WO 2006/080026 A1 || 000000 0 000 0 O R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2006 (03.08.2006)

(10) International Publication Number

WO 2006/080026 Al

(51) International Patent Classification:
GOGF 19/00 (2006.01)

(21) International Application Number:
PCT/IN2005/000032

(22) International Filing Date: 27 January 2005 (27.01.2005)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): IN-
FOSYS TECHNOLOGIES LIMITED [IN/IN]; #44,
Electronic City, Hosur Road, Bangalore 560 100 (IN).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUMAR, B., V.
[IN/IN]; No. 3, 2nd Main Road, Shankarnagar, Maha-
lakshmi Layout, Bangalore (IN). SUBRAHMANYA, S.,
V. [IN/IN]; 1057, 28th Main, 36th Cross, 4th T’ Block,
Jayanagar, Bangalore (IN).

(74) Agent: NAIR, Manoj, Vasudevan; M/s. Saikrishna &
Associates, C-7, 1st Floor, Sector-40, Noida - 201 303,
Uttar Pradesh (IN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PROTOCOL PROCESSING DEVICE AND METHOD

I’C Desktop S,scm //'

""\

; Wor rkiauons_\m

309

AT b
DA System

(57) Abstract: The SPD according to exemplary embodiments of the invention may interface with different buses and computer
system architectures to enable deployment in a wide variety of devices. Heterogeneous network (300) using SPDs in various com-
puting devices. Desktop computers (302), mobile systems (such as cell phones) (304), mainframes (306), workstations (308), PDA
systems (310) and other devices may be operatively connected to a network (such as the Internet or an Intranet). These devices may
include SPDs (312) to enable web services to be provided among these devices. They may also communicate with some devices that
do not include SPDs (such as the PC Desktop System (302) and Mobile System (304) in Fig. 3). These devices would require the use
of a SOAP software toolkit for the particular platform, because they do not include an SPD. The SPDs could have different designs
in different systems, while they share a common SOAP engine to provide a consistent and efficient SOAP processing capability.

10

15

20

25

WO 2006/080026 PCT/IN2005/000032

PROTOCOL PROCESSING DEVICE AND METHOD

REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. provisional patent application no.
60/532,610, filed December 24, 2003, which is incorporated herein by reference in its—

entirety.

FIELD OF THE INVENTION
[0002] The field of the present invention relates to protocol processing for distributed
computing in a network. More specifically, the field of the present invention relates to a
‘device and method for processing Simple Object Access Protocol (SOAP) and/or other
protocols for distributed computing over the World Wide Web, intranets or other
networks.

BACKGROUND OF THE INVENTION
[0003] Web Services is considered as the emerging technology that enables business-
to-business automation. Web services has been described as a software component that
employ one or more of the following technologies - SOAP, WSDL and UDDI - to
perform distributed computing. Use of any of the basic technologies - SOAP, WSDL
or UDDI - constitutes a Web service. Use of all of them is not required.
[0004] The three protocols introduced in the above description are: (1) SOAP, Simple
Object Access Protocol, (2) WSDL, Web Services Description Language, and (3)
UDDI, Universal Description, Discovery and Integration.
[0005] Extensible Markup Language forms the basis of these three fundamental
technologies. ~XML is the acronym for]éxtensible Markup Language. XML is a
simple, text based data description language. The extensible nature of this markup
language has resulted in its tremendous growth and adoption in the Information
Technology industry. SOAP, WSDL and UDDI use extensions of XML to provide the
Jayers of Web Services. In the following paragraphs, we provide a description of
SOAP, WSDL and UDDI:
[0006] SOAP, Simple Object Access Protocol. SOAP is an acronym for Simple

Object Access Protocol. SOAP is a protocol based on XML for exchanging

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

-information in a decentralized distributed environment among the communicating
applications.

[0007] WSDL, Web Services Description Language. WSDL is an acronym for Web

Services Description Language. WSDL is an XML document that contains the
description of Web Services as Well as fhe means of accessing them. The descriptions
of Web Services are entered in the WSDL document with the help of seven predefined
XML markup tags.

[0008] UDDI, Universal Description, Discovery and Integraﬁon. UDDI is an

acronym for Universal Description, Discovery and Integration. UDDI isﬂ an XML
based specification for establishing business registries that store businesé and services
related information. These business registries help other businesses and individuals to
query and search for required information. Registries thus promote business-to-business
among interested parties.

[0009] SOAP and Its Relevance. SOAP has been designed to be independent of
transport protocol. It can be transported over HTTP, SMTP, FTP, etc. In the present

web services environment, applications communicating using SOAP most often use
HTTP as the transport protocol. This is due to the fact that HTTP is the preferred
transport protocol in the web environment.

[0010] Inthe Web Services scenario it is possible that the communicating
applications could be developed using different programming languages, deployed on
disparate systems, and funning on different operating environments. These applications
interchange information in SOAP format. SOAP, therefore may be used to provide a
comerstone of interoperability. The communicating applications participating in the
Web Services environment therefore require a facility to convert the application
specific information to SOAP format and vice versa.

[0011] In conventional systems, the communicating applications in the Web Services
scenario use “software tools” to convert the information to SOAP format. Apache Axis
from Apache.org, SOAP Toolkit from Microsoft, Web Services Toolkit from IBM, and
JWSDP from Sun are some examples of software tools relating to SOAP. Web
Services applications may interact with these software tools to generate SOAP. The

SOAP information is then transported using a transport protocol such as HTTP. This

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

SOAP message is received by the target system and the software tools at the target

. system may then convert the SOAP to the format required by the target application.

[0012] The use of the SOAP protocol may be processing intensive. In certain
versions of the SOAP protocol, binary and other compressed application specific
formats may be required to be converted into long text strings for transmission in a
platform independent SOAP format, which adds to the processing overhead. This
aside, SOAP may require different software toolkits and implementations on different
platforms. For instance, a SOAP toolkit from one software vendor may convert SOAP
to Java specific formats, while another toolkit may convert SOAP to C++ specific
formats. In largé heterogeneous networks, it is difficult to ensure interoperability and
widespread enablement of web services with different toolkits being used across a wide
variety of platforms and applications. What is desired is a device and method for
implementing SOAP and/or other protocols with improved processing efficiency and in
a manner that allows consistent widespread deployment of the same implementation in

different systems across a large heterogeneous network.

SUMMARY OF THE INVENTION
[0013] Aspects of the present invention relate to a device and method for protocol
processing. In particular, aspects of the present invention provide a hardware device to
accelerate the processing of SOAP and/or other protocols that use an envelope or other
container for messages to be exchanged in é heterogeneous network. Such protocols
may include the use of namespaces which define the tags used in the message, and
schema definitions or an appropriate encoding, which define the grammar. In this
document, we will, for the sake of convenience, refer to the extensible schema
definitions (XSD) as an example of schema definitions in general. SOAP messages of
both document style and remote procedure call (RPC) style communication may be
supported by embodiments of the invention.
[0014] Aspects of the present invention may provide a SOAP processing device |
(SPD) or other protocol processing device implemented in one or more integrated
circuits. The device may provide circuitry for, among other things, an I/O block,
parser/validator, application code handler and protocol generator. Repetitive operations
are implemented in circuitry such as comparison of tags and creation of repetitive

structures (such as envelope elements or other container structures, header elements,

3

10

15

20

30

WO 2006/080026 PCT/IN2005/000032

and body elements). Circuitry may also be used to accelerate conversion of SOAP or
other protocols into common application specific data formats such as Java, C++, and
other application specific object access.

[0015] In an exemplary embodiment, the design of the device may use a set of

' selectable “IP Cores” and the domain-neutral nature of the SPD will, iﬁﬁfact,>be affected

by these selectable sets of hardware IP cores. These IP cores may be implemented as a
built-in PCI interface, interface to a Wireless Access Protocol (WAP) or any such logic
pertaining to any other communications Digital Signal Processor (DSP). The same
general device architecture may be used with different IP cores to support different
interfaces. The device may be targeted at a particular system architecture and include a
specific interface for that system such as the PCI or PCI Express bus interface.
Alternatively, in some embodiments, multiple interfaces may be supported. The
interfaces may be selectively enabled or disabled for use in different systems. In some
embodiments, multiple interfaces (such as PCI and PCI Express) may be enabled to
allow the device to operate in a bridge configuration.

[0016] Aspects of the present invention may provide for an integrated circuit device
for converting a message from a SOAP format to an application specific format,
including: circuitry for receiving the message in the SOAP format and for providing the
message in the application specific format; circuitry for determining whether the
message is in the SOAP format or the application specific format; and circuitry for
converting the message from the SOAP format into the application specific format.
[0017] Aspects of the present invention may also provide for circuitry and/or software
for contacting a UDDI server for discovering the published web service endpoints.
Aspects of the present invention may also provide for circuitry and/or software to
decode the WSDL document published in the UDDI server in a comprehensive manner
and also incorporate circuitry and/or software for connecting to the same.

[0018] Aspects of the present invention may also provide for an integrated circuit
device for converting a message from an application specific format to a SOAP format,
including: circuitry for receiving the message in the application specific format and for
providing the message in the SOAP format; circuitry for determining whether the
message is in the SOAP format or the application specific format; circuitry for

converting elements in the message from the application specific format into the SOAP

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

format; circuitry for creating an envelope element, header element, body element,
header entry and body entry from the elements converted from the message in the
application specific format; and circuitry for sequencing and constructing the message
in the SOAP format using the envelope element, the header element, the body element,
the header entry and tﬁe.gb.dy entry. ~

[0019] Aspects of the present invention may also provide software for processing
SOAP and/or other protocols across multiple applications using different application
specific formats. In an exemplary embodiment, software may be used to convert a
message from a SOAP format to one of several application specific formats, including:
a module for receiving the message in the SOAP format and for providing the message
in the application specific format; a module for determining whether the message is in
the SOAP format or the application specific format; and a module for converting the
message from the SOAP format into the application specific format. In another
exemplary embodiment, software may be used to convert a message from one of
several application specific formats into a SOAP format, including: a module for
receiving the message in the application specific format and for providing the message
in the SOAP format; a module for determining whether the message is i the SOAP
format or the application specific format; a module for converting elements in the
message from the application specific format into the SOAP format; a module for
creating an envelope element, header element, body element, header entry and body
entry from the elements converted from the message in the application specific format;
and a module for sequencing and constructing the message in the SOAP format using
the envelope element, the header element, the body element, the header entry and the
body entry. In an exemplary embodiment, a single software program may be used to
support SOAP and/or similar protocol processing for multiple disparate applications
and formats on a single system. The software may reside in memory as a dynamically
linkable module, driver or other software program or may reside on a separate card,
blade or Aperipheral device.

[0020] Embodiments of the present invention may use the above aspects individually
or in combination. For instance, a protocol processing device may use a combination of
circuitry and software (which may also include firmware) to convert messages to and/or

from SOAP and/or other formats. Multiple applications using different application

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

specific formats may be supported by a single SOAP processor, whether implemented

as hardware, software or a combination of both hardware and software.

INCORPORATION BY REFERENCE

- [0021] All publications and patent applications mentioned in this specification are

herein incorporated by reference to the same extent as if each individual publication or
patent application was specifically and individually indicated to be incorporated by
reference, including without limitation the following: specifications and descriptions of
XML at http://www.w3c.org/XML/, specifications and descriptions of SOAP at
http://www.w3c.org/TR/SOAP, specifications and descriptions of WSDL at
http://www.w3c.org/TR/wsdl.html, and specifications and descriptions of UDDI at
http://www.uddi.org.

BRIEF DESCRIPTION OF THE DRAWINGS
[0022] The novel features of the invention are set forth with particularity in the
appended claims. A better understanding of the features and advantages of the present
invention will be obtained by reference to the following detailed description that sets
forth illustrative embodiments, in which the principles of the invention are utilized, and
the accompanying drawings of which:
[0023] Figure 1 illustrates an exemplary SOAP request that may be processed using
embodiments of the present invention.
[0024] Figure 2 illustrates an exemplary SOAP response that may be processed using
embodiments of the present invention.
[0025] Figure 3 is a diagram of a heterogeneous network using SOAP processing
devices in accordance with an embodiment of the present invention.
[0026] Figure 4 illustrates a SOAP processing device according to an embodiment of
the present invention.
[0027] Figure 5 is a block diagram illustrating communication between two disparate
systems powered using SOAP processing devices according to embodiments of the
present invention.
[0028] Figure 6 is a block diagram illustrating the communication layers used to
exchange information for web services including a SOAP processing device according

to an embodiment of the present invention.

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

[0029] Figure 7 is a block diagram showing the top-level architecture of a SOAP
processing device according to an embodiment of the present invention.

[0030] Figure 8 is a block diagram showing the architecture of an Application
Interface Unit according to an exemplary embodiment used on a server.

[0031] Figure 9 is a block diagfém showing the architecture of an Application
Interface Unit according to any exemplary embodiments used on a client.

[0032] Figure 10 is a block diagram showing additional deﬁails of an architecture of a
SOAP processing device according to an embodiment of the present invention.
[0033] Figure 11 is the architectural diagram of a SOAP processing device according
to an exemplary embodiment.

[0034] Figure 12A is a block diagram of a SOAP processing device which includes a
Web Service Definition processor and a Web Service Locator according to an
exemplary embodiment of the present invention.

[0035] Figure 12B is a block diagram showing sub units of a Web Service Definition
processor according to an exemplary embodiment of the present invention.

[0036] Figure 13 is a flow chart showing the method of converting a SOAP message
to an application specific format and effectuating the operation in a SOAP processing
device according to an embodiment of the present invention.

[0037] Figure 14 is a flow chart showing the method of converting an application
specific format to a SOAP message in a SOAP processing device according to an
embodiment of the present invention.

[0038] Figure 15 is a block diagram showing communications between two web
services applications using a SOAP processing device according to an embodiment of
the present invention.

[0039] Figure 16 is a block diagram showing flow of the information through the
architecture of a SOAP processing device and the processing flow used to process a
C++ request from the web services application shown in Figure 15 according to an
embodiment of the present invention.

[0040] Figure 17 is a block diagram showing the flow of the information through
architecture of a SOAP processing device and the processing flow used to process a
SOAP message from the web services application shown in Figure 15 according to an

embodiment of the present invention.

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

[0041] Figure 18 is a flow chart showing a method of protocol processing according to
an exemplary embodiment of the present invention.

[0042] Figure 19 is a flow chart showing a method of schema parsing according to an
exemplary embodiment of the present invention.

[0043] Figure 20 is a ﬂow chart showing a method of XML parsing and schema
validation according to any exemplary embodiment of the present invention.

[0044] Figure 21 is a flow chart showing a method of generating a SOAP document

according to an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
[0045] An exemplary embodiment of the present invention provides an application
specific integrated circuit (ASIC), System-on-Chip (SOC), microprocessor, digital
signal processor (DSP) or other device for converting messages in SOAP format into an
application specific format as well as converting a message in an application specific
format into SOAP format. Below, we refer to an embodiment using an integrated

circuit (IC) which is intended to include embodiments using ASICs, SOCs,

A microprocessérs, DSPs and/or other devices. The IC may be connected to a computer

system either internally or externally. For instance, in one embodiment, this SOAP
processing device (SPD) may be connected to the peripheral system bus of an Intel
architecture personal computer. In this embodiment, the SPD is operatively connected
to other system components over the bus, including a network interface card (NIC) for
communicating with a network (such as the Internet or an Intranet), the host processor,
host processor chip set, and host memory. Application software and the operating
system (which may be Microsoft Windows, Linux or other operating system) are
executed on the host processor, but may send and receive messages by making requests
to the SPD. The SPD can receive a message in application specific format (such as
C-++, Java, Windows or other data formats) from application software or the operating
system and generate a message in SOAP format. The SPD can also receive a message
in SOAP format from a remote computer system over the network (e.g., through the
NIC) and convert the message into an application specific format to be used by
application software or the operating system on the local computer system. Driver

software may be installed (whether as part of the operating system or separately) to

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

facilitate the routing of messages to and from the SPD. In alternate embodiments, the
computer system could be an IBM AIX workstation system, a Sun Solaris system, a
Nokia mobile system, a Palm PDA, or any such system capable of communicating in a
Web Services environment.

[0046] Figure 1 shows a SOAP requeéf 100 that rflay be processed by the SPD
according to an embodiment of the present invention. The SOAP request 100 includes
an envelope element 102 that encapsulates the meséage 104 and provides information
about how to process the message 104. The SOAP request 100 may have an optional
header. In Figure 1, a schema 106 (“http://.../envelope/”) and appropriate encoding style
108 (“http://.../encoding/”) are specified. The request 100 also includes a body element
110 and body entry 112 which includes the body of the message. In this example, the
message 104 includes a request to retrieve the temperature at a given longitude and
latitude. This message is an example of a remote procedure call style SOAP Message to
provide an API In this example, the procedure “GetTemperature” is being called, and
the parameters “longitude” and “latitude” are pfovided. The envelope element 102,
body element 110, procedure and parameters are all delineated by start tags and end
tags in brackets (<>). Each end tag includes a forward slash “/” after the first bracket.
In order to be properly formed, the tags must comply with the applicable namespace
and its grammar must conform to the schema indicated for the message.

[0047] Figure 2 shows a SOAP response 200 that may be processed by an SPD
according to an embodiment of the present invention. As with Figure 1, the message
204 includes an envelope element 202 and a body element 210. The body entry 212
indicates the response “GetTemperatureResponse” and the return parameter
“centigrade” which has a value indicating the requested temperature.

[0048] The SPD according to embodiments of the present invention includes circuitry
to accelerate processing of repetitive operations used to parse, validate and convert
messages between SOAP and application specific formats. The SPD includes circuitry,
local buffers, registers and pointers to marshall and unmarshall XML in an efficient
manner. In addition, the SPD may selectively send operations to driver software for
execution. If a particular version of SOAP (or an application specific format) is not

supported, the SPD may send the message to the driver software before generating an

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

error message or fault. The driver can easily be updated to support the most recent
specifications for any operations that are not supported in the SPD IC.

[0049] While the exemplary embodiments of the present invention process the SOAP
protocol, other protocols may be supported in alternative embodiments of the present
invention. In particulaf; other protocols for encap;ﬁiéting messages in a markup
language may be used. The processing device would include circuitry for efficiently
parsing the container (e.g., envelope) for the message, the tags and grammar, and/or the
conversion of application specific formats into the markup language and conversely.
[0050] The SPD according to exemplary embodiments of the invention may interface
with different buses and computer system architectures to enable deployment in a wide
variety of devices. Figure 3 illustrates a heterogeneous network 300 using SPDs in
various computing devices. As shown in Figure 3, desktop computers 302, mobile
sysiems (such as cell phones) 304, mainframes 306, workstations 308, PDA systems
310 and other devices may be operatively connected to a network (such as the Internet
or an Intranet). These devices may include SPDs 312 to enable web services to be
provided among these devices. They may also communicate with some devices that do
not include SPDs (such as the PC Desktop System 302 and Mobile System 304 in
Figure 3). These devices would require the use of a SOAP software toolkit for the
particular platform, because they do not include an SPD. The SPDs could have
different designs in different systems, while they share a common SOAP engine to
provide a consistent and efficient SOAP processing capability.

[0051] Figure 4 is a conceptual representation showing functional interfaces of the
SPD 402, which do not necessarily have to be mapped to its input/output pins. These
functional interfaces coneépond to the nature of data that the SPD works with, namely:
SOAP format input 404, SOAP format output 406, native application input 408 and
native application output 410.

[0052] Figure 5 shows a block diagram of two systems, System A 502 and System B
504, that communicate with one another using SPDs. Each system may support
multiple applications. In Figure 5, System A 502 is supporting applications App 1 and
App 2 while System B 504 is hosting App Q and App R. These applications could be
running locally or communicating across the internet or an intranet. These applications

may or may not be using SOAP for communication purposes. However, the

10

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

application marked as “Web Services App X 503 on System A 502 and the application
marked “Web Services App Y” 505 on System B 504 are applications running in the
Web Services environment. The communication between these two applications is bi
directional and is shown in Figure 5 with the help of labeled arrows.

[0053] The way the SPDs n thls system are desi gned";c:— W;rk is presented in two
parts: (1) converting from application specific format to SOAP; and (2) converting
from SOAP to an application specific format.

[0054] The following describes the conversion from application specific format to
SOAP. System A 502 is a computer system that is intending to communicate with
another System B 504. Both these systems are equipped with SPDs. The Web Services
enabled application “Web Services App X 503 on System A 502 initiates
communication with the “Web Services App Y” 505 on System B 504 for carrying out
a particular task. The operating environment 506 forwards the application’s request to
the SPD 508, as this is a Web Services invocation. The SPD 508, at this point of time,
could optionally make a call to any other application running on System A 502, before
converting the information to the SOAP format. This SOAP message would then be
forwarded to the other System B 504 via a transport protocol such as HTTP.

[0055] The communication from “Web Services App X” 503 to “Web Services App
Y™ 505 can be traced through a set of arrows labeled from 1 to 12. The Web Services
invocation by “Web Services App X” 503 is shown by arrows 1 and 2. In this case, the
mvocation is forwarded to SPD 5 08 on the hardware layer 510. The SPD 508
optionally could invoke one or more application in the operating environment layer 506
(shown by arrows 3 and 4). Finally, the SPD 508 generates SOAP message and then
forwards it to the communication layer 512, shown by arrows 5 and 6. This SOAP
request is then forwarded by the communication layer 512 using a transport protocol
such as HTTP. This is shown by arrow 7.

[0056] The following describes the conversion from SOAP to an application specific
format. The “Web Services App Y™ 505 in System B 504 receives the communication
from “Web Services App X” 503 of System A 502. This communication is in SOAP
format and therefore the request is forwarded to the SPD 514 on System B 504. The
SPD 514 may optionally communicate with any other application on System B 504

before converting SOAP message to the application specific format in System B 504.

11

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

Once the message is converted to the format required by “Web Services App Y 505,
the information is delivered.
[0057] The response from “Web Services App Y 505 can be traced through a set of
arrows labeled from 1° to 12°. System B 504 receives the SOAP request through the
communication layer 516. This is shoWn with the help of mfdws 8,9 énd 10. This
request reaches the SPD 514 on the System B side and the SPD 514 converts the SOAP
message to the format required by the application “Web Services App Y 505 and the
request is forwarded. This is shown by arrows 11 and 12.
[0058] In Figure 5, arrows 5 to 10 represent SOAP invocatioﬁ and it is a SOAP
request to System B 504 in this particular case. Similarly, arrows 5’ to 10 depict a
SOAP response to System A 502. The arrows marked 3, 4 and 3°, 4’ are “optional
calls” that the SPD 514 might invoke to satisfy certain criteria of ensuring SOAP
Processing. The communications represented by arrows 1,2 & 11°, 12’ on System A
502 side and 1°,2’ and 11, 12 on the System B 504 side are the application specific
communication between Web Services application and the SPD.
[0059] Figure 6 illustrates the communications layers used to provide web services

‘ according to exemplary embodiments of the present invention: an application tier 602,
service enabling tier 604, service transport tier 606, communications/transmission tier
608, and hardware tier 610. The service enabling tier 604 is provided in hardware 610
by the SPD 612. Web services applications 614 (in the application tier) make requests
to, and receive responses from, the SPD 612. When a request to the SPD 612 is made,
the respective message is converted into a SOAP format by the SPD before it is
provided to the transport layer 606. When a SOAP message is received from the
transport layer 606, it is provided to the SPD 612. The SPD 612 generates the
application specific format before the message is sent to the web services application
614. Driver software in the operating system may direct incoming SOAP messages to
the SPD 612.
[0060] Figure 7 is a block diagram of the architecture of an exemplary SPD
according to an embodiment of the present invention. The SPD in Figure 7 includes
circuitry implementing the following main functional blocks: Application Interface
(Input/Output Controller) 702, SOAP Parser & Validator 704, SOAP Reducer 706,
Application Code Handler 708, SOAP Constructor 710, and SOAP Generator 712. In

12

10

15

20

25

30

WO 2006/080026

PCT/IN2005/000032

addition, the SPD may optionally include embed;ied memory or have a separate
memory associated with the device (such as flash memory, RAM or ROM). The SPD
may also access the host memory over the system bus. The functional blocks may be
operatively connected to one another over an internal system bus within the IC. This
SPD may also include additional functional blocks that may be necﬂéuss.ar;in éiding the
processing of SOAP and/or native input/output. These additional functional blocks
may also be suitably connected with the main functional blocks to ensure the
functionality of SPD.

[0061] The SPD may also include certain pre-confi gured hardware libraries or “IP
Cores” related to any communication specific module in its different embodiments.
This may be effected by providing Communications Subsystem Generic Core shown in
Figures 8 (802) and 9 (902) and also providing specific interface logic that can be
modified/selected based on the target device. The Communications Subsystem Generic
Core (802, 902) implements interface functionality that is common across system
architectures, while the specific interface logic implements the specific interface used
in the target device, such as PCI, PCI Express, WAP or other interface. The specific
interface logic may be selected when the SPD is designed, so that only a single
interface is included in the SPD when it is manufactured. Alternatively, multiple cores
could be included and selectively enabled or disabled to operate with different
interfaces. In some embodiments, multiple interfaces could be enabled to allow the
SPD to operate as a bridge between two different interfaces.

[0062] Figure 8 shows an example of an embodiment of an Application Interface
Unit used in a server with a PCI bus interface 804. Here, the SPD is appropriately
“plugged” into a computer system running a dedicated application server. In such
embodiment, the SPD may interface through an add-on PCI interface card. Figure 9
shows an example of another such embodiment where the SPD is embedded in a PDA
caf)able of communicating on the internet. This is an example of a client-side
embodiment of an SPD. Interface circuitry that communicates on WAP enabled
circuitry on the PDA’s hardware is included in the SPD and operates on top of the
Communications Subsystem Generic Core 902 as shown in F igure 9.

[0063] Referring to Figure 7, the Application Interface (Input/Output Controller) 702

provides an interface to the system bus for communication with the application on the

13

10

15

25

30

WO 2006/080026 PCT/IN2005/000032

host system as well as for communication with the Internet. The interface receives
messages over the system bus as well as control signals'. In particular, the interface may
receive operational codes or control bits to indicate the format of the message (SOAP
or a specified application specific format) and what action to take (parse/validate only,
generate SOAP message, generate application specific message or other action). The
operational codes may also include other codes (such as codes for initialization of the
SPD and downloading updated rules or valid grammars for the document for new
versions of the SOAP specification or for new application specific formats).

[0064] The SOAP Parser & Validator 704 parses a SOAP message and determines
whether it is properly formed. The SOAP Parser & Validator 704 checks both the
namespaces and its grammar schema for the message. Specific circuitry is provided to
perform repetitive functions that are not likely to change from one message to another.
For instance, the SPD may include a buffer or local memory for storing the message (or
alternatively, the message may be accessed in the host memory). The SOAP Parser &
Validator 704 functional block includes circuitry, local buffers, registers and pointe;s to
marshall and unmarshall XML in an efficient manner. The SPD may not handle
exception cases directly. However, the driver software may be designed to handle
exceptions and/or direct them to alternate application paths. The SOAP Parser &
Validator 704 will, at a given instant of time, include circuitry to support the most
current version of W3C approved SOAP specification. It will also include circuitry for
checking the version of SOAP used in the input. The SPD may also include logic to
upgrade the current version support for SOAP, wherein the logic for previously
supported stable versions is automatically moved to its memory banks. The memory
banks may be supported internally within the SPD or externally in the host device.
Whenever an input is received which does not match with any of the SOAP versions
supported, an appropriate exception is raised to the driver software, as mentioned
above.

[0065] In an exemplary embodiment, flash memory (or other memory) may be
provided in the SPD or externally (for example, through an external flash memory
card). The memory may contain information regarding the SOAP specification and/or
a new version of SOAP to update the SPD. The memory may contain, for example, all

configurable elements required for SOAP processing, information for WSDL

14

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

compliance for versions of the W3C standard and W3C standard compatible versions of
SOAP and WSDL. Information may also be provided for multiple versions of SOAP.
In each case, the SPD may include circuitry to download the information from the
memory (for example, a flash card reader interface) for parsing and validation in
accordance with the respective protocol. In this way, multiple versions of SOAP and
other protocols may be supported and the SPD may be updated by downloading new
versions from memory.

[0066] The SOAP Reducer 706 breaks a SOAP message up into its constituent
elements for %rocessing. Once the SOAP message has been parsed and validated, the
SOAP Reducer 706 may also discard elemenfs that are no longer needed (such as the
envelope element). Only the elements required to generate an application specific
format need to be identified and retained.

[0067] Application Code Handler 708 sub functional block comes into play after-or-
before the data format conversion has been appropriately handled by the sub functional
blocks SOAP-Reducer 706/SOAP-Generator 712/SOAP-Constructor 710/SOAP Parser
& Validator 704. The functionality of this unit is to enable “access to the object”
referred to in the SOAP message, from within the SPD. For example, after an incoming
SOAP request is received, parsed and validated, the Application Code Handler 708 sub-
functional block takes appropriate steps to ensure that the appropriate target object
referred to (in the SOAP message) is accessed correctly and the required operation
(again mentioned in the SOAP message) is properly executed on it. It uses the SOAP-
related sub units to properly package and send the response to the caller.

[0068] When the input to the SPD is received from the native application directly, the
Application Code Handler 708 ensures that the message is properly dispatched to the
appropriate target service and the response is dispatched properly to the caller
application.

[0069] The SOAP Constructor 710 includes circuitry to construct SOAP elements
from the converted elements received from the Application Code Handler 708. The
SOAP Generator 712 uses these elements to generate a properly sequenced and
formatted SOAP message. The SOAP message includes an envelope containing the
message in SOAP format. The SOAP message is then provided through the Application
Interface (Input/Output Controller) 702.

15

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

[0070] Inthe above exemplafy architecture, a message being converted from SOAP
to an application specific format is received through the Application Interface
(Input/Output Controller) 702, parsed and validated by the SOAP Parser & Validator
704, reduced by the SOAP Reducer 706, converted to application specific format by the
Application Code Handler 708 and returned in appfiEéf{éh éiaeciﬁc format through the
Application Interface (Input/OQutput Controller) 702. A message being converted from
an application specific format to SOAP format is received through the Application
Interface (Input/Output Controller) 702, converted into SOAP elements by the
Application Code Handler 708, constructed into SOAP elements by the SOAP
Constructor 710, generated in final SOAP format by the SOAP Generator 712 and
returned in SOAP format by the Application Interface (Input/Output Controller) 702.
[0071] Figure 10 is a block diagram showing additional details of the architecture
presented in Figure 7 according to an embodiment of the present invention. It provides
the details of the sub-units of the Application Code Handier 708. However, it shows
the SOAP-Parser/Validator 704, SOAP-Reducer 706, SOAP-Generator 712 and SOAP-
Constructor 710 in the form of a simpler “Marshaﬁer/Unmarshaller Unit” 1002. The

 mapping between the functional blocks in Figure 7 and Figure 10 may be summarized

as follows:
a. Application Code Handler 708 in Figure 7 corresponds to SOAP Engine
1004 in Figure 10.
b. The blocks SOAP Parser/Validator 704, SOAP Reducer 706, SOAP
Generator 712 and SOAP Constructor 710 in Figure 7 correspond to the
Marshaller/Unmarshaller Unit 1002 of Figure 10.
The SPD in Figure 10 has the following major circuit blocks: Interface Unit 1006,
Marshalling/Unmarshalling Unit 1002 and SOAP Engine 1004. The communication
between these blocks is represented by arrows in Figure 10. This communication may
be provided by an internal bus that operatively connects the functional blocks of the
device. The SPD of Figure 10 operates in two primary modes, namely: SOAP Input
Mode and Application Specific Input Mode. The roles and responsibilities of these

functional blocks are presented in the following sub sections:

16

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

L]

[0072] Interface Unit 1006. This unit is responsible for communicating with the

operating environment. This unit includes circuitry to perform the following main
tasks:

1. Receiving the request (either SOAP or application specific) for processing;

2. Dispatching/flagging thé availability of processed fésult; |

3. Making other calls that might be necessary for processing the current input; and

4. To switch/choose a transport protocol over which SOAP will be implemented.
[0073] This unit may have its own communication sub system 1008 for conversing
with the Applications and Communication subsystems of the Operating Environment.

[0074] Marshaller/Unmarshaller 1002. “Marshalling” is the terminology used for the

process of converting the information from one format to the other format. Likewise,
“Unmarshalling” is the terminology used for the reverse process. This unit includes
circuitry to construct SOAP/XML documents from the application specific format and
vice versa. This unit is designed to accommodate the most recent SOAP specification.
It provides appropriate compatibility for various stable earlier versions of SOAP and

also a very flexible way of upgrading to a new version. This unit works in close unison

* with the SOAP engine 1004.

[0075] Over and above the XML format conversion functionality, the
Marshaller/UnMarshaller Unit 1002 may, optionally, provide circuitry and/or software
to decode the WSDL document for information on where and how a web service
endpoint has to be reached and transacted. This circuitry and/or software may be built
to be self-reliant to support WSDL, as the WSDL document is itself an XML
document. This circuitry and/or software provides additional functionality to handle the
standardized features of WSDL, and may be implemented in the exemplary
embodiment without affecting the rest of the architecture.

[0076] SOAP Engine 1004. This unit is the core of the SPD, and the responsibility of

this block is to effectuate SOAP handing process. This unit includes circuitry to carry
out the following tasks:
1. When the input to the SPD is a SOAP message, it builds up an efficient model
of the SOAP message and translates it to an application specific “call’
syntax/sequence. This call sequence may be ‘executed’ in the SPD itself

completely; or partially in the SPD and partially on the host system. ‘Execution’

17

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

s

of the call sequence results in the actual object access as required by the SOAP-
message. Upon forwarding this application specific call, the SOAP engine
waits for the response from the application.
2. Receives the response from the application, packages it into an appropriate
SOAP response and disﬁéiéhes it i:l;}ough the Interface Unit. o
3. The SOAP Engine’s role in the case of application being the originator of a
native request would be to orchestrate the following:
a. package the request in appropriate SOAP request format;
b. handover the message to the Interface Unit to take the message ‘out of
the wire’;
c. wait for SOAP-RESPONSE from the target of the message; and
d. Unpack the received message into result-of-operation to the application.
[0077] In an exemplary embodiment, the architecture of the SOAP Eﬁgine 1004 may,
optionally, provide circuitry and/or software to “pull” the WSDL document by
connecting to the appropriate UDDI server. This option may be used when the web
service description is not available along with the SPD’s input. This may be effected
by instructing the Interface Unit to appropriately fetch the document (typically HTTP +
SOAP itself) over the network, decoding the WSDL document with the
Marshaller/Unmarshaller Unit 1002 and then proceeding on to the SOAP Processing
phase.
[0078] The SOAP Engine 1004 carries out the above tasks using other sub-functional
blocks. The three primary sub-functional blocks are: “Call Sequencer” 1010,
“Response Packager and Dispatcher” 1012 and “Request Packager and Dispatcher”
1014. These three sub-functional blocks are described below.

[0079] Call Sequencer 1010. The “Call Sequencer” sub-system includes circuitry to

build the call to the application on the local system as well as to build the SOAP call
sequence for the remote system.
[0080] Figure 11 depicts a top-level architecture diagram of the SOAP Engine Design
1100 showing aspects of the Call Sequencer 1102. The Call Sequencer unit of the
SOAP Engine may be further broken down into the following functional units:

1. Method/Param Extractor 1104

2. Application Specific Method-Call Constructor 1106

18

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

3. Method Executor and Response Collector 1108
[0081] Method/Param Extractor 1104, This unit ensures tHat the appropriate SOAP

Action (referred to as ‘method’ here) is extracted from the message with all the
required parameters for its successful completion. It works in unison with the

Marshaller/Unmarshaller Unit 1110. - —
[0082] Application Specific Method-Call Constructor 1106. Depending upon the

target device and/or the operating environment, the SPD selects the correct syntax and
semantics of the SOAP Action that will be executed. This unit may include a Syntax
Database 1112, from which the appropriate syntax and semantics may be selected. The
Syntax Database 1112 may be implemented as a lookup table in an exemplary
embodiment. The newly constructed method-call is verified using a built-in Semantics
Verifier for the chosen target device/environment in the exemplary embodiment, as
shown in Figure 11.

[0083] Method Executor and Response Collector 1108. This unit is responsible for

ensuring that the SOAP Action is correctly invoked and executed in the target
device/environment. It also ensures that results are captured at the end of the SOAP
processing on the target side. The SPD may also include its own internal Virtual
Machine 1114, as shown in Figure 11.

[0084] Syntax Database and Semantics Verifier 1112. This unit is responsible for the

Syntax/Semantics verification. The implementation of this unit may be a lookup table
for a given target device/environment of the SPD in an exemplary embodiment. It may
include the instruction set, the calling semantics and any execution-specific arguments
or parameters required.

[0085] Virtual Machine Interface 1114. In an exemplary embodiment, the SPD may

optionally include a Virtual Machine Interface. This unit initiates execution of a call

sequence generated by the SPD into the actual method call to be executed on the target
device. This is an optional unit and might serve as an ‘extensible’ design component to
interface the SOAP Engine to different type of target devices and environments, where

the actual SOAP Action would be executed.

[0086] Request Packager and Dispatcher 1012. This sub-system includes circuitry to
build appropriate requests to the target application. When the target application is the

local system, this sub-system builds a native call to the local application and dispatches

19

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

it. When the target application is a remote system, it takes care of building a SOAP-
request, sends it across to the interface unit, gets the SOAP-response and dispatches the
result to the native caller application.

[0087] Response Packager & Dispatcher 1014. This sub-system includes circuitry to

build an appropriate response to the target aﬁﬁliééﬁoﬁj “When the target applic;cltion is
the remote application, this sub-system constructs the SOAP message and dispatches it
through Marshaller/Unmarshaller Unit 1002 and the Interface Unit 1006. When the
target application is local, the response is directly sent to the waiting application
through the Interface Unit 1006.
[0088] In an exemplary embodiment, the SPD might, optionally, contain additional
functional sub units such as “Web Service Definition” Processor 1202 and “Web
Service Locator” Handler 1204. These functional blocks, if present, interact with the
Marshaller/Unmarshaller Unit 1206 and the SOAP Engine 1208. The main
communicaﬁoﬁ links for these functional sub units with the Marshaller/Unmarshaller
Unit and the SOAP Engine Unit are as shown in Figure 12A.
[0089] The “Web Service Definition” processor 1202 and the “Web Service Locator”
handler 1204 functional sub units include all the necessary logic and circuitry for
carrying out the verification/validation of the mark-up documents. Figure 12B shows
some details of the functional sub unit “Web Service Definition” processor 1202, for
example.
[0090] The “Web Service Definition” processor 1202 works closely with the
Marshaller/Unmarshaller Unit 1206 and the SOAP Engine 1208. The requirement of
the “Web Service Definition” processor 1202 arises when the WSDL document is
available for processing. The source of the WSDL document may be the host system or
a retrieval by the “Web Service Locator” handler 1204.
[0091] The “Web Service Definition” processor 1202 functional sub block has, among
the other blocks, three units, namely:

a. Web Service Definition Validator 1210,

b. SOAP Document Verifier 1212, and

c. End point extractor 1214.
[0092] Web Service Definition Validator 1210: This functional sub unit contains the

logic and circuitry to check and verify the retrieved WSDL document for conformance

20

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

with the appropriate WSDL specification. This could be implemented by using a look
up table, for example. This can also be typically accomplished by running the received
document against the standard schema for WSDL documents. The functionality of this
unit also includes the verification of the method name (of the web service), parameters
and the types of the péraméters used in that particularuw.;\}éb’service:. -
[0093] The “Web Service Definition” processor 1202 works in close unison with the
Marshaller/Unmarshaller Unit 1206, as the functionality typically required here is that
of the mark up parsing and validation.
[0094] The WSDL document includes URL of the web service. This is where an end
poiﬁt is realized, instantiated and available for use. The Web Service Definition
processor 1202 returns this “concrete” end point, extracting from the WSDL document
with the help of Marshaller/Unmarshaller Unit 1206.
[0095] The Web Service Locator Handler 1204, if present, is responsible for supporting
the service locating and discovering activities. The main functionalities of this unit are:
Discovering/Re Discovering Service.

a. Discovering/Re Discovering end point.
[0096] When the Web Service Locator Handler 1204 is available, the SPD would
provide options to configure the location of a Registry (based on UDDI specification)
which can provide the location of the required WSDL document for a given SOAP
request. This could typically be a configuration value that is downloaded to the SPD
device at its boot time
[0097] Figure 13 is a flow chart showing the steps for converting a SOAP request to
an application specific format in the SPD of Figure 10. Figure 14 is a flow chart
showing the steps for converting an application specific request to a SOAP format in
the SPD of Figure 10.
[0098] The following is the description of the flowchart shown in Figure 13.

1. The Interface Unit 1006 receives the request 1316. This unit evaluates the input
to find out whether it is a SOAP input or not. Ifit is a SOAP input, then this
input is forwarded to the Marshaller/Unmarshaller Unit 1002 as shown at step
1306.

2. The Marshaller/Unmarshaller Unit 1002 reduces the SOAP message to an

optimized internal model. External references are resolved as shown at steps

21

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

1308 and 1310. A call sequence is built if necessary by the Call Sequencer in
close unison with the Marshaller/Unmarshaller 1002 as shown at steps 1312 and
1314.

3. Once this SOAP Call Sequence is ready, the call is made to the application as
shown at step 1316. After the call is made, the SOAP éhginé waits for the
response from the application as shown at step 1317.

4. The application, in receipt of the call, accepts the data and works on it and
produces the native output. The SOAP Engine receives this output from the
application, and it is packaged as a SOAP message as shown at steps 1318 and
1320 and this is forwarded to the Marshaller/Unmarshaller Unit, which builds
up a final SOAP response as shown at step 1312.

5. The Marshaller/Unmarshaller Unit then hands over the message to the Interface
Unit, which will now forward to the target application as shown at step 1314.

[0099] The following is the description of the flowchart shown in Figure 14.

1. When the application places a request 1402 for a remote service in an
application specific format, the Interface Unit 1006 passes it on to the SOAP
Engine 1004 as shown at step 1404. The SOAP Engine 1004 uses the
Marshaller/Unmarshaller’s 1002 capabilities to build a SOAP REQUEST as
shown at step 1406 and posts it back to the Interface Unit 1006, but this time
indicating that the request has to be dispatched to the remote service as shown at
step 1408.

2. SOAP Engine waits for the SOAP-RESPONSE as shown at 1410 and once it is
available, converts it to application specific result as shown at 1412 and passes
it on to the waiting application as shown at 1414.

[00100] Figures 15, 16 and 17 provide a detailed example of the message processing
that is carried out in the SPD of Figure 10. Figure 15 is a block diagram showing
communications between two web services applications. In this example, “Stock
Enquiry” 1502 and “Stock Quote” 1504 applications communicate over the internet
using SOAP. As shown in Figure 15, the “Stock Enquiry” application 1502 on the left
hand side is, in this example, a C++ application. This is a very simple application,
which is designed to send a text corresponding to a Stock Symbol to another

application called “Stock Quote” 1504. This application has a function called

22

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

getStockQuote() which sends the Stock symbol as text. This function waits for the
response from the “Stock Quote” application 1504. Upon successful execution of the
“Stock Quote”, the “Stock Enquiry” application 1502 receives a decimal number,
which corresponds to the current Stock Price of the Stock Symbol The “Stock Quote”
apphcatlon 1504 is a Java apphcat10n The “Stock Quote” apphcatlon 1504 receives
text input which represents a Stock Symbol and sends the most current price of that
Symbol as a decimal number. These applications are illustrated in Figure 15 in the
context of the communications layers used for web services (as described in connection
with Figure 6).

[00101] The communication between the two applications is shown with the help of
two sets of arrows. The first arrow set is associated with the “Stock Enquiry”
application. Arrows distinguished by 1 and 1” is a request by the “Stock. Enquiry”
application to the “Stock Quote” application. Similarly, Arrows distinguished by 2 and
2’ is the response from the “Stock Quote” application.

[00102] Below is an explanation of arrows 1 and 2 on the “Stock Enquiry” application

1502 side to explain the how the message changes in each step, within each block of

the SPD.
[00103] Arrow 1 in Figure 15 corresponds to:

e C++to SOAP message conversion
[00104] Arrow 2 in Figure 15 corresponds to:

e SOAP to C-++ message conversion
[00105] The details of C++ to SOAP and SOAP to C++ conversions at the
“StockEnquiry” application 1502 side are described in detail below. It will be
understood that the details of Arrow 1° and 2’ are similar, so these arrows are not
separately described beloW.
[00106] Figure 16 is a block diagram showing the architecture of a SOAP processing
device 1600 and the processing flow used to process a C++ request from the
“StockEnquiry” application 1502 shown in Figure 15. Figure 16 shows the SPD
architecture from Figure 10 with additional indicia to show the steps and message
formats that are used in the various blocks of the SPD during the processing of the C-++

request from the “StockEnquiry” application.

23

10

15

20

25 -

30

WO 2006/080026 PCT/IN2005/000032

[00107] Figure 16 shows 8 steps. These steps are highlighted with dashed
lines/arrows. A legend is included to show the conversion.

[00108] The invocation of the getStockQuote() happens on the application tier of the
first system. This is shown by step 1, which is coded as per the legend. The Interface
Unit 1006 of the SPD receives this request, as shown by step 2. Here, the SPD checks
whether the request is a C++ request or a SOAP request.

[00109] This request basically carries a “C++ string”, which is the Stock Symbol. In
step 3, the subsystem may make additional calls, either to the local system or to a
remote system. This is to ensure the appropriate choice of the SOAP processing or any
other requirement that demands local or remote input. The Communication Subsystem
1008 of the Interface Unit 1006 will then dispatch this message to the
Marshaller/UnMarshaller Unit 1002, which would start building the SOAP message.
This is shown as Step 4. This is an important step. Here, the conversion of the “C++
String”, which is the Stock Symbol, to the SOAP String takes place. SOAP String is a
built-in datatype (for example, as per “XML Schema Part 2: Datatypes” Specification.
Ref: http://www.w3c.org/TR/SOAP. Section 5.2). This datatype is then handed over |
to the SOAP Engine Unit 1004.

[00110] The SOAP Engine Unit 1004 now starts building the SOAP request. This
makes use of the Request Packager and Dispatcher subsystem 1014 to build the SOAP
request. Here, the engine ensures the SOAP request is properly built as per the SOAP
specification(s). This unit may also provide a choice of selecting different
specifications that can be used to build the SOAP message. Creating appropriate
Envelope element(s), Header element, Body element, Header Entries, Body entries,
their appropriate sequencing as per the specifications is taken care of by this SOAP
Engine Unit 1004. This is shown by Step 5.

[00111] In Step 6, the SOAP Engine 1004 ensures that the SOAP request is layered on
top of the appropriate transport protocol and forwards the request to the Interface Unit
1006.

[00112] In Step 7, the Interface Unit 1006 examines the SOAP request and then
dispatches the same to the remote system.

[00113] Figure 17 is a block diagram showing the architecture of a SOAP processing

device 1700 and the processing flow used to process a SOAP message being returned to

24

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

the “StockEnquiry” application shown in Figure 15 according to an embodiment of the
present invention. Figure 17 shows the SPD architecture from Figure 10 with additional
indicia to show the steps and message formats that are used in the various blocks of the
SPD during the processing of the SOAP message.

[00114] Figure 17 shows 7 steps. These steps are highlighted with dashed |
lines/arrows. A legend is included to show the conversion. For purposes of this
example, we assume that the SOAP request reaches the remote system (System on the
right-hand side of Figure 15) and successfully executes the “Stock Quote” application
1504 on the remote system. The result now reaches the “Stock Enquiry” Systvem 1502,
and this is a SOAP response. '

[00115] The SPD receives the message, as in Step 1. The Interface Unit 1006
examines the message for the type of input and determines that this is a SOAP
response, as shown in Step 2. Again, as shown in Step 3, the Interface Unit 1006
communication subsystem may make additional calls to ensure the appropriate choice
of the SOAP processing or any other requirement that demands local or remote input.
The SOAP message is then forwarded to the Marshaller/Unmarshaller Unit 1002, as -
shown in Step 4.

[00116] The Marshaller/Unmarshaller Unit 1002 now converts the SOAP data to the
Application requirement type. In this particular example, the SOAP response contains
the Stock Price of the Symbol, which is a “float” type. The Marshaller/Unmarshaller
Unit 1002 converts this “SOAP float” type to the “C++ float” type. It is then forwarded
to the Response'Packager 1012 subsystem, as shown in Step 5.

[00117] In the next step, the SOAP Engine Unit 1004 gets the Response Packager
1012 subsystem to forward the result directly to C++ application through the Interface
Unit 1006. This is shown in Step 6. In Step 7, the result is forwarded to the local
application and the C++ application would receive the “C-++ float” data as the response.
[00118] The above description also applies to the case where the SPD is used in a
“local” setup where the device is used for forward and reverse translations without
having to communicate over the internet. This may be the case when messages are sent
between applications executing on the same host. In this embodiment, the Interface
Unit 1006 may resolve and arbitrate between the request and response mechanisms

targeting the host device itself.

25

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

[00119] Exemplary Business Text Processing (BTP) Embodiment. The following

describes a simplified embodiment (referred to as “BTP”) that illustrates selected
aspects of the present invention in connection with Figures 18, 19, 20 and 21. This
embodiment illustrates a specific implementation for SOAP text processing without
attachments. This simplified embodiment handies—bﬁiy RPC calls (no messaging), ‘
interfaces only with SCI and PCI interfaces and does not process binary operations.
However, alternate embodiments may support these features.

[00120] Figure 18 is a flow chart that illustrates the overall operation of the BTP
device. In this embodiment, the device is a dedicated board with a PCI interface that
can be plugged into a free PCI slot on a computer system. The board uses an AMCC
S5935 PCI controller to facilitate communication between the BTP and the computer
system. The top level logic is coded in VHDL on a Spartan 2E FPGA with 300K gates.

- [00121] In this embodiment, the host software first writes the SOAP schema and the

SOAP input (for SOAP to Text conversion) into appropriate buffers of the PCI board. It
then informs the BTP that input is ready for processing. The BTP waits for indicationA
from the host that data has been made available for it to work on

(WAIT PCI INTERRUPT 1802).

[00122] The BTP then begins by copying this input into its internal buffers (RAM
blocks within the FPGA for easier access and speed). This occurs during the

COPY BUFFERS 1804 state shown in Figure 18. This triggers the top-level logic in
the BTP (TRIGGER_TOP_LEVEL LOGIC 1806) which decides whether the text-to-
soap or the soap-to-text VHDL process should be initiated. This decision is made based
on the first few characters of the input itself.

[00123] Figures 19, 20 and 21 show additional information regarding the states
SCHEMA. PARSE 1808, BTP_XML_INPUT 1810 and TEXT_TO_SOAP 1812
respectively. Once the results are available from the individual processes, an internal
interrupt is sent back to the top-level-logic (DISPATCH_RESULT 1811) and the
results are copied to the output buffer of the PCI board (COPY .BUFFER 1813). The
size of the output is written to the appropriate register of the AMCC controller and a
PCI interrupt is provided to the host (SEND_PCI_INTERRUPT 1814).

[00124] The operations of the BTP are brought to a halt by a dedicated interrupt line.

As long as the shutdown interrupt is not asserted, the BTP process returns to its default

26

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

operation or waiting for indication that data is available for processing

(WAIT PCI_INTERRUPT 1802).

[00125] Figure 19 is a state diagram showing the parsing of an XML Schema
document in the BTP. The Schema itself is an XML document and is parsed using the
XML Pafser described in connécti&ﬁ with Figure 20; howévér;“éﬁ‘;dditional step of
collecting and building an internal grammar tree of allowed elements, attributes, and
their types as they appear in the XML document is also performed.

[00126] Processing starts with the Schema being checked for XML versions, and valid
W3C headers (PARSE_HEADER 1902). The true-body of a schema document begins
with its element definitions. As soon as the string ‘element’ (with the appropriate

namespace) is seen in the schema (ELEMENT 1904), the parsing engine begins to

- collect its attributes.

[00127] This occurs during the COLLECT TYPE 1906 state. All elements with
simple data types are directly processed. Complex data types are handled by a recursive
switch to the ELEMENT 1904 state. Once the complete information about a given
element is available, the internal, easily accessible data structure is updated
(STORE_ELEMENT 1908). All local namespaces encountered in the schema
dociiment are collected separately for easier type processing (LOCAL_NAMESPACES
1910). This process continues until all of the element schema definitions have been
processed. The BTP then parses and validates the XML documents
(BTP_XML_INPUT 1812) referring to this parsed schema.

[00128] Figure 20 shows a state diagram for parsing an XML document with schema
validation, in accordance with the simplified BTP embodiment. This process is
triggered after the successful parsing of the schema document (BTP_XML_INPUT
state 1810) supplied as one of the inputs to the BTP.

[00129] The operation begins with validating supported XML versions, ensuring W3C
headers and availability of the schema document (PARSE_HEADER 2002). In the
BTP, the schema is made available locally. In alternative embodiments, the schema
may be automatically fetched from the internet or other network as necessary. This is
the schema against with the rest of the document will be validated.

[00130] The body of the XML document is built using a root level element tag
(ELEMENT 2004), with associated attributes (ATTRIBUTES 2006). The internal

27

10

15

20

25

30

WO 2006/080026 PCT/IN2005/000032

database of elements and their attributes are quickly referred to see if they are legal
(VALID ELEMENT 2008 and VALID_ATTRIBUTE 2010). The trickier sub-types or
containment is checked in a separate state (VALID_TYPE 2012). This might need a
recursive handling of further elements down the line (HANDLE SUBTYPES 2014,

" ELEMENT 2004 trans1t10ns) Once the type has been successfully vahdated the values

arriving in the XML document against that tag are extracted 2016 and dispatched
(DISPATCH_RESULTS 1818).

[00131] Figure 21 shows a state diagram for converting text input to SOAP document
in accordance with the simplified BTP embodiment. In this example, a SOAP1.1
envelope is used as the template. Blanks are created in the template using escape
sequences and place holder indicators. The application supplies input values that are
filled into these blanks and an instance of a SOAP message is generated. The input for
translation is supplied as parameters indexed with their corresponding indicators in the
template.

[00132] The operation starts by waiting for availability of input (WAIT_INPUT 2102
state) from the Interface Unit. The input is a SOAP template and the input values are
concatenated and demarcated with the character ‘@’ in a new line of its own. The input
is immediately read into internal buffers (COPY_TEMPLATE 2106 and
COPY_INPUT 2108).

[00133] Conversion begins (PARSE_TEMPLATE 2110) with copying the template
as-is into the output zone, as long as the read in ASCII data is not the input indicator
escape sequence (‘\\’). Once the escape sequence is found (IS_ESCAPE 21 12), the
indicator key is collected (end of demarcation is the immediate next occurrence of the
same escape sequence). The SOAP input zone is now scanned for this key
(FETCH_INPUT VALUE 2114). The value found is transferred to the output zone
(COPY_OUTPUT 2116). This operation is repeated until the whole of the template
zone has been transferred to the output zone with all input indicators correctly replaced
with their corresponding value found in the SOAP input zone. Sometimes, an indicator
requires that multiple values be read in from the SOAP input zone

(IS_MULTI_VALUED 2118).

28

10

15

20

WO 2006/080026 PCT/IN2005/000032

[00134] As soon as the data is successfully translated to the output zone, an indication
is sent to the Interface Unit 1811 and the state machine returns to a wait state as before,
waiting for the next conversion call.

[00135] While the above embodiments are nnplemented usmg 1Cs or cards, it should
be unders_to_o—ci Eﬁat gio;:ks of the SPD may be implemented in software or ﬁf;r_l;.\:ar—e—fhatm
is executed by the SPD or a host processor. In some embodiments, a SOAP processor
may be implemented as software executing on a host processor. Unlike a conventional
SOAP toolkit, however, embodiments of the present invention may accept input from
multiple disparate applications using different application specific formats. The SOAP
processing software may support multiple application specific formats and thereby
provide a common SOAP processor across multiple applications. The SOAP processor
may be implemented as object code resident in the host system memory or ina
peripheral card or device, which can provide SOAP processing for separate applications
without requiring compilation or modification for different types of applications on the
host system. |

[00136] While preferred embodiments of the present invention have been shown and
described herein, it will be obvious to those skilled in the art that such embodiments are
provided by way of example only. Numerous variations, changes, and substitutions
will now occur to those skilled in the art without departing from the invention. It
should be understood that various alternatives to the embodiments of the invention
described herein may be employed in practicing the invention. It is intended that the
following claims define the scope of the invention and that methods and structures

within the scope of these claims and their equivalents be covered thereby.

29

5

10

15

20

25

WO 2006/080026 PCT/IN2005/000032

CLAIMS
WHAT IS CLAIMED IS:

1. A device for converting a message from a SOAP format to an application

specific format comprising:
e circuitry for receiving the message in the SOAP format and for providing the
message in the application specific format;
e circuitry for determining whether the message is in the SOAP format or the
application specific format; and
e circuitry for converting the message from the SOAP format into the application

specific format.

2. The device of claim 1, further comprising circuitry for handling all XSD data
types.
3. The device of claim 1, further comprising circuitry for selectively making a

procedure call to a local application and for selectively making a procedure call to a

remote application.

4. The device of claim 1, further comprising circuitry for dispatching the message

in the application specific format to a local application.

5. A device for converting a message from an application specific format to a
SOAP format comprising:
e circuitry for receiving the message in-the application specific format and for
providing the message in the SOAP format;
e circuitry for determining whether the message is in the SOAP format or the
application specific format;
e circuitry for converting elements in the message from the application specific
format into the SOAP format;
e circuitry for creating an envelope element, header element, body element,
header entry and body entry from the elements converted from the message in

the application specific format; and

30

10

15

20

25

WO 2006/080026 PCT/IN2005/000032

e circuitry for sequencing and constructing the message in the SOAP format using
the envelope element, the header element, the body element, the header entry

and the body entry.

6. The device of claim 5, further comprising circuitry for handling all XSD data

types.

7. The device of claim 5, further comprising circuitry for handling a plurality of

different schema.
8. The device of claim 5, further comprising an interface to flash memory.

9. The device of claim 5, further comprising circuitry for détermining whether a
message complies with a SOAP protocol; a flash memory containing information
regarding the SOAP protocol and circuitry for downloading the information from the

flash memory.

10. The device of claim 9, wherein the information contained in the flash memory

- includes information regarding WSDL compliance for versions of the W3C standard.

11. The device of claim 9, wherein the information contained in the flash memory
includes information regarding W3C standard compatible versions of SOAP and

WSDL.

12. ‘The device of claim 5, further comprising circuitry for selecting among multiple
versions of SOAP and circuitry for determining whether a message complies with the

selected version of SOAP.

13. The device of claim 5, further comprising circuitry for discovering a web

service endpoint in accordance with UDDI.

14. ' The device of claim 5, further comprising circuitry for selectively making a
procedure call to a local application and for selectively making a procedure call to a

remote application.

31

10

15

20

25

WO 2006/080026 PCT/IN2005/000032

15. The device of claim 5, further comprising circuitry for generating a target

device specific SOAP call sequence.

16. The device of claim 15, further comprising circuitry for executing the SOAP

call sequence on the target.device. -- - e

17. The device of claim 5, further comprising circuitry for dispatching the message

in the SOAP format to a remote application.

18. The device of claim 5, further comprising circuitry for switching the underlying

transport protocols over which SOAP is implemented.

19. The device of claim 5, further comprising bus interface circuitry for

communicating with a host processor.

20. A method for processing a message in a given application specific format,
comprising:

storing translation information for a plurality of application specific formats in a
memory, including the given application specific format;

receiving the message in the given application specific format;

determining that the message is in the given application specific format;

retrieving the translation information for the given application specific format
from the memory; and A

translating the message from the given application specific format into a

markup language format.
21. The method of claim 20, wherein the markup language format is SOAP.

22. The method of claim 20, wherein the step of translating further comprises
generating an envelope element, a header element, a body element, a header entry and a
body entry.
23. A system comprising:

a host processor;

a first application capable of being executed by the host processor, wherein the

first application uses a first application specific format;

32

10

15

20

25

WO 2006/080026 PCT/IN2005/000032

a second application capable of being executed by the host processor, wherein
the second application uses a first application specific format;

méans for receiving a message from the first application and the second
application;
~ means for deternﬁnfng whether the message is in the first A-I)Biicﬁtion specific
format or the second application specific format; and

means for selectively translating the message from the first application specific
format into a markup language format; and

means for selectively translating the message from the second application

specific format into the markup language format.
24. The system of claim 23, wherein the markup Janguage format is SOAP.

25. A system comprising:

a host processor;

a first application capable of being executed by the host processor, wherein the
first application uses a first application specific format;

a second application capable qf being executed by the host processor, wherein
the second application uses a first application specific format;

means for receiving a message in a markup language format;

means for determining whether the message is addressed to the first application
or the second application;

means for selectively translating the message from the markup language format
into the first application specific format; and

means for selectively translating the message from the markup language format

into the second application specific format.

26. The system of claim 25, wherein the markup language format is SOAP.

33

PCT/IN2005/000032

WO 2006/080026

1/22

| JENDId

<8d0jeAUI:ANI-dYOS/>
. <Apog:ANI-dVOS/>
ko1 <ainjesedwe jen):w/>
~ <8pN}jel/>SZg<opnInE]>
<epniiBuoys>meg<opmibuop
<jManby - jrdpy,,=w:sujwx ainjesodwe 1309 W
‘ ‘ <Apog:AN3-dVOS>
201 <.Butposusy 1 dpy,=0|HSBUIPOIUSIANT-dYOS
Wiy 2dojepusgewaydsydisy = ANS-dvOS:sUjwx sdOPAUT ANT-dVOS>
~ainesadws Janglienb/Bio isyieamy dyy ., i udnoydeog
L8¢ pybua-jusiu0gy
|wxaxay :adA | -Jus3uon

%.::m \mﬁom Woo'adiAles-ainjeiadws) mmm 3SOH

,. T/
m V' LdLLH aanjeladwa}/ 1SOd

Juswaly Apog

@/

JUAWIA[momoﬁ,ém | \4 Hmwﬁwmm @<Om

<o/ oQ/

PCT/IN2005/000032

WO 2006/080026

2/22

¢ 34Nvid

<adejaaulaug-dvosH>
AP ANT V0SS]

Aoz <dsuocdsayaimesadwid 195 LS

T <apelbiusosp gz <apelbiusd:
<. 0 idny,,=sujux ssuodsosyainieradls | 159 W
/ <Apog: ANT-dV OS>

<. /Buipoaus; - duy,=Buip odusANI-dvOS
«ado) r:m., i AR, =ANT-d VO S sujwix adojeAug ANI-dV OS>
cpe (y)bUsT-ILUCH
juxnxa) :adf [-Jusiuon

\ﬂa ADO .
] mawum MO 00Z L' Lid1LH

Eo 31 Apog

@iz

EmEE odoJaauyg
eo

7 asuodsay %%Om

(R i

WO 2006/080026 PCT/IN2005/000032
3/22

) 3?01') -

Internat/
Intranet

G

/ Workstation System
308

FIGURE 3

WO 2006/080026 PCT/IN2005/000032

4/22
0
0%, 470
B T
;PP ;‘IM Applxw e
peells Spuecitic

cemriumcRicn o
oo LT A Crion

e . i e e .. faTm

1

Y072

SOAP SQAP o
’-IOfp Enuie forr at L’l ({

FIGURE 4

WO 2006/080026 PCT/IN2005/000032
5/22

/.5' 0L . Soy
(= SysteriA &)

A K
' Y
>3
b4
1
C\'c{-.riny " Operting
50LQ ""L_Ef_'mnmm i N Evrooeent
IR A Y ‘, i
Yy 5 : : A AR
5 / 0 /.:Hmdvmre " P Hardware
5 3
I 4t ATF
/kan1m&muv1L;}Ul) (Cotmsncaxnan L:;y;D - 5’(0
g1 ‘1 L..{::__: i 1 ‘
Ty l
- S,
""‘———-"{I IneemetfIntranag
—— e, o
\[T—'”\J[‘-’Q

FIGURE §

WO 2006/080026

PCT/IN2005/000032
6/22

FIGURE 6

Sy fens CEVERUS
wner Apgy § Provider App

AP NGedine Ty

EETP 83D, RV, HGe

)
e

Qs e S
HERR 3

<

L]

Congmnnjca

ti

on/Transmission

Intcrnet

WO 2006/080026 PCT/IN2005/000032
7/22

FIGURE 7 .

S,
SOAP Reducer

42 € TUNT 5 25 it 1ar

WO 2006/080026 PCT/IN2005/000032
8/22

FIGURE 8

As an Add-on card o the server

PCI Controlier on Host for PCI-PCI with host’s
Application Interface vommunication Subsystem
32/64-bit 32/64-bit
PCI address PCI address
bus bus oY

PCI Interface Logle

DRI G

WO 2006/080026 PCT/IN2005/000032
9/22

FIGURE 9

SRRt AL SR

On & PDA with a dedicated WAP processor

Hardware Logic for SPD . Wwar
Client Operations Processor

DSP speeific

lnterface

P02

WO 2006/080026

PCT/IN2005/000032
10/22

FIGURE 10

A A

Application side

RORER R
ER Y

{eefinse Pashapa & pewst Packeae &
hl\llﬂh“hl‘l 4

SR 0\ 12 TR,

W apateher
oy

e MR DS ST R T

WO 2006/080026
11/22

FIGURE 11

/,’OOL{

PCT/IN2005/000032

SOAP Enéinc Design

_ Towards
Interface Unit

Blushnl. P4] Anphi Speade

Mottt Lt unsrocing

WO 2006/080026 PCT/IN2005/000032
12/22

WO 2006/080026 PCT/IN2005/000032
13/22

Figure 12B

1297

WO 2006/080026 PCT/IN2005/000032
14/22
FIGURE 13
Co D
come ’-\ . - -
SOAP request 130
4 N\
—— (30l
MurshalierUnmarsialler) |
- 1308 1310
‘t;:l::;:; R‘Eﬂ!l\‘t Hefereaces
Refersnces? {lterface Undt)
Wait for Remote
respense
T |~
~1314
Is SOAP request : N
/\ parsedieali-
sequenced fuliy?
_13i7 :
'3]% Wait for App respovse 139 i320
o
Dispatch App Request . Bulld SQAP R »
(SOAP Enginc) ’ |,Vf1\¢ Emgine) T D:::;r: ::::‘i}::)*
Costatt Applicahon Scrver 1312 —~~ SOAP Builder
{Ixterface Unlg (MaashullenUndarstadier)
' Bli\ Send Respomne ko Client ‘1—1
{Intertace Unit
4 End
. LI
; \
¥

WO 2006/080026
15/22

FIGURE 14

PCT/IN2005/000032

...\ App Specific Request [YOZ
v '

Build SOAP Request
u(sour.;?e'; < 1404

v

{Remaote Service)

SOAP Rulider 1Yok
{Mansalice/Unmarshilier)
1410
\‘lo 2 . ~ ’ “’ K
~ Dispatch Femte Kegueat N b
s o BOAP Reduce the Respome
o7 Fnp 3 Wsit for Remate L
respongs
Requsest
Y
Response Send Resul fo oalier App
! P {(SOAP Engine) -
Coatncd Kensode Servic
(Interfuee Tnkt) ¢ 1444

WO 2006/080026

PCT/IN2005/000032
16/22

FIGURE 15

15069t App Tier SiockQuate Java App |

L App Tier StockBrigairy C+ App — j" isol

|| Servics Transport Tiec - HTTP

| Service Transpor Tier -HTTP |3
j

1 Comm/Trans ~TCE,UDP

|| CorumTrans - TCPUDP

-

T

i Comm/Trans - Btheenet

| Y Comm/Trans » Ethernst

l

l tﬁaxdwme

LH-‘.rdwarc

Internet ! Intranet

WO 2006/080026

17/22

FIGURE 16

1
----—-u—--,

PCT/IN2005/000032

=
"“"ciﬂ
{

B OS Commu nlullon

i
;i lul!rﬁu
R arasase

5 Ve w
rodiahty

oy

WO 2006/080026 PCT/IN2005/000032
18/22

FIGURE 17

SRS YR Niiealirab

Memery | 0§ Communipation
] : Interfag

PV PReNEN

|

TEET S A IITRL T N T e

Ll e 5 Hoegueat e,
o Staenar . . e el : AR

}0!\(lggcnd

C++ Response

SOAP Response

WO 2006/080026

19/22

PCT/IN2005/000032

Figure 18

Bo2

BTP START

Y.

WAIT_PCI_INTERRUPT

319

WO 2006/080026

20/22

PCT/IN2005/000032

190

903 A 4

Figure 19

1808 SCHEMA PARSE

19/ .
@_}IAMESPACE

jgre 4

BTP_XML_INPUT

WO 2006/080026 PCT/IN2005/000032
21/22

]g8/0
BTP_XML_INPUT

¥

2002 '

,,,,, ~ Sthema

Y
t 1

(gl

@;—;CH_RESULT

L Figure 20

WO 2006/080026 PCT/IN2005/000032
22/22

PARSE_TEMPLATE Y

FETCH_INPUT_VALUE
Hz Y
2 4
L

IS_ESCAPE

T2y
IS MULTI VALUED

COPY_OUTPUT

Y

Figure 21

INTERNATIONAL SEARCH REPORT International application No.

PCT/IN05/00032

A, CLASSIFICATION OF SUBJECT MATTER
IPC: GO6F 19/00(2006.01)

USPC: 701/101,9;714/41

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/, 100, 101, 9; 714/41; 709/230

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2004/0054690 Al (HILLERBRAND et al.) 18 March 2004 (18.03.2004), Whole 1-26
DOcument
Y US 2003/0204612 Al (WARREN) 30 October 2003 (30.10.2003), Whole Document. 1-26
A US 2003/0212690 A1 (SURMA et al.) 13 November 2003 (13.11.2003), Whole Document. 1-26

E_—_I Further documents are listed in the continvation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be of
particular relevence

“E” earlier application or patent published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as

specified)

“0" document referring to an oral disclosure, use, exhibition or other means

“T” later document published after the international filing date or priority date
and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is combined
with one or more other such documents, such combinetion being obvious
to a person skilled in the art

Mail Stop PCT, Atin: ISA/US
Commiissioner for Patents

P.O. Box 1450

Alexandria, Virginia 223131450

Facsimile No. (571) 273-3201

“P" document published prior to the international filing date but later then the “&" document member of the same patent faraily
priority date claimed

Date of the actual completion of the international search Date of mailing @f }pe thiozﬁ ifg:ch report

15 April 2006 (15.04.2006) v o

Name and mailing address of the ISA/US Anthorized officer

24
Kidest Bahta
oA WMl

Telephoxe No. (571) 272-3737

Form PCT/ISA/210 (second sheet) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

