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DESCRIPTION

BACKGROUND

[0001] This specification relates to analyzing execution of program code.

[0002] Effective performance analysis of distributed software executing within distributed
hardware components can be a complex task. Distributed hardware components can be
respective processor cores of two or more Central Processing Units (CPUs) (or Graphics
Processing Units (GPUs)) that cooperate and interact to execute portions of a larger software
program or program code.

[0003] From the hardware perspective (e.g., within the CPUs or GPUs), there are generally
two types of information or features available for performance analysis: 1) hardware
performance counters and 2) hardware event traces.

[0004] In United States Patent Application Publication US 2012/0226837 A1, there is described
a bus monitoring and debugging system operating independently without impacting the normal
operation of the CPU and without adding any overhead to the application being monitored.
Users are alerted to timing problems as they occur, and bus statistics that are relevant to
providing insight to system operation are automatically captured. Logging of relevant events
may be enabled or disabled when a sliding time window expires, or alternatively by external
trigger events.

[0005] In United States Patent Application Publication US 2005/0144532 A1, there is described
a method and apparatus for time stamping events occurring on a large scale distributed
network using a local counter associated with each processor of the distributed network.

[0006] In United States Patent Application Publication US 2012/0324290 A1, there is described
an approach to trace a software program running in a multi-nodal complex computing
environment.

[0007] In United States Patent Application Publication US 2010/0106678 A1, there is described
methods, systems and computer-readable media for monitoring information passed from
instances of role(s) of a service application installed on a distributed computing platform and
for indexing and analyzing the information within a data store.

SUMMARY

[0008] Various aspects and embodiments of the invention are set out in the appended claims.
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[0009] The subject matter described in this specification can be implemented in particular
embodiments so as to realize one or more of the following advantages. The described
hardware tracing systems enable efficient correlation of hardware events that occur during
execution of a distributed software program by distributed processing units including multi-
node multi-core processors. The described hardware tracing system further includes
mechanisms that enable collection and correlation of hardware events/trace data in multiple
cross-node configurations. The described method is usable for analyzing performance of the
program code being executed by at least the first processor component or the second
processor component.

[0010] The hardware tracing system enhances computational efficiency by using dynamic
triggers that execute through hardware knobs/features. Further, hardware events can be time-
ordered in a sequenced manner with event descriptors such as unique trace identifiers, event
timestamps, event source-address, and event destination-address. Such descriptors aid
software programmers and processor design engineers with effective debugging and analysis
of software and hardware performance issues that may arise during source code execution.

[0011] The details of one or more implementations of the subject matter described in this
specification are set forth in the accompanying drawings and the description below. Other
potential features, aspects, and advantages of the subject matter will become apparent from
the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]

FIG. 1 illustrates a block diagram of an example computing system for distributed hardware
tracing.

FIG. 2 illustrates a block diagram of trace chains and respective nodes of an example
computing system for distributed hardware tracing.

FIG. 3 illustrates a block diagram of an example trace mux design architecture and an example
data structure.

FIG. 4 is a block diagram indicating trace activity for a direct memory access trace event
executed by an example computing system for distributed hardware tracing.

FIG. 5 is a process flow diagram of an example process for distributed hardware tracing.

[0013] Like reference numbers and designations in the various drawings indicate like
elements.
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DETAILED DESCRIPTION

[0014] The subject matter described in this specification generally relates to distributed
hardware tracing. In particular, a computing system monitors execution of program code
executed by one or more processor cores. For example, the computing system can monitor
execution of program code executed by a first processor core and execution of program code
executed by at least a second processor core. The computing system stores data identifying
one or more hardware events in a memory buffer. The stored data identifying the events
correspond to events that occur across distributed processor units that include at least the first
and second processor cores.

[0015] For each hardware event, the stored data includes an event time stamp and metadata
characterizing the hardware event. The system generates a data structure identifying the
hardware events. The data structure arranges the events in a time ordered sequence and
associates events with at least the first or second processor cores. The system stores the data
structure in a memory bank of a host device and uses the data structure to analyze
performance of the program code executed by the first or second processor cores.

[0016] FIG. 1 illustrates a block diagram of an example computing system 100 for distributed
hardware tracing. As used in this specification, distributed hardware system tracing
corresponds to storage of data identifying events that occur within components and sub-
components of an example processor micro-chip. Further, as used herein, a distributed
hardware system (or tracing system) corresponds to a collection of processor micro-chips or
processing units that cooperate to execute respective portions of a software/program code
configured for distributed execution amongst the collection of processor micro-chips or
distributed processing units.

[0017] System 100 is a distributed processing system, having one or more processors or
processing units that execute a software program in a distributed manner, i.e., by executing
different parts or portions of the program code on different processing units of system 100.
Processing units can include two or more processors, processor micro-chips, or processing
units, e.g., at least a first processing unit and a second processing unit.

[0018] In some implementations, two or more processing units can be distributed processing
units when the first processing unit receives and executes a first portion of program code of a
distributed software program, and when the second processing unit receives and executes a
second portion of program code of the same distributed software program.

[0019] In some implementations, different processor chips of system 100 can form respective
nodes of the distributed hardware system. In alternative implementations, a single processor
chip can include one or more processor cores and hardware features that can each form
respective nodes of the processor chip.
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[0020] For example, in the context of a central processing unit (CPU), a processor chip can
include at least two nodes and each node can be a respective core of the CPU. Alternatively, in
the context of a graphical processor unit (GPU), a processor chip can include at least two
nodes and each node can be a respective streaming multiprocessor of the GPU. Computing
system 100 can include multiple processor components. In some implementations, the
processor components can be at least one of a processor chip, a processor core, a memory
access engine, or at least one hardware component of the overall computing system 100.

[0021] In some instances, a processor component, such as a processor core, can be a fixed-
function component configured to execute at least one specific operation based on at least one
issued instruction of the executing program code. In other instances, a processor component,
such as a memory access engine (MAE), can be configured to execute program code at a
lower level of detail or granularity than program code executed by other processor components
of system 100.

[0022] For example, program code executed by a processor core can cause an MAE
descriptor to be generated and transmitted/sent to the MAE. After receipt of the descriptor, the
MAE can execute a data transfer operation based on the MAE descriptor. In some
implementations, data transfers executed by the MAE can include, for example, moving data to
and from certain components of system 100 via certain data paths or interface components of
the system, or issuing data requests onto an example configuration bus of system 100.

[0023] In some implementations, each tensor node of an example processor chip of system
100 can have at least two "front-ends” which can be hardware blocks/features that process
program instructions. As discussed in more detail below, a first front-end can correspond to
first processor core 104, while a second front-end can correspond to second processor core
106. Hence, the first and second processor cores may also be described herein as first front-
end 104 and second front-end 106.

[0024] As used in this specification, a trace chain can be a specific physical data
communication bus that trace entries can be put onto for transmission to an example chip
manager within system 100. Received trace entries can be data words/structures including
multiple bytes and multiple binary values or digits. Thus, the descriptor "word" indicates a fixed-
sized piece of binary data that can be handled as a unit by hardware devices of an example
processor core.

[0025] In some implementations, the processor chips of the distributed hardware tracing
system are multi-core processors (i.e., having multiple cores) that each execute portions of
program code in respective cores of the chip. In some implementations, portions of program
code can correspond to vectorized computations for inference workloads of an example multi-
layer neural network. While in alternative implementations, portions of program code can
correspond generally to software modules associated with conventional programming
languages.



DK/EP 3382551 T3

[0026] Computing system 100 generally includes a node manager 102, a first processor core
(FPC) 104, a second processor core (SPC) 106, a node fabric (NF) 110, a data router 112, and
a host interface block (HIB) 114. In some implementations, system 100 can include a memory
mux 108 that is configured to perform signal switching, multiplexing, and de-multiplexing
functions. System 100 further includes a tensor core 116 that includes FPC 104 disposed
therein. Tensor core 116 can be an example computational device configured to perform
vectorized computations on multi-dimensional data arrays. Tensor core 116 can include a
vector processing unit (VPU) 118, that interacts with a matrix unit (MXU) 120, transpose unit
(XU) 122, and reduction and permutation unit (RPU) 124. In some implementations, computing
system 100 can include one or more execution units of a conventional CPU or GPU, such as
load/store units, arithmetic logic units (ALU's) and vector units.

[0027] The components of system 100 collectively include a large set of hardware
performance counters as well as support hardware that facilitates completion of tracing activity
within the components. As described in more detail below, program code executed by
respective processor cores of system 100 can include embedded triggers used to
simultaneously enable multiple performance counters during code execution. In general,
detected triggers cause trace data to be generated for one or more trace events. The trace
data can correspond to incremental parameter counts that are stored in the counters and that
can be analyzed to discern performance characteristics of the program code. Data for
respective trace events can be stored in an example storage medium (e.g., a hardware buffer)
and can include a timestamp that is generated responsive to detection of the trigger.

[0028] Further, trace data is generated for a variety of events occurring within hardware
components of system 100. Example events can include inter-node and cross-node
communication operations, such as direct memory access (DMA) operations and sync flag
updates (each described in more detail below). In some implementations, system 100 can
include a globally synchronous timestamp counter generally referred to as Global Time
Counter ("GTC"). In other implementations, system 100 can include other types of global
clocks, such as a Lamport Clock.

[0029] The GTC can be used for precise correlation of program code execution and
performance of software/program code that executes in a distributed processing environment.
Additionally, and related in part to the GTC, in some implementations system 100 can include
one or more trigger mechanisms used by distributed software programs to start and stop data
tracing in a distributed system in a highly coordinated manner.

[0030] In some implementations, a host system 126 compiles program code that can include
embedded operands that trigger, upon detection, to cause capture and storage of trace data
associated with hardware events. In some implementations, host system 126 provides the
compiled program code to one or more processor chips of system 100. In alternative
implementations, program code can be compiled (with embedded triggers) by an example
external compiler and loaded to the to one or more processor chips of system 100. In some
instances, the compiler can set one or more trace bits (discussed below) associated with
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certain triggers that are embedded in portions of software instructions. The compiled program
code can be a distributed software program that is executed by the one or more components
of system 100.

[0031] Host system 126 can include a monitoring engine 128 configured to monitor execution
of program code by one or more components of system 100. In some implementations,
monitoring engine 128 enables host system 126 to monitor execution of program code
executed by at least FPC 104 and SPC 106. For example, during code execution, host system
126 can monitor, via monitoring engine 128, performance of the executing code at least by
receiving periodic timelines of hardware events based on generated trace data. Although a
single block is shown for host system 126, in some implementations, system 126 can include
multiple hosts (or host subsystems) that are associated with multiple processor chips or chip
cores of system 100.

[0032] In other implementations, cross-node communications that involve at least three
processor cores may cause host system 126 to monitor data traffic at one or more
intermediate "hops" as data traffic traverses a communication path between FPC 104 and an
example third processor core/node. For example, FPC 104 and the third processor core may
be the only cores executing program code at given time period. Hence, a data transfer from
FPC 104 to the third processor core can generate trace data for an intermediate hop at SPC
106 as data is transferred from FPC 104 to the third processor core. Stated another way,
during data routing in system 100, data from a first processor chip going to a third processor
chip may need to traverse a second processor chip, and so execution of the data routing
operation may cause trace entries to be generated for routing activity in the second chip.

[0033] Upon execution of the compiled program code, the components of system 100 can
interact to generate timelines of hardware events that occur in a distributed computer system.
The hardware events can include intra-node and cross-node communication events. Example
nodes of a distributed hardware system and their associated communications are described in
more detail below with reference to FIG. 2. In some implementations, a data structure is
generated that identifies a collection of hardware events for at least one hardware event
timeline. The timeline enables reconstruction of events that occur in the distributed system. In
some implementations, event reconstruction can include correct event ordering based on
analysis of time stamps generated during occurrence of a particular event.

[0034] In general, an example distributed hardware tracing system can include the above
described components of system 100 as well as at least one host controller associated with a
host system 126. Performance or debugging of data obtained from a distributed tracing system
can be useful when the event data is correlated in, for example, a time-ordered or sequenced
manner. Data correlation occurs when multiple stored hardware events corresponding to
connected software modules are stored and then sequenced for structured analysis by host
system 126. For implementations including multiple host systems, correlation of data obtained
via the different hosts may be performed, for example, by the host controller.
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[0035] In some implementations, FPC 104 and SPC 106 are each distinct cores of a multi-core
processor chip; while in other implementations, FPC and SPC 104, 106 are respective cores of
distinct multi-core processor chips. As indicated above, system 100 can include distributed
processor units having at least FPC 104 and SPC 106. Distributed processor units of system
100 include one or more hardware or software components configured to execute at least a
portion of a larger distributed software program or program code.

[0036] Data router 112 is an inter-chip interconnect (ICI) providing data communication paths
between the components of system 100. In particular, router 112 can provide communication
coupling or connections between FPC 104 and SPC 106, and between the respective
components associated with cores 104, 106. Node fabric 110 interacts with data router 112 to
move data packets within the distributed hardware components and sub-components of
system 100.

[0037] Node manager 102 is a high-level device that manages low-level node functions in
multi-node processor chips. As discussed in more detail below, one or more nodes of a
processor chip can include chip managers controlled by node manager 102 to manage and
store hardware event data in local entry logs. Memory mux 108 is a multiplexing device that
can perform switching, multiplexing, and de-multiplexing operations on data signals provided to
an example external high bandwidth memory (HBM) or data signals received from the external
HBM.

[0038] In some implementations, an example trace entry (described below) can be generated,
by mux 108, when mux 108 switches between FPC 104 and SPC 106. Memory mux 108 can
potentially impact performance of a particular processor core 104, 106 that is not able to
access mux 108. Thus, trace entry data generated by mux 108 can aid in understanding
resulting spikes in latencies of certain system activities associated with the respective cores
104, 106. In some implementations, hardware event data (e.g., trace points discussed below)
originating within mux 108 can be grouped, in an example hardware event timeline, along with
event data for node fabric 110. Event grouping can occur when certain tracing activity causes
event data for multiple hardware components to be stored in an example hardware buffer
(e.g., trace entry log 218, discussed below).

[0039] In system 100, performance analysis hardware encompasses FPC 104, SPC 106, mux
108, node fabric 110, data router 112, and HIB 114. Each of these hardware components or
units include hardware performance counters as well as hardware event tracing facilities and
functions. In some implementations, VPU 118, MXU 120, XU 122 and RPU 124 do not include
their own dedicated performance hardware. Rather, in such implementations, FPC 104 can be
configured to provide the necessary counters for VPU 118, MXU 120, XU 122 and RPU 124.

[0040] VPU 118 can include an internal design architecture that supports localized high
bandwidth data processing and arithmetic operations associated with vector elements of an
example matrix-vector processor. MXU 120 is a matrix multiplication unit configured to
perform, for example, up to 128x128 matrix multiplies on vector data sets of multiplicands.
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[0041] XU 122 is a transpose unit configured to perform, for example, up to 128x128 matrix
transpose operations on vector data associated with the matrix multiply operations. RPU 124
can include a sigma unit and a permute unit. The sigma unit executes sequential reductions on
vector data associated with the matrix multiply operations. The reductions can include sums
and various types of compare operations. The permute unit can fully permute or replicate all
elements of vector data associated with the matrix multiply operations.

[0042] In some implementations, program code executed by the components of system 100
can be representative of machine learning, neural network inference computations, and/or one
or more direct memory access functions. Components of system 100 can be configured to
execute one or more software programs including instructions that cause a processing unit(s)
or device(s) of the system to execute one or more functions. The term "component” is intended
to include any data processing device or storage device such as control status registers or any
other device able to process and store data.

[0043] System 100 can generally include multiple processing units or devices that can include
one or more processors (e.g., microprocessors or central processing units (CPUs)), graphics
processing units (GPUs), application specific integrated circuits (ASICs), or a combination of
different processors. In alternative embodiments, system 100 can each include other
computing resources/devices (e.g., cloud-based servers) that provide additional processing
options for performing computations related to hardware tracing functions described in this
specification.

[0044] The processing units or devices further include one or more memory units or memory
banks (e.g., registers/counters). The processing units execute programmed instructions stored
in memory to devices of system 100 to perform one or more functions described in this
specification. The memory units/banks can include one or more non-transitory machine-
readable storage mediums. The non-transitory machine-readable storage medium can include
solid-state memory, magnetic disk, and optical disk, a random access memory (RAM), a read-
only memory (ROM), an erasable programmable read-only memory (e.g., EPROM, EEPROM,
or Flash memory), or any other tangible medium capable of storing information.

[0045] FIG. 2 illustrates a block diagram of example trace chains and respective example
nodes 200, 201 used for distributed hardware tracing executed by system 100. In some
implementations, the nodes 200, 201 of system 100 can be different nodes within a single
multi-core processor. In other implementations, node 200 can be a first node in a first multi-
core processor chip and node 201 can be a second node in a second multi-core processor
chip.

[0046] Although two nodes are depicted in the implementation of FIG. 2, in alternative
implementations, system 100 can include multiple nodes. For implementations involving
multiple nodes, cross-node data transfers can generate trace data at intermediate hops along
an example data path that traverse multiple nodes. For example, intermediate hops can
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correspond to data transfers which pass through distinct nodes in a particular data transfer
path. In some instances, trace data associated with ICI traces/hardware events can be
generated for one or more intermediate hops that occur during cross-node data transfers
which pass through one or more nodes.

[0047] In some implementations, node 0 and node 1 are tensor nodes used for vectorized
computations associated with portions of program code for inference workloads. As used in
this specification, a tensor is a multi-dimensional geometric object and example multi-
dimensional geometric objects include matrices and data arrays.

[0048] As shown in the implementation of FIG. 2, node 200 includes a trace chain 203 that
interacts with at least a subset of the components of system 100. Likewise, node 201 includes
a trace chain 205 that interacts with at least a subset of the components of system 100. In
some implementations, nodes 200, 201 are example nodes of the same subset of
components, while in other implementations, nodes 200, 201 are respective nodes of distinct
component subsets. Data router/ICI 112 includes a trace chain 207 that generally converges
with trace chains 203 and 205 to provide trace data to chip manager 216.

[0049] In the implementation of FIG. 2, nodes 200, 201 can each include respective
component subsets having at least FPC 104, SPC 106, node fabric 110, and HIB 114. Each
component of nodes 200, 201 includes one or more trace muxes configured to group trace
points (described below) generated by a particular component of the node. FPC 104 includes a
trace mux 204, node fabric 110 includes trace muxes 210a/b, SPC 106 includes trace muxes
206a/b/c/d, HIB 214 includes trace mux 214, and ICl 212 includes trace mux 212. In some
implementations, a trace control register for each trace mux allows individual trace points to be
enabled and disabled. In some instances, for one or more trace muxes, their corresponding
trace control registers can include individual enable bits as well as broader trace mux controls.

[0050] In general, the trace control registers can be conventional control status registers
(CSR) that receive and store trace instruction data. Regarding the broader trace mux controls,
in some implementations, tracing can be enabled and disabled based on CSR writes executed
by system 100. In some implementations, tracing can be dynamically started and stopped, by
system 100, based on the value of a global time counter (GTC), the value of an example trace-
mark register in the FPC 104 (or core 116), or based on the value of a step mark in SPC 106.

[0051] Details and descriptions relating to computing systems and computer-implemented
methods for dynamically starting and stopping tracing activity as well as for synchronized
hardware event collection are described in related U.S. Patent Application US2018285233
entitled "Synchronous Hardware Event Collection,"” filed on March 29, 2017.

[0052] In some implementations, for core 116, FPC 104 can use a trace control parameter to
define a trace window associated with event activity occurring within core 116. The trace
control parameter allows the trace window to be defined in terms of lower and upper bounds
for the GTC as well as lower and upper bounds for the trace-mark register.
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[0053] In some implementations, system 100 can include functions that enable reduction of the
number of trace entries that are generated, such as trace event filtering features. For example,
FPC 104 and SPC 106 can each include filtering features which limit the rate at which each
core sets a trace bit in an example generated trace descriptor (described below). HIB 114 can
include similar filtering features such as an example DMA rate limiter that limits trace bits
associated with capture of certain DMA trace events. Additionally, HIB 114 can include controls
(e.g., via an enable bit) for limiting which queues source DMA trace entries.

[0054] In some implementations, a descriptor for a DMA operation can have a trace bit that is
set by an example compiler of host system 126. When the trace bit is set, hardware
features/knobs that determine and generate trace data are used to complete an example trace
event. In some instances, a final trace bit in the DMA can be a logical OR operation between a
trace bit that is statically inserted by the compiler and a trace bit that is dynamically determined
by a particular hardware component. Hence, in some instances, the compiler generated trace
bit can provide a mechanism, apart from filtering, to reduce an overall amount of trace data
that is generated.

[0055] For example, a compiler of host system 126 may decide to only set trace bits for one or
more remote DMA operations (e.g., a DMA across at least two nodes) and clear trace bits for
one or more local DMA operations (e.g., a DMA within a particular tensor node, such as node
200). In this manner, an amount of trace data that is generated can be reduced based on
tracing activity being limited to cross-node (i.e., remote) DMA operations, rather than tracing
activity that includes both cross-node and local DMA operations.

[0056] In some implementations, at least one trace event initiated by system 100 can be
associated with a memory access operation that includes multiple intermediate operations
occurring across system 100. A descriptor (e.g., an MAE descriptor) for the memory access
operation can include a trace bit that causes data associated with the multiple intermediate
operations to be stored in one or more memory buffers. Thus, the trace bit can be used to
"tag" intermediate memory operations and generate multiple trace events at intermediate hops
of the DMA operation as data packets traverse system 100.

[0057] In some implementations, ICl 112 can include a set of enable bits and a set of packet
filters that provide control functionality for each ingress and egress port of a particular
component of node 200, 201. These enable bits and packet filters allow ICI 112 to enable and
disable trace points associated with particular components of nodes 200, 201. In addition to
enabling and disabling trace points, ICI 112 can be configured to filter trace data based on
event source, event destination, and trace event packet type.

[0058] In some implementations, in addition to using step markers, GTC, or trace markers,
each trace control register for processor cores 104, 106 and HIB 114 can also include an
"everyone" trace mode. This "everyone" trace mode can enable tracing across an entire
processor chip to be controlled by either trace mux 204 or trace mux 206a. While in the
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everyone trace mode, traces muxes 204 and 206a can send an "in-window" trace control
signal that specifies whether or not that particular trace mux, either mux 204 or mux 206a, is in
a trace window.

[0059] The in-window trace control signal can be broadcast or universally transmitted to all
other trace muxes, for example, within a processor chip or across multiple processor chips.
The broadcast to the other trace muxes can cause all tracing to be enabled when either mux
204 or mux 206a is executing tracing activity. In some implementations, trace muxes
associated with processor cores 104, 106, and HIB 114 each include a trace window control
register that specifies when and/or how the "everyone trace" control signal is generated.

[0060] In some implementations, tracing activity in trace muxes 210a/b and trace mux 212, is
generally enabled based on whether a trace bit is set in data words for DMA operations or
control messages that traverses ICl/data router 112. DMA operations or control messages can
be fixed-size binary data structures that can have a trace bit within the binary data packets set
based on certain circumstances or software conditions.

[0061] For example, when a DMA operation is initiated in FPC 104 (or SPC 106) with a trace-
type DMA instruction and the initiator (processor cores 104 or 106) is in a trace window, the
trace bit will be set in that particular DMA. In another example, for FPC 104, control messages
for data writes to another component within system 100 will have the trace bit set if FPC 104 is
in a trace window and a trace point that causes trace data to be stored is enabled.

[0062] In some implementations, zero-length DMA operations provide an example of a
broader DMA implementation within system 100. For example, some DMA operations can
produce non-DMA activity within system 100. Execution of the non-DMA activity can also be
traced (e.g., generate trace data) as if the non-DMA activity were a DMA operation (e.g., DMA
activity including non-zero-length operations). For example, a DMA operation initiated at a
source location but without any data (e.g., zero-length) to be sent or transferred could instead
send a control message to the destination location. The control message will indicate that there
is no data to be received, or worked with, at the destination, and the control message itself
would be traced by system 100 as a non-zero-length DMA operation would be traced.

[0063] In some instances, for SPC 106, zero-length DMA operations can generate a control
message, and a trace bit associated with the message is set only if the DMA would have had
the trace bit set, i.e., had the control message not had a zero-length. In general, DMA
operations initiated from host system 126 will have the trace bit set if HIB 114 is in a trace
window.

[0064] In the implementation of FIG. 2, trace chain 203 receives trace entry data for the
component subset that aligns with node 0, while trace chain 205 receives trace entry data for
the component subset that aligns with node 1. Each trace chain 203, 205, 207 are distinct data
communication paths used by respective nodes 200, 201 and ICI 112 to provide trace entry
data to an example trace entry data log 218 of a chip manager 216. Thus, the endpoint of
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trace chains 203, 205, 207 is chip manager 216 where trace events can be stored in example
memory units.

[0065] In some implementations, at least one memory unit of chip manager 216 can be 128-bit
wide and can have a memory depth of at least 20,000 trace entries. In alternative
implementations, at least one memory unit can have a larger or smaller bit-width and can have
a memory depth capable of storing more or fewer entries.

[0066] In some implementations, chip manager 216 can include at least one processing device
executing instructions to manage received trace entry data. For example, chip manager 216
can execute instructions to scan/analyze time stamp data for respective hardware events of
trace data received via trace chains 203, 205, 207. Based on the analysis, chip manager 216
can populate trace entry log 218 to include data that can be used to identify (or generate) a
time-ordered sequence of hardware trace events. The hardware trace events can correspond
to movement of data packets occurring at the component and sub-component level when
processing units of system 100 execute an example distributed software program.

[0067] In some implementations, hardware units of system 100 may generate trace entries
(and corresponding timestamps) that populate an example hardware trace buffer in a non-
time-ordered manner (i.e., out-of-order). For example, chip manager 216 can cause multiple
trace entries, having generated time-stamps, to be inserted into entry log 218. Respective
trace entries, of the multiple inserted trace entries, may not be time-ordered relative to one
another. In this implementation, non-time-ordered trace entries can be received by an example
host buffer of host system 126. Upon receipt by the host buffer, host system 126 can execute
instructions relating to performance analysis/monitoring software to scan/analyze time stamp
data for the respective trace entries. The executed instructions can be used to sort the trace
entries and to construct/generate a timeline of hardware trace events.

[0068] In some implementations, trace entries can be removed from entry log 218 during a
tracing session via a host DMA operation. In some instances, host system 126 may not DMA
entries out of trace entry log 218 as quickly as they are added to the log. In other
implementations, entry log 218 can include a predefined memory depth. If the memory depth
limit of entry log 218 is reached, additional trace entries may be lost. In order to control which
trace entries are lost, entry log 218 can operate in first-in-first-out (FIFO) mode, or,
alternatively, in an overwrite recording mode.

[0069] In some implementations, the overwrite recording mode can be used, by system 100, to
support performance analysis associated with post-mortem debugging. For example, program
code can be executed for a certain time-period with tracing activity enabled and overwrite
recording mode enabled. In response to a post-mortem software event (e.g., a program crash)
within system 100, monitoring software executed by host system 126 can analyze the data
contents of an example hardware trace buffer to gain insight into hardware events that
occurred before the program crash. As used in this specification, post-mortem debugging
relates to analysis or debugging of program code after the code has crashed or has generally
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failed to execute/operate as intended.

[0070] In FIFO mode, if entry log 218 is full, and if host system 126 does remove saved log
entries within a certain timeframe, to conserve memory resources, new trace entries may not
be saved to a memory unit of chip manager 216. While in the overwrite recording mode, if
entry log 218 is full because host system 126 does remove saved log entries within a certain
timeframe, to conserve memory resources new trace entries can overwrite the oldest trace
entry stored within entry log 218. In some implementations, trace entries are moved to a
memory of host system 126 in response to a DMA operation using processing features of HIB
114.

[0071] As used in this specification, a trace point is the generator of a trace entry and data
associated with the trace entry received by chip manager 216 and stored in trace entry log
218. In some implementations, a multi-core multi-node processor microchip can include three
trace chains within the chip such that a first trace chain receives trace entries from a chip node
0, a second trace chain receives trace entries from a chip node 1, and a third trace chain
receives trace entries from an ICl router of the chip.

[0072] Each trace point has a unique trace identification number, within its trace chain, that it
inserts into the header of the trace entry. In some implementations, each trace entry identifies
the trace chain it originated from in a header indicated by one or more bytes/bits of the data
word. For example, each trace entry can include a data structure having defined field formats
(e.g., header, payload, etc.) that convey information about a particular trace event. Each field
in a trace entry corresponds to useful data applicable to the trace point that generated the
trace entry.

[0073] As indicated above, each trace entry can be written to, or stored within, a memory unit
of chip manager 216 associated with trace entry log 218. In some implementations, trace
points can be enabled or disabled individually and multiple trace points can generate the same
type of trace entry although with different trace point identifiers.

[0074] In some implementations, each trace entry type can include a trace name, trace
description, and a header that identifies encodings for particular fields and/or a collection of
fields within the trace entry. The name, description, and header collectively provide a
description of what the trace entry represents. From the perspective of chip manager 216, this
description can also identify the particular trace chain 203, 205, 207 that a specific trace entry
came in on within a particular processor chip. Thus, fields within a trace entry represent pieces
of data (e.g., in bytes/bits) relevant to the description and can be a trace entry identifier used to
determine which trace point generated a particular trace entry.

[0075] In some implementations, trace entry data associated with one or more of the stored
hardware events can correspond, in part, to data communications that occur: a) between at
least a node 0 and node 1; b) between at least components within node 0; and c) between at
least components within node 1. For example, stored hardware events can correspond, in part,
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to data communications that occur between at least one of: 1) FPC 104 of node 0 and FPC
104 of node 1; FPC 104 of node 0 and SPC 106 of node 0; 2) SPC 106 of node 1 and SPC 106
of node 1.

[0076] FIG. 3 illustrates a block diagram of an example trace mux design architecture 300 and
an example data structure 320. Trace mux design 300 generally includes a trace bus input
302, a bus arbiter 304, and a local trace point arbiter 306, a bus FIFO 308, at least one local
trace event queue 310, a shared trace event FIFO 312, and a trace bus out 314.

[0077] Mux design 300 corresponds to an example trace mux disposed within a component of
system 100. Mux design 300 can include the following functionality. Bus in 302 can relate to
local trace point data that is temporarily stored within bus FIFO 308 until such that time
arbitration logic (e.g., arbiter 304) can cause the trace data to be placed unto an example trace
chain. One or more trace points for a component can insert trace event data into at least one
local trace event queue 310. Arbiter 306 provides first level arbitration and enables selection of
events from among the local trace events stored within queue 310. Selected events are place
in shared trace event FIFO 312 which also functions as a storage queue.

[0078] Arbiter 304 provides second level arbitration that receives local trace events from FIFO
queue 312 and merges the local trace events onto a particular trace chain 203, 205, 207 via
trace bus out 314. In some implementations, trace entries may be pushed into local queues
310 faster than they can be merged to shared FIFO 312, or, alternatively, trace entries may be
pushed into shared FIFO 312 faster than they can be merged onto trace bus 314. When these
scenarios occur, the respective queues 310 and 312 will become full with trace data.

[0079] In some implementations, when either queue 310 or 312 becomes full with trace data,
system 100 can be configured so that the newest trace entries are dropped and not stored to,
or merged to, a particular queue. In other implementations, rather than dropping trace entries
when certain queues fill up (e.g., queues 310, 312), system 100 can be configured to stall an
example processing pipeline until queues that are filled once again have available queue
space to receive entries.

[0080] For example, a processing pipeline that uses queues 310, 312 can be stalled until a
sufficient, or threshold, number of trace entries are merged onto trace bus 314. The sufficient
or threshold number can correspond to a particular number merged trace entries that result in
available queue space for one or more trace entries to be received by queues 310, 312.
Implementations in which processing pipelines are stalled, until downstream queue space
becomes available, can provide higher-fidelity trace data based on certain trace entries being
retained rather than dropped.

[0081] In some implementations, local trace queues are as wide as required by the trace entry,
such that each trace entry takes only one spotin local queue 310. However, shared trace FIFO
queue 312 can use a unique trace entry line encoding such that some trace entries can occupy
two locations in shared queue 312. In some implementations, when any data of a trace packet
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is dropped, the full packet is dropped so that no partial packets appear in trace entry log 218.

[0082] In general, a trace is a timeline of activities or hardware events associated with a
particular component of system 100. Unlike performance counters (described below), which
are aggregate data, traces contain detailed event data that provide insight into hardware
activity occurring during a specified trace window. The described hardware system enables
extensive support for distributed hardware tracing, including generation of trace entries,
temporary storage of trace entries in hardware managed buffer, static and dynamic enabling of
one or more trace types, and streaming of trace entry data to host system 126.

[0083] Traces are generated for hardware events executed by components of system 100,
such as, generating a DMA operation, executing a DMA operation, issuing/execution of certain
instructions, or updating sync flags. In some instances, tracing activity can be used to track
DMAs through the system, or to track instructions executing on a particular processor core.

[0084] System 100 is configured to generate at least one data structure 320 that identifies one
or more hardware events 322, 324 from a timeline of hardware events. Data structure 320
arranges one or more hardware events 322, 324 in a time ordered sequence of events that
are associated with at least FPC 104 and SPC 106. System 100 stores data structure 320 in a
memory bank of a host control device of host system 126. Data structure 320 can be used to
assess performance of program code executed by at least processor cores 104 and 106.

[0085] As shown by hardware events 324, a particular trace identification (ID) number (e.g.,
trace ID "003) is associated with multiple hardware events that occur across the distributed
processor units. The multiple hardware events correspond to a particular memory access
operation (e.g., a DMA), and the particular trace ID number is used to correlate one or more
hardware events.

[0086] As indicated by event 324, a single trace ID for a DMA operation includes multiple time
steps corresponding to multiple different points in the DMA. In some instances, trace ID 003
has an "issued" event, an "executed" event, and a "completed" event that are identified as
being some time apart relative to each other. Hence, in this regard, the trace ID is further used
for determining a latency attribute of the memory access operation based on the correlation
and with reference to the time steps.

[0087] In some implementations, generating data structure 320 can include, for example,
system 100 comparing event time stamps of respective events in a first subset of hardware
events with event time stamps of respective events in a second subset of hardware events.
Generating data structure 320 can further include, system 100 providing, for presentation in
the data structure, a correlated set of hardware events based, in part, on the comparison
between the first subset of events and the second subset of events.

[0088] As shown in FIG. 3, data structure 320 can identify at least one parameter that
indicates a latency attribute of a particular hardware event 322, 324. The latency attribute can
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indicate at least a duration of the particular hardware event. In some implementations, data
structure 320 is generated by software instructions executed by a control device of host system
126. In some instances, structure 320 can be generated responsive to the control device
storing trace entry data to a memory disk/unit of host system 126.

[0089] FIG. 4 is a block diagram 400 indicating example trace activity for a direct memory
access (DMA) trace event executed by system 100. For DMA tracing, data for an example
DMA operation originating from a first processor node to a second processor node can travel
via ICl 112 and can generate intermediate ICl/router hops along the data path. The DMA
operation will generate trace entries at each node within a processor chip, and along each hop,
as the DMA operation traverses ICl 112. Information is captured by each of these generated
trace entries to reconstruct a temporal progression of the DMA operations along the nodes and
hops.

[0090] An example DMA operation can be associated with the process steps depicted in the
implementation of FIG. 4. For this operation, a local DMA transfers data from a virtual memory
402 (vmem 402) associated with at least one of processor cores 104, 106 to HBM 108. The
numbering depicted in diagram 400 correspond to the steps of table 404 and generally
represents activities in node fabric 110 or activities initiated by node fabric 110.

[0091] The steps of table 404 generally describe associated trace points. The example
operation will generate six trace entries for this DMA. Step one includes the initial DMA request
from the processor core to node fabric 110 which generates a trace point in the node fabric.
Step two includes a read command in which node fabric 110 asks the processor core to
transfer data which generates another trace point in node fabric 110. The example operation
does not have a trace entry for step three when vmem 402 completes a read of node fabric
110.

[0092] Step four includes node fabric 110 performing a read resource update to cause a sync
flag update in the processor core which generates a trace point in the processor core. Step five
includes a write command in which node fabric 110 notifies memory mux 108 of the
forthcoming data to be written to the HBM. The notification via the write command generates a
trace point in node fabric 110, while at step six, completion of the write to HBM also generates
a trace point in node fabric 110. At step seven, node fabric 110 performs a write resource
update to cause a sync flag update in the processor core which generates a trace point in the
processor core (e.g., in FPC 104). In addition to the write resource update, node fabric 110 can
perform an acknowledge update ("ack update") where data completion for the DMA operation
is signaled back to the processor core. The ack update can generate trace entries that are
similar to trace entries generated by the write resource update.

[0093] In another example DMA operation, a first trace entry is generated when a DMA
instruction is issued in a node fabric 110 of the originating node. Additional trace entries can be
generated in node fabric 110 to capture time used to read data for the DMA and writing the
data to outgoing queues. In some implementations, node fabric 110 can packetize DMA data
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into smaller chunks of data. For data packetized into smaller chunks, read and write trace
entries can be produced for a first data chunk and a last data chunk. Optionally, in addition to
the first and last data chunks, all data chunks can be set to generate trace entries.

[0094] For remote/non-local DMA operations that may require ICI hops, the first data and the
last data chunk can generate additional trace entries at ingress and egress points in each
intermediate hop along ICl/router 112. When DMA data arrives at a destination node, trace
entries similar to the previous node fabric 110 entries are generated (e.g., read/write of first
and last data chunks) at the destination node. In some implementations, a final step of the
DMA operation can include executed instructions associated with the DMA causing an update
to a sync flag at the destination node. WWhen the sync flag is updated a trace entry can be
generated indicating completion of the DMA operation.

[0095] In some implementations, DMA tracing is initiated by FPC 104, SPC 106, or HIB 114
when in each component is in trace mode such that trace points can be executed.
Components of system 100 can enter trace mode based on global controls in FPC 104 or SPC
106 via a trigger mechanism. The trace points trigger in response to the occurrence of a
specific action or condition associated with execution of program code by the components of
system 100. For example, portions of the program code can include embedded trigger
functions that are detectable by at least one hardware component of system 100.

[0096] The components of system 100 can be configured to detect a trigger function
associated with portions of program code executed by at least one of FPC 104 or SPC 106. In
some instances, the trigger function can correspond to at least one of: 1) a particular sequence
step in a portion or module of the executed program code; or 2) a particular time parameter
indicated by the GTC used by the distributed processor units of system 100.

[0097] Responsive to detecting the trigger function, a particular component of system 100 can
initiate, trigger, or execute at least one trace point (e.g., a trace event) that causes trace entry
data associated with one or more hardware events to be stored in at least one memory buffer
of the hardware component. As noted above, stored trace data can then be provided to chip
manager 216 by way of at least one trace chain 203, 205, 207.

[0098] FIG. 5 is a process flow diagram of an example process 500 for distributed hardware
tracing using component features of system 100 and the one or more nodes 200, 201 of
system 100. Thus, process 500 can be implemented using one or more of the above-
mentioned computing resources of systems 100 including nodes 200, 201.

[0099] Process 500 begins at block 502 and includes computing system 100 monitoring
execution of program code executed by one or more processor components (including at least
FPC 104 and SPC 106). In some implementations, execution of program code that generates
tracing activities can be monitored, at least in part, by multiple host systems, or subsystems of
a single host system. Hence, in these implementations, system 100 can perform multiple
processes 500 relating to analysis of tracing activities for hardware events occurring across
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distributed processing units.

[0100] A first processor component is configured to execute at least a first portion of the
program code that is monitored. At block 504, process 500 includes computing system 100
monitoring execution of program code executed by a second processor component. The
second processor component is configured to execute at least a second portion of the program
code that is monitored.

[0101] Components of computing system 100 can each include at least one memory buffer.
Block 506 of process 500 includes system 100 storing data identifying one or more hardware
events in the at least one memory buffer of a particular component. In some implementations,
the hardware events occur across distributed processor units that include at least the first
processor component and the second processor component. The stored data identifying the
hardware events can each include a hardware event time stamp and metadata characterizing
the hardware event. In some implementations, a collection of hardware events corresponds to
a timeline events.

[0102] For example, system 100 can store data identifying one or more hardware events that
correspond, in part, to movement of data packets between a source hardware component
within system 100 and a destination hardware component within system 100. In some
implementations, the stored metadata characterizing the hardware event can correspond to at
least one of: 1) a source memory address, 2) a destination memory address, 3) a unique trace
identification number relating to a trace entry that causes the hardware event to be stored, or
4) a size parameter associated with a direct memory access (DMA) trace entry.

[0103] In some implementations, storing data that identifies a collection of hardware events
includes storing event data in a memory buffer of FPC 104 and/or SPC 106 that corresponds,
for example, to at least one local trace event queue 310. The stored event data can indicate
subsets of hardware event data that can be used to generate a larger timeline of hardware
events. In some implementations, storing of event data occurs in response to at least one of
FPC 104 or SPC 106 executing hardware trace instructions associated with portions of
program code executed by components of system 100.

[0104] At block 508 of process 500, system 100 generates a data structure, such as structure
320, that identifies one or more hardware events from the collection of hardware events. The
data structure arranges the one or more hardware events in a time ordered sequence of
events that are associated with at least the first processor component and the second
processor component. In some implementations, the data structure identifies a hardware event
time stamp for a particular trace event, a source address associated with the trace event, or a
memory address associated with the trace event.

[0105] At block 510 of process 500, system 100 stores the generated data structure in a
memory bank of a host device associated with host system 126. In some implementations, the
stored data structure can be used by host system 126 to analyze performance of the program



DK/EP 3382551 T3

code executed by at least the first processor component or the second processor component.
Likewise, the stored data structure can be used by host system 126 to analyze performance of
at least one component of system 100.

[0106] For example, the user, or host system 126, can analyze the data structure to detect or
determine if there is a performance issue associated with execution of a particular software
module within the program code. An example issue can include the software module not
completing execution within an allotted execution time window.

[0107] Further, the user, or host device 126, can detect or determine if a particular component
of system 100 is operating above or below a threshold performance level. An example issue
relating to component performance can include a particular hardware component executing
certain events but generating result data that is outside acceptable parameter ranges for result
data. In some implementations, the result data may not be consistent with result data
generated by other related components of system 100 that execute substantially similar
operations.

[0108] For example, during execution of the program code, a first component of system 100
can be required to complete an operation and to generate a result. Likewise, a second
component of system 100 can be required to complete a substantially similar operation and to
generate a substantially similar result. Analysis of the generated data structure can indicate
that the second component generated a result that is drastically different than the result
generated by the first component. Likewise, the data structure may indicate a result parameter
value of the second component that is noticeably outside a range of acceptable result
parameters. These results can likely indicate a potential performance issue with the second
component of system 100.

[0109] Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied computer
software or firmware, in computer hardware, including the structures disclosed in this
specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, i.e., one or more modules of computer program instructions
encoded on a tangible non transitory program carrier for execution by, or to control the
operation of, data processing apparatus. Alternatively, or in addition, the program instructions
can be encoded on an artificially generated propagated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal, which is generated to encode information for
transmission to suitable receiver apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable storage device, a machine-readable
storage substrate, a random or serial access memory device, or a combination of one or more
of them.

[0110] The processes and logic flows described in this specification can be performed by one
or more programmable computers executing one or more computer programs to perform
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functions by operating on input data and generating output(s). The processes and logic flows
can also be performed by, and apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array), an ASIC (application specific
integrated circuit), or a GPGPU (General purpose graphics processing unit).

[0111] Computers suitable for the execution of a computer program include, by way of
example, can be based on general or special purpose microprocessors or both, or any other
kind of central processing unit. Generally, a central processing unit will receive instructions and
data from a read only memory or a random access memory or both. The essential elements of
a computer are a central processing unit for performing or executing instructions and one or
more memory devices for storing instructions and data. Generally, a computer will also include,
or be operatively coupled to receive data from or transfer data to, or both, one or more mass
storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
However, a computer need not have such devices.

[0112] Computer readable media suitable for storing computer program instructions and data
include all forms of non-volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices;
magnetic disks, e.g., internal hard disks or removable disks. The processor and the memory
can be supplemented by, or incorporated in, special purpose logic circuitry.

[0113] Particular embodiments of the subject matter have been described. Other embodiments
are within the scope of the following claims.
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Patentkrav

1. Computerimplementeret fremgangsmdde, der udfgres af et

computersystem med én eller flere processorer, hvilken

fremgangsmade omfatter:
overvagning af udfgrelse af programkode ved hjzlp af en
forste processorkomponent (104), idet den forste
processorkomponent er konfigureret til at udfgre 1 det
mindste en fgrste del af programkoden
overvagning af udfegrelsen af programkoden ved hijzlp af en
anden processorkomponent (106), idet den anden
processorkomponent er konfigureret til at udfgre mindst
en anden del af programkoden
lagring wved hijaelp af computersystemet af data, der
identificerer ¢én eller flere hardwarehendelser (322,
324), som finder sted tvars over processorenheder, der
omfatter den fgrste processorkomponent o©g den anden
processorkomponent, i1det hver hardwarehaendelse angiver
mindst ét af: datakommunikationer, der er knyttet til en
hukommelsesadgangsoperation af programkoden, en udstedt
instruktion af programkoden eller en udfgrt instruktion
af programkoden, hvor de data, der identificerer hver af
den ene eller de flere hardwarehandelser, omfatter et
hardwarehaendelses-tidsstempel og metadata, der
karakteriserer hardwarehandelsen
generering ved hixlp af computersystemet af en
datastruktur (320), der identificerer den ene eller de
flere hardwarehazndelser, idet datastrukturen er
konfigureret til at arrangere den ene eller de flere
hardwarehandelser 1 en tidsordnet sekvens af h&ndelser,
der er knyttet til i det mindste den forste
processorkomponent og den anden processorkomponent, og
lagring wved hijelp af computersystemet af den genererede
datastruktur i en hukommelsesbank i en wvartsenhed,
kendetegnet ved, at:
datastrukturen omfatter en s&rlig sporingsidentifikator,
D, der er knyttet til multiple hardwarehendelser,

svarende til en s&rlig hukommelsesadgangsoperation, der
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finder sted tvaers over processorenhederne, og hvor det
serlige sporings—-ID anvendes til at korrelere én eller

flere hardwarehsndelser af de multiple hardwarehandelser.

2. Fremgangsmade ifglge krav 1, der endvidere omfatter:
detektering ved hixlp af computersystemet af en
aktiveringsfunktion, som er knyttet til dele af
programkoden, der udfgres af den forste
processorkomponent og/eller den anden processorkomponent,
©g
som reaktion pad detektering af aktiveringsfunktionen,
igangsattelse ved hijelp af computersystemet af mindst én
sporingshendelse, som medfgrer, at data, der er knyttet
til den ene eller de flere hardwarehandelser, lagres 1

mindst én hukommelsesbuffer.

3. Fremgangsmade ifelge krav 2, hvorved
aktiveringsfunktionen svarer til et s&rligt sekvenstrin i
programkoden og/eller en s&rlig tidsparameter, som angives af
et globalt tidsur, der anvendes af processorenhederne, og
hvorved igangsattelsen af den mindst ene sporingshandelse
omfatter bestemmelse af, at en sporingsbit er sat til en
serlig verdi, i1det den mindst ene sporingshandelse er
knyttet til en hukommelsesadgangsoperation, der omfatter
multiple mellemoperationer, som finder sted tvers over
processorenhederne, og hvor data, der er knyttet til de
multiple mellemoperationer, lagres 1 én eller flere
hukommelsesbuffere som reaktion pad Dbestemmelse af, at

sporingsbitten er sat til den serlige wverdi.

4, Fremgangsmade 1fglge et hvilket som helst af de

foregdende krav, hvor lagring af data, der identificerer den

ene eller de flere hardwarehandelser, endvidere omfatter:
lagring 1 en fgrste hukommelsesbuffer i den fgrste
processorkomponent af et fgrste undersat af data, der
identificerer hardwarehzndelser af den ene eller de flere
hardwarehendelser, hvor lagringen finder sted som

reaktion pda, at den fgrste processorkomponent udfgrer en
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hardwaresporingsinstruktion, der er knyttet til i det

mindste den fgrste del af programkoden.

5. Fremgangsmade ifglge krav 4, hvor lagring af data, der

5 identificerer den ene eller de flere hardwarehndelser,
endvidere omfatter:

lagring 1 en anden hukommelsesbuffer i den anden

processorkomponent af et andet undersat af data, der

identificerer hardwarehandelser af den ene eller de flere

10 hardwarehendelser, hvor lagringen finder sted som

reaktion pda, at den fgrste processorkomponent udfgrer en

hardwaresporingsinstruktion, der er knyttet til i det

mindste den anden del af programkoden.

15 6. Fremgangsmade ifglge krav 5, hvorved generering af
datastrukturen endvidere omfatter:
sammenligning wved hijelp af computersystemet af 1 det
mindste hardwarehaendelses-tidsstempler for respektive
hendelser i det forste undersat af data, der
20 identificerer hardwarehaendelser, med i det mindste
hardwarehendelses-tidsstempler for respektive hendelser 1
det andet undersat af data, der identificerer
hardwarehazndelser, og
tilvejebringelse wved hijelp af computersystemet og til
25 praesentation 1 datastrukturen af et korreleret sa&t af
hardwarehandelser, der delvist er baseret pa
sammenligningen mellem de respektive h&ndelser 1 det

fogrste undersazt og de respektive hendelser 1 det andet

30

underseat.
7. System (100) til sporing af fordelt hardware, hvilket
system omfatter:
én eller flere processorer (104, 106), der omfatter én
eller flere processorkerner
35 én eller flere maskinlesbare lagerenheder til at lagre

instruktioner, som kan eksekveres af den ene eller de
flere processorer til at udfgre operationer, der

omfatter:
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overvagning af udfgrelse af programkode ved hjzlp af en
forste processorkomponent (104), idet den forste
processorkomponent er konfigureret til at udfgre 1 det
mindste en fgrste del af programkoden

overvagning af udfegrelsen af programkoden ved hijzlp af en
anden processorkomponent (106), idet den anden
processorkomponent er konfigureret til at udfgre mindst
en anden del af programkoden

lagring ved hijzlp af computersystemet af data, der
identificerer ¢én eller flere hardwarehendelser (322,
324), som finder sted tvars over processorenheder, der
omfatter den fgrste processorkomponent o©g den anden
processorkomponent, i1det hver hardwarehaendelse angiver
mindst ét af: datakommunikationer, der er knyttet til en
hukommelsesadgangsoperation af programkoden, en udstedt
instruktion af programkoden eller en udfgrt instruktion
af programkoden, hvor de data, der identificerer hver af
den ene eller de flere hardwarehandelser, omfatter et
hardwarehaendelses-tidsstempel og metadata, der
karakteriserer hardwarehandelsen

generering ved hixlp af computersystemet af en
datastruktur (320), der identificerer den ene eller de
flere hardwarehazndelser, idet datastrukturen er
konfigureret til at arrangere den ene eller de flere
hardwarehandelser 1 en tidsordnet sekvens af h&ndelser,
der er knyttet til i det mindste den forste
processorkomponent og den anden processorkomponent
lagring wved hijelp af computersystemet af den genererede
datastruktur 1 en hukommelsesbank 1 en v&rtsenhed,
kendetegnet ved, at:

de instruktioner, der genererer datastrukturen, genererer
datastrukturen saledes, at datastrukturen omfatter en
se&rlig sporingsidentifikator, 1ID, der er knyttet til
multiple hardwarehazndelser, svarende til en bestemt
hukommelsesadgangsoperation, der finder sted tvars over
processorenhederne, og hvor det se&rlige sporings—ID
anvendes til at korrelere én eller flere

hardwarehendelser af de multiple hardwarehandelser.
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8. System til sporing af fordelt hardware ifglge krav 7,
hvor operationerne endvidere omfatter:
detektering ved hixlp af computersystemet af en
aktiveringsfunktion, som er knyttet til dele af
programkoden, der udfgres af den forste
processorkomponent og/eller den anden processorkomponent,
©g
som reaktion pad detektering af aktiveringsfunktionen,
igangsattelse ved hijelp af computersystemet af mindst én
sporingshendelse, som medfgrer, at data, der er knyttet
til den ene eller de flere hardwarehandelser, lagres 1

mindst én hukommelsesbuffer.

9. System til sporing af fordelt hardware ifglge krav 8,
hvor aktiveringsfunktionen svarer til mindst ét af: et serligt
sekvenstrin i programkoden eller en s&rlig tidsparameter, som
angives af et globalt tidsur, der anvendes af
processorenhederne, og
hvorved igangsattelsen af den mindst ene sporingshandelse
omfatter bestemmelse af, at en sporingsbit er sat til en
serlig verdi, i1det den mindst ene sporingshandelse er
knyttet til en hukommelsesadgangsoperation, der omfatter
multiple mellemoperationer, som finder sted tvers over
processorenhederne, og hvor data, der er knyttet til de
multiple mellemoperationer, lagres 1 én eller flere
hukommelsesbuffere som reaktion pad Dbestemmelse af, at

sporingsbitten er sat til den serlige wverdi.

10. System til sporing af fordelt hardware i1ifglge et hvilket
som helst af kravene 7 til 9, hvor lagring af data, der
identificerer den ene eller de flere hardwarehndelser,
endvidere omfatter:
lagring 1 en fgrste hukommelsesbuffer i den fgrste
processorkomponent af et fgrste undersat af data, der
identificerer hardwarehandelser af den ene eller de flere
hardwarehendelser, hvor lagringen finder sted som

reaktion pda, at den fgrste processorkomponent udfgrer en
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hardwaresporingsinstruktion, der er knyttet til i det

mindste den fgrste del af programkoden.

11. System til sporing af fordelt hardware ifglge krav 10,

hvor lagring af data, der identificerer den ene eller de flere

hardwarehendelser, endvidere omfatter:
lagring 1 en anden hukommelsesbuffer i den anden
processorkomponent af et andet undersat af data, der
identificerer hardwarehandelser af den ene eller de flere
hardwarehendelser, hvor lagringen finder sted som
reaktion pd, at den anden processorkomponent udfgrer en
hardwaresporingsinstruktion, der er knyttet til i det

mindste den anden del af programkoden.

12. System til sporing af fordelt hardware ifglge krav 11,

hvor generering af datastrukturen endvidere omfatter:
sammenligning ved hijzlp af computersystemet af 1 det
mindste hardwarehaendelses-tidsstempler for respektive
hendelser i det forste undersat af data, der
identificerer hardwarehaendelser, med i det mindste
hardwarehazndelses-tidsstempler for respektive h®ndelser 1
det andet undersat af data, der identificerer
hardwarehazndelser, og
tilvejebringelse wved hijelp af computersystemet og til
praesentation 1 datastrukturen af et korreleret sa&t af
hardwarehandelser, der delvist er baseret pa
sammenligningen mellem de respektive h&ndelser 1 det
fogrste undersazt og de respektive hendelser 1 det andet

undersat.

13. System til sporing af fordelt hardware ifglge et hvilket
som helst af kravene 7 til 12, hvor den genererede
datastruktur identificerer mindst én parameter, der angiver en
latensattribut for en serlig hardwarehzndelse, hvor
latensattributten i1 det mindste angiver en wvarighed af den

bestemte hardwarehandelse.

14. System til sporing af fordelt hardware ifglge et hvilket
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som helst af kravene 7 til 13, hvor mindst én processor er en
multi-core, multi-node processor med én eller flere
behandlingskomponenter, og den ene eller de flere
hardwarehazndelser delvist svarer til datakommunikation, der
finder sted mellem i det mindste den fgrste processorkomponent
i en fgrste node og den anden processorkomponent i1 en anden

node.

15. System til sporing af fordelt hardware ifglge et hvilket
som helst af kravene 7 til 13, hvor den forste
processorkomponent og den anden processorkomponent er ét af:
en processor, en processorkerne, en hukommelsesadgangsmaskine
eller en hardwareegenskab ved computersystemet,
hvor den ene eller de flere hardwarehzndelser delvist
svarer til bevagelse af datapakker mellem en kilde og en
destination, og
hvor metadata, der karakteriserer hardwarehazndelsen,
svarer til mindst ét af: en kildehukommelsesadresse, en
destinationshukommelsesadresse, en entydig
sporingshendelsesidentifikations—, 1ID, -nummer eller en
stgrrelsesparameter, der er knyttet til en anmodning om

direkte hukommelsesadgangssporing.

16. Ikke—flygtig computerlagerenhed, der er anbragt 1 en
databehandlingsenhed, og som er kodet med et computerprogram,
idet programmet omfatter instruktioner, som, nar de udfgres af
én eller flere processorer, far den ene eller flere
processorer til at udfgre trinnene i fremgangsmaden ifglge et

hvilket som helst af kravene 1 til 6.
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