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SECONO-LEVELRAD CACHE SPLICING 

FIELD 

0001. The presented inventions are generally directed to 
handling Input/Output (I/O) requests of host systems at 
physical storage Subsystems. More specifically, the presented 
inventions relate to utilization of second-level cache of solid 
state drives (SSDs) in a parity RAID configuration that 
reduces the write costs previously associated with parity 
RAID configurations. 

BACKGROUND 

0002 Large storage systems typically include storage ele 
ments that include multiple individual storage devices (e.g., 
disk drives). The individual storage devices are accessed by 
host systems via Input/Output (I/O) requests, such as reading 
and writing, through one or more storage controllers. A user 
accessing the storage devices through the host system views 
the multiple storage devices as one or more Volumes. 
Examples of large storage systems include, without limita 
tion, Redundant Array Of Independent Disks (RAID) storage 
systems that have one or more logical units (LUNs) distrib 
uted over a plurality of disks, and spanned Volumes (e.g., 
non-RAID architecture; JBOD, etc.). Examples of the host 
systems include computing environments, ranging from indi 
vidual personal computers and workstations to large net 
worked enterprises encompassing numerous types of com 
puting systems. A variety of well-known operating systems 
may be employed in Such computing environments depend 
ing upon the needs of particular users and enterprises. Storage 
devices in Such large storage systems may include standard 
hard disk drives as well as other types of storage devices Such 
as Solid-state drives (SSD), optical storage, semiconductor 
storage (e.g., Random Access Memory disks or RAM disks), 
tape storage, etcetera. 
0003. In many large storage applications, enhanced reli 
ability and data recovery of stored data is of heightened 
importance. Such reliability and data recovery is often pro 
vided through the use of multiple storage elements configured 
in geometries that permit redundancy of stored data to ensure 
data integrity in case of various failures. In many such storage 
systems, recovery from Some common failures can be auto 
mated within the storage system itself by using data redun 
dancy, error codes, and so-called "hot spares' (extra storage 
devices which may be activated to replace a failed, previously 
active storage device). To further improve reliability, it is 
known in the art to provide redundant storage controllers to 
reduce the failure rate of the storage system due to, for 
example, control electronics failures. 
0004. In any large storage system, a limiting feature in 
processing I/O requests is latency in accessing individual 
storage devices. It will be appreciated that access speeds of 
many electronic storage components, such as SRAM, DRAM 
and Solid state memory devices, continue to increase, often 
exponentially. The same has not tended to hold true for 
mechanical storage components, such as those found in rotat 
ing storage devices. For instance, seek latency of a rotating 
hard drive is limited by actuator arm speed and disk circum 
ference, and throughput of Such a rotating hard drive is lim 
ited by the rotational speed of the disk. As rotating Storage 
devices continue to be among the most economical storage 
Solution for mass storage systems, the physical limitations of 
these devices limit the Input/Output Operations Per Second 
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(IOS per Second) for such systems. Such limitations can result 
in a write cache of a storage controller saturating in I/O 
intense applications as the write requests cannot be commit 
ted to connected storage devices (e.g., rotating storage media) 
as quickly as they are received. 

SUMMARY 

0005. The presented inventions solve the above as well as 
other problems and advance the state of the useful arts by 
providing systems, apparatuses and methods (i.e., utilities) 
for handling I/O write requests from a host system to a storage 
system. More specifically, the utilities allow for, among other 
things, the rapid de-allocation (e.g., flushing) of I/O write 
requests from a controller memory (e.g., primary cache). This 
is accomplished by utilization of one or more second-level 
caches that temporarily store I/O write requests and allow for 
transferring of the I/O write requests to storage devices con 
nected to the storage controllers after the I/O write requests 
are flushed from the primary cache. To improve utilization of 
system resources, the second-level cache is formed of Solid 
state drives in a parity RAID configuration. 
0006. In one aspect, an I/O write request is received 
requesting access to physical storage space. Such as a block of 
storage space within a storage Volume or logical unit, which 
is typically formed of a plurality of storage devices. A con 
troller is operatively interconnected to the storage devices. 
The I/O write request is initially allocated to a primary cache 
in the controllers. The I/O write request is also transferred to 
a second-level cache, which is formed of a plurality of SSDs 
having a parity RAID configuration, which provides redun 
dancy of the write request. Once transferred to the second 
level cache, the I/O write request is de-allocated from the 
memory of the controller. Accordingly, the memory of the 
controller is available for processing additional I/O requests 
from host systems. This allows the storage controller to main 
tain high IOS per second capacity. 
0007. In one arrangement, the controller is operative to 
determine if related data to an I/O write request currently 
exists in a cache line stored in the second-level cache. Upon 
determining a related entry exits, the controller is operative to 
further determine if the new data of the I/O write requests 
overlaps any existing data within the existing cache line. For 
example, it may be determined that the new data of the I/O 
write requests corresponds to a non-valid portion of an exist 
ing cache line in the second level cache. In Such an arrange 
ment, the new data may be spliced (e.g., written) into the 
non-valid portion of the existing cache line. The controller is 
further operative to update the parity of the stripe in the RAID 
configured second level cache that includes the new data. In 
the present arrangement, the existing data in the non-valid 
portion of the cache line has a known value. For instance, the 
non-valid portion of the cache line may be filled with default 
values (e.g., 1's or 0's). Accordingly, the updated parity may 
be calculated without reading the existing data from the non 
valid portion of the cache line, saving both a read and XOR 
operation. 
0008. In one arrangement, each cache line stored in the 
second level cache is stored in an individual segment of a 
RAID stripe. For example, each cache line may be stored on 
an individual SSD. In such an arrangement, the block or 
segment size of the RAID stripe may be substantially equal or 
equal to the size of the cache line. 
0009. In a further arrangement, the utility is operative to 

fill non-valid portions of a cache line stored to the second 



US 2015/0095696 A1 

level cache with known values. That is, upon writing a cache 
line to the second level cache, non-valid portions of the cache 
line may be filled with default values for a storage device. 
Such default values may include, for example, 1's or 0's. As 
these values stored in these non-valid portions are known, 
they need not be re-read when recalculating parity for a stripe 
in the RAID configured second level cache. 
0010. In a yet further arrangement, the controller is opera 

tive to identify a plurality of I/O write request for which no 
existing second-level cache entries exist. In this arrangement, 
a plurality of I/O write request equaling the number of data 
segments of the parity RAID second level cache may be 
identified. For instance, in a RAID 5 (4+1) configured second 
level cache, four I/O write requests may be identified for 
storage to four cache lines. The non-valid portion of each of 
cache line may be filled with default values. At this time, all 
four cache lines and parity of the cache lines may be striped to 
the second level cache. That is, a full stripe may be written. 
0011. After written to the second-level cache, an I/O write 
request may be transferred to the storage devices as a back 
ground operation. That is, during idle, the controller may 
buffer the I/O write request and transfer it to the storage 
devices. At this time, the I/O write request may be flushed 
from the second-level cache if needed. 
0012. In one aspect, the utilities are implemented as meth 
ods performed by a storage Subsystem. In another aspect, the 
utilities are implemented as a physical storage Subsystem. In 
a further aspect, the utilities are implemented as instructions 
Stored on a storage medium. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 FIG. 1 is a block diagram illustrating a network 
implementing the storage Subsystem in accordance with vari 
ous aspects of the invention. 
0014 FIG. 2 is a block diagram illustrating one embodi 
ment of a storage Subsystem. 
0015 FIG. 3 is a block diagram illustrating an exemplary 
embodiment of a controller utilized in a storage Subsystem. 
0016 FIG. 4 is a block diagram illustrating another exem 
plary embodiment of a storage Subsystem. 
0017 FIG. 5 is a block diagram illustrating a RAID 5 
(4+1) configuration. 
0018 FIG. 6 is a block diagram illustrating an embodi 
ment of a storage Subsystem utilizing a RAID configured 
second level cache. 

0019 FIGS. 7A, 7B and 7C schematically illustrate a 
cache line, default filling of the cache line, and splicing of the 
cache line, respectively. 
0020 FIG. 8 is a process flow sheet illustrating an exem 
plary operation of a storage controller including a parity 
RAID second level cache. 

DETAILED DESCRIPTION 

0021 While the presented inventions are susceptible to 
various modifications and alternative forms, specific embodi 
ments of the inventions have been shown, by way of example, 
in the drawings and will herein be described in detail. Those 
skilled in the art will appreciate that the features described 
below can be combined in various ways to form multiple 
variations of the inventions. As a result, the inventions are not 
limited to the specific examples described below, but only by 
the claims and their equivalents. 
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0022 Provided herein is a storage subsystem that utilizes 
a second-level cache to improve Input/Output operations. In 
one arrangement, the storage Subsystem is operative to rap 
idly flush I/O write requests from a main memory (e.g., 
DRAM) or primary cache (e.g., first level cache) after trans 
ferring the I/O write requests to a second-level cache. When 
processing capacity is available, the I/O write requests are 
subsequently transferred from the second-level cache to one 
or more storage devices. 
0023. With reference now to the figures and in particular 
with reference to FIG. 1, an exemplary embodiment of a 
storage Subsystem 120, in accordance with aspects of the 
presented inventions, is provided. As shown, a computing 
network 100 includes multiple servers/host systems 110a-n 
connected to multiple storage Subsystems 120a-n (only one 
shown for clarity) via multiple switches 130a-n (hereafter 
110, 120 and 130, respectively, unless specifically identified), 
where the switches collectively define a switching fabric. The 
host systems 110 are typically interconnected to a plurality of 
computing devices 104 via a high speed network 106. Such 
high speed networks may include, for example, the interne, a 
local area network (LAN), a wide area network (WAN), or 
any other Suitable network communications channel. These 
devices can be any of a variety of computing devices includ 
ing, for example, laptops, desktops, workstations, handheld/ 
wireless computing devices, or other computing devices. 
Data migration between the storage subsystems 120 and the 
computing devices 104 is managed by the host systems 110. 
Details of the connections between the computing devices 
104 and host systems 120 are known to those skilled in the art. 
0024. The storage subsystems 120 are configured for han 
dling I/O requests from the host systems 110, which commu 
nicate with the computing devices 104. The host systems 110 
may be communicatively connected to the storage Sub 
systems 120 for processing I/O requests through a variety of 
connections. Examples of Such connections include Fibre 
Channel (FC). Small Computer System Interface (SCSI), 
Internet SCSI (ISCSI), Ethernet, Infiniband, SCSI over 
Infiniband, piping, and/or various physical connections. A 
variety of well-known operating systems may be employed in 
Such computing environments depending upon the needs of 
particular users and enterprises. 
0025 I/O modules 112 process I/O requests from the host 
systems 110 in order to access physical storage space within 
the storage subsystems 120. The I/O modules 112 have host 
connect interfaces for receiving I/O requests from the host 
systems and transferring data between the host systems 110 
and the storage subsystems 120. The I/O modules 112 can 
connect to the host systems through a variety of means. Each 
I/O module is communicatively connected to the Switching 
fabric through multiple communications Switches, such as 
Application Specific Integrated Circuits (ASIC), configured 
to route data from a host system 110, through the switching 
fabric, and on to storage elements or devices of a storage 
Subsystem according to a specific address. Those skilled in 
the art are familiar with communications switches and will 
readily recognize the design of Such Switches (e.g., custom 
ASICs) for purposes of transferring messages through such a 
Switched fabric or other communication medium. 
0026. In the present embodiment, the I/O requests are 
transferred from the I/O modules 112 to storage devices of the 
storage subsystems 120 through the switches 130 of the 
switching fabric. Each of the storage subsystems 120 typi 
cally includes a plurality of individual storage devices 128, 
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Such as rotating media/disks and/or other types of storage 
devices (e.g., Solid state drives, optical storage, tape storage, 
semiconductor storage) that may be arranged into one or 
more logical units (LUNs) and controlled by a controller and 
more typically at least a pair of redundant controllers 122a. 
122b. The storage devices and storage controllers can be 
configured to employ any of a number of storage management 
schemes, such as that of a RAID storage management system 
(e.g., Raid 0, 3, 4, 5, 6 etc.). In such an arrangement, the 
storage controllers may include RAID storage controllers for 
processing the requests of host systems 110 through I/O mod 
ules 112 and communication switches 130. However, the 
presented embodiments are not limited to only RAID con 
figurations. 
0027. In the illustrated embodiment, the storage devices 
128 can appear as a single virtual storage system to the host 
systems. In operation, the I/O requests includes a Command 
Data Block (CDB) that contains information (e.g., Logical 
Unit Identifier (LUN) and offset or Logical Block Address 
(LBA)) regarding the location of data in terms of the virtual 
storage system. This information is translated into a new I/O 
request relating to the physical location in the appropriate 
storage Subsystem. Thus, mapping tables may be imple 
mented for translating virtual storage locations of the virtual 
storage system into physical storage locations of the storage 
Subsystems (i.e., storage locations of the individual storage 
devices). Data may then be written or retrieved from the 
storage devices by the controllers of the appropriate storage 
Subsystem. 
0028. In the present embodiment, each of the controllers 
122a, 122b is operatively connectable with each of the indi 
vidual storage devices 128 to affect such read/write requests 
(all connections are not shown for purposes of clarity). The 
illustrated embodiment also utilizes redundant connections 
between each host system 110, switch 130, and storage sub 
system 120. For example, a first host system 120a is inter 
connected to two fabric switches 130a, 130b, which are, in 
turn, each connected to each controller 122a, 122b of a stor 
age Subsystem 120a. In this regard, dual path architecture is 
utilized to provide redundant paths between the host system 
110a and the storage subsystem 120a. One of the features of 
Such architecture is capability of failover; meaning that in 
case one path fails or a fabric switch 130a fails, data can be 
sent via the second fabric switch 130b. The number of host 
systems 110, storage subsystems 120, fabric switches 130 
and I/O modules 112 forming the network 100 is not intended 
to be limited to the number of host systems 110, storage 
subsystems 120, fabric switches 130, and/or I/O modules 112 
in the present embodiment. 
0029. Like the use of redundant connections, the use of the 
redundant storage controllers 122a, 122b in each of the stor 
age Subsystems 120 can reduce the failure rate of the storage 
Subsystem due to control electronics failures. In this arrange 
ment, the redundant pair of controllers 122a, 122b control the 
same storage devices 128 (e.g., array of storage devices 126). 
See FIG. 2. A memory 124a, 124b is operatively connected 
with each of the controllers 122a, 122b and the redundant 
controllers communicate with one another to ensure that the 
memories 124a, 124b are synchronized. In this regard, I/O 
requests are mirrored in the memory of each controller. That 
is, if a first controller 122a receives an I/O request, this I/O 
request is stored in allocated memory blocks (e.g., primary 
cache) in the memory 124a of the first controller and mirrored 
(e.g., copied) to allocated memory blocks in the memory 
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124b of the second controller, for example, via an Inter 
Controller Channel 142 (ICL) physically interconnecting the 
controllers 122a, 122b. This is illustrated by dashed arrow A 
in FIG. 2. In such an arrangement, if the first controller 
experiences a failure, the second controller may continue 
processing the I/O request while the first controller is repaired 
or replaced. Though illustrated to show the first controller 
122a handling the I/O request, it will be appreciated that the 
second controller 122b likewise handles I/O requests (e.g., 
simultaneously with the first controller 122a). That is, each 
controller 122a, 122b is typically assigned and handles I/O 
requests for a portion of the storage devices 128, which may 
be configured into various logical units (LUNs). More spe 
cifically, each controller typically handles the I/O requests for 
its assigned LUNs. Accordingly, all discussion herein to han 
dling of I/O requests by the first controller 122a is likewise 
applicable to handling of I/O requests by the second control 
ler 122b. 

0030 The storage subsystem 120 may also incorporate a 
second-level cache 150 (e.g., read cache) for storing fre 
quently accessed data from the storage devices 128 and/or for 
storing recently written I/O write requests, such that this 
information is available from the second-level cache for 
future read requests. The second-level cache 150 may be a 
flash memory device that may be pre-loaded (e.g., pre 
warmed) with frequently accessed data from the storage 
devices 128. When the second-level cache 150 fills, it may be 
flushed utilizing least recently used (LRU) or similar stale 
ness algorithms as known to those skilled in the art. Though 
shown as a single device, it will be appreciated that the sec 
ond-level cache may incorporate multiple individual devices 
(e.g., SSDs) and these individual devices may be allocated 
between the controllers. 

0031 FIG. 3 illustrates an exemplary embodiment of one 
of the controllers 122a, 122b, hereafter referred to as “con 
troller' 122. It will be appreciated that architecture of the 
other controller can be identical. In the one embodiment, the 
controller is primarily formed of embedded firmware. How 
ever, it will be appreciated that other embodiments may com 
prise Software and/or hardware implementations. As shown, 
the controller 122 includes a multi-ported host interface 180 
or front-end interface that is capable of communicating with 
a host system, such as the host system 110 of FIG. 1, through 
a variety of means, including, without limitation, FC, SCSI, 
SCSI ISCSI, SAS, PCIe, Ethernet, Infiniband, SCSI over 
Infiniband, piping, and/or various physical connections. The 
host interface 180 may comprise one or more individual cir 
cuits or chips (e.g., ASICs). In any arrangement, the host 
interface 180 receives an I/O request from the host system to 
access a block of storage space within a storage device. The 
host interface 180 transfers that I/O request to the memory 
124 of the controller 122 via a bus 182. In one embodiment, 
such transfer may comprise a Direct Memory Access (DMA) 
transfer such that the I/O request is stored to allocated 
memory blocks within the primary cache 186 or the memory 
124 (DRAM) independent of operation of the processor 184 
of the controller 122. The I/O request is likewise provided to 
the ICL 142 such that it may be copied in allocated memory 
blocks in the primary cache of the memory of the other 
controller. 

0032. Once the I/O request is stored in memory 124 (e.g., 
SRAM or DRAM), the processor 184 accesses the I/O 
request, in the case of read request, and determines if the 
requested data exists within the primary cache or second 
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level cache (see for example FIG.2). If so, the data is retrieved 
from the appropriate cache and output to the requesting host 
system via the host interface 180. If not, the processor 184 
accesses the storage devices through the back end interface, 
which, in the present embodiment, is a plurality of Serial 
Attached SCSI (SAS) chips 190a-n. However, it will be 
appreciated that other back-end protocols/architectures Such 
as, without limitation, SATA, SCSI, Ethernet, PCIe, and FC 
may be utilized in the back-end interface. When the I/O 
request is a write request, the write data is output to the 
storage devices and/or a second-level cache via the back-end 
interface, typically through a DMA request. The ports of the 
SAS chips 190a-n are interconnected to one or more arrays 
126 of storage devices 128 via SAS connectors (not shown). 
Each array may include appropriate I/O modules (e.g., SAS 
expanders, etc) as known to those skilled in the art. Addition 
ally, one or more solid state drive (SSD) second-level caches 
may be connected to ports of the SAS chips 190a-n. 
0033. A limiting feature in processing I/O requests by the 
controllers 122 is the latency in accessing the storage devices 
128. This can be more apparent when the I/O request includes 
multiple write requests that require data to be stored to rela 
tively slow (e.g., in comparison with the controller memory) 
rotating media. To improve performance of the storage Sub 
system, a write-back cache may be utilized by the storage 
controllers. In this arrangement, when one storage controller 
(e.g., controller 122a) receives a request to write data to the 
storage devices 128, this data is stored in a write cache (e.g., 
primary cache or DRAM) of that controller 122a and mir 
rored in the write cache of the second controller 122b, as 
illustrated by dashed arrow A. At this time, a command 
complete signal can be returned to the requesting host indi 
cating that the write operation is complete, as illustrated by 
dashed arrow B. Some embodiments send this command 
complete signal before the data is actually written to the 
storage devices 128, as a back-up copy exists in the memory 
124b of the second controller 122b. 

0034. In the absence of a failure of the receiving controller 
122a, the receiving controller 122a writes the data to the 
storage devices 128, as illustrated by dashed arrow C. Once 
written to the storage devices 128, a write complete signal is 
generated and the memory blocks of the two controllers 122a, 
and 122b may be de-allocated, freeing these memory blocks 
for storage of Subsequent I/O requests. If the receiving con 
troller 122a were to fail prior completing the write request, 
the second controller 122b would complete the write. As 
illustrated in FIG. 2, in addition to writing the data to the 
storage devices, the data may be mirrored (e.g., simulta 
neously) to the second-level cache 150, as illustrated by 
dashed arrow C'. 

0035. Notwithstanding the use of write-back caching of 
I/O requests, in I/O intensive applications (e.g., Small-block 
write applications), the storage controller memory 124 often 
receives I/O write requests faster than the requests can be 
processed. In Such instances, the primary cache of the con 
troller can become overwhelmed while waiting on the rela 
tively slow flush to the storage devices 128. That is, pending 
I/O requests (i.e., the I/O stack) may fill the primary write 
cache. Performance of the storage subsystem 120 slows after 
the primary write cache fills. That is, new write requests from 
the I/O modules 112 are delayed until blocks in the controller 
memories 124a, 124b are de-allocated and available to store 
new I/O requests. 
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0036 FIG. 4 illustrates the storage subsystem 120 utiliz 
ing redundant controllers 122a, 122b and further incorporat 
ing a solid-state drive (SSD) 160 that operates as a second 
level cache to receive read and write operations originating 
from the controllers. As above, when one storage controller 
(e.g., controller 122a) receives a request to write data to the 
storage devices 128, this data is stored in a write cache of that 
controller 122a and mirrored in the write cache of the second 
controller 122b (illustrated by dashed arrow A) and a com 
mand complete signal is returned to the requesting host indi 
cating that the write operation is complete (illustrated by 
dashed arrow B). However, in this embodiment, the receiving 
controller 122a schedules the write operation to the SSD 160 
as illustrated by dashed arrow C. Once the data is mirrored 
(e.g., copied) to the SSD 160, a write-complete signal is 
generated and the memory blocks of the primary write caches 
of the two controllers 122a, 122b are de-allocated, thus free 
ing these memory blocks for the storage of Subsequent I/O 
requests. The data in the solid-state drive 160 may then be 
transferred to the storage devices 128, which may be com 
pleted as a background operation from the view of the con 
trollers 122a, 122b. In this regard, one of the controllers 122a, 
122b (i.e., typically the controller that received the I/O write 
request) may be utilized to buffer the data and transfer the data 
to the storage devices 128, as illustrated by dashed arrows D 
and D'. This data may be buffered in allocated memory (e.g., 
DRAM) of the controller or may be buffered in a separate 
buffer 152. In either embodiment, transfer of the data may 
occur during processor idle to preserve the IOS per second of 
the controller. 

0037. If the write request data were written to a single SSD 
160 in a single location, no redundancy would exist for the I/O 
write request data. In this regard, failure of the Solid-state 
drive 160 would result in loss of the I/O write request data. In 
order to provide a redundancy for the I/O write request data, 
separate SSDs may be utilized for the second level cache, a 
read cache 162 and a mirror cache 164. In this embodiment, 
the receiving controller 122a simultaneously schedules the 
write operation to both the read cache 162 and the mirror 
cache 164, as illustrated by dashed arrows C and C. The 
mirror cache 164 acts as a mirror for the unexecuted I/O write 
request data within the read cache 162 thereby providing a 
redundant copy of the I/O write request data. Once the I/O 
write request data is written to the read cache 162 and the 
mirror cache 164, a command-complete signal is generated 
and the memory blocks of the two controller primary caches 
may be de-allocated, quickly freeing these memories for 
additional write operations. After stored to the mirror cache 
164, one of the controllers may buffer the data of the I/O write 
request from the read cache 162 or mirror cache 164 and 
transfer that data to the storage devices 128 when processing 
capability is available. In one embodiment, a serial buffer 152 
is utilized to prevent over-allocation of controller memory 
resources for handling the transfer of data between the read 
cache 162 or mirror cache 164 and the storage devices 128. As 
Soon as those write requests are transferred to the storage 
devices 128, as illustrated by dashed arrows D and D", the I/O 
write request may be removed from the mirror cache 164 as 
the data is now stored to the storage devices 128, which may 
provide redundant copies thereof. That is, the I/O write 
request may be flushed or marked as de-allocated and invalid 
so the location within the mirror cache 164 can be reused. 

0038. While utilization of a second-level cache having two 
SSD's (i.e., read cache 162 and mirror cache 164) that store a 
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read copy and a mirror copy of the data provides desired 
redundancy, such an arrangement does not make the best use 
of system resources. That is, while data written identically to 
two drives produces a “mirrored set', the in-use capacity of 
the SSDs is only 50%. Accordingly, the inventors have rec 
ognized that other configurations of a second-level cache 
could provide redundancy while increasing the in-use capac 
ity of the SSDs that form the second-level cache. Specifically, 
the inventors have recognized that a RAID (redundant array 
of independent disks) configuration or level having parity 
(i.e., parity RAID) could be implemented for the second-level 
cache to provide redundancy while increasing in-use capac 
ity. 
0039 RAID configurations allow segmenting logically 
sequential data, such as a file, so that consecutive segments 
are stored on different physical storage devices. This is typi 
cally done by interleaving sequential segments of the data on 
separate storage devices in a round-robin fashion on multiple 
drives from the beginning of the data. That is, RAID levels 
that use striping split up files or data sets into Small pieces and 
distributing them to multiple drives. Most striping implemen 
tations allow a user to control over two parameters that define 
the way that the data is broken into chunks and sent to the 
various drives. The first parameter is the stripe width of the 
array. Stripe width refers to the number of parallel stripes that 
can be written to or read from simultaneously. This is equal to 
the number of drives in the array. So a five-disk striped array 
has a stripe width of five. Read and write performance of a 
striped array increases as stripe width increases. That is, 
adding more drives to the array increases the parallelism of 
the array, allowing access to more drives simultaneously. The 
second parameter is the Stripe size of the array, sometimes 
also referred to by terms such as block size, chunk size, stripe 
length or granularity. This term refers to the size of the stripes 
written to each disk. RAID arrays that stripe in blocks typi 
cally allow the selection of block sizes in kB ranging from 2 
kB to 512kB (or even higher) in powers of two (e.g., 2 kB, 4 
kB, 8 kB, 16 kB etc.). As stripe size is decreased, files are 
broken into Smaller and Smaller pieces. This increases the 
number of drives that a file or data set will use to hold all the 
blocks containing the data of that file/data set. Increasing the 
stripe size does the opposite of decreasing it. Fewer drives are 
required to store files/data sets of a given size. As will be 
appreciated, Stripe width and stripe size may be varied as 
utilized with the second-level cache. 

0040. Many RAID levels employ an error protection 
scheme called “parity', a commonly used method in infor 
mation technology to provide fault tolerance in a given set of 
data. That is, parity data is used by Some RAID configurations 
or levels to achieve redundancy. While writing data to a stripe, 
a file or data set is broken into chunks and written in separate 
segments on different drives. One segment of each Stripe is 
reserved for parity data which is calculated from the data in on 
the other drives of the stripe. If a drive in the array fails, 
remaining data on the other drives can be combined with the 
parity data, which is commonly calculated using an XOR 
function, to reconstruct the missing data. That is, the XOR 
function generates a checksum value that is based on the 
values of the other data blocks in a given stripe. Stated oth 
erwise, if the data in one of the segments of a stripe becomes 
corrupted, or, if the drive associated with that segments fails, 
the remaining data in the other segments/drives and the parity 
data can be used to reconstruct the lost data. Those skilled in 
the art are familiar with parity calculations. 
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004.1 FIG. 5 illustrates five SSDs configured in a Raid 5 
(4+1) configuration that may be utilized as the second-level 
cache. However, it will be appreciated that other RAID con 
figurations that provide redundancy Such as parity may be 
utilized and that the embodiment of FIG. 5 is by way of 
example and not limitation. As illustrated, there are five SSDs 
(i.e., SSD-SSD) across which data is striped. The numbered 
segments (e.g., 1-4 in Stripe 1) represent data segments or 
blocks on the RAID 5 set or volume, while the P segment 
contains parity data of each stripe. Of note, in a RAID 5 
configuration, the parity segment P is shifted between Stripes. 
RAID 4 is similar, except in RAID 4 one dedicated drive is 
used for parity. 
0042. As illustrated in the RAID 5 (4+1) configuration of 
FIG. 5, there are 4 segments carrying data plus one parity 
segment per stripe. Though five Stripes are illustrated, it will 
be appreciated that numerous additional stripes may be 
present. This arrangement provides improved in-use perfor 
mance of system resources. That is, for a second-level cache 
utilizing the illustrated RAID 5 (4+1) configuration, the in 
use capacity of the SSDs forming the second level cache is 
80%. Other RAID configurations may provide different in 
use capacities (e.g., RAID 5 (8+1)), however, Such configu 
rations will typically have in-use capacities in excess of that 
of simple mirroring. In the case of RAID 5 (4+1), four seg 
ments of each stripe store data and the fifth stores parity data. 
Accordingly, fewer SSDs are required to provide a second 
level cache of a desired size (i.e., in comparison with a mir 
rored set of drives) while still providing redundancy for the 
second-level cache. 

0043. One previous drawback of utilizing a parity RAID 
configuration is the write cost or penalty associated with 
writing less than an entire RAID stripe. That is, when writing 
data to less than an entire stripe, it is necessary to access a 
number of drives of the stripe to effect writing of the data and 
recalculation of parity data for the stripe. That is, after a stripe 
is written and an initial parity is calculated for the stripe, later 
modification of one of the segments of the Stripe requires 
recalculating the parity in addition to writing the new data. 
Upon receiving a request to modify a segment of an existing 
stripe, the controller must recalculate the parity by subtract 
ing the data of the old segment and adding in the new version 
of the segment. In two separate operations, the controller 
writes the new data segment followed by the new parity 
segment. To do this, the controller must first read the parity 
segment from whichever drive contains the parity for the 
stripe and reread the unmodified data for the updated segment 
from the drive containing this segment. This read-read-write 
write is known as the RAID5 write penalty. Since these two 
reads and two writes are sequential and synchronous a com 
mand-complete signal cannot return until both reads and both 
writes complete to ensure no data is lost. Therefore, writing to 
RAID 5 is up to 50% slower than RAID 0 for an array of the 
same capacity. 
0044) The write penalty is further discussed in relation to 
FIG. 5. Assuming that stripe 1 has previously been written 
and that P1 has previously been calculated, modification of 
segment 1 would require the following: 
0045 Read segment 1 from SSD0; 
0046 Read the parity segment P1 from SSD4; 
0047 Recalculate the parity using the “old data of seg 
ment 1 and “new data of segment 1 and the “old parity” of 
P1; 
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0048 Write the new data to segment 1 of SSD0; 
0049. Write the new parity to P1 of SSD4. 
Where one read request or one write request=1 IO operation 
performed by the controller, a total of four IO's are required 
to complete modifying a single segment of stripe 1 of the 
RAID 5 volume. This is called a “write penalty of four, 
because four IO's for every single segment write. Modifica 
tion of additional Stripe segments results in differing write 
penalties. Generally, Such a process where the controller 
reads data, modifies one or more segments and writes one or 
more segments is referred to as a Read Modify Write (RMW) 
process. 
0050. In contrast, significant efficiencies are achieved 
when writing a full stripe. In Such a situation, all segments are 
replaced and new parity can be calculated without reading the 
old parity: 
0051 Calculate the parity using new data segments 1-4: 
0052 Write the new data to segments 1-4 of SSD0-SSD4; 
0053 Write the new parity to P1 of SSD4 
This operation requires five IO's for modifying four segments 
resulting in a 1.25 write penalty. In summary, RAID 5 has 
high performance when writing a full stripe by suffers from 
read-modify-write (RMW) performance when writing a frac 
tion of a stripe. 
0054. In view of the above-noted examples, the inventors 
have recognized that it would be beneficial to preferentially 
utilize a full stripe write, when possible, and, when not pos 
sible, to reduce the number of reads operations required to 
modify a stripe segment. In the latter regard, it will be appre 
ciated that an enterprise level storage controller may receive 
and execute millions of write requests per day and that saving 
a read IO in at least a portion of those requests will result in 
significant computational savings for the controller. 
0055 Aspects of the invention are based on the recogni 
tions that the default values of bits in a storage device (e.g., 
SSD) are either 0 or 1, depending on the manufacturer of 
the storage device and that, in many instances, a cache write 
request involves the modification of an existing cache line. 
Further, such a modification sometimes involves writing data 
to a portion of an existing cache line where no previous data 
exists. That is, in Some instances, data may be written (e.g., 
spliced) into a previously non-valid portion of a cache line. In 
instances where an existing cache line is stored in a RAID 
stripe, the non-valid portion of the cache line may be filled 
with default values of the storage device (e.g., SSD). Accord 
ingly, these default values are known and, upon writing new 
data to an non-valid portion of the existing cache line, the 
old data need not be reread for parity calculations. That is, 
when new data is written to a location of a RAID stripe that 
includes default values, there is no need to read the old data as 
this data is known (i.e., 0 or 1). Accordingly, in a RMW 
situation where an non-valid portion an existing cache line is 
modified in a RAID 5 stripe, rather than performing two reads 
and two writes to update the data, the RMW requires only a 
single read (e.g., old parity), calculation of the new parity 
based on the new data and the known old data (i.e., “0” or 1), 
and two writes to write the new data and the new parity. In this 
regard, a savings of 25% of the IOS required for the RMW 
may beachieved. Likewise, a 25% increase in bandwidth may 
be recognized. Further an XOR operation is saved. 
0056 FIG. 6 illustrates a system that utilizes multiple 
SSDs in a RAID 5 (4+1) configuration as second level caches 
160a, 160b. In this arrangement, the controllers further oper 
ate as RAID controllers operative to stripe data across the 
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SSDs of the second level caches. In one embodiment, the 
RAID 5 configuration utilizes a small chunk/stripe size that 
approximate the size of the second level cache line. By match 
ing the Stripe size of the RAID stripe segments to the cache 
line size, the likelihood of obtaining a full stripe of valid data 
is increased. However, this is not a requirement. In one spe 
cific embodiment, the RAID 5 configuration has a stripe size 
of 128Kb with a segment size of 32 Kb and the second level 
cache has a cache line size of 32 Kb. 

0057 FIG. 7A illustrates an exemplary cache line for the 
second-level cache. As shown, the cache line 200 is a fully 
associative cache where the cache line is in a single row 
including multiple cache line blocks 0-63. In the present 
embodiment, the cache line has a size of 32 Kb and includes 
a tag 202, a validity flag V and 64 cache line blocks (0-63) 
each having a size of 512 bytes (not to scale). Though illus 
trated as a full associative cache, it will be appreciated that 
other cache mapping schemes may be utilized and that the 
illustrated embodiment is presented by way of example and 
not by way of limitation. 
0058 When one or more I/O write requests are received by 
the controller and transferred to the second-level cache, a 
cache entry or cache line is created. As will be appreciated, 
data is transferred between the caches in cache lines having a 
fixed size, in this case 32 Kb. The cache line will include the 
data of the write request as well as the requested memory 
location (i.e., tag). The cache line 200 will include the data of 
the write request stored in one or more of the cacheline blocks 
0-63 as well as the requested memory location. For instance, 
in a situation where a host writes a block to LBA 0x40, a 4K 
block to LBA 0x50 and a 2 block write to 0x43 of the storage 
subsystem 120 (See, e.g., FIG. 6), the controller may generate 
write (e.g., second-level cache line), which will be a 32K 
write with data at cache line offset 0x0 (1 cache line block), 
cache line offset 0x3 (2 cache line blocks) and cache line 
offset 0x10 (8 cache line blocks). This is illustrates in FIG. 
7B. In addition, the unused cache line blocks 1-2, 7-15 and 
11-63 of the cache line are filled with the default values (e.g., 
1 or “0”), which are illustrated in FIG.7B as being filled with 
1s. That is, the unused or non-valid portions of the cache line 
200 are filled with default values of the storage device to 
which the cache line will be stored (e.g., SSD). The location 
of the non-valid data in the cache line is recorded in metadata 
maintained by the controller. Once the cache line is gener 
ated, the cache line is written to a segment of a stripe of the 
RAID 5 second level cache. In operation, it is preferable that 
four Such cache lines are generated and stored to each data 
segment a single stripe in the RAID 5 second level cache Such 
that a full stripe write may be performed to achieve the above 
noted benefits. 

0059. After the cache line is striped to the second level 
cache, Subsequent write request may be received that corre 
spond to one or more write requests in a stored cache line. In 
this regard, when a host writes a block to a location in 
memory, the controller first checks for an associated entry in 
the second level cache. That is, the second level cache is 
searched for contents of the requested memory location in any 
cache lines that contain an associated address. If the control 
ler finds that an associated memory location is in the second 
level cache, a cache hit has occurred. If a cache hit occurs, one 
of two processes may occur, the cache line may be replaced 
with the new cache line or the cache line may be modified to 
include new data of the new write request. Such modification 
requires the addition of valid bits within previously non-valid 
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blocks of a cache line (i.e., splicing). In Such an arrangement, 
valid bits are usually added to a previously non-valid blocks 
of the cache line. That is, data can be spliced into one or more 
non-valid block of the cache line and the remainder of the 
cache line blocks may again be marked non-valid. 
0060. The splicing of new data for an address existing in a 
previously stored cache line is illustrated in FIG. 7C. For 
example, upon receiving an additional host write for another 
block in LBA 0x41, the previously stored cache line may be 
identified as having an associated address. If the new write 
data does not overlap the previous data (e.g., old data) for the 
LBA address, the new data may be spliced into the existing 
cache line. This is illustrated in FIG. 7C where the new LBA 
0x41 data is inserted into cache line offset 0x1 (1 cache line 
block). 
0061. In the present embodiment where the cache line is 
modified in a parity RAID configured second level cache, the 
modification of the cache line requires the updating of the 
parity information for the stripe of the second level cache that 
includes the cache line. However, as previously outlined, as 
the new data overwrites existing data having a known value 
(e.g., 1s in offset 0x11), the old data in this offset does not 
have to be read to calculate the new parity. Accordingly, the 
new parity may be calculated and stored to the SSD contain 
ing the parity information for the stripe including the cache 
line. 
0062 FIG. 8 illustrates a process 300 that may be utilized 
in conjunction with a parity RAID second level cache. Ini 
tially, write data (i.e., a host write request) may be received 
302 (e.g., by storage controller). The storage controller is 
operative to determine 304 if data related to the write data 
currently exists in the second level cache. In the situation 
where no related data exists in the second level cache, the 
write data is written 306 to a new cache line and non-valid 
parts of the cache line are written to a default value (e.g., "1 
or 0'). This cache line, once filled with default values, pref 
erably has a size equal to the segment size of the parity RAID 
second level cache. Accordingly, in the situation where a 
RAID 5 (4+1) configuration is utilized for the second level 
cache, it is desirable to collect a total of four cache lines, each 
having the size of an individual segment of the RAID stripe, 
such that a full stripe write may be written 308 to the parity 
RAID second level cache. 

0063. In contrast, when there is related data in the second 
level cache, a determination 310 is made as to whether the 
new write data overlaps any valid old data within the second 
level cache. If the new data overlaps the old data, the new data 
cannot be spliced into an existing cache line without perform 
ing a normal RMW process. Accordingly, a normal RMW 
process is performed 312. If the new data does not overlap the 
old data, a determination 314 is made as to whether the new 
data has all default values (e.g., "1 or 0'). If so, the new data 
is discarded as the existing data in the cache line is already set 
to the default value. If the new data is not all default values, 
the new data is written 316 to a non-valid portion of the 
related cache line and the parity of the stripe containing the 
cache line is updated 318 without reading the old data. The 
order of these operations 316, 318 are independent. 
0064. Though illustrated in FIG. 6 as having a single 
RAID 5 (4+1) second level cache for each controller, it will be 
appreciated that each controller may include multiple sets of 
RAID second level caches. That is, the number second level 
caches (e.g., each comprising a five SSDs in a RAID 5 (4+1) 
or other configuration) connected to each controller may be 
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tailored to that controller. For instance, the set of RAID sec 
ond level caches may be selected to match a data transfer rate 
of the controller and/or to match the cache size to a working 
set size. In a situation where the controller has a peak data rate 
of 20 gigabytes/second and each SSD in the RAID set has a 
peak data rate of 500 Mb/sec. forty SSDs may be utilized to 
form the second level cache. That is, five sets of RAID 5 (4+1) 
SSDs may be utilized as the second level cache. In such an 
arrangement, the controller may be operable to utilize all five 
sets the SSDs for handling I/O write requests. 
0065. Further, the storage subsystem can be implemented 
in a number of configurations. For example, in one embodi 
ment, the storage Subsystem 120 can be implemented in a 4U 
form factor chassis for an enterprise version. In one arrange 
ment, the first and second controllers are implemented in 
separate 3 U units that are co-located with a 1U uninterrupt 
able power supply (UPS), which provide emergency power to 
their respective controller unit in the event that a main input 
power source is interrupted. The remainder of the chassis may 
house 4 U arrays of storage devices, which in one embodi 
ment, each comprise 60 or 84 storage devices. The SSDs of 
the second level cache may be housed within one of the units. 
In any arrangement, necessary cabling (e.g., SAS connectors) 
extends between the controllers, SSDs, and storage devices. 
0.066 Instructions that perform the operations above can 
be stored on storage media. The instructions can be retrieved 
and executed by a microprocessor. Some examples of instruc 
tions are software, program code, and firmware. Some 
examples of storage media are memory devices, tapes, disks, 
integrated circuits, and servers. The instructions are opera 
tional when executed by the microprocessor to direct the 
microprocessor to operate in accord with the invention. Those 
skilled in the art are familiar with instructions and storage 
media. 
0067. While the preceding examples illustrate processing 
I/O requests from a host system, the examples are not 
intended to be limiting. Those skilled in the art understand 
that other combinations of processing I/O requests at a stor 
age controller or pair of redundant storage controllers will fall 
within the scope of the invention. Those skilled in the art will 
also understand that other methods can be used to process 
requests that fall within the scope of the invention. 
0068. Features of the inventions include increasing the IOs 
per Second of a storage controller through the intermediate 
storage of I/O write requests to one or more parity RAID 
SSDs, which allows for earlier de-allocation (e.g., flushing) 
of the controller memory. Other features include improved 
write request management of numerous Small block write 
requests (e.g., 512-16 kbytes) though the storage Subsystem 
of the presented invention is likewise beneficial for large 
block write requests. 
0069. While the inventions have been illustrated and 
described in the drawings and foregoing description, Such 
illustration and description is to be considered as exemplary 
and not restrictive in character. Protection is desired for all 
changes and modifications that come within the spirit of the 
inventions. Those skilled in the art will appreciate variations 
of the above-described embodiments that fall within the 
Scope of the inventions. As a result, the inventions are not 
limited to the specific examples and illustrations discussed 
above, but only by the following claims and their equivalents. 
What is claimed: 
1. A method of managing write requests of host systems in 

a storage Subsystem having a plurality of storage devices 
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configured as one or more logical units providing data Stor 
age, the storage Subsystem further comprising a plurality of 
Solid State Drives (SSDs) forming a second level cache in a 
parity RAID configuration, the method comprising: 

receiving an I/O write request at a storage controller, the 
I/O write request addressing a storage location for new 
data within the storage devices of the storage subsystem; 

identifying a related address in a cache line of said second 
level cache, wherein said cache line is stored in a RAID 
stripe of said second level cache; 

identifying a cache storage location in said cache line for 
said I/O write request as non-valid, wherein said non 
valid portion of said cache line is filled with known 
default values, 

calculating an updated parity for said RAID stripe of said 
second level cache including said cache line based on 
said new data and said known default values, wherein 
said updated parity is calculated free of reading said 
non-valid portion of said cache line; 

writing said new data to said non-valid portion of said 
cacheline in said RAID stripe of said second level cache 
and writing said updated parity to said RAID stripe. 

2. The method of claim 1, wherein said cache line is stored 
within a single data segment of said RAID stripe on one of 
said plurality of SSDs. 

3. The method of claim 2, wherein a size of said cache line 
and a size of said single data segment are substantially equal. 

4. The method of claim 1, further comprising: 
maintaining data related to valid and invalid portions of 

said cache line. 
5. The method of claim 4, further comprising changing an 

identification of said non-valid portion of said cache line to 
valid after writing said new data to said non-valid portion of 
said cache line. 

6. The method of claim 1, further comprising: 
upon initially writing said cache line to said RAID stripe, 

filling non-valid portions of said cache line with said 
default values. 

7. The method of claim 6, further comprising: 
storing plurality of cache lines to a matching plurality of 

data segments of said RAID stripe, wherein non-valid 
portions of each cache line are filled with default values 
and said initially writing comprises performing a full 
stripe write. 

8. The method of claim 1, wherein calculating said updated 
parity free of reading said non-valid portion of said cache line 
comprises calculating said updated parity free of performing 
a read of one of said SSDs containing said cache line. 

9. The method of claim 1, wherein said updated parity is 
written independent of writing said new data. 

10. The method of claim 1, subsequent writing said new 
data to said non-valid portion of said cache line in said RAID 
stripe of said second level cache, de-allocating allocated Stor 
age blocks in a primary cache of said controller. 

11. The method of claim 10, wherein the new data of the 
I/O write request is transferred during idle of the controller 
from the second level cache to the storage devices. 

13. A storage system, including: 
a plurality of storage devices configurable as one of more 

logical units for providing data storage; 
a controller having a front-end interface for receiving I/O 

requests from host systems, a back-end interface inter 
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connected to the plurality of storage devices for selec 
tively transferring the I/O requests to the storage 
devices; 

a primary cache for storing I/O requests to allocated 
memory blocks 

a plurality of solid state drives (SSDs) in a parity RAID 
configuration operatively interconnected said controller, 
wherein said plurality of SSDs define a second level 
cache and said controller is operative to stripe data 
across said SSDs of said second level cache, 

said controller being operative upon receiving an I/O write 
request to: 
search said second level cache for a cache line having 

related data entry; 
upon identifying a related data entry in an identified 

cache line, determining if new data of the I/O write 
request overlaps existing data; 

upon determining the new data does not overlap existing 
data, write said new data to a non-valid portion of said 
identified cache line, wherein said non-valid portion 
of said identified cache line is pre-filled with known 
default values; and 

calculate and write updated parity for a RAID stripe of 
said second level cache including said identified 
cache line, wherein said updated parity is calculated 
free of reading said non-valid portion of said cache 
line. 

14. The system of claim 13, wherein said controller writes 
cache lines to said SSDs, wherein each cache line is stored 
within a single data segment of said RAID stripe on one of 
said plurality of SSDs. 

15. The system of claim 14, said controller writes cache 
lines having size Substantially equal to a size of a single data 
segment of said RAID stripe. 

16. The system of claim 13, wherein said controller is 
further operative to maintaining data identifying valid and 
invalid portions of cache lines stored in said second level 
cache. 

17. The system of claim 13, wherein said controller is 
further operative to, upon initially writing a cache line to a 
RAID stripe of said second level cache, fill non-valid portions 
of said cache line with said default values. 

18. The system of claim 17, wherein said controller is 
further operative to store plurality of cachelines to a matching 
plurality of data segments of a RAID stripe in said second 
level cache, wherein non-valid portions of each cache line are 
filled with default values and initially writing said plurality of 
cache lines comprises performing a full Stripe write. 

19. The system of claim 18, wherein said second level 
cache comprises a plurality of RAID sets, each RAID set 
including a plurality of SSDs. 

20. The system of claim 19, wherein a total data transfer 
rate of said plurality of RAID sets is substantially equal to a 
data transfer rate of said controller. 

21. The storage system of claim 13, wherein the controller 
is further operative to 

de-allocate the memory blocks within the controller pri 
mary cache upon writing said new data to the second 
level cache. 

22. A storage medium having instructions stored thereon 
which, when executed by a processor of a storage controller 
operatively connected a plurality of storage devices config 
ured as one of more logical units and operatively connected to 
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a plurality of solid state drives (SSDs) forming a second level 
cache in a parity RAID configuration, cause the processor to 
perform actions comprising: 

storing a I/O write request to a set of allocated Storage 
blocks in a primary cache memory of the storage con 
troller, wherein the I/O write request addresses a storage 
location for data within the storage devices; 

identifying a related address in a cache line of said second 
level cache, wherein said cache line is stored in a RAID 
stripe of said second level cache; 

identifying a cache storage location in said cache line for 
said I/O write request as non-valid, wherein said non 
valid portion of said cache line is filled with known 
default values, 

calculating an updated parity for said RAID stripe of said 
second level cache including said cache line based on 
said new data and said known default values, wherein 
said updated parity is calculated free of reading said 
non-valid portion of said cache line; 
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writing said new data to said non-valid portion of said 
cacheline in said RAID stripe of said second level cache 
and writing said updated parity to said RAID stripe; and 

de-allocating the set of storage blocks in the primary cache 
of the controller upon completing the transfer of the new 
data of the I/O write request to the second level cache. 

23. The storage medium of claim 22, further comprising 
instructions for changing an identification of said non-valid 
portion of said cache line to valid after writing said new data 
to said non-valid portion of said cache line. 

24. The storage medium of claim 23, further comprising 
instructions for, upon initially writing said cache line to said 
RAID stripe, filling non-valid portions of said cache line with 
said default values. 

25. The storage medium of claim 24, further comprising 
instructions for storing plurality of cache lines to a matching 
plurality of data segments of said RAID stripe, wherein non 
valid portions of each cache line are filled with default values 
and initially writing said plurality of cache lines comprises 
performing a full stripe write. 

k k k k k 


