performing the method of claim 1.

12. A method for transferring a data structure in cache at a
first database server to a second database server in a distrib
uted database system, the method comprising:

determining a first database server having a data structure
in cache in response to a request for the data structure
from a second database server, the request including a
request for a lock on the data structure;

providing the request for the data structure to the first
database server;

in response, sending the data structure from the first data
base server to the second database server; and

receiving and using the data structure at the second data
base server without waiting for the lock request to be
explicitly granted.

13. The method of claim 12, wherein said sending step
includes indicating the request for a lock on the data structure
is to be granted to the second database server.

14. The method of claim 12, further comprising:
providing a resource master for tracking data structures in

cache at database servers in the distributed database
system.

15. The method of claim 14, wherein said determining step
includes consulting the resource master for determining the
first database server having the data structure in cache.

16. The method of claim 14, wherein said providing step
includes receiving the request for a lock on the data structure
at the resource master and sending the lock request to the first
database server.

17. The method of claim 16, wherein said resource master
determines whether to grant the request for a lock.

18. The method of claim 16, wherein the resource master
sends a lock downgrade message to the first database server.

19. The method of claim 18, wherein the resource master
sends a lock granted message to the second database server
after receiving a reply from the first database server that it has
downgraded the lock.

20. A computer-readable medium having processor-ex
ecutable instructions for performing the method of claim 12.

21. In a distributed database system having a plurality of
database servers, a system for transferring a data structure in
cache at a first database server to a second database server, the
system comprising:

a resource master for determining a first database server
having a data structure in cache in response to a request
for the data structure from a second database server, the
request including a request for a lock on the data struc
ture and for providing the request for the data structure to
the first database server;

a first database server which sends the data structure to the
second database server in response to the request
received from the resource master, and

a second database server which receives and uses the data
structure sent by the first database server without waiting
for the lock request to be explicitly granted.

US 2008/029.4648 A1

22. The system of claim 21, wherein the resource master
determines whether the request for a lock on the data structure
is to be granted to the second database server.

23. The system of claim 21, wherein the resource master
tracks data structures in cache at a plurality of database serv
ers of the distributed database system.

24. The system of claim 21, wherein said resource master
determines whether to grant the request for a lock received
from the second database server.

25. The system of claim 24, wherein the resource master
sends the lock request received to the first database server if it
grants the request for the lock received from the second data
base server.

26. The system of claim 24, wherein the resource master
sends a lock downgrade message to the first database server if
it grants the request for the lock received from the second
database server.

27. The system of claim 26, wherein the resource master
sends a lock granted message to the second database server
after receiving a reply from the first database server that it has
downgraded the lock.

28. In a distributed database system comprising a plurality
of nodes sharing access to data, a method for regulating
access to data objects in cache at nodes of the distributed
database system, the method comprising:

providing a lock master at one of said plurality of nodes for
regulating access to data objects in cacheat said plurality
of nodes;

Submitting a lock request for a given data object requested
at a first node of the distributed database system to the
lock master, the lock request including an address to
which the given data object is to reside at the first node:

Nov. 27, 2008

forwarding the lock request from the lock master to a
second node having the given data object in cache; and

in response, transferring the data object from the second
node to the first node using the address included with the
lock request without waiting for the lock request to be
explicitly granted.

29. The method of claim 28, wherein the data object com
prises a data page.

30. The method of claim 28, wherein said lock master
determines whether to grant the lock request.

31. The method of claim 30, wherein said lock master
determines whether to grant the lock request based, at least in
part, on whether a lock is maintained on the given data object
at the second node.

32. The method of claim 31, wherein said lock master
determines whether to grant the lock request based, at least in
part, on type of lock maintained on the given data object.

33. The method of claim 31, wherein said forwarding step
includes implicitly granting the lock request based on for
warding the lock request to the second node.

34. The method of claim 28, wherein said forwarding step
includes sending a lock downgrade message to the second
node together with the lock request.

35. The method of claim 34, further comprising:
sending a lock granted message to the first node after the

lock master receives a reply from the second node to the
lock downgrade message.

36. The method of claim 28, wherein the lock master runs
at a selected one of the first node, the second node and a third
node.

37. A computer-readable medium having processor-ex
ecutable instructions for performing the method of claim 28.

c c c c c

