
MAI MULT A TINKTUULIT UNION NATIN NA HII
US010067957B1

(12) United States Patent
Aman

(10) Patent No . : US 10 , 067 , 957 B1
(45) Date of Patent : " Sep . 4 , 2018

(54) PROCESS FOR SERIALIZING AND
DESERIALIZING DATA DESCRIBED BY A
SCHEMA

USPC . 707 / 600 - 899
See application file for complete search history .

(56) References Cited
(71) Applicant : Google LLC , Mountain View , CA (US) U . S . PATENT DOCUMENTS
(72) Inventor : Robert Matthew Aman , Beaverton ,

OR (US)
(73) Assignee : Google LLC , Mountain View , CA (US)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 75 days .
This patent is subject to a terminal dis
claimer .

6 , 366 , 934 B1
6 , 754 , 670 B1
8 , 656 , 055 B2
8 , 725 , 674 B1

2001 / 0029604 Al
2003 / 0221051 A1
2005 / 0108627 A1
2005 / 0114394 Al
2006 / 0218174 Al
2007 / 0255751 A1
2008 / 0195622 AL
2009 / 0307229 A1
2011 / 0022611 AL
2012 / 0278702 A1

4 / 2002 Cheng et al .
6 / 2004 Lindsay et al .
2 / 2014 Das
5 / 2014 Bennett et al .

10 / 2001 Dreyband et al .
11 / 2003 Hand et al .
5 / 2005 Mireku
5 / 2005 Kaipa et al .
9 / 2006 Cook et al .

11 / 2007 Bansal et al .
8 / 2008 Lelcuk et al .

12 / 2009 Kunti et al .
1 / 2011 Yorke

11 / 2012 Base et al . (21) Appl . No . : 15 / 253 , 199
(22) Filed : Aug . 31 , 2016 Primary Examiner — Michelle Owyang

(74) Attorney , Agent , or Firm — Lerner , David ,
Littenberg , Krumholz & Mentlik , LLP Related U . S . Application Data

(63) Continuation of application No . 13 / 559 , 217 , filed on
Jul . 26 , 2012 , now Pat . No . 9 , 460 , 198 .

(51) Int . CI .
G06F 1730 (2006 . 01)

(52) U . S . CI .
CPC G06F 1730297 (2013 . 01) ; G06F 173056

(2013 . 01) ; G06F 17 30312 (2013 . 01) ; G06F
17 / 30377 (2013 . 01) ; G06F 17 / 30495

(2013 . 01) ; G06F 17 / 30607 (2013 . 01) ; G06F
17 / 30707 (2013 . 01)

(58) Field of Classification Search
CPC GO6F 7 / 00 ; G06F 8 / 427 ; G06F 17 / 30914 ;

GO6F 17 / 30607 ; G06F 17 / 30569 ; GO6F
17 / 30867 ; G06F 17 / 30707 ; G06F
17 / 30734 ; G06F 17 / 3089 ; GO6F

17 / 30896 ; G06F 17 / 30958

(57) ABSTRACT
A process for serializing and deserializing instance data
from a schema is disclosed . A schema can be used to
automatically and dynamically generate classes and meth
ods . First , the raw schema may be parsed into an interme
diate data structure consisting of < key , value > pairs repre
senting object properties and attributes of the properties .
Then , an exemplary process generates new parser classes
and methods by iterating over the intermediate data struc
ture ' s keys and generating classes or class variables based
on the property type . Accessors and mutators are generated
for each class variable . Additionally , a serialization method
and a constructor method are generated for each class . These
classes and methods are stored in memory and can be used
by a host programming language to transmit , receive , and
manipulate data to or from an API .

18 Claims , 13 Drawing Sheets

Receiving a schema that
describes the format and
properties of an object

401

Using a class library to
convert raw schema into a
intermediate key , value pair
data structure such as a hash

table
402

Dynamically generating parser
classes and methods from the
properties using associate
values representing the

attributes of the
corresponding property

403

Store generated parser classes
and methods in memory

404

U . S . Patent Sep . 4 , 2018 Sheet 1 of 13 US 10 , 067 , 957 B1

{ " description " : " A representation of a person , company , organization , or place " ,
" type " : " object " ,
" properties " : {

" fn " : { " description " : " Formatted Name " , " type " : " string ") ,
" familyName " : { " type " : " string " , " required " : true } ,
" givenName " : { " type " : " string " , " required " : true } ,
" additionalName " : { " type " : " array " , " items " : { " type " : " string "] } ,
" honorificPrefix " : { " type " : " array " , " items " : { " type " : " string " } } ,
" honorificSuffix " : { " type " : " array " , " items " : { " type " : " string "] } ,
" nickname " : { " type " : " string " } ,
" url " : { " type " : " string " , " format " : " url " } ,
" email " : { 101 101

" type " : " object " ,
" properties " : {

" type " : { " type " : " string " } ,
" value " : { " type " : " string " , " format " : " email " } } ,

- . . PIILIP JIL - - - - - - - - - II . - U NI - L LLLS . . - - - - - - I . w - - - - uw 5 - - - - L wur - LI . I - - - L -

wwwwwwwwww ! *

om www I - - - - - wwer www su — — * w -

tel " : 1

" type " : " object " ,
" properties " : {

" type " : { " type " : " string " } ,
" value " : { " type " : " string " , " format " : " phone " } } ,

" adr " : " http : / / json - schema . org / address " ,
" geo " : " http : / / json - schema . org / geo " ,
" Ez " : { " type " : " string " } ,
" photo " : { " format " : " image " , " type " : " string " } ,
" logo " : { " format " : " image " , " type " : " string " } ,
" sound " : [" format " : " attachment " , " type " : " string " } ,
" bday " : { " type " : " string " , " format " : " date ") ,
" title " : { " type " : " string ") ,
" role " : { " type " : " string ") ,
" org " : { " type " : " object " ,

" properties " : {
" organizationName " : { " type " : " string " } ,
" organizationUnit " : { " type " : " string " } } ,

FIG . 1

Patent Sep . 4 , 2018 Sheet 2 of 13 US 10 , 067 , 957 B1

{ " description " : " An Address following the convention of http : / / microformats . org / wiki / hcard " , " type " : " object " ,
" properties " : {

" post - office - box " : { " type " : " string " , " requires " : " street - address " } ,
" extended - address " : " type " : " string " , " requires " : " street - address ") ,
" street - address " : { " type " : " string " , " requires " : " region " } ,
" locality " : { " type " : " string " , " requires " : " region " , " required " : true } ,
" region " : { " type " : " string " , " requires " : " country - name " , " required " : true } ,
" postal - code " : { " type " : " string " } ,
" country - name " : { " type " : " string " , " required " : true }
}

FIG . 2a

U . S . Patent Sep . 4 , 2018 Sheet 3 of 13 US 10 , 067 , 957 B1

{ " description " : " A geographical coordinate " ,
" type " : " object " ,
" properties " : {

" latitude " : { " type " : " number " } ,
" longitude " : { " type " : " number " }
}

FIG . 2b

U . S . Patent Sep . 4 , 2018 Sheet 4 of 13 US 10 , 067 , 957 B1

. . » L . 4 - - - - - - * - - - - - - W RP 1 IN NIIN

{ " description " : " A binary tree node " ,
" type " : [" object " , " null ”]
" properties " : { . .

" left " : { " Sref " : " node . json " } ,
" right " : { " $ ref " : " node . json " } ,
" value " : { " type " : " any " }

301

FIG . 3

U . S . Patent Sep . 4 , 2018 Sheet 5 of 13 US 10 , 067 , 957 B1

Receiving a schema that
describes the format and
properties of an object

401

Using a class library to
convert raw schema into a
intermediate key , value pair
data structure such as a hash

table
402 4414 Dynamically generating parser

classes and methods from the
properties using associate
values representing the

attributes of the
corresponding property

403

Store generated parser classes
and methods in memory

404

FIG . 4

U . S . Patent Sep . 4 , 2018 Sheet 6 of 13 US 10 , 067 , 957 B1

KEY VALUE
• - . M . +

description A representation of a person , company , organization , or place
- - - - - -

type object
KEY VALUE

- - - - - - - -

KEY VALUE
Formatted Name

- - - - -

description in properties
type string

KEY

whereasures
VALUE
string

- - -

familyName
type

required
- - - - true

. . . .

KEY
- - - - - - - - -

.

that w given Name

VALUE
string
true

VALUE

type
required
KEY

- - - -

. .

e

additionalName +

. type array

TRE KEY VALUE
e nana

items
H amma AVE type string

m

KEY VALUE

. . . . www . rusty honorificPrefix type array
KEY VALUE items

ntvw type string wwwwww KEY VALUE

twitter .
u type array

honorificSuffix
items KEY VALUE

type string
KEY

n

nickname type
KEY

VALUE
string
VALUE

otto type
w

format
KEY

string
url

VALUE
tutto c NA type object

email
KEY

- - - - - - - - - - - - properties type KEY
type

VALUE
VALUE
string
VALUE
string

KEY

value type

format email

502 FIG . 5

U . S . Patent Sep . 4 , 2018 Sheet 7 of 13 US 10 , 067 , 957 B1

Iterate over list of
properties

601

- -
Read the

associate values
representing the
attributes of the

property
602

Generate a class
variable based

on the
property ' s
attributes
603

YES
Is the property

Ca non - scalar , non - array
type ?
604

Define a new
parser class for

the object
605

NO

Define accessor /
mutator (getter
setter) for the
property on the
current parser

class
606

Put all validation information including
type - checking , bounds - checking , and
format - checking in the appropriate

accessor / mutator
607

Put information about data
transformations required during
serialization / deserialization into
appropriate accessor / mutator FIG . 6

608

YES NO Are there more
properties ?

/ Store Parser
Class
610 609

U . S . Patent Sep . 4 , 2018 Sheet 8 of 13 US 10 , 067 , 957 B1

class BusinessCard
attr _ accessor fn
attr accessor familyName
attr _ accessor given Name
attr _ accessor additionalName
attr accessor : honorificPrefix
attr accessor honorificSuffix
attr _ accessor nickname
attr _ accessor : url
attr _ accessor email
attr _ accessor : tel
attr accessor adr
attr _ accessor geo
attr accessortz
attr _ accessor photo
attr _ accessor logo
attr _ accessor sound
attr _ accessor : bday
attr accessor title
attr accessor role
attr _ accessor org

def initialize (schema _ instance)
defines a new business card
instance
from a schema instance parameter
end

def serialize ()
serializes the business card object
end

end

class email
attr _ accessor type , format
end

class tel
attr _ accessor type , format
end

class adr
attr _ accessor street1 , : street2 , : city ,
: state / province , : zip / postal code , : country
end

FIG . 7
class geo
attr _ accessor fat , : long
end

class org
attr _ accessor organization Name ,
organization Unit
end

U . S . Patent Sep . 4 , 2018 Sheet 9 of 13 US 10 , 067 , 957 B1

"

.

.

. - - .

-

-

-

- -

-

A

AL

US " fn " = > " Robert M . Aman " ,
" familyName " = > " Aman " ,
" givenName " = > " Robert " ,
" additionalName " = > [" Danger "] ,
" nickname " = > " Bob " ,
" url " = > " https : / / plus . google . com / 112343 " ,
" email " = >

" type " = > " personal " ,
" value " = > " hello @ hello . com "

" telephone " = >

" type " = > " home " ,
" value " = > " (555) 234 - 1678 "

} ,
" org " = > {

" organizationName " = > " OLD " ,
" organizationUnit " = > " code "

-

.

.

* * *

FIG . 8

U . S . Patent Sep . 4 , 2018 Sheet 10 of 13 US 10 , 067 , 957 B1

KEY Y VALUE

i
VALUE

Robert M . Aman Robert M . Aman fn

familyName Aman

given Name Robert Robert

I ' Danger ") additionalName [“ Danger "]

nickname Bob

https : / / plus . google . com / 112343 uri

email KEY VALUE
www . t

type personal

value hello @ hello . com

FIG . 9

U . S . Patent Sep . 4 , 2018 Sheet 11 of 13 US 10 , 067 , 957 B1

instance = BusinessCard . new ([
" fn " = > " Robert M . Aman " ,
" familyName " = > " Aman " ,
" givenName " = > " Robert " ,
" additionalName " = > [" Danger ") ,
" nickname " = > " Bob " ,
" url " = > " https : / / plus . google . com / 112343 " ,
" email " = >

" type " > " personal " ,
" value " > " hello @ hello . com "

" telephone " >

" type " > " home " ,
" value " > " (555) 234 - 1678 "

" org " >
" organizationName " > " DLD " ,
" organizationUnit " > " code "

instance given name # " Robert "
instance , family name # " Aman "
instance , additional name # [" Danger ")
instance , family _ name # " Aman "
instance , nickname # " Bob "
instance . url # " https : / / plus . google . com / 112343 "
instance . email . type # " personal "
instance , email . value # " hello @ hello . com "
instance . telephone . type # " home "
instance , telephone . value # " (555) 234 - 1678 "
instance , org . organization _ name # " DLD "
instance . org . organization unit # " code "

FIG . 10

U . S . Patent Sep . 4 , 2018 Sheet 12 of 13 US 10 , 067 , 957 B1

Retrieve schema data
1101

PARSE Schema data

w

Use a class library to convert raw schema
instance into a raw data structure such as

a hash table
1102

wwwwwwwwww
Dynamically generate instance object and
methods from the properties in the raw

data structure
1103

Iterate over list of
properties

1104

For each property ,
read the data

associated with that
property

1105

YES

YES Is the property a non -
scalar , non - array type ?

1106

Define a new instance
object
1107

NO

Set corresponding
property on current

instance object
1108

Are there more
properties ?

609 Use instance object to
perform API tasks

1109
perfo NO

FIG . 11

U . S . Patent

COMPUTING DEVICE (1200)

BASIC CONFIGURATION (1201)

SYSTEM MEMORY (1220)

PROCESSOR (1210)

ROM / RAM

UP / UC / DSP

OPERATING SYSTEM (1221)

LEVEL 1 CACHE (1211)

LEVEL 2 CACHE (1212)

Sep . 4 , 2018

APPLICATION (1222)
A process for serializing and

deserializing data from a schema (1223)

PROCESSOR CORE ALU / FPU / DSP (1213)
REGISTERS (1214)

Sheet 13 of 13

PROGRAM DATA (1224)

MEMORY CONTROLLER (1215)

SERVICE DATA (1225) wa mtoto

MEMORY BUS (1230)

US 10 , 067 , 957 B1

FIG . 12

US 10 , 067 , 957 B1

PROCESS FOR SERIALIZING AND SUMMARY
DESERIALIZING DATA DESCRIBED BY A

SCHEMA This specification describes technologies relating to seri
alizing and deserializing data and specifically to a method

CROSS - REFERENCE TO RELATED 5 for dynamically generating classes and objects from a
APPLICATIONS schema at runtime .

In general , one aspect of the subject matter described in
The present application is a continuation of U . S . patent this specification can be embodied in a system and method

application Ser . No . 13 / 559 , 217 , filed Jul . 26 , 2012 , the for dynamically generating classes and methods in memory .
disclosure of which is incorporated herein by reference . 10 An exemplary system includes one or more processing

devices and one or more storage devices . The storage
BACKGROUND devices store instructions that , when executed by the one or

more processing devices , cause the one or more processing

Web services provide access to various types of data such devices to : receive a schema , which describes the format and
15 properties of instance data to be transmitted or received ; use as maps , email , news , and social networking information . a client library to convert the raw schema data into an Web service providers often provide application program

ming interfaces (APIs) so that software developers can have intermediate key , value pair data structure with each key
representing a property of the object ; dynamically generate

controlled access to web services and data . An API is a parser classes and methods using associative values repre code - based specification which allows software components 20 components 20 senting the attributes of the corresponding property which
to communicate with one another . APIs may contain infor include a type attribute ; and store the generated parser
mation such as the methods available and the data returned classes and methods in memory . An exemplary method
by the available methods from a particular web service . includes : receiving a schema , which describes the format

For example , a web service provider may create a web and properties of instance data to be transmitted or received ;
mapping service and provide a Map API for software 25 using a client library to convert the raw schema data into an
developers to access the mapping service ' s functionality . intermediate key , value pair data structure with each key
The Map API may contain information about the web representing a property of the object ; dynamically generat
mapping service including methods to obtain : directions to ing parser classes and methods using associative values
a place , the travel distance between places , the travel time representing the attributes of the corresponding property
between places , and a place ' s elevation . If a software 30 which include a type attribute ; and storing the generated
developer is building an application for a fast food restau parser classes and methods in memory .
rant , the developer may want to use the Map API to allow These and other embodiments can optionally include one
a user to request directions to the restaurant from the user ' s or more of the following features : dynamically generating
current location . The developer does not have to write the parser classes and methods comprises iterating over the
map - specific code to obtain directions , but can instead use stead use 35 property keys , for each property using the associative values

representing the attributes of the property to generate a class the Map API to access the web service provider ' s function variable , and defining accessors and mutators for each class ality and obtain the directions . The developer can write code variable ; defining a new parser class for the property if the that calls the methods that are defined by the API and uses property ' s type attribute is of non - scalar , non - array value ; the data that is returned from the methods . 40 responsive to the presence of a validation attribute , adding Most API providers also give developers a client library validation information to the accessor or mutator of the
and / or documentation which demonstrates how to retrieve corresponding property ; responsive to the presence of a data
data objects from their respective APIs . An API client library transformation attribute , adding data transformation infor
may include a discovery document as generated code which mation to the accessor or mutator of the corresponding
shows a developer how to access objects and methods . The 45 property ; generating a serialization method on the new
discovery document is structured data that may contain : (1) parser class that converts the parser class into a serialized
a list of API resource schemas that describe the data devel format ; generating a parser class constructor which takes
opers have access to in each API , (2) a list of API methods unparsed instance data as a parameter and returns an
and available parameters for each method , and (3) the format instance object with properties set to values from the
of the information that will be returned from each method 50 instance data ; and matching the property to the defined types
when the method is accessed . in the order that the types are listed in the schema and

Data typically needs to be serialized by a web service responsive to a match , using the matching type to create the
before it is sent to a remote client . Serialization is the process class property .
of converting classes and objects into a linear sequence of The details of one or more embodiments of the invention
bytes for either storage or transmission to another location . 55 are set forth in the accompanying drawings which are given
Often the linear sequence of bytes is represented as a string . by way of illustration only , and the description below . Other
Data also needs to be deserialized into classes and objects features , aspects , and advantages of the invention will

become apparent from the description , the drawings , and the when the data is received via an API by the remote client . claims . Like reference numbers and designations in the Deserialization is the process of taking in the linear 60 various drawings indicate like elements . sequence of bytes and recreating classes and objects from
these bytes . Most data conversion software for serialization BRIEF DESCRIPTION OF THE DRAWINGS
and deserialization is written by hand and parses data into
manually - created classes and objects . While this approach FIG . 1 is an example Java Script Object Notation (ISON)
may be viable for a small number of APIs , mistakes are 65 schema describing a business card .
likely when data must be parsed for numerous APIs or when FIG . 2a is an example JSON schema describing an
APIs are frequently updated . address .

US 10 , 067 , 957 B1

FIG . 2b is an example JSON schema describing a geo FIG . 1 also shows that schemas may contain other sche
graphical coordinate . mas . (101) Schemas inside of other schemas are referred to

FIG . 3 is an example JSON schema describing a binary as " nested schemas . ” In FIG . 1 ' s example schema , the
tree node . business card property " email " contains a schema (101) that

FIG . 4 is a flow diagram of an exemplary method for 5 defines the characteristics of an email . This email schema is
deserializing data from a schema . nested within the business card schema . The email schema

FIG . 5 is an example < key , value > pair structure repre (101) includes an email type property and an email address
senting a business card . value property . In FIG . 1 , the telephone property (tel) and

FIG . 6 is a flow diagram of an exemplary method for the organization property (org) also contain schemas that are
deserializing data from a schema . 10 nested within the business card schema .

FIG . 7 is an example ruby class diagram for a business Schemas may additionally be defined in separate files
card . from one another . For example , in FIG . 1 the properties

FIG . 8 is an example JSON schema data describing an “ adr ” and “ geo , ” defining an address and a geographic
instance of a business card . location respectively , contain definitions that reference urls .

FIG . 9 is an example < key , value > pair structure repre - 15 The actual object definitions of these properties exist in the
senting an instance of a business card . file that is defined by the url . These properties ’ schemas are

FIG . 10 is an example of instantiating a business card shown in FIGS . 2a and 2b .
class and the values of the class variables after instantiation . Schemas may also extend other schemas , creating an

FIG . 11 is a flow diagram of an exemplary method for inheritance relationship between the schemas . A schema that
deserializing data from schema data . 20 extends another schema is called a child schema and will

FIG . 12 is a block diagram illustrating an exemplary inherit all properties and constraints from the inherited ,
computing device . parent , schema . The inheritance relationship requires that

any instance of a child schema be validated against the
TERMS parent schema .

25 Schemas may also reference themselves as illustrated in
“ Schema data ” refers to a serialized , unprocessed version FIG . 3 . FIG . 3 shows a schema which defines a binary tree

of a schema . node called node . json . The schema has references to itself in
" Parser class ” means the in - memory representation of a each of its properties . The schema defines two properties ,

schema that can be used to process instance data . left and right , which refer to node . json since both properties
“ Instance data ” may refer to either the serialized , unpro - 30 are also binary tree nodes .

cessed data an API uses in request and response bodies and As discussed above , instance data typically needs to be
as parameters to remote procedure calls . “ Instance data ” serialized and deserialized when it is transmitted to and from
may also refer to the intermediate , partially processed form a remote client . Parser classes are created in order to perform
generated by JSON or XML libraries . deserialization . Instance objects are used to perform gen

“ Instance object ” is the fully - processed in - memory rep - 35 eration . Parser classes parse data often from strings and
resentation of instance data . generators generate objects from the parsed data . Often ,

“ Property data ” refers to the data elements that make up these classes are created manually . Although the manual
an instance object . creation of parsers and generators for serialization and

deserialization is typically time - consuming and error prone ,
DETAILED DESCRIPTION 40 a schema may be used to automate the process , making it

more efficient and consistent .
According to an exemplary embodiment , a schema can be As illustrated in FIG . 4 , an exemplary process for auto

used to automatically and dynamically serialize and deseri matically and dynamically serializing and deserializing
alize instance data that is transmitted to or received from an instance data that is transmitted to or received from an API
API client . 45 begins with receiving schema data that describes the

A schema is a framework that helps organize and interpret expected format of instance data which is transmitted from
information . A schema is typically used to define validation an API method (401) . In some embodiments , this schema is
rules and verify received data . Some schemas describe data included with a discovery document . A typical discovery
objects , data objects interrelationships , and methods . A document may contain several schemas . For very large ,
schema may be available through a customary discovery 50 complex APIs , a discovery document may contain hundreds
document . The schema in the discovery document may of schemas .
describe the data to which a developer has access from an The raw schema data may then be parsed into an inter
API . Although a schema may be obtained through a discov - mediate < key , value > pair data structure such as a hash table
ery document , there are alternative mechanisms by which a (402) . Parsing is the process of analyzing data and separat
schema may be obtained . 55 ing the data into parts by following a set of defined rules . For

FIG . 1 depicts an example schema for a business card example , given the JSON schema of FIG . 1 , an intermediate
object . In FIG . 1 , the schema specifies that each instance of parsing step may divide the JSON into < key , value > pairs
a business card is a representation of a person , company , based on given delimiters . This intermediate parsing step is
organization , or place . A business card object may have usually done by a library such as a JSON or XML parsing
properties such as : a formatted name ; family name ; given 60 library . A serialization format may use delimiters such as " . "
name ; additional names ; honorific prefix ; honorific suffix ; and “ " to separate the data into < key , value > pairs . FIG . 5
nickname ; url ; email address , telephone number , address ; illustrates how the business card schema of FIG . 1 may be
geographic location ; photo ; logo ; sound ; birthday ; title ; role ; parsed into a data structure of nested < key , value > pairs . In
and organization . As shown in FIG . 1 , the schema for a FIG . 5 , the top - level keys of the business card data structure
business card object defines the properties that a card object 65 are " description , " " type , ” and “ properties . ” (501) Under
may contain as well as the data type and the data validation " properties , ” there are several nested < key , value > pairs
required for each property . representing the properties of a business card (502) . Each

US 10 , 067 , 957 B1

property may contain more nested < key , value > pairs repre schema data . The constructor returns an instance object with
senting the attributes of that property . the instance data that was passed to the constructor via the
Once schema data is deconstructed into an intermediate schema data . New parser classes may furthermore be gen

data structure , an exemplary process generates new parser erated with a serialize method that when called will translate
classes and methods based on the structured properties 5 the class object into serialized data that can be transmitted or
(403) . These parser classes and their methods are stored in stored .
memory and can be used by a host programming language While some new parser classes are generated with names
to transmit , receive , and manipulate instance data to or from so that they can be accessed directly , such as the business
an API (404) . card class in FIG . 7 , other new parser classes are generated

A host programming language is a language in which the 10 without named identifiers and can only be accessed by
application using the API is written . If a host programming reference . These classes are referred to as anonymous
language is a compiled language , the classes and methods classes .
are generated prior to compiling . If the host programming In addition to generating parser classes , the exemplary
language is a dynamic language , the new parser classes and process generates class variables for each data property in a
methods may be generated at runtime . One difference 15 schema and associates these properties with their corre
between a compiled language and a dynamic language is sponding class based on the schema definition and the nested
that a compiled language requires code generation and a hierarchy (603) . For example , given the business card
subsequent compile step . These compiled languages usually schema of FIG . 1 , a business card class may have class
cannot define a class and corresponding methods at runtime . variables for a formatted name ; family name ; given name ;
Examples of compiled languages are Java and C + + . 20 additional names ; honorific prefix ; honorific suffix ; nick
Dynamic languages can create classes and methods at run - name ; url ; email address , telephone number ; address ; geo
time . Examples of dynamic languages include Ruby , PHP , graphic location ; photo ; logo ; sound ; birthday ; title ; role ;
and Python . Dynamically defining the classes and corre and organization .
sponding methods at runtime is beneficial to developers The process may also generate accessor and mutator
because dynamic definitions of classes and methods can 25 methods for each defined class variable (606) . These acces
respond to changes in a schema without recompiling and sor and mutator methods may perform all necessary type
potentially without even restarting the application . checking , bounds - checking , and format - checking for the

Aspects of the inventive concepts include an exemplary data variable as required by the schema (607) . These meth
process for analyzing schema data to create a parser class ods may also perform any data transformations required
defined by the given schema . The process iterates over the 30 during serialization or deserialization . FIG . 7 illustrates an
list of properties defined by the schema as illustrated in FIG . exemplary Ruby class based on the schema from FIG . 1 .
6 (601) . For each property in the schema , the process reads " attr _ accessor ” is short hand notation for accessors and
associative values representing the attributes of the property mutators . The constructor is represented by the " initialize ”
to generate a class variable (602) . If the property references method which takes in schema data . Parser classes for email ,
another schema , the reference , or memory address , is fol - 35 telephone , address , geographic location , and organization
lowed to obtain the actual referenced schema . The given are also shown . Although all parser classes are shown in the
schema is then checked to see if it or any of its referenced same file , in some embodiments these classes can be gen
schemas extend other schemas . If there are inheritance erated in several different files , and can also be generated
relationships , all parent properties are incorporated into the one per file .
children . Additionally , any definition of a property in the 40 In some embodiments , non - scalar , non - array type vari
child schema that shares a name with a property in the parent a bles are represented by automatically generated classes .
schema is merged with the parent schema ' s property defi - For example , the email variable of FIG . 7 may be its own
nition . class . The email class may contain class variables such as
Next , a new parser class may be generated for non - scalar , type and value to keep track of a type of email account , such

non - array properties defined by the given schema (605) . 45 as " home " or " work , " and the actual email address value .
Non - scalar , non - array properties are often types of objects or Class variables can be one of several types including : string ;
unions . An object type is an entity that consists of data a particular object ; integer ; any , which is considered a
properties and methods . A union type is an entity that can be completely unparsed value ; and array .
one of several types or formats . A union type is represented FIG . 8 depicts exemplary schema data of a business card
as an array of several formats from which the actual data 50 object . Schema data contains data that conforms to the
type can be chosen . For example , the binary tree schema of format described by the schema , with the data properties
FIG . 4 describes a union . In FIG . 4 , the binary tree type is having actual values associated with them . Schema data can
defined as [" object ” , “ null ”] . Given this union type defini - be written in several formats including JSON and XML . In
tion , the exemplary process will try to assign the property order to instantiate a class using this data , the schema data
data first as an object type since that was the first type 55 is passed to a constructor of the Business Card class as
declared . If the property does not match an object , the described above . The constructor method may use a class
process will define the property data as “ null . ” Once the library to parse the schema data into < key , value > pairs as
actual type of a union property has been determined , either shown by FIG . 9 . The method may then iterate over all the
a class or a class variable can be created for that property . instant data properties to create a new business card class

A new parser class is created for every object type in a 60 instantiation . An example instantiated class is illustrated in
schema and for the schema itself . The parser class may FIG . 10 .
include class variables , as discussed below , and accessors FIG . 11 illustrates an exemplary process for creating an
and mutators to update and retrieve these variables . Every instance object based on schema data . The process is similar
new parser class also stores the schema from which it was to the process for creating a parser class based on schema
generated and contains a static method that returns this raw 65 data that is discussed above . However , instead of generating
schema . Each parser class additionally includes a construc - classes and methods , classes are instantiated for each object
tor which takes a single parameter that is an unparsed and instance properties are set using the mutators defined by

US 10 , 067 , 957 B1

the parser class . Instance properties may automatically munications between the basic configuration (1201) and any
enforce any constraints described by the schema . required devices and interfaces . For example , a bus / interface

An instance object may have a serialization method as controller (1240) can be used to facilitate communications
depicted in the Business card class illustrated in FIG . 7 . This between the basic configuration (1201) and one or more data
serialization method may be created when the class is 5 storage devices (1250) via a storage interface bus (1241) .
generated and may show how to marshal the object , meaning The data storage devices (1250) can be removable storage
convert the instance object into a serialized format . When a devices (1251) , non - removable storage devices (1252) , or a
developer calls the serialization method , the class object is combination thereof . Examples of removable storage and
changed from an object into a linear sequence of bytes for non - removable storage devices include magnetic disk
either storage or transmission to another location . By using 10 devices such as flexible disk drives and hard - disk drives
dynamically generated classes and methods to serialize and (HDD) , optical disk drives such as compact disk (CD) drives
deserialize instance data from a schema , data conversion can or digital versatile disk (DVD) drives , solid state drives
be consistent and efficient . (SSD) , and tape drives to name a few . Example computer

Aspects of the inventive concepts are designed to simplify storage media can include volatile and nonvolatile , remov
the creation of parser classes to perform deserialization and 15 able and non - removable media implemented in any method
instance objects to perform serialization . An exemplary or technology for storage of information , such as computer
embodiment allows for a single client per programming readable instructions , data structures , program modules , or
language to automatically create parser and generator other data .
classes in the programming language for serialization and System memory (1220) , removable storage (1251) , and
deserialization instead of these classes having to be created 20 non - removable storage (1252) are all examples of computer
manually . Schema data is used in order to automatically storage media . Computer storage media includes , but is not
create parser classes and instance objects . Although schemas limited to , RAM , ROM , EEPROM , flash memory or other
were originally intended to validate instance data , in an memory technology , CD - ROM , digital versatile disks
exemplary embodiment schemas may be used to dynami - (DVD) or other optical storage , magnetic cassettes , mag
cally generate object - oriented in - memory representations of 25 netic tape , magnetic disk storage or other magnetic storage
serialized instance data . Clients provide developers with devices , or any other medium which can be used to store the
interfaces that are easy to use , easy to maintain , and capable desired information and which can be accessed by comput
of the serialization and deserialization necessary when data ing device 1200 . Any such computer storage media can be
is being transmitted . part of the device (1200) .

FIG . 12 is a block diagram illustrating an example com - 30 The computing device (1200) can be implemented as a
puting device (1200) that is arranged for serializing and portion of a small - form factor portable (or mobile) elec
deserializing data described by a schema . In a very basic tronic device such as a cell phone , a personal data assistant
configuration (1201) , the computing device (1200) typically (PDA) , a personal media player device , a wireless web
includes one or more processors (1210) and system memory watch device , a personal headset device , an application
(1220) . A memory bus (1230) can be used for communicat - 35 specific device , or a hybrid device that include any of the
ing between the processor (1210) and the system memory above functions . The computing device (1200) can also be
(1220) . implemented as a personal computer including both laptop
Depending on the desired configuration , the processor computer and non - laptop computer configurations .

(1210) can be of any type including but not limited to a The foregoing detailed description has set forth various
microprocessor (UP) , a microcontroller (UC) , a digital signal 40 embodiments of the devices and / or processes via the use of
processor (DSP) , or any combination thereof . The processor block diagrams , flowcharts , and / or examples . Insofar as
(1210) can include one more levels of caching , such as a such block diagrams , flowcharts , and / or examples contain
level one cache (1211) and a level two cache (1212) , a one or more functions and / or operations , it will be under
processor core (1213) , and registers (1214) . The processor stood by those within the art that each function and / or
core (1213) can include an arithmetic logic unit (ALU) , a 45 Operation within such block diagrams , flowcharts , or
floating point unit (FPU) , a digital signal processing core examples can be implemented , individually and / or collec
(DSP Core) , or any combination thereof . A memory con - tively , by a wide range of hardware , software , firmware , or
troller (1216) can also be used with the processor (1210) , or virtually any combination thereof . In one embodiment ,
in some implementations the memory controller (1215) can several portions of the subject matter described herein may
be an internal part of the processor (1210) . 50 be implemented via Application Specific Integrated Circuits

Depending on the desired configuration , the system (ASICs) , Field Programmable Gate Arrays (FPGAs) , digital
memory (1220) can be of any type including but not limited signal processors (DSPs) , or other integrated formats . How
to volatile memory (1204) (such as RAM) , non - volatile ever , those skilled in the art will recognize that some aspects
memory (1203) (such as ROM , flash memory , etc .) or any of the embodiments disclosed herein , in whole or in part , can
combination thereof . System memory (1220) typically 55 be equivalently implemented in integrated circuits , as one or
includes an operating system (1221) , one or more applica more computer programs running on one or more computers
tions (1222) , and program data (1224) . The application (e . g . , as one or more programs running on one or more
(1222) includes an application that can perform large - scale computer systems) , as one or more programs running on one
data processing using parallel processing . Program Data or more processors (e . g . , as one or more programs running
(1224) includes storing instructions that , when executed by 60 on one or more microprocessors) , as firmware , or as virtu
the one or more processing devices , implement a method for ally any combination thereof , and that designing the cir
serializing and deserializing data described by a schema . In cuitry and / or writing the code for the software and or
some embodiments , the application (1222) can be arranged firmware would be well within the skill of one of skill in the
to operate with program data (1224) on an operating system art in light of this disclosure . In addition , those skilled in the
(1221) . 65 art will appreciate that the mechanisms of the subject matter

The computing device (1200) can have additional features described herein are capable of being distributed as a
or functionality , and additional interfaces to facilitate com program product in a variety of forms , and that an illustra

imni .

? ???

fim

US 10 , 067 , 957 B1

ing :

tive embodiment of the subject matter described herein 5 . The computer - implemented method of claim 1 further
applies regardless of the particular type of non - transitory comprising :
signal bearing medium used to actually carry out the distri generating a serialization method on the new parser class
bution . Examples of a non - transitory signal bearing medium that converts the new parser class into a serialized
include , but are not limited to , the following : a recordable 5 d to , the following : a recordable 5 format . format .
type medium such as a floppy disk , a hard disk drive , a 6 . The computer - implemented method of claim 1 further Compact Disc (CD) , a Digital Video Disk (DVD) , a digital comprising :
tape , a computer memory , etc . ; and a transmission type creating a new parser class for every object type in the
medium such as a digital and / or an analog communication schema and for the schema itself . medium . (e . g . , a fiber optic cable , a waveguide , a wired 10 7 . The computer - implemented method of claim 1 , further communications link , a wireless communication link , etc .) comprising : With respect to the use of substantially any plural and / or for each union type , matching the property to defined singular terms herein , those having skill in the art can
translate from the plural to the singular and / or from the types in an order that the types are listed in the schema ;

and singular to the plural as is appropriate to the context and / or 15
application . The various singular / plural permutations may responsive to a match , using a matching defined type to

be expressly set forth herein for sake of clarity . create a class property .
Thus , particular embodiments of the subject matter have 8 . A non - transitory computer - readable medium having

been described . Other embodiments are within the scope of stored therein computer executable code that causes one or
the following claims . In some cases , the actions recited in 20 more processors to execute the steps of :
the claims can be performed in a different order and still receiving schema data , which describes the format and
achieve desirable results . In addition , the processes depicted properties of an instance object to be transmitted or
in the accompanying figures do not necessarily require the received ;
particular order shown , or sequential order , to achieve dynamically generating parser classes for deserialization
desirable results . In certain implementations , multitasking 25 based on the schema , wherein generating the parser
and parallel processing may be advantageous . classes comprises :

The invention claimed is : iterating over each property defined in the schema and
1 . A computer - implemented method for dynamically gen in any other schema referenced in the schema ,

erating classes and methods in memory in order for a host generating a new parser class for each non - scalar ,
programming language to transmit or receive instance data 30 non - array property defined by the schema ;
to or from an application programming interface compris for each property , reading associative values represent

ing attributes of the property ;
receiving a schema , which describes the format and generating a class variable based on the read associated

properties of instance data to be transmitted or values ; and
received ; 35 associating each generated class variable with one or

dynamically generating parser classes for deserialization more accessor and mutator methods to update and
based on the schema , wherein generating the parser retrieve the class variables ; and
classes comprises : storing the generated parser classes and methods in
iterating over each property defined in the schema and memory in order for a host programming language to

in any other schema referenced in the schema , 40 transmit or receive instance data to or from an appli
generating a new parser class for each non - scalar , cation programming interface .

non - array property defined by the schema ; 9 . The non - transitory computer - readable medium of claim
for each property , reading associative values represent - 8 , wherein dynamically generating parser classes and meth

ing attributes of the property ; ods further comprises :
generating a class variable based on the read associated 45 the one or more accessor and mutator methods performing

values ; and data transformations during serialization or deserializa
associating each generated class variable with one or tion ; and
more accessor and mutator methods to update and responsive to a presence of a validation attribute , adding
retrieve the class variables ; and validation information to the accessor or the mutator of

storing the generated parser classes and methods in 50 the class variable to which the validation attribute
memory in order for the host programming language to corresponds .
transmit or receive instance data to or from the appli 10 . The non - transitory computer - readable medium of
cation programming interface . claim 8 further comprising :

2 . The computer - implemented method of claim 1 , generating a serialization method on the new parser class
wherein the one or more accessor and mutator methods 55 that converts an instance object into a serialized format .
perform all type - checking , bounds - checking , and format 11 . The non - transitory computer - readable medium of
checking required by the schema . claim 8 further comprising :

3 . The computer - implemented method of claim 1 , further creating a new parser class for every object type in the
comprising : schema and for the schema itself .

responsive to a presence of a validation attribute , adding 60 12 . The non - transitory computer - readable medium of
validation information to the one or more accessors or claim 8 , further comprising :
mutators of the class variable to which the validation a property with a type attribute of union , which defines
attribute corresponds . more than one type ;

4 . The computer - implemented method of claim 1 , wherein the computer executable code further causes one
wherein the one or more accessor and mutator methods 65 or more processors to execute the steps of :
perform data transformations during serialization or deseri matching the property to defined types in an order that
alization . the defined types are listed in the schema ; and

US 10 , 067 , 957 B1
11

responsive to a match , using a matching defined type to to transmit or receive instance data to or from the
create a class property . application programming interface .

13 . A system for dynamically generating classes and 14 . The system of claim 13 , wherein the accessor and
methods in memory comprising : mutator methods perform all type - checking , bounds - check

a host programming language that transmits or receives 5 ing , and format - checking required by the schema .
instance data from an application programming inter 15 . The system of claim 13 , wherein the one or more face ; computing devices are further configured to : one or more computing devices ; and responsive to a presence of a validation attribute , adding one or more non - transitory storage devices storing validation information to the accessor or the mutator of instructions that , when executed by the one or more 10 the class variable to which the validation attribute computing devices , cause the one or more computing corresponds .
devices to :
receive a schema , which describes the format and 16 . The system of claim 13 , wherein the one or more

computing devices are further configured to : properties of an instance object to be transmitted or
received ; 15 generate a serialization method on the new parser class

dynamically generate parser classes for deserialization that converts the new parser class into a serialized
based on the schema , wherein the one or more format .
computing devices generate the parser classes by : 17 . The system of claim 13 , wherein the one or more
iterating over each property defined in the schema computing devices are further configured to :

and in any other schema referenced in the schema , 20 create a new parser class for every object type in the
generating a new class for each non - scalar , non - array schema and for the schema itself .

property defined by the schema ; 18 . The system of claim 13 , wherein the one or more for each property , reading associative values repre computing devices are configured to dynamically generate
senting attributes of the property ; the parser classes and methods by :

generating a class variable based on the read asso - 25 23 for each union type , matching the property to defined ciated values ; and types in an order that the defined types are listed in the associating each generated class variable with one or schema ; and more accessor and mutator methods to update and
retrieve the class variables ; and responsive to a match , using a matching defined type to

store the generated parser classes and methods in 30 create a class property .
memory , in order for the host programming language * * * * *

