Office de la Proprieté Canadian CA 2720897 C 2015/06/30

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 720 897
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2009/04/28 (51) CLInt./Int.Cl. GO6F 9/44(2006.01),
(87) Date publication PCT/PCT Publication Date: 2009/11/05 HO4L 29/02(2006.01)
- . (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2015/06/30 CALVIN. PHIL. CA
(85) Entréee phase nationale/National Entry: 2010/10/06 L
(73) Proprietaire/Owner:
(86) N demande PCT/PCT Application No.: CA 2009/000569 SALESFORCE.COM. INC.. US

(87) N® publication PCT/PCT Publication No.: 2009/132444 (74) Agent: SMART & BIGGAR
(30) Priorité/Priority: 2008/04/28 (US61/048,516)

54) Titre : SYSTEME ORIENTE OBJET DE CREATION ET DE GESTION DE SITES WEB ET DE LEURS CONTENUS
(54) Title: OBJECT-ORIENTED SYSTEM FOR CREATING AND MANAGING WEBSITES AND THEIR CONTENT

.
1
.
.
S p— rire sramasanss sar s m U

E + Website

l/\92

Storage Tier Presentation Tier

e A e e = P YIRS YAV AR M e e VA S o s memeemege W e
TERIEAL VA e e VA BTV AN A b A S A e e M e e e 1 A Wb W W e W BT RET TR Y AW W IWO AL Wt b b Y o' ' -

(57) Abregé/Abstract:

The Invention teaches a method for creating and managing a website as an object oriented system, comprising: providing on a
system server a plurality of hierarchical classes of objects, each of the classes representing one aspect of the storage, presentation
and logic of a website; providing on a web server an interface operable to present representations of objects instantiating the
plurality of hierarchical classes and recelve commands meant to one of : instantiate a new object, destroy a presented object, and
change a property of a presented object; and storing on a database server objects as a traversable tree in accordance with the
plurality of hierarchical classes.

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02720897 2010-10-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
S November 2009 (05.11.2009)

(10) International Publication Number

WO 2009/132444 Al

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)
(75)

(74)

WO 2009/132444 A1 |[HIL ! HUD D AR RO YOO R

International Patent Classification:
GO6F 9/44 (2006.01) HO4L 29/02 (2006.01)

International Application Number:
PCT/CA2009/000569

International Filing Date:
28 April 2009 (28.04.2009)

Filing Language: English
Publication Language: English
Priority Data:

61/048,516 28 April 2008 (28.04.2008) US

Applicant (for all designated States except US):
SITEMASHER CORPORATION [CA/CA]; 326 West
5th Avenue, 2nd Floor, Vancouver, British Columbia 5Y
1J5 (CA).

Inventor; and

Inventor/Applicant (for US only): CALVIN, Phil
[CA/CA]; 326 West 5th Avenue, 2nd Floor, Vancouver,
British Columbia B5Y 1J5 (CA).

Agent:. ROMAN, Michael, J.; Clark Wilson LLP, 800 -

885 West Georgia Street, Vancouver, British Columbia
V6C 3H1 (CA).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: OBJECT-ORIENTED SYSTEM FOR CREATING AND MANAGING WEBSITES AND THEIR CONTENT

Storage Tier

4 + Website

l/\92

Presentation Tier

Figure 4

(57) Abstract: The invention teaches a method for creating and managing a website as an object oriented system, comprising: pro-
viding on a system server a plurality of hierarchical classes of objects, each of the classes representing one aspect of the storage,
presentation and logic of a website; providing on a web server an mterface operable to present representations of objects mstanti -
ating the plurality of hierarchical classes and receive commands meant to one of : mnstantiate a new object, destroy a presented ob-
ject, and change a property of a presented object; and storing on a database server objects as a traversable tree in accordance with
the plurality of hierarchical classes.

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

OBJECT-ORIENTED SYSTEM
FOR CREATING AND MANAGING

WEBSITES AND THEIR CONTENT

5 CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of application serial number

US61/048,516 filed April 28, 2008.

10 BACKGROUND OF THE INVENTION
. Field of the Invention
[0002] The present invention ts directed to ways to create and manage websites
and their content. More particularly, the invention is directed to an object-oriented way to create

and manage dynamic websites and their content.
15
2. Description of the Related Art
[0003] Today, web pages and their conteht are typically created, managed and
delivered using a variety of tools and systems. Programming tools (e.g. Adobe Dreamweaver™)
are commonly used for web page creation, and authoring tools (e.g. Microsoft Word™ or Adobe

20 PhotoShop™) are commonly used for content creation. Content Management Systems (e.g.

Drupal™ or OpenCMS™) may also be used for controlling and transforming content after it has

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

been created, and version control systems and database and web servers are used for storing and
delivering the web pages and their content to end user browsers.

[0004] While in some cases it may be valuable from a “separation of concerns”
perspective (1.e. having the creative department use one set of tools, and the I'T department use
others), the use of tools and systems that are not integrated makes it necessary to integrate the
work product of each department in a separate, final step to permit a given web page and its
content to be published to the Internet. One problem with this approach is that it is time
consuming, and this problem 1s exacerbated by the tendency that websites (and their content) are
rarely static. Almost all websites change frequently, being updated constantly to reflect changes
In the organization or individual publishing the website or in its (or his/her) environment.

[0005] The absence of an integrated system makes creating and revising content
and a set of web pages on a website (or on any given web page of a website) unduly difficult in
terms of both effort and complexity. Once design mock-ups and digital assets (e.g. art, photos,
and videos) have been developed, the website’s web pages are built with these design elements
using HTML, CSS and JavaScript programming languages to achieve the effects called-for in the
design. Next (or in parallel), news articles, product data sheets and other information are
developed to form the content for the site.

[0006] At this point the user faces a choice of whether or not to use a Content
Management System (a “CMS”). Content Management Systems are typically employed if the
content on a website is expected to change frequently. If not, then the website publisher will
typically “hard-code” the content directly into each web page file.

[0007] It a CMS approach is chosen, the next step is to place all content items

Into a relational database, and to turn each web page file (via programming) into a “page

10

15

20

25

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

template” that 1s bound to the CMS. The CMS then dynamically (or, in some systems, statically
during a compilation process) creates individual web pages of a website by combining the
content in the database with the layout, presentation and behavior defined in the web page
template. At this point, the final web page 1s ready for delivery to an end user’s browser.

[0008] A significant problem with the technologies and processes described
above is that it is very difficult to build and integrate all of the content and web page (i.e. layout,
presentation, and behavior) components needed for a sophisticated website. If a CMS is
employed to manage content changes, the initial build is even more difficult, and even if a CMS
1s employed, it 1s still very difficult to make subsequent changes to site structure (“site map”) and
web page components without involving considerable programming.

[0009] For illustration, consider this simple example:

[0010] Without a CMS, combining content and web page visual aspects (layout,
presentation and behavior) may be done like this using HTML and JavaScript:

<body>
<div>
style="background-color: yellow";
onclick="showMenu(someElementiD)"
onmouseover="this.className=fredHighlight"
onmouseout="this.classname="fred"
class="fred">
<p>
This is some text
</p>
</div>
</body>

[0011] The above code would produce a section on a web page with a yellow
background color (layout and presentation) as well as set up some code to handle mouse clicks,

etc. (behavior). Finally, it would display the line “This is some text” (content) on the page.

10

15

20

25

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0012] Using a CMS, the above code would become:

<body>
<div>

style="background-color: yellow";
onclick="showMenu(someElementID)"
onmouseover="this.className=fredHighlight"
onmouseout="this.classname="fred"
class="fred">

<p>

SContent
</p>

</div>

</body>
[0013] The term “$Content” is a variable whose value (e.g. “This is some text”) is
defined and stored in a database that is populated by the website publisher. If the value of
$Content is indeed “This is some text”, then the CMS code above would produce, from the end
user browser’s perspective, exactly the same web page and content as the non-CMS code above.
However, note that by implementing the CMS, the content in the database could be changed to
any value (say, for example, “Hello World”) and this would be automatically displayed on the

web page the next time it is rendered.

[0014] The CMS approach therefore provides an improvement relative to the hard
coding of all content into individual web pages in situations where the content is expected to
change relatively frequently. However, the CMS approach also has significant drawbacks in that
it does not facilitate changes in web page visual aspects. What if, for example, a website
publisher wants to change the background color, or more interestingly to change what happens

when the end user browser clicks or hovers on certain elements within a web page? How would

the publisher add an entirely new web page to display new content?

10

15

20

25

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0015] Changes of this sort are examples of changes to web page visual aspects
(including structure, layout, presentation and behavior), and cannot be implemented using

current technologies without additional programming.

SUMMARY OF THE INVENTION AND ADVANTAGES

[0016] The present invention is addressed to these challenges.

[0017] The following summary provides a simplified overview of the subject
matter that is described herein, and is not intended to identify any critical elements, nor to
delineate the scope of the described or claimed subject matter. The sole purpose of the summary
Is to outline in a simplified form the aspects of the subject matter that will be described in greater
detail below.

[0018] Briefly described, the subject matter disclosed herein relates in various
embodiments to systems and methods that support the creation and lifecycle management of all
the attributes and methods contained within a typical website in a completely object-oriented
manner, such that traditional web programming languages, version control and content

management systems are not required. A three tier approach is applied, providing a presentation
tier, a logic tier and a storage tier.

[0019] At the presentation tier, some of the objects created and managed include:

e Sitemap and Navigation

e Pages and layout

e Page elements (aka widgets)

e Forms and database views

e Styles, and

e User event (mouse clicks, key presses, etc) handling

10

15

20

235

30

35

CA 02720897 2014-02-26

[0020] At the logic tier:

e Business rules, including workflows, and
e Server-side event handling

[0021] And at the storage tier:

e (Configuration and object persistence

e Structured (headers, footers, body text, lists, blogs, news items -
generically "content") and non structured (e.g., PDF files) user data
storage

e User defined tables, and

e Search and retrieval of stored data

[0022] In contrast to existing website production and delivery systems, the system
and method described herein allows each object to be managed (created, updated, versioned)
separately from each other, while retaining the relationships (containment, parent, child, sibling, is
a, etc.) between the objects. For example, a content display object and its relationship to content
items and pages that may contain it.

[0023] With this object-oriented design, objects within a website can be created
and changed independently from each other without requiring textual programming. Objects are
created and configured via a drag/drop or fill-in-the-blank metaphor, as are their behaviors and
inter-relationships (e.g. Page to element, Form to table, table to fields, etc.).

0024] In accordance with one aspect of the invention there 1s provided a method
for creating and managing a website as an object-oriented system. The method involves providing,
on a system server, a plurality of hierarchical classes of objects, each object ot the plurality of
hierarchical classes of objects represents one aspect of the storage, presentation, and logic of a
website. Each object of the plurality of hierarchical classes of objects 1s managed separately from
each other while retaining relationships between the plurality of hierarchical classes of objects.
The method also involves providing, on a web server, a user-interface operable to present
representations of objects instantiating the plurality of hierarchical classes of objects, and to receive
commands meant to one of instantiate a new object, destroy a presented object, and change a
property of a presented object. The method further involves storing, on a database server, objects
as a traversable tree in accordance with the plurality of hierarchical classes of objects, and

rendering, on the system server, a user-requested portion of the website by traversing a

6

10

15

20

23

30

CA 02720897 2014-02-26

corresponding portion of the traversable object tree that defines the user-requested portion of the
website, and generating a dynamic webserving that renders the user-requested portion of the
website in response to properties of the traversed objects from the corresponding portion of the
traversable object tree. The web server redirects all traffic from an object editor to the system
server, and the system server stores web page and content data changes received from a
configuration tool and returns the web page and content data changes to a web browser in a manner
that 1s compatible for the web browser to properly render the web page and content data changes
visually. All web page and content data changes are stored and retrieved from a relational database
on the database server.

[0024] Presenting representations of objects may include presenting symbolic

representations of objects.

[0025] Providing a user-interface may include providing a What-You-See-Is-What-
You-Get (WYSIWYGQ) user-interface.

[0026] Receiving commands may involve receiving user-inputs.

[0027] In accordance with another aspect of the invention there is provided a

system for creating and managing a website as an object-oriented system. The system includes a
system server computer operable to provide a plurality of hierarchical classes of objects, each
object of the plurality of hierarchical classes of objects represents one aspect of the storage,
presentation, and logic of a website, and each object of the plurality of hierarchical classes of
objects 1s managed separately from each other while retaining relationships between the plurality of
hierarchical classes of objects. The system also includes a web server computer in communication

with the system server computer and operable to provide a user-interface operable to present

representations of objects instantiating the plurality of hierarchical classes of objects, and receive
commands meant to one of instantiate a new object, destroy a presented object, and change a

property of a presented object. The system further includes a database server computer in
communication with the system server computer and operable to store objects as a traversable tree

in accordance with the plurality of hierarchical classes of objects. The system server computer is
further operable to render a user-requested portion of the website by traversing a corresponding
portion of the traversable object tree that defines the user-requested portion of the website, and
generating a dynamic webserving that renders the user-requested portion of the website in response

to properties of the traversed objects from the corresponding portion of the traversable object tree,

10

15

20

25

30

CA 02720897 2014-02-26

the web server computer is further operable to redirect all traffic from an object editor to the system
server computer. The system server computer is further operable to store web page and content
data changes received from a configuration tool and return the web page and content data changes
to a web browser in a manner that is compatible for the web browser to properly render the web
page and content data changes visually. All web page and content data changes are stored and
retrieved from a relational database on the database server computer.

[0027a] The web server computer may be further operable to present representations
of objects that are symbolic representations of objects.

[0027b] The web server computer may be further operable to provide a user-
interface that is a What-You-See-Is-What-You-Get (WYSIWYGQG) user-interface.

[0027c] The web server computer may be further operable to receive commands that
are user-inputs.

[0027d] In accordance with another aspect of the invention there is provided a
system for creating and managing a website as an object-oriented system. The system includes
provisions for providing a plurality of hierarchical classes of objects, each object of the plurality of
hierarchical classes of objects represents one aspect of the storage, presentation, and logic of a
website, and each object of the plurality of hierarchical classes of objects is managed separately
from each other while retaining relationships between the plurality of hierarchical classes of
objects. The system also includes provisions for providing a user-interface, including provisions
for presenting representations of objects instantiating the plurality of hierarchical classes of objects,
and provisions for receiving commands meant to one of instantiate a new object, destroy a

presented object, and change a property of a presented object. The system further includes

provisions for storing objects as a traversable tree in accordance with the plurality of hierarchical
classes of objects, and provisions for rendering a user-requested portion of the website, including
provisions for traversing a corresponding portion of the traversable object tree that defines the user-
requested portion of the website, and provisions for generating a dynamic webserving that renders
the user-requested portion of the website in response to properties of the traversed objects from the
corresponding portion of the traversable object tree. The provisions for providing a user-interface
includes provisions for redirecting all traffic from an object editor to the provisions for providing a
plurality of hierarchical classes of objects. The provisions for providing a plurality of hierarchical

classes of objects includes provisions for storing web page and content data changes received from

TA

10

15

20

CA 02720897 2014-02-26

a configuration tool and returning the web page and content data changes to a web browser in a
manner that is compatible for the web browser to properly render the web page and content data

changes visually. All web page and content data changes are stored and retrieved from a relational

database on the provisions for storing objects.

0027 ¢] The provisions for presenting representations of objects may include
provisions for presenting symbolic representations of objects.

[00271] The provisions for providing a user-interface may include provisions for
providing a What-You-See-May be-What-You-Get (WYSIWYG) user-interface.

[0027¢g] The provisions for receiving commands may include provisions for

recelving user-inputs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Other advantages of the present invention will be readily appreciated, as the
same becomes better understood by reference to the following detailed description when
considered in connection with the accompanying drawings wherein:

[0029] Figure 1 is a UML 2.1 use case diagram illustrating how a website creator, a
website manager and website end-user might interact with one embodiment of the present
invention;

10030} Figure 2 1s a UML 2.1 deployment diagram illustrating the deployment of
the embodiment of Figure 1 on an internetwork of communication and computing devices;

[0031] Figure 3 is an abstraction layer diagram of a communication and computing

devices of Figure 2, illustrating a hardware layer, operating system layers and an application

program layer;

B

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0032] Figure 4 1s a UML 2.1 package diagram illustrating packages of
hierarchical classes for representing a website, including a topmost Website class, a presentation
tier package, a logic tier package and a storage tier package.

[0033] Figure 5 1s a UML 2.1 class diagram illustrating exemplary classes from
the presentation tier package;

[0034] Figure 6 i1s a UML 2.1 class diagram illustrating exemplary classes from
the logic tier package;

[0035] Figure 7 1s a UML 2.1 class diagram illustrating exemplary classes from
the storage tier package;

[0036] Figure 8 is a user interface diagram illustrating a main screen of an editor
for creating and managing objects instantiating the classes of Figures 4 through 7 to represent a
particular website.

[0037] Figure 9 1s a UML 2.1 activity diagram illustrating the operation of an
object rendering component deployed in Figure 2.

[0038] Figure 10 is a UML 2.1 activity diagram detailing an exemplary rendering

of the object rendering component of Figure 9.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[0039] Introduction

10040] Referring to the Figures, like numerals indicate corresponding parts

throughout the several views.

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0041] Figure 1 generally illustrates a system for creating and managing a website
20 as an object-oriented structure. A website creator 22, website manager 24 and website end-
user 26 respectively create, manage and use the dynamic website, communicating through their
respective web browsers 28 with a web server 30.

[0042] Terminology

[0043] Throughout this specification, the term “web page” refers to the visual
aspects of any given page of a website, including layout (e.g. the size and location of visual
elements or “widgets” on each page), presentation (e.g. style, colors, and format of widgets), and
behavior (e.g. what happens when a user moves a mouse 32, clicks a button or menu, hovers,
etc.),

[0044] The term “content” refers to the information (e.g. text and graphics, such
as, for example, a news article) that is delivered to an end user browser 28 via the web pages of a
given websité.

[0045] The term “webserving” means a portion of code -- generally some
combination of HTML, CSS and JavaScript -- sent from a web server 30 to a web browser 28 to
direct the browser 28 to perform desired functionality, such a presenting a webpage or a portion
of a webpage.

[0046] Those skilled in the art will understand that in an internetworked system

20 an action is often the result of coordinated activities occurring at multiple nodes in the system
20. In the case of a system 20 built on the Internet, these nodes are often distributed ad hoc and
unpredictably across multiple jurisdictions. The actions as described and claimed herein are
intended to encompass at least: (a) actions performed directly and completely within the

jurisdiction of the patent, (b) actions coordinated within the jurisdiction but with at least some

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

activities performed outside the jurisdiction, (¢) actions coordinated outside the jurisdiction but
with at least some activities performed within the jurisdiction, and (d) actions performed for the
benefit of a node within the jurisdiction or a person using that node. An example of such
coordination would be serving a layout for a web page from one node and serving content for
insertion into the layout from one or more other nodes, including through the use of server-side
scripting, client-side scripting, and AJAX techniques.

[0047] Structure

[0048] Figure 2 1s a deployment diagram of the system 20, which is deployed as
an internetwork 34 of communication and computing devices 36. As will be discussed in greater
detail below, the communication and computing devices 36 are variously configured as clients
38, 40, 42 and servers 30, 44, 46. More specifically, a client might be a website creator’s client
38, a website manager’s client 40 or a website end-user’s client 42. A server might be a web
server 30, a system server 44 or a database server 46.

[0049] Each of the clients 38, 40, 42 might be a duly configured general purpose
programmable computer or a more purpose-specific device 36, such as a smartphone, a
microbrowser, or portable media viewer with a wireless modem.

[0050] A server might similarly be a duly configured general purpose
programmable computer, but might also be a farm of such computers or one or more virtualized
computers embodied as processes operating on a physical general purpose programmable
computer. Such farmed or virtualized computers might themselves be distributed over their own
local or wide area network 34, not shown.

[0051] In essence, the servers 30, 44, 46 and the clients 38, 40, 42 are roles or

functions performed in the system 20 by properly configured devices 36. Multiple roles or

10

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

functions could be performed by one device 36 and one role or function could be distributed over
multiple devices 36. The specific character of a device 36 (and more generally the hardware)
and the network 34 topology 1s important to the extent that it supports the performance of the
assigned roles or functions.

[0052] The web server 30, system server 44 and database server 46 may be
connected together in three-tier fashion to serve the presentation, logic and data aspects of
dynamic websites, the web server 30 and the system server 44 communicating in HTML, CSS
and JavaScript and the system server 44 and the database server 46 communicating in SQL.

[0053] The clients 38, 40, 42 may communicate with the web server 30 using the
HTTP protocol to interact with the websites. More particularly, the creator’s client may
communicate to create a website, the manager’s client may communicate to manage a website,
and the end-user’s client may communicate to use a website.

[0054] To implement this arrangement, the devices 36 each host an operating
system 48 that provides an execution Environment supporting the required functionality. The
operating systems 48 might also support distributed execution among the devices 36.

[0055] In this way, the clients 38, 40, 42 each support a browser component 28 to

implement communication with the web server 30, for example such as Microsoft” Internet

Explorer®, Firefox®, Safari® or Opera®. The creator’s client and the manager’s client might also
support an editor applet component S0 to better implement communication with the system

server 44 for editing website objects, as will be discussed further below.
[0056] Similarly the servers 30, 44, 46 have dedicated components supported by
the operating system 48 execution environment. The web server 30 has a web server component

52 that instructs it on how to perform its role as a web server 30, for example Apache® Apache®

11

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

¥ or Google® Google Web Server 30 . The system

Microsoft® Internet Information Services
server 44 has an object editor component 5S4 and an object renderer component 56 that
respectively instruct it on how to create, modify and destroy objects that represent aspects of a
website and to render the objects into webservings that can be communicated by the web server
30. The database server 46 has a database management system component 58 that instructs it on
how to create, store, search, maintain and destroy objects that represent aspects of a website
drawn from a website package 60 of classes, which will be described further with respect to
Figures 4-7.

[0057] Figure 3 illustrates a common construction of a communication and
computing device 36, including a general purpose programmable computer. These devices 36
have a hardware layer 62, an operating system layer 64 and an application program layer 66.
Those skilled in the art will recognize the aspects in which like virtualized hardware and devices
36 depart from like physical ones.

[0058] The hardware layer 62 provides the device 36 with computing and
communication hardware, including: (a) a processor 68 to execute processes of instructions and
compute data, (b) user-input hardware such as a keyboard 70 and a selection device 72 (for
example a mouse 32) to receive input from a user, (c) user-output hardware such as a video
display 74 to provide information to a user, (d) mass storage 76 such as electromagnetic, optical
or nonvolatile solid-state media to store data and processing instructions, (¢) memory such as

read only memory 78 and random access memory 80 to store data and processing instructions,

and (f) a network interface 82 to support communication with other devices 36 in accordance

with known protocols such as TCP/IP, all interconnected by buses such as address and data buses

12

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

and control lines such as interrupt and clock lines and such other connections and components as
1s conventionally required and known in the art.

[0059] Stored in a portion of the read only memory 78 and the mass storage 76
are the components of the operating system layer 64, for example LINUX® or Microsoft®
Windows® Server® for a device 36 such as general purpose programmable computer configured
as a server 30, 44, 46 or LINUX® or Microsoft® Windows® VISTA® for a device 36 configured

as a client 38, 40, 42, or even Microsoft® Windows® CE® for a portable such client 38, 40, 42

device 36. Thc operating system layer 64 provides the basic instructions to direct the processor
68 how to interact with the other hardware described above and more generally how to perform
the functions of a communication and computing device 36, including storing, accessing and
computing data, and communicating with other devices 36.

[0060] The operating system layer 64 also presents an application program
interface 84 to the application program layer 66, so the processor 68 can execute more
sophisticated combinations of processes under the direction of higher level application programs
stored 1n mass storage 76 and loaded into RAM 80 for execution, for example the components
described in Figure 2.

[0061] Figure 4 illustrates packages 60, 86, 88, 90 of classes for completely
representing a dynamic website in an object-oriented manner. In this regard, there is provided a
Website package 60 that contain{s classes and packages 60, 86, 88, 90 for representing a dynamic
website. The Website package 60 contains a Website class 92 that provides attributes and
operations representing the overall nature of a website and further contains a Presentation Tier
package 86, a Logic Tier package 88, and a Storage Tier package 90 that in turn contain classes

that represent more particular aspects of the website

13

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0062] Figure 5 shows an example hierarchy of classes below the Website class
92 for representing presentation aspects of the website and inclusion in the presentation tier
package 86. Thus for example, the presentation tier package 86 could include a User Event
Handling class 94 for handling client-side user-events and a Styles class 96 for specifying the
style of the website. The presentation tier package 86 could also include a Navigation class 98,
for example a Sitemap class 100, for defining ways to navigate the website. The presentation tier
package 86 might also include a Pages class 102 for defining aspects of each webpage, in
cooperation with a Layout class 103 for defining visual layout aspects of the webpage and a Page
Elements 104 class for representing page widgets, for example database 58 views and forms as
represented respectively by a Database Views class 106 and a Forms class 108.

[0063] Figure 6 shows an example hierarchy of classes below the Website class
92 for representing logic aspects of the website and inclusion in the logic tier package 88. Thus
for example, the logic tier package 88 could include a Server-Side Event Handling class 110 for
handling server-side events and a Business Rules class 112 for representing the business rules
that establish the logical operation of the website, for example workflows as represented by a

Work Flows class 114.

[0064] Figure 7 shows an example hierarchy of classes below the Website class
92 for representing storage aspects of the website and inclusion in the storage tier package 90.
Perhaps most importantly, the storage tier package 90 includes a Data Source class 115 to enable
objects to be either local, for example on the website manager’s 24 own network, or hosted by a
software as a service vendor on the system 20. Thus for example, the website manager’s 24 own

network might provide a web application that the system 20 can interact with via objects of the

Data Sources class 113 to allow an end-user 26 to access and interact with the local application

14

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

via web pages that are created and managed by the system 20. In this regard, “Data Sources” are
a class of object in the system 20 that sit on top of the data tier and contains and abstracts the
information needed for the system 20 to “bind” to a set of web services exposed by any web
application, which may encapsulate its own set of presentation, logic and storage tier objects. In
the hosted case, objects of the Data Sources class 115 simply point to data objects within the
system 20. In this way, the website manager 24 can create web pages that render content from
data objects that are stored and managed in other business applications that are exposed to the
internet via XML web services, for example SOAP and REST.

[0065] The storage tier package 90 could also include a Digital Assets 116 class
for representing digital assets 116 and a Databases class 118 for representing databases. The
Databases class 118 could include a number of aggregate classes, including a User-Defined
Tables class 120 for representing the data structure, including for example fields represented by a
User Fields class 122, a Search Queries class 124 for representing search queries, and a Search
Query Results class 124, 126 for representing query results. The storage tier package 90 rﬁight
also include an Object Configuration class 128 for representing the configuration of objects,
including for example object persistence as represented by an Object Persistence class 130.
Additionally, the storage tier package 90 might include classes for representing content for the
website, for example a Content Lists class 132 that represents a cataloguing of content items as
represented by a Content Items class 134. The Content Items class 134 might in turn include a
number of aggregate classes such as a User Data - Nonstructured class representing unstructured

data and a User Data - Structured class representing structured data, for example data having an

author, title and body as respectively represented by an Author class 140, a Title class 142, and a

Body Class 144.

15

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0066] Those skilled in the art will recognize the hierarchical nature of the classes
and packages 60, 86, 88, 90 contained in the Website package 60, such that traversing the tree of
the hierarchy will produce a definition of the website or of that portion defined by the portion of
the tree traversed.

[0067] Thus Figures 4-7 graphically depict the types of classes within an

exemplary system 20 and the relationships between them. Many sites, as well as their child

objects, can be hosted and managed by the system 20 at once. As shown, a site object can
contain one or more page objects which, in turn, can contain one or more widgets (page elements
104), etc.

[0068] Each of the objects of the system 20 has a defined set of behaviors,
propertics and events. Once a site object has been created, the manager can create, update and
delete styles, pages, content lists, database 38 tables, workflows and digital assets 116
completely independently from each other. All object configurations are stored in the database
management system S8 to entorce data integrity, versioning, search and retrieval.

[0069] After a site and its related objects have been configured, the system 20 is
ready to serve data to client browser 28 requests. When a browser 28 requests data (e.g. a

particular web page), the system 20 dynamically creates the data necessary for the web browser
28 to render the page accurately to the end user. This is done by traversing the object tree
assoclated with a given request, reading the correct version of each object from the database 58,
binding all object data together and lastly creating an HTML representation of the requested

data. This technique allows all of a web site’s objects to be treated and handled in a truly object-

oriented manner on the server side while ultimately transforming them into the structural

16

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

elements (HTML, CSS, Image files) needed by a web browser 28 to render and interact with
end-users of the website.

[0070] Figure 8 shows a graphical user interface 146 of the object editor
component 54, presented by the browser component 28 on the creator’s client or the manager’s
cltent, with the assistance of the editor applet component 50 if one exists, to enable the creator or
manager to interact with the object editor component 54 on the system 20 sever via the web
server 30 for the purpose of creating, modifying or destroying objects instantiating classes in the
Website package 60 to create or manage a website.

[0071] The GUI 146 includes four main regions, a WYSIWYG design region
148, an objects catalog region 150, an object property table region 152, and a button pad region
154.

[0072] The catalog region includes an existing objects list 156 that catalogs all
objects that currently exist to represent aspects of the website and an object palette 158 that
catalogs all available classes for representing aspects of a website for which objects may be

Instantiated.
[0073] The design region 148 provides a “what-you-see-is-what-you-get” area for

laying out the presentation aspects of a portion of a website, for example placing and sizing
content 1tem objects 160 (“widgets”). A context menu 162 may be available to conveniently set
various common properties of a selected one of the content item objects 160.

[0074] The object property table 152 provides a way to inspect and modify the
properties of a selected object, including objects that may not be conveniently represented in the
design region 148 such as objects instantiating classes in the logic tier package 88 or the storage

tier package 90.

17

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0075] The button pad region 154 provides a create button 164, a destroy button
166 and a modify button 168. The create button 164 instantiates an object selected from the
object palette 158 and presents it for inspection and modification in the object property table 152.
The destroy button 166 destroys the selected object. The modify button 168 presents the selected
object in the object property table 152 from inspection and modification.

[0076] Operation -- Creating and Managing

[0077] In operation, a website creator 22 or website manager 24 creates or
manages a website through the GUI 146 described in Figure 8. He can select from the existing
objects catalog 150 any of the objects that currently represent aspects of the website and the
selected object will be presented in the object property table 152 and, in the case of objects that
can be represented by the WYSIWYG paradigm, selected in the design region 148. The
properties of the selected object can be modified in the object property table 152 upon pressing
the modify button 168. Alternatively, common properties of objects presented in the design
region 148 can be modified using the context menu 162.

[0078] Objects in the WYSIWYG design area can be selected, moved, resized,
reflowed, etc. as directed by the mouse 32 or another user input device 36. New objects can be

dragged from the object palette 158 and placed as desired onto the design area.
[0079] Pressing the create button 164 instantiates an object selected from the
object palette 158 and presents it for inspection and modification in the object property table 152.

Pressing the destroy button 166 destroys the selected object.

[0080] In general, the object editor (presented in a standard web browser 28)
hosts web pages and objects that form the user interface for creating and managing websites,

including pages, forms, tables and structured content. All user interface elements within the

18

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

object editor can be hosted in an AJAX standard web browser 28 with no client-side plug ins.
The object editor sends user input and receives and renders system 20 responses via standard
internet technologies, namely using the AJAX design pattern along with XHMTL compatible
data, all transferred via http to a standard web server 30.

[0081] The web server 30 redirects all traffic from the object editor (or from the
client’s browser 28) to the system server 44. In simplest terms, the system server 44 is
responsible for storing page and content data changes received from configuration tool or from
display, and returning data changes in a manner that is compatible for a browser 28 to properly
render it visually. All data changes are stored and retrieved from relational database S8. In this
regard, the web server 30 provides an interface operable to present representations of and
functions as means for representing objects instantiating the plurality of hierarchical classes and
to receive commands meant to one of: (1) instantiate a new object, (2) destroy a presented
object, and (3) change a property of a presented object. As embodied, this interface includes a
user-interface and in fact a WYSIWYG user-interface, this representation includes symbolic
representation and the commands include user-input.

[0082] The database server 46 performs standard database S8 tasks for the system

20, including: persistence and retrieval, indexing and search, transactions and rollback,
enforcement of data typing and relational integrity as well as replication and archiving.

[0083] At a deeper level, the system server 44 consists of a complete or partial set
of the objects that define a website, with one topmost Website object for each user’s web site, as

well as objects for each page, table, content item, etc. that a given site may contain. Each object

1s derived from a set of hierarchical classes and sub-classes that allow each object to:

e store and retrieve their own configuration data from the database 58;

19

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

e store and manage an indefinite history of changes to itself such that any previous state
of itself can be restored should the latest version of an object not be what a user
wants;

e render itself in a manner that is compatible with web browsers 28;

e accept user input and process it in an object specific way; and,

e (define thetr own rules for how to handle user — or system 20 events. E.g., Mouse 32
clicks or record adds/updates.

[0084] In this regard, system server 44 provides and functions as means for
providing a plurality of hierarchical classes of objects, each of the classes representing one
aspect of the storage, presentation and logic of a website.

[0085] By using object orientation, new object instances (or classes of objects)
can be added to the system 20 or changed without affecting other objects in the system 20.
Further, new objects can be derived from existing objects, thereby inheriting the features of the
base object while still allowing customization of the new object. For example, a blog object can

be created that 1s based upon the content list object, thereby inheriting its storage and

enumeration mechanism while allowing its own, encapsulated version control. In this regard, the

database server 46 stores and functions as means for storing objects as a traversable tree in

accordance with the plurality of hierarchical classes.

[0086] Operation -- Using

[0087] Reterring now to Figures 2 and 9, when a website end-user 26 wants to
use a website, he directs the browser component 28 on his device 36 to the web server 30 to
request presentation of a particular portion of the website. That portion might be a webpage or a

lesser portion, for example in the case of AJAX techniques.

20

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0088] The web server component 52 on the web server 30 receives this request
and conveys it to the system server 44, where the object renderer component 56 receives it.

[0089] In a receipt and parsing step 170, the request for webserving is parsed to
determine what is being requested and what portion of the website the request relates to.

[0090] In a define webserving step 172, the objects that define the portion of the
website relevant to the request are read by traversing the tree hierarchy of the objects.

[0091] In a render webserving step 174, a webserving 1s assembled in HTML,
CSS and JavaScript code that renders requested portion of the website as defined in the relevant
objects.

[0092] In a transmit webserving step 176, the webserving is transmitted to the
web server 30 for transmission to the browser component 28 of the end-user.

[0093] Figure 10 illustrates an example traversal of the hierarchy of objects
defining a webpage during execution of the define webserving step 172. In this example
traversal, the overall website object is read 178, then the relevant page object is read 180, then in
parallel two relevant page widget objects are read. With respect to one of the two page widget
objects, a database view object is read 182, which ends the traversal of that branch. With respect

to the other one of the two page widget objects, a content list object is read 184, following which

a content 1item object is read 186, which ends the traversal of the other branch and the relevant

portion of the tree.

[0094] Thus the system server 44 renders and functions as means for rendering a
requested portion of a website by traversing the corresponding portion of the object tree and

generating a dynamic webserving in response to the properties of the traversed objects.

21

10

15

20

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

[0093] In greater detail, reterring back to Figure 9, when the end-user requests a
given web page within a given site, the request (via an URL — e.g., http://yoursite.com/pagel) is
transferred via the web server 30 and http to the system server 44. Within the system server 44,
the top level website object locates requested page object from the object repository in the
DBMS 58. Next, the “published version” of the page object enumerates all of the published
versions of each widget object(s) contained within the requested page object and tells them to
create themselves. Note that the page object has no knowledge of the internals of each widget:
their versioning information, data format on disk or how they behave is all encapsulated within
each widget object. Note also that any changes to the page (e.g., new/deleted/updated widgets)
would automatically be reflected each time a page is requested.

[0096] Once each page widget is created in memory, it is activated — allowing
each widget to run its own specific code and bind to its data. In the case of content block
widgets or “list viewers”, the data is retrieved by binding to and reading from content list objects.
Each widget on a given page binds its own data source; for example, with reference to Figure 10,
the page binds the content block widget and the other widget, and the other widget binds its data
source.

[0097] Once a content list object is requested by a content block widget, it
enumerates and creates its child objects, content item(s). Again, each list item is an object,
encapsulating the knowledge of its internal versions and state information, as well as how to
read, process and present its data within itself.

[0098] Once ecach page widget object has been created, performed its
inttialization, and received its data from it data sources (e.g., content lists), it renders itself within

the page container for viewing in the end-user’s browser 28. That is, each widget dynamically

22

10

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

produces the HTML, CSS and JavaScript necessary within the requested page for rendering in
the web browser 28 and processing of user input.

[0099] Lastly, the system server 44 sends the fully rendered page (or only the
changed portion of the page if the page 1s already loaded within the end-user’s browser 28) back
to the end-user’s browser 28 for presentation and user input.

[00100] Obviously, many modifications and variations of the present invention are
possible in light of the above teachings and may be practiced otherwise than as specifically
described while within the scope of the appended claims. In addition, the reference numerals in

the claims are merely for convenience and are not to be read in any way as limiting.

23

10

15

2()

CA 02720897 2014-02-26

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A method for creating and managing a website as an object-oriented

system, comprising:

(a) providing, on a system server, a plurality of hierarchical classes of objects,
wherein each object of the plurality of hierarchical classes of objects represents one
aspect of the storage, presentation, and logic of a website, and wherein each object of the
plurality of hierarchical classes of objects is managed separately from each other while

retaining relationships between the plurality of hierarchical classes of objects;
(b) providing, on a web server, a user-interface operable to:

(1) present representations of objects instantiating the plurality of

hierarchical classes of objects; and
(11) recerve commands meant to one of:
(1) instantiate a new object;
(2) destroy a presented object; and
(3) change a property of a presented object;

(¢) storing, on a database server, objects as a traversable tree in accordance with

the plurality of hierarchical classes of objects; and
(d) rendering, on the system server, a user-requested portion of the website by:

(1) traversing a corresponding portion of the traversable object tree that

defines the user-requested portion of the website; and

(11) generating a dynamic webserving that renders the user-requested
portton of the website in response to properties of the traversed objects from the

corresponding portion of the traversable object tree,

24

10

15

20

23

CA 02720897 2014-02-26

wherein the web server redirects all traffic from an object editor to the system
server, wherein the system server stores web page and content data changes received
from a configuration tool and returns the web page and content data changes to a web
browser in a manner that is compatible for the web browser to properly render the web
page and content data changes visually, and wherein all web page and content data

changes are stored and retrieved from a relational database on the database server.

2. A method as claimed in claim 1, wherein presenting representations of

objects includes presenting symbolic representations of objects.

3. A method as claimed in claim 2, wherein providing a user-interface

includes providing a What-You-See-Is-What-You-Get (WYSIWYG) user-interface.

4. A method as claimed in claim 3, wherein receiving commands includes

recetving user-inputs.

5. A system for creating and managing a website as an object-oriented

system, comprising:

(a) a system server computer operable to provide a plurality of hierarchical classes

of objects, wherein each object of the plurality of hierarchical classes ot objects
represents one aspect of the storage, presentation, and logic of a website, and wherein
each object of the plurality of hierarchical classes of objects 1s managed separately from

each other while retaining relationships between the plurality of hierarchical classes of

objects;

(b) a web server computer in communication with the system server computer and

operable to provide a user-interface operable to:

(1) present representations of objects instantiating the plurality of

hierarchical classes of objects; and
(1) receive commands meant to one of:

(1) instantiate a new object;

25

10

15

20

23

CA 02720897 2014-02-26

(2) destroy a presented object; and
(3) change a property of a presented object; and

(c) a database server computer in communication with the system server computer
and operable to store objects as a traversable tree 1n accordance with the plurality of
hierarchical classes of objects, wherein the system server computer is further operable to

render a user-requested portion of the website by:

(1) traversing a corresponding portion of the traversable object tree that defines the

user-requested portion of the website; and

(1) generating a dynamic webserving that renders the user-requested portion of
the website in response to properties of the traversed objects from the corresponding
portion of the traversable object tree, wherein the web server computer is further operable
to redirect all traffic from an object editor to the system server computer, wherein the
system server computer 1s further operable to store web page and content data changes
received from a configuration tool and return the web page and content data changes to a
web browser in a manner that is compatible for the web browser to properly render the
web page and content data changes visually, and wherein all web page and content data
changes are stored and retrieved from a relational database on the database server

computer.

6. A system as claimed in claim 5, wherein the web server computer 1s
further operable to present representations of objects that are symbolic representations of

objects.

7. A system as claimed in claim 6, wherein the web server computer 1s

further operable to provide a user-interface that is a What-You-See-Is-What-You-Get
(WYSIWYG) user-interface.

8. A system as claimed in claim 7, wherein the web server computer 1s

further operable to receive commands that are user-inputs.

26

10

15

20

25

CA 02720897 2014-02-26

9. A system for creating and managing a website as an object-oriented

system, comprising:

(a) means for providing a plurality of hierarchical classes of objects, wherein each
object of the plurality of hierarchical classes of objects represents one aspect of the
storage, presentation, and logic of a website, and wherein each object of the plurality of
hierarchical classes of objects 1s managed separately from each other while retaining

relationships between the plurality of hierarchical classes of objects;
(b) means tor providing a user-interface, including:

(1) means for presenting representations of objects instantiating the

plurality of hierarchical classes of objects; and
(1) means for receiving commands meant to one of:
(1) instantiate a new object;
(2) destroy a presented object; and
(3) change a property of a presented object;

(¢) means for storing objects as a traversable tree in accordance with the plurality

of hierarchical classes of objects; and

(d) means for rendering a user-requested portion of the website, including:

(1) means for traversing a corresponding portion of the traversable object

tree that defines the user-requested portion of the website; and

(11) means for generating a dynamic webserving that renders the user-

requested portion of the website in response to properties of the traversed objects

from the corresponding portion of the traversable object tree,

wherein the means for providing a user-interface includes means for redirecting
all tratfic from an object editor to the means for providing a plurality of hierarchical

classes of objects, wherein the means for providing a plurality of hierarchical classes of

27

10

CA 02720897 2014-02-26

objects includes means for storing web page and content data changes received from a
configuration tool and returning the web page and content data changes to a web browser
in a manner that 1s compatible for the web browser to properly render the web page and
content data changes visually, and wherein all web page and content data changes are

stored and retrieved from a relational database on the means for storing objects.

10. A system as claimed in claim 9, wherein the means for presenting
representations of objects includes means for presenting symbolic representations of

objects.

11. A system as claimed in claim 10, wherein the means for providing a user-
interface includes means for providing a What-You-See-Is-What-You-Get (WYSIWYG)

user-interface.

12. A system as claimed in claim 11, wherein the means for receiving

commands includes means for receiving user-inputs.

28

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

L @lnbi

lasn-pu3 alISgoM
L ETY «30BLSIU|WoISASY PR
dlweuAg asn jlasmolg 9¢
8C
labeuep ajisqap
9)ISqa M «22BLBJU|WBISAS» o
olweuAq abeuepy lesmolg ve
8z
lojeal) 8lISgaM
«20BLBIUIWBISASY
a)Isqom R /O
dlweuAq sjeal)d 19SMOoIg
8C
18AI8S gapA Aom
" \,\q . P oerpme———

................. e o R S Sl b d e mmm s s s sscce e memmmee e e e e ee ot ag e 38 ol essblillicrrnnnnncccadate s atBbbl A8 NNt il el vBEYIIT Il 00 "3" *2 1110t becloceemmmmccceeesesssemm: sesesessemmesessessemmmeseeaaaagq8*l +00M coceccccnnnnaaaaasassanns aanessmsoagnsss
uuu

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

2/10

...

deployment System

«device» «device» 47
Manager's Client End-User's Client

«devicey
Creator's Client

‘0.)
Qo

«executionEnvironment»

0S 48
“
Browser Browser

20
Editor Applet

«executionkEnvironment»
0S 48
Browser
ol0) 5
Editor Applet

«device» 30
Web Server - Presentation

«executionEnvironment»
0S 48

52 3]

" Web Server

HTML, CSS, AJAX

«devicey
Database Server - Data

«executionEnvironmenty»
0S 48

58 2]
Object DBMS

Website 60

SQL

4 g
Object Editor

56 5
Object Renderer

WY WOTER SR SR A —t— | — — S WYY W W— — S— T A el — —— — — — — — — — & — — & — W A . Al — — — — — p—ye e wm— — — e e e — sm— wm—" . —hime

Figure 2

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

¢ ainbi4

2/
Z28 o9 8L 9. bl ce 0/ 89
Mm Mm_h m Ql

90BJJ91U| UOI10eI1SqQY 2iempleH

SI9A1IQ Wa1SAS 914
JUsWadeur|\ 921N0S3Y pUe $S320.d
908JJ91U| Wa]SAS

9JB}I9lu| wedsold uoliedijddy

OL/¢€

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

B R N N N N P A S P -

e e e e e e e e e

 81nbi4

. s~ S L AL B S S S S ST S S S R T TR Y B TR L T T T T P PR b ¢ e gy g, oy oy gy

SAAAANATNATTRART TATINT A QAL L b e i e ks o o o e o oy o o 0 o S R S A SR AR AT AT SAVR AN AR AT R SRR S LR ARk v — oy o, #, S, T SRR S B A B & e el B e o e ey o o oy Sy . S g g, Y Y, 9, Y L, %, Y L Y TR R AT MR AR S A Y & R AT AR e, - . TEII AR - VS WA WA S — g o 9 Y Y S W e TR AL T Wl e Bl o ey s o, e, o
——— . [P —— - -

1a1] 21607 Jal] uoiljejuasalid - | J91] obeioig

%
L

¢b

N AAYy 5
W
> s

9)ISQOMN +

.
!! SARAAAZ
VPV

Ll B B, s s . . g [U A AL AL LS LI BOSED SLEBBBEBBE Bl B8 Bl B B Bl SO Bl B BB s, . . . g e . g [G U 2l 5 0 0 U L 0 B AOLOAA 8 L BOE B A BB 8 B Bl B Bl S, 18 . i v

OL /v

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

BuijpueH
JUBAT JBsS

wEoEo_m_
abed

12400

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

g alnbi4

vZ:J\

SMO| 4 YJOA

Buipuey -

JUBAT SNy
opIS-IoAIDSG ssaulisng

S

88

S o e B N B ———— . %

- sasse| 21607 3)ISqaM SSE|D

OL/9

CA 02720897 2010-10-06

PCT/CA2009/000569

WO 2009/132444

J @1nbi4

..

painNonAg
- eleq Jasn

PINJONJ}SUON
- g}eq Joasn

= Q) -9}

TS -
/S 9lqo SWwa}j JusjuoD
0El

[/ 1Gl | O O Vel

= v
————

\@Nv A

]
sauanyd

yoieag

S}NSoY
Alanp) yoieag

so|qe]
psuljaq-19s

sjassy jeybig

|) [/
S F e
vo Z6

~ sasse|D obeI0)S B}ISGIAN SSEJO |

OL /4L

PCT/CA2009/000569

CA 02720897 2010-10-06

WO 2009/132444

Q 8inbi4

......................

'
W

LEAANAE

wn 2

P

e, .

! l ' - l

ot L e

ot

8|qe | Ausdoud 108iqO

8jlsjed 108lq0

¢9l

¢ 190pPIM JUBUOD

| 18BPIA JUBJUOYD)

NUSJA IXBJU0N) 09T

0ST syoolqo asgsm

OL/8

4"

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

9/10

fll‘ll‘ll‘ll‘lth-tl-‘l““l.lllll'l---‘-------‘--‘l-~--------------'--'-----------"-'l-"----"-!'-"-!'-"v!!vl!ll LS UL . LR
; t R . |

. P

s *

Request for Webserving

Webserving

Receive
and Parse
Request for
Webserving
from
Webserver

Define
Webserving
by
Traversing
Tree of
Website
Obijects

Render

Webserving
from Object \
Definition 174

Transmit

Webserving Transmit
to

Webserver

CA 02720897 2010-10-06
WO 2009/132444 PCT/CA2009/000569

10/ 10

..

...

Initial

Traverse Object Tree Recursively 172

Read Website

17

Read Page

18

Read Widget
188

Read Widget
188

Read Content
i ist 184

Read Database

View 182

Read Content

[tem 186

R D T T L O T T
- LR R Al L N L R N e L N R T

tl ettt T mme s e e e e e e e e R IIEE Lttt ree e mi s emi e eer e ep el AL bSennen tmme st e P PP PPt Ot L. e e e e f el

R I L L N A A S A

Figure 10

LT TP PP PR PP S

A i s AL T Ve M R e A s s A e e e b e S e e e e e M e ——

Storage Tier

BAL PP ARl el o g e P I

Presentation Tier

N ALILL R PR A AL S M AR BT RRR T STR AL ALY AR MY IR A R A e SRR R

et

= + Website

l/\92

SRV WA e e e e et - g p T AR IV b e et B A eV o e e b e . ——— - — - —— — — — - ——— —

ogc Tier

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - abstract drawing

