
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0095696A1

US 20150.095696A1

Hess et al. (43) Pub. Date: Apr. 2, 2015

(54) SECOND-LEVEL RAID CACHE SPLICING (52) U.S. Cl.
CPC G06F 1 1/108 (2013.01)

(71) Applicant: DataDirect Networks, Inc., Chatsworth, USPC ... 714/6.24
CA (US)

(72) Inventors: Randall L Hess, Colorado Springs, CO (57) ABSTRACT
(US); R. Brian Schow, Monument, CO System and methods for managing I/O write requests of host
(US); Jesse L. Yandell, Colorado systems to physical storage. A storage Subsystem includes a
Springs, CO (US); James P. Jackson, plurality of storage devices where each storage device is
Colorado Springs, CO (US) configured to provide data storage. A controller is connected

to the plurality of storage devices for executing the I/O write
(73) Assignee: papet Networks, Inc., Chatsworth, requests from the host systems and is further connected to a

(US) plurality of solid state drives in a parity RAID configuration.
Non-valid portions of cache lines stored in stripes of the 21) Appl. No.: 14/039,107

(21) Appl. No 9 parity RAID configured second level cache are filled with
(22) Filed: Sep. 27, 2013 known default values. Upon receiving an I/O write request to

write new data to a non-valid portion of a cache line existing
Publication Classification in the second level cache, the new data is spliced into the

cache line and a new parity value is calculated without read
(51) Int. Cl. ing the known default values saving a read and an XOR

G06F II/It (2006.01) operation.

Patent Application Publication Apr. 2, 2015 Sheet 1 of 8 US 201S/0095696A1

Patent Application Publication Apr. 2, 2015 Sheet 2 of 8 US 2015/0095696A1

9.

5.

Patent Application Publication Apr. 2, 2015 Sheet 3 of 8 US 2015/0095696A1

122

Figure 3

Patent Application Publication Apr. 2, 2015 Sheet 4 of 8 US 2015/0095696A1

s

Patent Application Publication Apr. 2, 2015 Sheet 5 of 8 US 201S/0095696A1

2

:

É

2

:
CN CYO v LO
CD G) CD CD
O. O. .C. C.
st t t t
CO CfO C/D C/D

Patent Application Publication Apr. 2, 2015 Sheet 6 of 8 US 201S/0095696A1

Patent Application Publication

cache line and fill
unwritten part of
cache line with
default values

y
Perform full stripe

RAID Second level
Cache

316

Write to new L/

write to SSD parity /

306

Apr. 2, 2015 Sheet 8 of 8

Write data
received for L2

Cache
302

304
Related data
in L2 cache?

New data Yes
Overlaps valid

old data?

314
All default

data?

Write new data to
non-valid portion
Of Cache line

318

Update parity
Without reading

old data

End

Figure 8

US 2015/0095696A1

Perform normal
parity RAID RMW

Write

312

US 2015/0095696 A1

SECONO-LEVELRAD CACHE SPLICING

FIELD

0001. The presented inventions are generally directed to
handling Input/Output (I/O) requests of host systems at
physical storage Subsystems. More specifically, the presented
inventions relate to utilization of second-level cache of solid
state drives (SSDs) in a parity RAID configuration that
reduces the write costs previously associated with parity
RAID configurations.

BACKGROUND

0002 Large storage systems typically include storage ele
ments that include multiple individual storage devices (e.g.,
disk drives). The individual storage devices are accessed by
host systems via Input/Output (I/O) requests, such as reading
and writing, through one or more storage controllers. A user
accessing the storage devices through the host system views
the multiple storage devices as one or more Volumes.
Examples of large storage systems include, without limita
tion, Redundant Array Of Independent Disks (RAID) storage
systems that have one or more logical units (LUNs) distrib
uted over a plurality of disks, and spanned Volumes (e.g.,
non-RAID architecture; JBOD, etc.). Examples of the host
systems include computing environments, ranging from indi
vidual personal computers and workstations to large net
worked enterprises encompassing numerous types of com
puting systems. A variety of well-known operating systems
may be employed in Such computing environments depend
ing upon the needs of particular users and enterprises. Storage
devices in Such large storage systems may include standard
hard disk drives as well as other types of storage devices Such
as Solid-state drives (SSD), optical storage, semiconductor
storage (e.g., Random Access Memory disks or RAM disks),
tape storage, etcetera.
0003. In many large storage applications, enhanced reli
ability and data recovery of stored data is of heightened
importance. Such reliability and data recovery is often pro
vided through the use of multiple storage elements configured
in geometries that permit redundancy of stored data to ensure
data integrity in case of various failures. In many such storage
systems, recovery from Some common failures can be auto
mated within the storage system itself by using data redun
dancy, error codes, and so-called "hot spares' (extra storage
devices which may be activated to replace a failed, previously
active storage device). To further improve reliability, it is
known in the art to provide redundant storage controllers to
reduce the failure rate of the storage system due to, for
example, control electronics failures.
0004. In any large storage system, a limiting feature in
processing I/O requests is latency in accessing individual
storage devices. It will be appreciated that access speeds of
many electronic storage components, such as SRAM, DRAM
and Solid state memory devices, continue to increase, often
exponentially. The same has not tended to hold true for
mechanical storage components, such as those found in rotat
ing storage devices. For instance, seek latency of a rotating
hard drive is limited by actuator arm speed and disk circum
ference, and throughput of Such a rotating hard drive is lim
ited by the rotational speed of the disk. As rotating Storage
devices continue to be among the most economical storage
Solution for mass storage systems, the physical limitations of
these devices limit the Input/Output Operations Per Second

Apr. 2, 2015

(IOS per Second) for such systems. Such limitations can result
in a write cache of a storage controller saturating in I/O
intense applications as the write requests cannot be commit
ted to connected storage devices (e.g., rotating storage media)
as quickly as they are received.

SUMMARY

0005. The presented inventions solve the above as well as
other problems and advance the state of the useful arts by
providing systems, apparatuses and methods (i.e., utilities)
for handling I/O write requests from a host system to a storage
system. More specifically, the utilities allow for, among other
things, the rapid de-allocation (e.g., flushing) of I/O write
requests from a controller memory (e.g., primary cache). This
is accomplished by utilization of one or more second-level
caches that temporarily store I/O write requests and allow for
transferring of the I/O write requests to storage devices con
nected to the storage controllers after the I/O write requests
are flushed from the primary cache. To improve utilization of
system resources, the second-level cache is formed of Solid
state drives in a parity RAID configuration.
0006. In one aspect, an I/O write request is received
requesting access to physical storage space. Such as a block of
storage space within a storage Volume or logical unit, which
is typically formed of a plurality of storage devices. A con
troller is operatively interconnected to the storage devices.
The I/O write request is initially allocated to a primary cache
in the controllers. The I/O write request is also transferred to
a second-level cache, which is formed of a plurality of SSDs
having a parity RAID configuration, which provides redun
dancy of the write request. Once transferred to the second
level cache, the I/O write request is de-allocated from the
memory of the controller. Accordingly, the memory of the
controller is available for processing additional I/O requests
from host systems. This allows the storage controller to main
tain high IOS per second capacity.
0007. In one arrangement, the controller is operative to
determine if related data to an I/O write request currently
exists in a cache line stored in the second-level cache. Upon
determining a related entry exits, the controller is operative to
further determine if the new data of the I/O write requests
overlaps any existing data within the existing cache line. For
example, it may be determined that the new data of the I/O
write requests corresponds to a non-valid portion of an exist
ing cache line in the second level cache. In Such an arrange
ment, the new data may be spliced (e.g., written) into the
non-valid portion of the existing cache line. The controller is
further operative to update the parity of the stripe in the RAID
configured second level cache that includes the new data. In
the present arrangement, the existing data in the non-valid
portion of the cache line has a known value. For instance, the
non-valid portion of the cache line may be filled with default
values (e.g., 1's or 0's). Accordingly, the updated parity may
be calculated without reading the existing data from the non
valid portion of the cache line, saving both a read and XOR
operation.
0008. In one arrangement, each cache line stored in the
second level cache is stored in an individual segment of a
RAID stripe. For example, each cache line may be stored on
an individual SSD. In such an arrangement, the block or
segment size of the RAID stripe may be substantially equal or
equal to the size of the cache line.
0009. In a further arrangement, the utility is operative to

fill non-valid portions of a cache line stored to the second

US 2015/0095696 A1

level cache with known values. That is, upon writing a cache
line to the second level cache, non-valid portions of the cache
line may be filled with default values for a storage device.
Such default values may include, for example, 1's or 0's. As
these values stored in these non-valid portions are known,
they need not be re-read when recalculating parity for a stripe
in the RAID configured second level cache.
0010. In a yet further arrangement, the controller is opera

tive to identify a plurality of I/O write request for which no
existing second-level cache entries exist. In this arrangement,
a plurality of I/O write request equaling the number of data
segments of the parity RAID second level cache may be
identified. For instance, in a RAID 5 (4+1) configured second
level cache, four I/O write requests may be identified for
storage to four cache lines. The non-valid portion of each of
cache line may be filled with default values. At this time, all
four cache lines and parity of the cache lines may be striped to
the second level cache. That is, a full stripe may be written.
0011. After written to the second-level cache, an I/O write
request may be transferred to the storage devices as a back
ground operation. That is, during idle, the controller may
buffer the I/O write request and transfer it to the storage
devices. At this time, the I/O write request may be flushed
from the second-level cache if needed.
0012. In one aspect, the utilities are implemented as meth
ods performed by a storage Subsystem. In another aspect, the
utilities are implemented as a physical storage Subsystem. In
a further aspect, the utilities are implemented as instructions
Stored on a storage medium.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 is a block diagram illustrating a network
implementing the storage Subsystem in accordance with vari
ous aspects of the invention.
0014 FIG. 2 is a block diagram illustrating one embodi
ment of a storage Subsystem.
0015 FIG. 3 is a block diagram illustrating an exemplary
embodiment of a controller utilized in a storage Subsystem.
0016 FIG. 4 is a block diagram illustrating another exem
plary embodiment of a storage Subsystem.
0017 FIG. 5 is a block diagram illustrating a RAID 5
(4+1) configuration.
0018 FIG. 6 is a block diagram illustrating an embodi
ment of a storage Subsystem utilizing a RAID configured
second level cache.

0019 FIGS. 7A, 7B and 7C schematically illustrate a
cache line, default filling of the cache line, and splicing of the
cache line, respectively.
0020 FIG. 8 is a process flow sheet illustrating an exem
plary operation of a storage controller including a parity
RAID second level cache.

DETAILED DESCRIPTION

0021 While the presented inventions are susceptible to
various modifications and alternative forms, specific embodi
ments of the inventions have been shown, by way of example,
in the drawings and will herein be described in detail. Those
skilled in the art will appreciate that the features described
below can be combined in various ways to form multiple
variations of the inventions. As a result, the inventions are not
limited to the specific examples described below, but only by
the claims and their equivalents.

Apr. 2, 2015

0022 Provided herein is a storage subsystem that utilizes
a second-level cache to improve Input/Output operations. In
one arrangement, the storage Subsystem is operative to rap
idly flush I/O write requests from a main memory (e.g.,
DRAM) or primary cache (e.g., first level cache) after trans
ferring the I/O write requests to a second-level cache. When
processing capacity is available, the I/O write requests are
subsequently transferred from the second-level cache to one
or more storage devices.
0023. With reference now to the figures and in particular
with reference to FIG. 1, an exemplary embodiment of a
storage Subsystem 120, in accordance with aspects of the
presented inventions, is provided. As shown, a computing
network 100 includes multiple servers/host systems 110a-n
connected to multiple storage Subsystems 120a-n (only one
shown for clarity) via multiple switches 130a-n (hereafter
110, 120 and 130, respectively, unless specifically identified),
where the switches collectively define a switching fabric. The
host systems 110 are typically interconnected to a plurality of
computing devices 104 via a high speed network 106. Such
high speed networks may include, for example, the interne, a
local area network (LAN), a wide area network (WAN), or
any other Suitable network communications channel. These
devices can be any of a variety of computing devices includ
ing, for example, laptops, desktops, workstations, handheld/
wireless computing devices, or other computing devices.
Data migration between the storage subsystems 120 and the
computing devices 104 is managed by the host systems 110.
Details of the connections between the computing devices
104 and host systems 120 are known to those skilled in the art.
0024. The storage subsystems 120 are configured for han
dling I/O requests from the host systems 110, which commu
nicate with the computing devices 104. The host systems 110
may be communicatively connected to the storage Sub
systems 120 for processing I/O requests through a variety of
connections. Examples of Such connections include Fibre
Channel (FC). Small Computer System Interface (SCSI),
Internet SCSI (ISCSI), Ethernet, Infiniband, SCSI over
Infiniband, piping, and/or various physical connections. A
variety of well-known operating systems may be employed in
Such computing environments depending upon the needs of
particular users and enterprises.
0025 I/O modules 112 process I/O requests from the host
systems 110 in order to access physical storage space within
the storage subsystems 120. The I/O modules 112 have host
connect interfaces for receiving I/O requests from the host
systems and transferring data between the host systems 110
and the storage subsystems 120. The I/O modules 112 can
connect to the host systems through a variety of means. Each
I/O module is communicatively connected to the Switching
fabric through multiple communications Switches, such as
Application Specific Integrated Circuits (ASIC), configured
to route data from a host system 110, through the switching
fabric, and on to storage elements or devices of a storage
Subsystem according to a specific address. Those skilled in
the art are familiar with communications switches and will
readily recognize the design of Such Switches (e.g., custom
ASICs) for purposes of transferring messages through such a
Switched fabric or other communication medium.
0026. In the present embodiment, the I/O requests are
transferred from the I/O modules 112 to storage devices of the
storage subsystems 120 through the switches 130 of the
switching fabric. Each of the storage subsystems 120 typi
cally includes a plurality of individual storage devices 128,

US 2015/0095696 A1

Such as rotating media/disks and/or other types of storage
devices (e.g., Solid state drives, optical storage, tape storage,
semiconductor storage) that may be arranged into one or
more logical units (LUNs) and controlled by a controller and
more typically at least a pair of redundant controllers 122a.
122b. The storage devices and storage controllers can be
configured to employ any of a number of storage management
schemes, such as that of a RAID storage management system
(e.g., Raid 0, 3, 4, 5, 6 etc.). In such an arrangement, the
storage controllers may include RAID storage controllers for
processing the requests of host systems 110 through I/O mod
ules 112 and communication switches 130. However, the
presented embodiments are not limited to only RAID con
figurations.
0027. In the illustrated embodiment, the storage devices
128 can appear as a single virtual storage system to the host
systems. In operation, the I/O requests includes a Command
Data Block (CDB) that contains information (e.g., Logical
Unit Identifier (LUN) and offset or Logical Block Address
(LBA)) regarding the location of data in terms of the virtual
storage system. This information is translated into a new I/O
request relating to the physical location in the appropriate
storage Subsystem. Thus, mapping tables may be imple
mented for translating virtual storage locations of the virtual
storage system into physical storage locations of the storage
Subsystems (i.e., storage locations of the individual storage
devices). Data may then be written or retrieved from the
storage devices by the controllers of the appropriate storage
Subsystem.
0028. In the present embodiment, each of the controllers
122a, 122b is operatively connectable with each of the indi
vidual storage devices 128 to affect such read/write requests
(all connections are not shown for purposes of clarity). The
illustrated embodiment also utilizes redundant connections
between each host system 110, switch 130, and storage sub
system 120. For example, a first host system 120a is inter
connected to two fabric switches 130a, 130b, which are, in
turn, each connected to each controller 122a, 122b of a stor
age Subsystem 120a. In this regard, dual path architecture is
utilized to provide redundant paths between the host system
110a and the storage subsystem 120a. One of the features of
Such architecture is capability of failover; meaning that in
case one path fails or a fabric switch 130a fails, data can be
sent via the second fabric switch 130b. The number of host
systems 110, storage subsystems 120, fabric switches 130
and I/O modules 112 forming the network 100 is not intended
to be limited to the number of host systems 110, storage
subsystems 120, fabric switches 130, and/or I/O modules 112
in the present embodiment.
0029. Like the use of redundant connections, the use of the
redundant storage controllers 122a, 122b in each of the stor
age Subsystems 120 can reduce the failure rate of the storage
Subsystem due to control electronics failures. In this arrange
ment, the redundant pair of controllers 122a, 122b control the
same storage devices 128 (e.g., array of storage devices 126).
See FIG. 2. A memory 124a, 124b is operatively connected
with each of the controllers 122a, 122b and the redundant
controllers communicate with one another to ensure that the
memories 124a, 124b are synchronized. In this regard, I/O
requests are mirrored in the memory of each controller. That
is, if a first controller 122a receives an I/O request, this I/O
request is stored in allocated memory blocks (e.g., primary
cache) in the memory 124a of the first controller and mirrored
(e.g., copied) to allocated memory blocks in the memory

Apr. 2, 2015

124b of the second controller, for example, via an Inter
Controller Channel 142 (ICL) physically interconnecting the
controllers 122a, 122b. This is illustrated by dashed arrow A
in FIG. 2. In such an arrangement, if the first controller
experiences a failure, the second controller may continue
processing the I/O request while the first controller is repaired
or replaced. Though illustrated to show the first controller
122a handling the I/O request, it will be appreciated that the
second controller 122b likewise handles I/O requests (e.g.,
simultaneously with the first controller 122a). That is, each
controller 122a, 122b is typically assigned and handles I/O
requests for a portion of the storage devices 128, which may
be configured into various logical units (LUNs). More spe
cifically, each controller typically handles the I/O requests for
its assigned LUNs. Accordingly, all discussion herein to han
dling of I/O requests by the first controller 122a is likewise
applicable to handling of I/O requests by the second control
ler 122b.

0030 The storage subsystem 120 may also incorporate a
second-level cache 150 (e.g., read cache) for storing fre
quently accessed data from the storage devices 128 and/or for
storing recently written I/O write requests, such that this
information is available from the second-level cache for
future read requests. The second-level cache 150 may be a
flash memory device that may be pre-loaded (e.g., pre
warmed) with frequently accessed data from the storage
devices 128. When the second-level cache 150 fills, it may be
flushed utilizing least recently used (LRU) or similar stale
ness algorithms as known to those skilled in the art. Though
shown as a single device, it will be appreciated that the sec
ond-level cache may incorporate multiple individual devices
(e.g., SSDs) and these individual devices may be allocated
between the controllers.

0031 FIG. 3 illustrates an exemplary embodiment of one
of the controllers 122a, 122b, hereafter referred to as “con
troller' 122. It will be appreciated that architecture of the
other controller can be identical. In the one embodiment, the
controller is primarily formed of embedded firmware. How
ever, it will be appreciated that other embodiments may com
prise Software and/or hardware implementations. As shown,
the controller 122 includes a multi-ported host interface 180
or front-end interface that is capable of communicating with
a host system, such as the host system 110 of FIG. 1, through
a variety of means, including, without limitation, FC, SCSI,
SCSI ISCSI, SAS, PCIe, Ethernet, Infiniband, SCSI over
Infiniband, piping, and/or various physical connections. The
host interface 180 may comprise one or more individual cir
cuits or chips (e.g., ASICs). In any arrangement, the host
interface 180 receives an I/O request from the host system to
access a block of storage space within a storage device. The
host interface 180 transfers that I/O request to the memory
124 of the controller 122 via a bus 182. In one embodiment,
such transfer may comprise a Direct Memory Access (DMA)
transfer such that the I/O request is stored to allocated
memory blocks within the primary cache 186 or the memory
124 (DRAM) independent of operation of the processor 184
of the controller 122. The I/O request is likewise provided to
the ICL 142 such that it may be copied in allocated memory
blocks in the primary cache of the memory of the other
controller.

0032. Once the I/O request is stored in memory 124 (e.g.,
SRAM or DRAM), the processor 184 accesses the I/O
request, in the case of read request, and determines if the
requested data exists within the primary cache or second

US 2015/0095696 A1

level cache (see for example FIG.2). If so, the data is retrieved
from the appropriate cache and output to the requesting host
system via the host interface 180. If not, the processor 184
accesses the storage devices through the back end interface,
which, in the present embodiment, is a plurality of Serial
Attached SCSI (SAS) chips 190a-n. However, it will be
appreciated that other back-end protocols/architectures Such
as, without limitation, SATA, SCSI, Ethernet, PCIe, and FC
may be utilized in the back-end interface. When the I/O
request is a write request, the write data is output to the
storage devices and/or a second-level cache via the back-end
interface, typically through a DMA request. The ports of the
SAS chips 190a-n are interconnected to one or more arrays
126 of storage devices 128 via SAS connectors (not shown).
Each array may include appropriate I/O modules (e.g., SAS
expanders, etc) as known to those skilled in the art. Addition
ally, one or more solid state drive (SSD) second-level caches
may be connected to ports of the SAS chips 190a-n.
0033. A limiting feature in processing I/O requests by the
controllers 122 is the latency in accessing the storage devices
128. This can be more apparent when the I/O request includes
multiple write requests that require data to be stored to rela
tively slow (e.g., in comparison with the controller memory)
rotating media. To improve performance of the storage Sub
system, a write-back cache may be utilized by the storage
controllers. In this arrangement, when one storage controller
(e.g., controller 122a) receives a request to write data to the
storage devices 128, this data is stored in a write cache (e.g.,
primary cache or DRAM) of that controller 122a and mir
rored in the write cache of the second controller 122b, as
illustrated by dashed arrow A. At this time, a command
complete signal can be returned to the requesting host indi
cating that the write operation is complete, as illustrated by
dashed arrow B. Some embodiments send this command
complete signal before the data is actually written to the
storage devices 128, as a back-up copy exists in the memory
124b of the second controller 122b.

0034. In the absence of a failure of the receiving controller
122a, the receiving controller 122a writes the data to the
storage devices 128, as illustrated by dashed arrow C. Once
written to the storage devices 128, a write complete signal is
generated and the memory blocks of the two controllers 122a,
and 122b may be de-allocated, freeing these memory blocks
for storage of Subsequent I/O requests. If the receiving con
troller 122a were to fail prior completing the write request,
the second controller 122b would complete the write. As
illustrated in FIG. 2, in addition to writing the data to the
storage devices, the data may be mirrored (e.g., simulta
neously) to the second-level cache 150, as illustrated by
dashed arrow C'.

0035. Notwithstanding the use of write-back caching of
I/O requests, in I/O intensive applications (e.g., Small-block
write applications), the storage controller memory 124 often
receives I/O write requests faster than the requests can be
processed. In Such instances, the primary cache of the con
troller can become overwhelmed while waiting on the rela
tively slow flush to the storage devices 128. That is, pending
I/O requests (i.e., the I/O stack) may fill the primary write
cache. Performance of the storage subsystem 120 slows after
the primary write cache fills. That is, new write requests from
the I/O modules 112 are delayed until blocks in the controller
memories 124a, 124b are de-allocated and available to store
new I/O requests.

Apr. 2, 2015

0036 FIG. 4 illustrates the storage subsystem 120 utiliz
ing redundant controllers 122a, 122b and further incorporat
ing a solid-state drive (SSD) 160 that operates as a second
level cache to receive read and write operations originating
from the controllers. As above, when one storage controller
(e.g., controller 122a) receives a request to write data to the
storage devices 128, this data is stored in a write cache of that
controller 122a and mirrored in the write cache of the second
controller 122b (illustrated by dashed arrow A) and a com
mand complete signal is returned to the requesting host indi
cating that the write operation is complete (illustrated by
dashed arrow B). However, in this embodiment, the receiving
controller 122a schedules the write operation to the SSD 160
as illustrated by dashed arrow C. Once the data is mirrored
(e.g., copied) to the SSD 160, a write-complete signal is
generated and the memory blocks of the primary write caches
of the two controllers 122a, 122b are de-allocated, thus free
ing these memory blocks for the storage of Subsequent I/O
requests. The data in the solid-state drive 160 may then be
transferred to the storage devices 128, which may be com
pleted as a background operation from the view of the con
trollers 122a, 122b. In this regard, one of the controllers 122a,
122b (i.e., typically the controller that received the I/O write
request) may be utilized to buffer the data and transfer the data
to the storage devices 128, as illustrated by dashed arrows D
and D'. This data may be buffered in allocated memory (e.g.,
DRAM) of the controller or may be buffered in a separate
buffer 152. In either embodiment, transfer of the data may
occur during processor idle to preserve the IOS per second of
the controller.

0037. If the write request data were written to a single SSD
160 in a single location, no redundancy would exist for the I/O
write request data. In this regard, failure of the Solid-state
drive 160 would result in loss of the I/O write request data. In
order to provide a redundancy for the I/O write request data,
separate SSDs may be utilized for the second level cache, a
read cache 162 and a mirror cache 164. In this embodiment,
the receiving controller 122a simultaneously schedules the
write operation to both the read cache 162 and the mirror
cache 164, as illustrated by dashed arrows C and C. The
mirror cache 164 acts as a mirror for the unexecuted I/O write
request data within the read cache 162 thereby providing a
redundant copy of the I/O write request data. Once the I/O
write request data is written to the read cache 162 and the
mirror cache 164, a command-complete signal is generated
and the memory blocks of the two controller primary caches
may be de-allocated, quickly freeing these memories for
additional write operations. After stored to the mirror cache
164, one of the controllers may buffer the data of the I/O write
request from the read cache 162 or mirror cache 164 and
transfer that data to the storage devices 128 when processing
capability is available. In one embodiment, a serial buffer 152
is utilized to prevent over-allocation of controller memory
resources for handling the transfer of data between the read
cache 162 or mirror cache 164 and the storage devices 128. As
Soon as those write requests are transferred to the storage
devices 128, as illustrated by dashed arrows D and D", the I/O
write request may be removed from the mirror cache 164 as
the data is now stored to the storage devices 128, which may
provide redundant copies thereof. That is, the I/O write
request may be flushed or marked as de-allocated and invalid
so the location within the mirror cache 164 can be reused.

0038. While utilization of a second-level cache having two
SSD's (i.e., read cache 162 and mirror cache 164) that store a

US 2015/0095696 A1

read copy and a mirror copy of the data provides desired
redundancy, such an arrangement does not make the best use
of system resources. That is, while data written identically to
two drives produces a “mirrored set', the in-use capacity of
the SSDs is only 50%. Accordingly, the inventors have rec
ognized that other configurations of a second-level cache
could provide redundancy while increasing the in-use capac
ity of the SSDs that form the second-level cache. Specifically,
the inventors have recognized that a RAID (redundant array
of independent disks) configuration or level having parity
(i.e., parity RAID) could be implemented for the second-level
cache to provide redundancy while increasing in-use capac
ity.
0039 RAID configurations allow segmenting logically
sequential data, such as a file, so that consecutive segments
are stored on different physical storage devices. This is typi
cally done by interleaving sequential segments of the data on
separate storage devices in a round-robin fashion on multiple
drives from the beginning of the data. That is, RAID levels
that use striping split up files or data sets into Small pieces and
distributing them to multiple drives. Most striping implemen
tations allow a user to control over two parameters that define
the way that the data is broken into chunks and sent to the
various drives. The first parameter is the stripe width of the
array. Stripe width refers to the number of parallel stripes that
can be written to or read from simultaneously. This is equal to
the number of drives in the array. So a five-disk striped array
has a stripe width of five. Read and write performance of a
striped array increases as stripe width increases. That is,
adding more drives to the array increases the parallelism of
the array, allowing access to more drives simultaneously. The
second parameter is the Stripe size of the array, sometimes
also referred to by terms such as block size, chunk size, stripe
length or granularity. This term refers to the size of the stripes
written to each disk. RAID arrays that stripe in blocks typi
cally allow the selection of block sizes in kB ranging from 2
kB to 512kB (or even higher) in powers of two (e.g., 2 kB, 4
kB, 8 kB, 16 kB etc.). As stripe size is decreased, files are
broken into Smaller and Smaller pieces. This increases the
number of drives that a file or data set will use to hold all the
blocks containing the data of that file/data set. Increasing the
stripe size does the opposite of decreasing it. Fewer drives are
required to store files/data sets of a given size. As will be
appreciated, Stripe width and stripe size may be varied as
utilized with the second-level cache.

0040. Many RAID levels employ an error protection
scheme called “parity', a commonly used method in infor
mation technology to provide fault tolerance in a given set of
data. That is, parity data is used by Some RAID configurations
or levels to achieve redundancy. While writing data to a stripe,
a file or data set is broken into chunks and written in separate
segments on different drives. One segment of each Stripe is
reserved for parity data which is calculated from the data in on
the other drives of the stripe. If a drive in the array fails,
remaining data on the other drives can be combined with the
parity data, which is commonly calculated using an XOR
function, to reconstruct the missing data. That is, the XOR
function generates a checksum value that is based on the
values of the other data blocks in a given stripe. Stated oth
erwise, if the data in one of the segments of a stripe becomes
corrupted, or, if the drive associated with that segments fails,
the remaining data in the other segments/drives and the parity
data can be used to reconstruct the lost data. Those skilled in
the art are familiar with parity calculations.

Apr. 2, 2015

004.1 FIG. 5 illustrates five SSDs configured in a Raid 5
(4+1) configuration that may be utilized as the second-level
cache. However, it will be appreciated that other RAID con
figurations that provide redundancy Such as parity may be
utilized and that the embodiment of FIG. 5 is by way of
example and not limitation. As illustrated, there are five SSDs
(i.e., SSD-SSD) across which data is striped. The numbered
segments (e.g., 1-4 in Stripe 1) represent data segments or
blocks on the RAID 5 set or volume, while the P segment
contains parity data of each stripe. Of note, in a RAID 5
configuration, the parity segment P is shifted between Stripes.
RAID 4 is similar, except in RAID 4 one dedicated drive is
used for parity.
0042. As illustrated in the RAID 5 (4+1) configuration of
FIG. 5, there are 4 segments carrying data plus one parity
segment per stripe. Though five Stripes are illustrated, it will
be appreciated that numerous additional stripes may be
present. This arrangement provides improved in-use perfor
mance of system resources. That is, for a second-level cache
utilizing the illustrated RAID 5 (4+1) configuration, the in
use capacity of the SSDs forming the second level cache is
80%. Other RAID configurations may provide different in
use capacities (e.g., RAID 5 (8+1)), however, Such configu
rations will typically have in-use capacities in excess of that
of simple mirroring. In the case of RAID 5 (4+1), four seg
ments of each stripe store data and the fifth stores parity data.
Accordingly, fewer SSDs are required to provide a second
level cache of a desired size (i.e., in comparison with a mir
rored set of drives) while still providing redundancy for the
second-level cache.

0043. One previous drawback of utilizing a parity RAID
configuration is the write cost or penalty associated with
writing less than an entire RAID stripe. That is, when writing
data to less than an entire stripe, it is necessary to access a
number of drives of the stripe to effect writing of the data and
recalculation of parity data for the stripe. That is, after a stripe
is written and an initial parity is calculated for the stripe, later
modification of one of the segments of the Stripe requires
recalculating the parity in addition to writing the new data.
Upon receiving a request to modify a segment of an existing
stripe, the controller must recalculate the parity by subtract
ing the data of the old segment and adding in the new version
of the segment. In two separate operations, the controller
writes the new data segment followed by the new parity
segment. To do this, the controller must first read the parity
segment from whichever drive contains the parity for the
stripe and reread the unmodified data for the updated segment
from the drive containing this segment. This read-read-write
write is known as the RAID5 write penalty. Since these two
reads and two writes are sequential and synchronous a com
mand-complete signal cannot return until both reads and both
writes complete to ensure no data is lost. Therefore, writing to
RAID 5 is up to 50% slower than RAID 0 for an array of the
same capacity.
0044) The write penalty is further discussed in relation to
FIG. 5. Assuming that stripe 1 has previously been written
and that P1 has previously been calculated, modification of
segment 1 would require the following:
0045 Read segment 1 from SSD0;
0046 Read the parity segment P1 from SSD4;
0047 Recalculate the parity using the “old data of seg
ment 1 and “new data of segment 1 and the “old parity” of
P1;

US 2015/0095696 A1

0048 Write the new data to segment 1 of SSD0;
0049. Write the new parity to P1 of SSD4.
Where one read request or one write request=1 IO operation
performed by the controller, a total of four IO's are required
to complete modifying a single segment of stripe 1 of the
RAID 5 volume. This is called a “write penalty of four,
because four IO's for every single segment write. Modifica
tion of additional Stripe segments results in differing write
penalties. Generally, Such a process where the controller
reads data, modifies one or more segments and writes one or
more segments is referred to as a Read Modify Write (RMW)
process.
0050. In contrast, significant efficiencies are achieved
when writing a full stripe. In Such a situation, all segments are
replaced and new parity can be calculated without reading the
old parity:
0051 Calculate the parity using new data segments 1-4:
0052 Write the new data to segments 1-4 of SSD0-SSD4;
0053 Write the new parity to P1 of SSD4
This operation requires five IO's for modifying four segments
resulting in a 1.25 write penalty. In summary, RAID 5 has
high performance when writing a full stripe by suffers from
read-modify-write (RMW) performance when writing a frac
tion of a stripe.
0054. In view of the above-noted examples, the inventors
have recognized that it would be beneficial to preferentially
utilize a full stripe write, when possible, and, when not pos
sible, to reduce the number of reads operations required to
modify a stripe segment. In the latter regard, it will be appre
ciated that an enterprise level storage controller may receive
and execute millions of write requests per day and that saving
a read IO in at least a portion of those requests will result in
significant computational savings for the controller.
0055 Aspects of the invention are based on the recogni
tions that the default values of bits in a storage device (e.g.,
SSD) are either 0 or 1, depending on the manufacturer of
the storage device and that, in many instances, a cache write
request involves the modification of an existing cache line.
Further, such a modification sometimes involves writing data
to a portion of an existing cache line where no previous data
exists. That is, in Some instances, data may be written (e.g.,
spliced) into a previously non-valid portion of a cache line. In
instances where an existing cache line is stored in a RAID
stripe, the non-valid portion of the cache line may be filled
with default values of the storage device (e.g., SSD). Accord
ingly, these default values are known and, upon writing new
data to an non-valid portion of the existing cache line, the
old data need not be reread for parity calculations. That is,
when new data is written to a location of a RAID stripe that
includes default values, there is no need to read the old data as
this data is known (i.e., 0 or 1). Accordingly, in a RMW
situation where an non-valid portion an existing cache line is
modified in a RAID 5 stripe, rather than performing two reads
and two writes to update the data, the RMW requires only a
single read (e.g., old parity), calculation of the new parity
based on the new data and the known old data (i.e., “0” or 1),
and two writes to write the new data and the new parity. In this
regard, a savings of 25% of the IOS required for the RMW
may beachieved. Likewise, a 25% increase in bandwidth may
be recognized. Further an XOR operation is saved.
0056 FIG. 6 illustrates a system that utilizes multiple
SSDs in a RAID 5 (4+1) configuration as second level caches
160a, 160b. In this arrangement, the controllers further oper
ate as RAID controllers operative to stripe data across the

Apr. 2, 2015

SSDs of the second level caches. In one embodiment, the
RAID 5 configuration utilizes a small chunk/stripe size that
approximate the size of the second level cache line. By match
ing the Stripe size of the RAID stripe segments to the cache
line size, the likelihood of obtaining a full stripe of valid data
is increased. However, this is not a requirement. In one spe
cific embodiment, the RAID 5 configuration has a stripe size
of 128Kb with a segment size of 32 Kb and the second level
cache has a cache line size of 32 Kb.

0057 FIG. 7A illustrates an exemplary cache line for the
second-level cache. As shown, the cache line 200 is a fully
associative cache where the cache line is in a single row
including multiple cache line blocks 0-63. In the present
embodiment, the cache line has a size of 32 Kb and includes
a tag 202, a validity flag V and 64 cache line blocks (0-63)
each having a size of 512 bytes (not to scale). Though illus
trated as a full associative cache, it will be appreciated that
other cache mapping schemes may be utilized and that the
illustrated embodiment is presented by way of example and
not by way of limitation.
0058 When one or more I/O write requests are received by
the controller and transferred to the second-level cache, a
cache entry or cache line is created. As will be appreciated,
data is transferred between the caches in cache lines having a
fixed size, in this case 32 Kb. The cache line will include the
data of the write request as well as the requested memory
location (i.e., tag). The cache line 200 will include the data of
the write request stored in one or more of the cacheline blocks
0-63 as well as the requested memory location. For instance,
in a situation where a host writes a block to LBA 0x40, a 4K
block to LBA 0x50 and a 2 block write to 0x43 of the storage
subsystem 120 (See, e.g., FIG. 6), the controller may generate
write (e.g., second-level cache line), which will be a 32K
write with data at cache line offset 0x0 (1 cache line block),
cache line offset 0x3 (2 cache line blocks) and cache line
offset 0x10 (8 cache line blocks). This is illustrates in FIG.
7B. In addition, the unused cache line blocks 1-2, 7-15 and
11-63 of the cache line are filled with the default values (e.g.,
1 or “0”), which are illustrated in FIG.7B as being filled with
1s. That is, the unused or non-valid portions of the cache line
200 are filled with default values of the storage device to
which the cache line will be stored (e.g., SSD). The location
of the non-valid data in the cache line is recorded in metadata
maintained by the controller. Once the cache line is gener
ated, the cache line is written to a segment of a stripe of the
RAID 5 second level cache. In operation, it is preferable that
four Such cache lines are generated and stored to each data
segment a single stripe in the RAID 5 second level cache Such
that a full stripe write may be performed to achieve the above
noted benefits.

0059. After the cache line is striped to the second level
cache, Subsequent write request may be received that corre
spond to one or more write requests in a stored cache line. In
this regard, when a host writes a block to a location in
memory, the controller first checks for an associated entry in
the second level cache. That is, the second level cache is
searched for contents of the requested memory location in any
cache lines that contain an associated address. If the control
ler finds that an associated memory location is in the second
level cache, a cache hit has occurred. If a cache hit occurs, one
of two processes may occur, the cache line may be replaced
with the new cache line or the cache line may be modified to
include new data of the new write request. Such modification
requires the addition of valid bits within previously non-valid

US 2015/0095696 A1

blocks of a cache line (i.e., splicing). In Such an arrangement,
valid bits are usually added to a previously non-valid blocks
of the cache line. That is, data can be spliced into one or more
non-valid block of the cache line and the remainder of the
cache line blocks may again be marked non-valid.
0060. The splicing of new data for an address existing in a
previously stored cache line is illustrated in FIG. 7C. For
example, upon receiving an additional host write for another
block in LBA 0x41, the previously stored cache line may be
identified as having an associated address. If the new write
data does not overlap the previous data (e.g., old data) for the
LBA address, the new data may be spliced into the existing
cache line. This is illustrated in FIG. 7C where the new LBA
0x41 data is inserted into cache line offset 0x1 (1 cache line
block).
0061. In the present embodiment where the cache line is
modified in a parity RAID configured second level cache, the
modification of the cache line requires the updating of the
parity information for the stripe of the second level cache that
includes the cache line. However, as previously outlined, as
the new data overwrites existing data having a known value
(e.g., 1s in offset 0x11), the old data in this offset does not
have to be read to calculate the new parity. Accordingly, the
new parity may be calculated and stored to the SSD contain
ing the parity information for the stripe including the cache
line.
0062 FIG. 8 illustrates a process 300 that may be utilized
in conjunction with a parity RAID second level cache. Ini
tially, write data (i.e., a host write request) may be received
302 (e.g., by storage controller). The storage controller is
operative to determine 304 if data related to the write data
currently exists in the second level cache. In the situation
where no related data exists in the second level cache, the
write data is written 306 to a new cache line and non-valid
parts of the cache line are written to a default value (e.g., "1
or 0'). This cache line, once filled with default values, pref
erably has a size equal to the segment size of the parity RAID
second level cache. Accordingly, in the situation where a
RAID 5 (4+1) configuration is utilized for the second level
cache, it is desirable to collect a total of four cache lines, each
having the size of an individual segment of the RAID stripe,
such that a full stripe write may be written 308 to the parity
RAID second level cache.

0063. In contrast, when there is related data in the second
level cache, a determination 310 is made as to whether the
new write data overlaps any valid old data within the second
level cache. If the new data overlaps the old data, the new data
cannot be spliced into an existing cache line without perform
ing a normal RMW process. Accordingly, a normal RMW
process is performed 312. If the new data does not overlap the
old data, a determination 314 is made as to whether the new
data has all default values (e.g., "1 or 0'). If so, the new data
is discarded as the existing data in the cache line is already set
to the default value. If the new data is not all default values,
the new data is written 316 to a non-valid portion of the
related cache line and the parity of the stripe containing the
cache line is updated 318 without reading the old data. The
order of these operations 316, 318 are independent.
0064. Though illustrated in FIG. 6 as having a single
RAID 5 (4+1) second level cache for each controller, it will be
appreciated that each controller may include multiple sets of
RAID second level caches. That is, the number second level
caches (e.g., each comprising a five SSDs in a RAID 5 (4+1)
or other configuration) connected to each controller may be

Apr. 2, 2015

tailored to that controller. For instance, the set of RAID sec
ond level caches may be selected to match a data transfer rate
of the controller and/or to match the cache size to a working
set size. In a situation where the controller has a peak data rate
of 20 gigabytes/second and each SSD in the RAID set has a
peak data rate of 500 Mb/sec. forty SSDs may be utilized to
form the second level cache. That is, five sets of RAID 5 (4+1)
SSDs may be utilized as the second level cache. In such an
arrangement, the controller may be operable to utilize all five
sets the SSDs for handling I/O write requests.
0065. Further, the storage subsystem can be implemented
in a number of configurations. For example, in one embodi
ment, the storage Subsystem 120 can be implemented in a 4U
form factor chassis for an enterprise version. In one arrange
ment, the first and second controllers are implemented in
separate 3 U units that are co-located with a 1U uninterrupt
able power supply (UPS), which provide emergency power to
their respective controller unit in the event that a main input
power source is interrupted. The remainder of the chassis may
house 4 U arrays of storage devices, which in one embodi
ment, each comprise 60 or 84 storage devices. The SSDs of
the second level cache may be housed within one of the units.
In any arrangement, necessary cabling (e.g., SAS connectors)
extends between the controllers, SSDs, and storage devices.
0.066 Instructions that perform the operations above can
be stored on storage media. The instructions can be retrieved
and executed by a microprocessor. Some examples of instruc
tions are software, program code, and firmware. Some
examples of storage media are memory devices, tapes, disks,
integrated circuits, and servers. The instructions are opera
tional when executed by the microprocessor to direct the
microprocessor to operate in accord with the invention. Those
skilled in the art are familiar with instructions and storage
media.
0067. While the preceding examples illustrate processing
I/O requests from a host system, the examples are not
intended to be limiting. Those skilled in the art understand
that other combinations of processing I/O requests at a stor
age controller or pair of redundant storage controllers will fall
within the scope of the invention. Those skilled in the art will
also understand that other methods can be used to process
requests that fall within the scope of the invention.
0068. Features of the inventions include increasing the IOs
per Second of a storage controller through the intermediate
storage of I/O write requests to one or more parity RAID
SSDs, which allows for earlier de-allocation (e.g., flushing)
of the controller memory. Other features include improved
write request management of numerous Small block write
requests (e.g., 512-16 kbytes) though the storage Subsystem
of the presented invention is likewise beneficial for large
block write requests.
0069. While the inventions have been illustrated and
described in the drawings and foregoing description, Such
illustration and description is to be considered as exemplary
and not restrictive in character. Protection is desired for all
changes and modifications that come within the spirit of the
inventions. Those skilled in the art will appreciate variations
of the above-described embodiments that fall within the
Scope of the inventions. As a result, the inventions are not
limited to the specific examples and illustrations discussed
above, but only by the following claims and their equivalents.
What is claimed:
1. A method of managing write requests of host systems in

a storage Subsystem having a plurality of storage devices

US 2015/0095696 A1

configured as one or more logical units providing data Stor
age, the storage Subsystem further comprising a plurality of
Solid State Drives (SSDs) forming a second level cache in a
parity RAID configuration, the method comprising:

receiving an I/O write request at a storage controller, the
I/O write request addressing a storage location for new
data within the storage devices of the storage subsystem;

identifying a related address in a cache line of said second
level cache, wherein said cache line is stored in a RAID
stripe of said second level cache;

identifying a cache storage location in said cache line for
said I/O write request as non-valid, wherein said non
valid portion of said cache line is filled with known
default values,

calculating an updated parity for said RAID stripe of said
second level cache including said cache line based on
said new data and said known default values, wherein
said updated parity is calculated free of reading said
non-valid portion of said cache line;

writing said new data to said non-valid portion of said
cacheline in said RAID stripe of said second level cache
and writing said updated parity to said RAID stripe.

2. The method of claim 1, wherein said cache line is stored
within a single data segment of said RAID stripe on one of
said plurality of SSDs.

3. The method of claim 2, wherein a size of said cache line
and a size of said single data segment are substantially equal.

4. The method of claim 1, further comprising:
maintaining data related to valid and invalid portions of

said cache line.
5. The method of claim 4, further comprising changing an

identification of said non-valid portion of said cache line to
valid after writing said new data to said non-valid portion of
said cache line.

6. The method of claim 1, further comprising:
upon initially writing said cache line to said RAID stripe,

filling non-valid portions of said cache line with said
default values.

7. The method of claim 6, further comprising:
storing plurality of cache lines to a matching plurality of

data segments of said RAID stripe, wherein non-valid
portions of each cache line are filled with default values
and said initially writing comprises performing a full
stripe write.

8. The method of claim 1, wherein calculating said updated
parity free of reading said non-valid portion of said cache line
comprises calculating said updated parity free of performing
a read of one of said SSDs containing said cache line.

9. The method of claim 1, wherein said updated parity is
written independent of writing said new data.

10. The method of claim 1, subsequent writing said new
data to said non-valid portion of said cache line in said RAID
stripe of said second level cache, de-allocating allocated Stor
age blocks in a primary cache of said controller.

11. The method of claim 10, wherein the new data of the
I/O write request is transferred during idle of the controller
from the second level cache to the storage devices.

13. A storage system, including:
a plurality of storage devices configurable as one of more

logical units for providing data storage;
a controller having a front-end interface for receiving I/O

requests from host systems, a back-end interface inter

Apr. 2, 2015

connected to the plurality of storage devices for selec
tively transferring the I/O requests to the storage
devices;

a primary cache for storing I/O requests to allocated
memory blocks

a plurality of solid state drives (SSDs) in a parity RAID
configuration operatively interconnected said controller,
wherein said plurality of SSDs define a second level
cache and said controller is operative to stripe data
across said SSDs of said second level cache,

said controller being operative upon receiving an I/O write
request to:
search said second level cache for a cache line having

related data entry;
upon identifying a related data entry in an identified

cache line, determining if new data of the I/O write
request overlaps existing data;

upon determining the new data does not overlap existing
data, write said new data to a non-valid portion of said
identified cache line, wherein said non-valid portion
of said identified cache line is pre-filled with known
default values; and

calculate and write updated parity for a RAID stripe of
said second level cache including said identified
cache line, wherein said updated parity is calculated
free of reading said non-valid portion of said cache
line.

14. The system of claim 13, wherein said controller writes
cache lines to said SSDs, wherein each cache line is stored
within a single data segment of said RAID stripe on one of
said plurality of SSDs.

15. The system of claim 14, said controller writes cache
lines having size Substantially equal to a size of a single data
segment of said RAID stripe.

16. The system of claim 13, wherein said controller is
further operative to maintaining data identifying valid and
invalid portions of cache lines stored in said second level
cache.

17. The system of claim 13, wherein said controller is
further operative to, upon initially writing a cache line to a
RAID stripe of said second level cache, fill non-valid portions
of said cache line with said default values.

18. The system of claim 17, wherein said controller is
further operative to store plurality of cachelines to a matching
plurality of data segments of a RAID stripe in said second
level cache, wherein non-valid portions of each cache line are
filled with default values and initially writing said plurality of
cache lines comprises performing a full Stripe write.

19. The system of claim 18, wherein said second level
cache comprises a plurality of RAID sets, each RAID set
including a plurality of SSDs.

20. The system of claim 19, wherein a total data transfer
rate of said plurality of RAID sets is substantially equal to a
data transfer rate of said controller.

21. The storage system of claim 13, wherein the controller
is further operative to

de-allocate the memory blocks within the controller pri
mary cache upon writing said new data to the second
level cache.

22. A storage medium having instructions stored thereon
which, when executed by a processor of a storage controller
operatively connected a plurality of storage devices config
ured as one of more logical units and operatively connected to

US 2015/0095696 A1

a plurality of solid state drives (SSDs) forming a second level
cache in a parity RAID configuration, cause the processor to
perform actions comprising:

storing a I/O write request to a set of allocated Storage
blocks in a primary cache memory of the storage con
troller, wherein the I/O write request addresses a storage
location for data within the storage devices;

identifying a related address in a cache line of said second
level cache, wherein said cache line is stored in a RAID
stripe of said second level cache;

identifying a cache storage location in said cache line for
said I/O write request as non-valid, wherein said non
valid portion of said cache line is filled with known
default values,

calculating an updated parity for said RAID stripe of said
second level cache including said cache line based on
said new data and said known default values, wherein
said updated parity is calculated free of reading said
non-valid portion of said cache line;

Apr. 2, 2015

writing said new data to said non-valid portion of said
cacheline in said RAID stripe of said second level cache
and writing said updated parity to said RAID stripe; and

de-allocating the set of storage blocks in the primary cache
of the controller upon completing the transfer of the new
data of the I/O write request to the second level cache.

23. The storage medium of claim 22, further comprising
instructions for changing an identification of said non-valid
portion of said cache line to valid after writing said new data
to said non-valid portion of said cache line.

24. The storage medium of claim 23, further comprising
instructions for, upon initially writing said cache line to said
RAID stripe, filling non-valid portions of said cache line with
said default values.

25. The storage medium of claim 24, further comprising
instructions for storing plurality of cache lines to a matching
plurality of data segments of said RAID stripe, wherein non
valid portions of each cache line are filled with default values
and initially writing said plurality of cache lines comprises
performing a full stripe write.

k k k k k

