WO 2006/089913 A1 |0 |00 000 0 000 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 August 2006 (31.08.2006)

PO 0

(10) International Publication Number

WO 2006/089913 Al

(51) International Patent Classification:
GOGF 9/455 (2006.01)

(21) International Application Number:
PCT/EP2006/060187

(22) International Filing Date:
22 February 2006 (22.02.2006)

English
English

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
11/066,201 25 February 2005 (25.02.2005) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KING-

DOM LIMITED [GB/GB]; Po Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ARNDT, Richard,

(74)

(81)

Louis [US/US]; 1607 Barn Swallow Drive, Austin, Texas
78746 (US). BIRAN, Giora [IL/IL]; 13 Inbar Street,
30900 Zichron-yaakov (IL). BUCKLAND, Patrick,
Allen [US/US]; 2904 Cherry Lane, Austin, Texas 78703
(US). KIEL, Harvey, Gene [US/US]; 1268 Buckridge
Drive Northeast, Rochester, Minnesota 55906 (US).
MAKHERVAKS, Vadim [US/US]; 11509 Leon Grande,
Austin, Texas 78759 (US). RECIO, Renato, John
[US/US]; 6707 Winnepeg Cove, Austin, Texas 78759
(US). SHALEYV, Leah [IL/IL]; Wingate Street, 16/b,
30900 Zichron-yaakov (IL). SRIKRISHNAN, Jaya
[US/US]; 33 Sherwood Heights, Wappingers Falls, New
York 12590 (US).

Agent: LING, Christopher, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Win-
chester Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

[Continued on next page]

(54) Title: MODIFICATION OF VIRTUAL ADAPTER RESOURCES IN A LOGICALLY PARTITIONED DATA PROCESSING

SYSTEM

REQUEST TO MODIFY THE ATTRIBUTES OF
AN EXISTING VIRTUAL ADAPTER IS INVOKED

1700\{

1708~

LPAR MANAGER USES THE PHYSICAL
ADAPTER'S MEMORY MANAGEMENT
INTERFACE TO REQUEST THAT THE PHYSICAL
ADAPTER MODIFY THE ATTRIBUTES OF AN
EXISTING VIRTUAL ADAPTER

1724 1725

ERROR: INSUFFICIENT
RESOURCES

DOES THE
PHYSICAL HAVE
ENOUGH RESOURCES TO COMPLETE
REQUEST
?

1726

ARE
RESOURCES BUSY
?

YES
/{ PHYSICAL ADAPTER INITIATES TIME AND WAITS
1728

FOR A QUIESCENT POINT TO BE REACHED

QUIESCENT NO ADAPTER BUSY:
POINT REACHED BEFORE UNABLE TO
TIMEOUT? COMPLETE REQUEST
1730 <
¥ 1731

PHYSICAL ADAPTER MODIFIES THE ATTRIBUTES
1732 OF THE EXISTING VIRTUAL ADAPTER

PHYSICAL ADAPTER RETURNS THE
ATTRIBUTES OF THE MODIFIED VIRTUAL
ADAPTER TO THE HYPERVISOR

1734

=

1736CBD)

(57) Abstract: A mechanism for modifying resources in
a logically partitioned data processing system is provided.
A request to modify resources associated with a virtual
adapter allocated on a physical adapter is invoked. The
resources associated with the virtual adapter comprise a
subset of the physical adapter resources. The request to
modify the physical adapter is conveyed to the physical
adapter. Responsive to receipt of the request by the
physical adapter, the physical adapter modifies the
resources allocated to the virtual adapter.

WO 2006/089913 A1 I} N0VYH0 T 000 000 AR 00

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,

NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, Published:

SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, — with international search report

UZ, VC, VN, YU, ZA, ZM, ZW. — before the expiration of the time limit for amending the
(84) Designated States (unless otherwise indicated, for every claims and to be republished in the event of receipt of

kind of regional protection available): ARIPO (BW, GH, amendments

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), = For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL,, PL, PT, ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

MODIFICATION OF VIRTUAL ADAPTER RESOURCES IN

A LOGICALLY PARTITIONED DATA PROCESSING SYSTEM

BACKGROUND OF THE INVENTION

Technical Field:

The present invention relates generally to communication protocols
between a host computer and an input/output (I/0) adapter. In particular,
the present invention provides a mechanism by which a single physical I/O
adapter, such as a PCI, PCI-X, or PCI-E adapter, can modify the resources
associated with one of more virtual adapters that reside within the

physical adapter.

Description of Related Art:

Virtualization is the creation of substitutes for real resources.
The substitutes have the same functions and external interfaces as their
real counterparts, but differ in attributes such as size, performance, and
cost. These substitutes are virtual resources and their users are usually
unaware of the substitute’s existence. Servers have used two basic
approaches to virtualize system resources: partitioning and logically
partitioning (LPAR) managers. Partitioning creates virtual servers as
fractions of a physical server’s resources, typically in coarse (e.q.
physical) allocation units (e.g. a whole processor, along with its
associated memory and I/0O adapters). LPAR managers are software or
firmware components that can virtualize all server resources with fine

granularity (e.g. in small fractions of a single physical resource).

In conventional partitioned data processing systems, servers that
support virtualization had two options for handling I/0. The first option
was to not allow a single physical I/O adapter to be shared between
virtual servers. The second option was to add functionality into the LPAR
manager, or another intermediary, that provides the isolation necessary to

permit multiple operating systems to share a single physical adapter.

The first option has several problems. One significant problem is
that expensive adapters cannot be shared between virtual servers. If a
virtual server only needs to use a fraction of an expensive adapter, an
entire adapter would be dedicated to the server. As the number of virtual

servers on the physical server increases, this leads to underutilization

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

of the adapters and a more expensive solution, because each virtual server
needs at least one and potentially many physical adapters dedicated to it.
For physical servers that support many virtual servers, another
significant problem with this option is that it requires many adapter
slots, with all the accompanying hardware (e.g. chips, connectors, cables,
and the like) required to attach those adapters to the physical server and
the downstream infrastructure (e.g. cables, switches, routers) to connect

the additional host adapters to targets.

Though the second option provides a mechanism for sharing adapters
between virtual servers, that mechanism must be invoked and executed on
every I/0 transaction. The invocation and execution of the sharing
mechanism by the LPAR manager or other intermediary on every I/O
transaction degrades performance. It also leads to a more expensive
solution, because the customer must purchase more hardware, either to make
up for the cycles used to perform the sharing mechanism or, if the sharing

mechanism is offloaded to an intermediary, for the intermediary hardware.

It would be advantageous to have an improved method, apparatus, and
computer instructions for directly modifying the resources associated with
one of more virtual adapters that reside within a physical adapter, such
as a PCI, PCI-X, or PCI-E adapter. It would also be advantageous to have
the mechanism apply for adapters that support a memory mapped I/O
interface, such as Ethernet NICs (Network Interface Controllers), FC
(Fibre Channel) HBAs (Host Bus Adapters), pSCSI (parallel SCSI) HBAs,
InfiniBand, TCP/IP Offload Engines, RDMA (Remote Direct Memory Access)
enabled NICs (Network Interface Controllers), iSCSI adapters, iSER (iSCSI
Extensions for RDMA) adapters, and the like.

SUMMARY OF THE INVENTION

The present invention provides a method, computer program product,
and distributed data processing system for directly modifying the
resources associated with one of more virtual adapters that reside within
a physical adapter, such as a PCI, PCI-X, or PCI-E adapter. Specifically,
the present invention is directed to a mechanism for sharing conventional
PCI (Peripheral Component Interconnect) I/0 adapters, PCI-X I/0O adapters,
PCI-Express I/0 adapters, and, in general, any I/O adapter that uses a
memory mapped I/0 interface for host to adapter communications. A
mechanism is provided for directly modifying the resources associated with

one of more virtual adapters that reside within a physical adapter, such

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

as a PCI, PCI-X, or PCI-E adapter. Additionally, each virtual adapter has
an associated set of host side resources, such as memory addresses and
interrupt levels, and adapter side resources, such as adapter memory
addresses and processing queues, and each virtual adapter is isolated from
accessing the host side resources and adapter resources that belong to

another virtual or physical adapter.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of example only, with

reference to the accompanying drawing, in which:

Figure 1 is a diagram of a distributed computer system illustrated in

accordance with a preferred embodiment of the present invention;

Figure 2 is a functional block diagram of a small host processor node in

accordance with a preferred embodiment of the present invention;

Figure 3 is a functional block diagram of a small integrated host
processor node in accordance with a preferred embodiment of the present

invention;

Figure 4 is a functional block diagram of a large host processor node in

accordance with a preferred embodiment of the present invention;

Figure 5 is a diagram illustrating the elements of the parallel Peripheral
Computer Interface (PCI) bus protocol in accordance with a preferred

embodiment of the present;

Figure 6 is a diagram illustrating the elements of the serial PCI bus
protocol (PCI-Express or PCI-E) in accordance with a preferred embodiment

of the present;

Figure 7 is a diagram illustrating I/O virtualization functions provided
in a host processor node in order to provide virtual host access isolation

in accordance with a preferred embodiment of the present invention;

Figure 8 is a diagram illustrating the control fields used in a PCI bus
transaction to identify a virtual adapter or system image in accordance

with a preferred embodiment of the present invention;

10

15

20

25

30

35

WO 2006/089913 PCT/EP2006/060187

Figure 9 is a diagram illustrating adapter resources that must be

virtualized in order to allow: an adapter to directly access virtual host
resources; allow a virtual host to directly access Adapter resources; and
allow a non-PCI port on the adapter to access resources on the adapter or

host in accordance with a preferred embodiment of the present invention;

Figure 10 is a diagram illustrating the creation of three access control
levels used to manage a PCI family adapter that supports I/0
virtualization in accordance with a preferred embodiment of the present

invention;

Figure 11 is a diagram illustrating how host memory that is associated
with a system image is made available to a virtual adapter that is
associated with that system image through the logical partitioning manager

in accordance with a preferred embodiment of the present invention;

Figure 12 is a diagram illustrating how a PCI family adapter allows a
logical partitioning manager to associate memory in the PCI adapter to a
system image and its associated virtual adapter in accordance with a

preferred embodiment of the present invention;

Figure 13 is a diagram illustrating one of the options for determining the
virtual adapter that is associated with an incoming memory address in

accordance with a preferred embodiment of the present invention;

Figure 14 is a diagram illustrating one of the options for determining a
virtual adapter that is associated with a PCI-X or PCI-E bus transaction

in accordance with a preferred embodiment of the present invention;

Figure 15 is a diagram illustrating a virtual adapter management approach
for virtualizing adapter resources in accordance with a preferred

embodiment of the present invention; and

Figure 16 is a flowchart outlining an exemplary virtual adapter attribute
modification routine in a data processing system implementing the virtual
adapter management approach described in Figure 15 in accordance with a

preferred embodiment of the present invention.

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention applies to any general or special purpose host
that uses a PCI family I/O adapter to directly attach a storage device or
to attach to a network, where the network consists of endnodes, switches,
routers and the links interconnecting these components. The network links
can be, for example, Fibre Channel, Ethernet, InfiniBand, Advanced
Switching Interconnect, or a proprietary link that uses proprietary or
standard protocols. While embodiments of the present invention are shown
and described as employing a peripheral component interconnect (PCI)
family adapter, implementations of the invention are not limited to such a
configuration as will be apparent to those skilled in the art. Teachings
of the invention may be implemented on any physical adapter that support a
memory mapped input/output (MMIO) interface, such as, but not limited to,
HyperTransport, Rapid I/0, proprietary MMIO interfaces, or other adapters
having a MMIO interface now know or later developed. Implementations of
the present invention utilizing a PCI family adapter are provided for

illustrative purposes to facilitate an understanding of the invention.

With reference now to the figures and in particular with reference
to Figure 1, a diagram of a distributed computer system is illustrated in
accordance with a preferred embodiment of the present invention. The
distributed computer system represented in Figure 1 takes the form of a
network, such as network 120, and is provided merely for illustrative
purposes and the embodiments of the present invention described below can
be implemented on computer systems of numerous other types and
configurations. Two switches (or routers) are shown inside of network 120
- switch 116 and switch 140. Switch 116 connects to small host node 100
through port 112. Small host node 100 also contains a second type of port
104 which connects to a direct attached storage subsystem, such as direct

attached storage 108.

Network 120 can also attach large host node 124 through port 136
which attaches to switch 140. Large host node 124 can also contain a
second type of port 128, which connects to a direct attached storage

subsystem, such as direct attached storage 132.

Network 120 can also attach a small integrated host node 144 which
is connected to network 120 through port 148 which attaches to switch 140.

Small integrated host node 144 can also contain a second type of port 152

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

which connects to a direct attached storage subsystem, such as direct

attached storage 156.

Turning next to Figure 2, a functional block diagram of a small host
node is depicted in accordance with a preferred embodiment of the present
invention. Small host node 202 is an example of a host processor node,

such as small host node 100 shown in Figure 1.

In this example, small host node 202, shown in Figure 2, includes
two processor I/0 hierarchies, such as processor I/0 hierarchy 200 and
203, which are interconnected through link 201. In the illustrative
example of Figure 2, processor I/O hierarchy 200 includes processor chip
207 which includes one or more processors and their associated caches.
Processor chip 207 is connected to memory 212 through link 208. One of the
links on processor chip, such as link 220, connects to PCI family I/O
bridge 228. PCI family I/O bridge 228 has one or more PCI family (PCI,
PCI-X, PCI-Express, or any future generation of PCI) links that is used to
connect other PCI family I/O bridges or a PCI family I/O adapter, such as
PCI family adapter 244 and PCI family adapter 245, through a PCI link,
such as link 232, 236, and 240. PCI family adapter 245 can also be used to
connect a network, such as network 264, through a link via either a switch
or router, such as switch or router 260. PCI family adapter 244 can be
used to connect direct attached storage, such as direct attached storage
252, through link 248. Processor I/O hierarchy 203 may be configured in a
manner similar to that shown and described with reference to processor I/0

hierarchy 200.

With reference now to Figure 3, a functional block diagram of a
small integrated host node is depicted in accordance with a preferred
embodiment of the present invention. Small integrated host node 302 is an
example of a host processor node, such as small integrated host node 144

shown in Figure 1.

In this example, small integrated host node 302 includes two
processor I/0 hierarchies 300 and 303, which are interconnected through
link 301. In the illustrative example, processor I/0 hierarchy 300
includes processor chip 304, which is representative of one or more
processors and associated caches. Processor chip 304 is connected to
memory 312 through link 308. One of the links on the processor chip, such
as link 330, connects to a PCI Family Adapter, such as PCI family adapter
345. Processor chip 304 has one or more PCI family (PCI, PCI-X, PCI-

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

Express, or any future generation of PCI) links that is used to connect
either PCI family I/O bridges or a PCI family I/O adapter, such as PCI
Family Adapter 344 and PCI Family Adapter 345 through a PCI link, such as
link 316, 330, and 324. PCI family adapter 345 can also be used to connect
with a network, such as network 364, through link 356 via either a switch
or router, such as switch or router 360. PCI family adapter 344 can be

used to connect with direct attached storage 352 through link 348.

Turning now to Figure 4, a functional block diagram of a large host
node is depicted in accordance with a preferred embodiment of the present
invention. Large host node 402 is an example of a host processor node,

such as large host node 124 shown in Figure 1.

In this example, large host node 402 includes two processor I/O
hierarchies 400 and 403 interconnected through link 401. In the
illustrative example of Figure 4, processor I/0O hierarchy 400 includes
processor chip 404, which is representative of one or more processors and
associated caches. Processor Chip 404 is connected to memory 412 through
link 408. One of the links, such as link 440, on the processor chip
connects to a PCI family I/O hub, such as PCI family I/O hub 441. The PCI
family I/0 hub uses a network 442 to attach to a PCI family I/O bridge
448. That is, PCI family I/O bridge 448 is connected to switch or router
436 through link 432 and switch or router 436 also attaches to PCI family
I/0 hub 441 through link 443. Network 442 allows the PCI family I/O hub
and PCI family I/O bridge to be placed in different packages. PCI family
I/0 bridge 448 has one or more PCI family (PCI, PCI-X, PCI-Express, or any
future generation of PCI) links that is used to connect with other PCI
family I/0 bridges or a PCI family I/O adapter, such as PCI family adapter
456 and PCI family adapter 457 through a PCI link, such as link 444, 446,
and 452. PCI family adapter 456 can be used to connect direct attached
storage 476 through link 460. PCI family adapter 457 can also be used to
connect with network 464 through link 468 via, for example, either a

switch or router 472.

Turning next to Figure 5, illustrations of the phases contained in a
PCI bus transaction 500 and a PCI-X bus transaction 520 are depicted in
accordance with a preferred embodiment of the present invention. PCI bus
transaction 500 depicts the conventional PCI bus transaction that forms
the unit of information which is transferred through a PCI fabric for

conventional PCI. PCI-X bus transaction 520 depicts the PCI-X bus

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

transaction that forms the unit of information which is transferred

through a PCI fabric for PCI-X.

PCI bus transaction 500 shows three phases: an address phase 508; a
data phase 512; and a turnaround cycle 516. Also depicted is the
arbitration for next transfer 504, which can occur simultaneously with the
address, data, and turnaround cycle phases. For PCI, the address contained
in the address phase is used to route a bus transaction from the adapter

to the host and from the host to the adapter.

PCI-X transaction 520 shows five phases: an address phase 528; an
attribute phase 532; a response phase 560; a data phase 564; and a
turnaround cycle 566. Also depicted is the arbitration for next transfer
524 which can occur simultaneously with the address, attribute, response,
data, and turnaround cycle phases. Similar to conventional PCI, PCI-X uses
the address contained in the address phase to route a bus transaction from
the adapter to the host and from the host to the adapter. However, PCI-X
adds the attribute phase 532 which contains three fields that define the
bus transaction requestor, namely: requestor bus number 544, requestor
device number 548, and requestor function number 552 (collectively
referred to herein as a BDF). The bus transaction also contains a Tag 540
that uniquely identifies the specific bus transaction in relation to other
bus transactions that are outstanding between the requestor and a
responder. The Byte Count 556 contains a count of the number of bytes

being sent.

Turning now to Figure 6, an illustration of the phases contained in
a PCI-Express bus transaction is depicted in accordance with a preferred
embodiment of the present invention. PCI-E bus transaction 600 forms the

unit of information which is transferred through a PCI fabric for PCI-E.

PCI-E bus transaction 600 shows six phases: frame phase 608;
sequence number 612; header 664; data phase 668; cyclical redundancy check
(CRC) 672; and frame phase 680. PCI-E header 664 contains a set of fields
defined in the PCI-Express specification. The requestor identifier (ID)
field 628 contains three fields that define the bus transaction requestor,
namely: requestor bus number 684, requestor device number 688, and
requestor function number 692. The PCI-E header also contains tag 652,
which uniquely identifies the specific bus transaction in relation to

other bus transactions that are outstanding between the requestor and a

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187

responder. The length field 644 contains a count of the number of bytes

being sent.

With reference now to Figure 7, a functional block diagram of a PCI
adapter, such as PCI family adapter 736, and the firmware and software
that run on host hardware (e.g. processor with possibly an I/O hub or I/O
bridge), such as host hardware 700, is depicted in accordance with a

preferred embodiment of the present invention.

Figure 7 also shows a logical partitioning (LPAR) manager 708
running on host hardware 700. LPAR manager 708 may be implemented as a
Hypervisor manufactured by International Business Machines, Inc. of
Armonk, New York. LPAR manager 708 can run in firmware, software, or a
combination of the two. LPAR manager 708 hosts two system image (SI)
partitions, such as system image 712 and system image 724 (illustratively
designated system image 1 and system image 2). The system image partitions
may be respective operating systems running in software, a special purpose
image running in software, such as a storage block server or storage file
server image, or a special purpose image running in firmware. Applications
can run on these system images, such as applications 716, 720, 728, and
732 (illustratively designated application 1A, application 2, application
1B and application 3). Applications 716 and 728 are representative of
separate instances of a common application program, and are thus
illustratively designated with respective references of “1A” and “1B”. 1In
the illustrative example, application 716 and 720 run on system image 712
and applications 728 and 732 run on system image 724. As referred to
herein, a virtual host comprises a system image, such as system image 712,
or the combination of a system image and applications running within the

system image. Thus, two virtual hosts are depicted in Figure 7.

PCI family adapter 736 contains a set of physical adapter
configuration resources 740 and physical adapter memory resources 744. The
physical adapter configuration resources 740 and physical adapter memory
resources 744 contain information describing the number of virtual
adapters that PCI family adapter 736 can support and the physical
resources allocated to each virtual adapter. As referred to herein, a
virtual adapter is an allocation of a subset of physical adapter
resources, such as a subset of physical adapter resources and physical
adapter memory, that is associated with a logical partition, such as
system image 712 and applications 716 and 720 running on system image 712.

LPAR manager 708 is provided a physical configuration resource interface

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
10

738, and physical memory configuration interface 742 to read and write
into the physical adapter configuration resource and memory spaces during
the adapter’s initial configuration and reconfiguration. Through the
physical configuration resource interface 738 and physical configuration
memory interface 742, LPAR manager 708 creates virtual adapters and
assigns physical resources to each virtual adapter. The LPAR manager 708
may use one of the system images, for example a special software or
firmware partition, as a hosting partition that uses physical
configuration resource interface 738 and physical configuration memory
interface 742 to perform a portion, or even all, of the virtual adapter

initial configuration and reconfiguration functions.

Figure 7 shows a configuration of PCI family adapter 736 configured
with two virtual adapters. A first virtual adapter (designated virtual
adapter 1) comprises virtual adapter resources 748 and virtual adapter
memory 752 that were assigned by LPAR manager 708 that is associated with
system image 712 (designated system image 1). Similarly, a second virtual
adapter (designated virtual adapter 2) comprises virtual adapter resources
756 and virtual adapter memory 760 that were assigned by LPAR manager 708
to virtual adapter 2 and is associated with another system image 724
(designated system image 2). For an adapter used to connect to a direct
attached storage, such as direct attached storage 108, 132, or 156 shown
in Figure 1, examples of virtual adapter resources may include: the list
of the associated physical disks, a list of the associated logical unit
numbers, and a list of the associated adapter functions (e.g., redundant
arrays of inexpensive disks (RAID) level). For an adapter used to connect
to a network, such as network 120 of Figure 1, examples of virtual adapter
resources may include: the list of the associated link level identifiers,
a list of the associated network level identifiers, a list of the
associated virtual fabric identifiers (e.g., virtual LAN IDs for Ethernet
fabrics, N-port IDs for Fibre Channel fabrics, and partition keys for
InfiniBand fabrics), and a list of the associated network layers functions

(e.g., network offload services).

After LPAR manager 708 configures the PCI family adapter 736, each
system image is allowed to only communicate with the virtual adapters that
were associated with that system image by LPAR manager 708. As shown in
Figure 7 (by solid lines), system image 712 is allowed to directly
communicate with virtual adapter resources 748 and virtual adapter memory
752 of virtual adapter 1. System image 712 is not allowed to directly

communicate with virtual adapter resources 756 and virtual adapter memory

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
11

760 of virtual adapter 2 as shown in Figure 7 by dashed lines. Similarly,
system image 724 is allowed to directly communicate with virtual adapter
resources 756 and virtual adapter memory 760 of virtual adapter 2, and is
not allowed to directly communicate with virtual adapter resources 748 and

virtual adapter memory 752 of virtual adapter 1.

With reference now to Figure 8, a depiction of a component, such as
a processor, I/O hub, or I/O bridge 800, inside a host node, such as small
host node 100, large host node 124, or small, integrated host node 144
shown in Figure 1, that attaches a PCI family adapter, such as PCI family
adapter 804, through a PCI-X or PCI-E link, such as PCI-X or PCI-E Link
808, in accordance with a preferred embodiment of the present invention is

shown.

Figure 8 shows that when a system image, such as system image 712 or
724, or LPAR manager 708, performs a PCI-X or PCI-E bus transaction, such
as host to adapter PCI-X or PCI-E bus transaction 812, the processor, I/O
hub, or I/0 bridge 800 that connects to the PCI-X or PCI-E link 808 which
issues the host to adapter PCI-X or PCI-E bus transaction 812 fills in the
bus number, device number, and function number fields in the PCI-X or PCI-
E bus transaction. The processor, I/O0 hub, or I/O bridge 800 has two
choices for how to fill in these three fields: it can either use the same
bus number, device number, and function number for all software components
that use the processor, I/0 hub, or I/0 bridge 800; or it can use a
different bus number, device number, and function number for each software
component that uses the processor, I/O hub, or I/O bridge 800. The
initiator of the transaction may be a software component, such as system
image 712 or system image 724 (or an application running on a system

image), or LPAR manager 708.

If the processor, I/O hub, or I/0 bridge 800 uses the same bus
number, device number, and function number for all transaction initiators,
then when a software component initiates a PCI-X or PCI-E bus transaction,
such as host to adapter PCI-X or PCI-E Bus Transaction 812, the processor,
I/0 hub, or I/O bridge 800 places the processor, I/O hub, or I/O bridge’s
bus number in the PCI-X or PCI-E bus transaction’s requestor bus number
field 820, such as requestor bus number 544 field of the PCI-X transaction
shown in Figure 5 or requestor bus number 684 field of the PCI-E
transaction shown in Figure 6. Similarly, the processor, I/0 hub, or I/O
bridge 800 places the processor, I/0O hub, or I/O bridge’s device number in

the PCI-X or PCI-E bus transaction’s requestor device number 824 field,

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
12

such as requestor device number 548 field shown in Figure 5 or requestor
device number 688 field shown in Figure 6. Finally, the processor, I/0
hub, or I/O bridge 800 places the processor, I/0 hub, or I/O bridge’s
function number in the PCI-X or PCI-E bus transaction’s requestor function
number 828 field, such as requestor function number 552 field shown in
Figure 5 or requestor function number 692 field shown in Figure 6. The
processor, I/0 hub, or I/O bridge 800 also places in the PCI-X or PCI-E
bus transaction the physical or virtual adapter memory address to which
the transaction is targeted as shown by adapter resource or address 816

field in Figure 8.

If the processor, I/0O hub, or I/0 bridge 800 uses a different bus
number, device number, and function number for each transaction initiator,
then the processor, I/0 hub, or I/0 bridge 800 assigns a bus number,
device number, and function number to the transaction initiator. When a
software component initiates a PCI-X or PCI-E bus transaction, such as
host to adapter PCI-X or PCI-E bus transaction 812, the processor, I/0
hub, or I/O bridge 800 places the software component’s bus number in the
PCI-X or PCI-E bus transaction’s requestor bus number 820 field, such as
requestor bus number 544 field shown in Figure 5 or requestor bus number
684 field shown in Figure 6. Similarly, the processor, I/O hub, or I/O
bridge 800 places the software component’s device number in the PCI-X or
PCI-E bus transaction’s requestor device number 824 field, such as
requestor device number 548 field shown in Figure 5 or requestor device
number 688 field shown in Figure 6. Finally, the processor, I/O hub, or
I/0 bridge 800 places the software component’s function number in the PCI-
X or PCI-E bus transaction’s requestor function number 828 field, such as
requestor function number 552 field shown in Figure 5 or requestor
function number 692 field shown in Figure 6. The processor, I/0 hub, or
I/0 bridge 800 also places in the PCI-X or PCI-E bus transaction the
physical or virtual adapter memory address to which the transaction is

targeted as shown by adapter resource or address field 816 in Figure 8.

Figure 8 also shows that when physical or virtual adapter 806
performs PCI-X or PCI-E bus transactions, such as adapter to host PCI-X or
PCI-E bus transaction 832, the PCI family adapter, such as physical family
adapter 804, that connects to PCI-X or PCI-E Link 808 which issues the
adapter to host PCI-X or PCI-E bus transaction 832 places the bus number,
device number, and function number associated with the physical or virtual
adapter that initiated the bus transaction in the requestor bus number,

device number, and function number 836, 840, and 844 fields. Notably, to

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
13

support more than one bus or device number, PCI family adapter 804 must
support one or more internal busses (For a PCI-X Adapter, see the PCI-X
Addendum to the PCI Local Bus Specification Revision 1.0 or 1.0a; for a
PCI-E Adapter see PCI-Express Base Specification Revision 1.0 or 1.0a the
details of which are herein incorporated by reference). To perform this
function, LPAR manager 708 associates each physical or virtual adapter to
a software component running by assigning a bus number, device number, and
function number to the physical or virtual adapter. When the physical or
virtual adapter initiates an adapter to host PCI-X or PCI-E bus
transaction, PCI family adapter 804 places the physical or virtual
adapter’s bus number in the PCI-X or PCI-E bus transaction’s requestor bus
number 836 field, such as requestor bus number 544 field shown in Figure 5
or requestor bus number 684 field shown in Figure 6 (shown in Figure 8 as
adapter bus number 836). Similarly, PCI family adapter 804 places the
physical or virtual adapter’s device number in the PCI-X or PCI-E bus
transaction’s requestor device number 840 field, such as requestor device
number 548 field shown in Figure 5 or requestor device number 688 field
shown in Figure 6 (shown in Figure 8 as adapter device number 840) .PCI
family adapter 804 places the physical or virtual adapter’s function
number in the PCI-X or PCI-E bus transaction’s requestor function number
844 field, such as requestor function number 552 field shown in Figure 5
or requestor function number 692 field shown in Figure 6 (shown in Figure
8 as adapter function number 844). Finally, PCI family adapter 804 also
places in the PCI-X or PCI-E bus transaction the memory address of the
software component that is associated, and targeted by, the physical or

virtual adapter in host resource or address 848 field.

With reference now to Figure 9, a functional block diagram of a PCI
adapter with two virtual adapters depicted in accordance with a preferred
embodiment of the present invention is shown. Exemplary PCI family adapter
900 is configured with two virtual adapters 916 and 920 (illustratively
designated virtual adapter 1 and virtual adapter 2). PCI family adapter
900 may contain one (or more) PCI family adapter ports (also referred to
herein as an upstream port), such as PCI-X or PCI-E adapter port 912. PCI
family adapter 900 may also contain one (or more) device or network ports
(also referred to herein as downstream ports), such as physical port 904

and physical port 908.

Figure 9 also shows the types of resources that can be virtualized
on a PCI adapter. The resources of PCI family adapter 900 that may be

virtualized include processing queues, address and configuration memory,

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
14

PCI ports, host memory management resources and device or network ports.
In the illustrative example, virtualized resources of PCI family adapter
900 allocated to virtual adapter 916 include, for example, processing
queues 924, address and configuration memory 928, PCI virtual port 936,
host memory management resources 984 (such as memory region registration
and memory window binding resources on InfiniBand or iWARP), and virtual
device or network ports, such as virtual external port 932 and virtual
external port 934 (more generally referred to as virtual ports).
Similarly, virtualized resources of PCI family adapter 900 allocated to
virtual adapter 920 include, for example, processing queues 940, address
and configuration memory 944, PCI virtual port 952, host memory management
resources 980, and virtual device or network ports, such as virtual

external port 948 and virtual external port 950.

Turning next to Figure 10, a functional block diagram of the access
control levels on a PCI family adapter, such as PCI family adapter 900
shown in Figure 9, is depicted in accordance with a preferred embodiment
of the present invention. The three levels of access are a super-
privileged physical resource allocation level 1000, a privileged virtual

resource allocation level 1008, and a non-privileged level, 1016.

The functions performed at the super-privileged physical resource
allocation level 1000 include but are not limited to: PCI family adapter
queries, creation, modification and deletion of virtual adapters,
submission and retrieval of work, reset and recovery of the physical
adapter, and allocation of physical resources to a virtual adapter
instance. The PCI family adapter queries are used to determine, for
example, the physical adapter type (e.g. Fibre Channel, Ethernet, iSCSI,
parallel SCSI), the functions supported on the physical adapter, and the
number of virtual adapters supported by the PCI family adapter. The LPAR
manager, such as LPAR manager 708 shown in Figure 7, performs the physical
adapter resource management 1004 functions associated with super-
privileged physical resource allocation level 1000. However, the LPAR
manager may use a system image, for example an I/O hosting partition, to

perform the physical adapter resource management 1004 functions.

The functions performed at the privileged virtual resource
allocation level 1008 include, for example, virtual adapter queries,
allocation and initialization of virtual adapter resources, reset and
recovery of virtual adapter resources, submission and retrieval of work

through virtual adapter resources, and, for virtual adapters that support

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
15

offload services, allocation and assignment of virtual adapter resources
to a middleware process or thread instance. The virtual adapter queries
are used to determine: the virtual adapter type (e.g. Fibre Channel,
Ethernet, iSCSI, parallel SCSI) and the functions supported on the virtual
adapter. A system image, such as system image 712 shown in Figure 7,
performs the privileged virtual adapter resource management 1012 functions

associated with virtual resource allocation level 1008.

Finally, the functions performed at the non-privileged level 1016
include, for example, query of virtual adapter resources that have been
assigned to software running at the non-privileged level 1016 and
submission and retrieval of work through virtual adapter resources that
have been assigned to software running at the non-privileged level 1016.
An application, such as application 716 shown in Figure 7, performs the
virtual adapter access library 1020 functions associated with non-

privileged level 1016.

Turning next to Figure 11, a functional block diagram of host memory
addresses that are made accessible to a PCI family adapter is depicted in
accordance with a preferred embodiment of the present invention. PCI
family adapter 1101 is an example of PCI family adapter 900 that may have

virtualized resources as described above in Figure 9.

Figure 11 depicts four different mechanisms by which a LPAR manager
708 can associate host memory to a system image and to a virtual adapter.
Once host memory has been associated with a system image and a virtual
adapter, the virtual adapter can then perform DMA write and read
operations directly to the host memory. System images 1108 and 1116 are
examples of system images, such as system images 712 and 724 described
above with reference to Figure 7, that are respectively associated with
virtual adapters 1104 and 1112. Virtual adapters 1104 and 1112 are
examples of virtual adapters, such as virtual adapters 916 and 920
described above with reference to Figure 9, that comprise respective

allocations of virtual adapter resources and virtual adapter memory.

The first exemplary mechanism that LPAR manager 708 can use to
associate and make available host memory to a system image and to one or
more virtual adapters is to write into the virtual adapter’s resources a
system image association list 1122. Virtual adapter resources 1120
contains a list of PCI bus addresses, where each PCI bus address in the

list is associated by the platform hardware to the starting address of a

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
16

system image (SI) page, such as SI 1 page 1 1128 through SI 1 page N 1136
allocated to system image 1108. Virtual adapter resources 1120 also
contains the page size, which is equal for all the pages in the list. At
initial configuration, and during reconfigurations, LPAR manager 708 loads
system image association list 1122 into virtual adapter resources 1120.
The system image association list 1122 defines the set of addresses that
virtual adapter 1104 can use in DMA write and read operations. After the
system image association list 1122 has been created, virtual adapter 1104
must validate that each DMA write or DMA read requested by system image
1108 is contained within a page in the system image association list 1122.
If the DMA write or DMA read requested by system image 1108 is contained
within a page in the system image association list 1122, then virtual
adapter 1104 may perform the operation. Otherwise virtual adapter 1104 is
prohibited from performing the operation. Alternatively, the PCI family
adapter 1101 may use a special, LPAR manager-style virtual adapter (rather
than virtual adapter 1104) to perform the check that determines if a DMA
write or DMA read requested by system image 1108 is contained within a
page in the system image association list 1122. In a similar manner,
virtual adapter 1112 associated with system image 1116 validates DMA write
or read requests submitted by system image 1116. Particularly, virtual
adapter 1112 provides validation for DMA read and write requests from
system image 1116 by determining whether the DMA write or read request is
in a page in system image association list (configured in a manner
similarly to system image association list 1122) associated with system

image pages of system image 1116.

The second mechanism that LPAR manager 708 can use to associate and
make available host memory to a system image and to one or more virtual
adapters is to write a starting page address and page size into system
image association list 1122 in the virtual adapter’s resources. For
example, virtual adapter resources 1120 may contain a single PCI bus
address that is associated by the platform hardware to the starting
address of a system image page, such as SI 1 Page 1 1128. System image
association list 1122 in virtual adapter resources 1120 also contains the
size of the page. At initial configuration, and during reconfigurations,
LPAR manager 708 loads the page size and starting page address into system
image association list 1122 into the virtual adapter resources 1120. The
system image association list 1122 defines the set of addresses that
virtual adapter 1104 can use in DMA write and read operations. After the
system image association list 1122 has been created, virtual adapter 1104

validates whether each DMA write or DMA read requested by system image

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
17

1108 is contained within a page in system image association list 1122. If
the DMA write or DMA read requested by system image 1108 is contained
within a page in the system image association list 1122, then virtual
adapter 1104 may perform the operation. Otherwise, virtual adapter 1104
is prohibited from performing the operation. Alternatively, the PCI family
adapter 1101 may use a special, LPAR manager-style virtual adapter (rather
than virtual adapter 1104) to perform the check that determines if a DMA
write or DMA read requested by system image 1108 is contained within a
page in the system image association list 1122. In a similar manner,
virtual adapter 1112 associated with system image 1116 may validate DMA
write or read requests submitted by system image 1116. Particularly, a
system image association list similar to system image association list
1122 may be associated with virtual adapter 1112. The system image
association list associated with virtual adapter 1112 is loaded with a
page size and starting page address of a system image page of system image
1116 associated with virtual adapter 1112. The system image association
list associated with virtual adapter 1112 thus provides a mechanism for
validation of DMA read and write requests from system image 1116 by
determining whether the DMA write or read request is in a page in a system
image association list associated with system image pages of system image
1116.

The third mechanism that LPAR manager 708 can use to associate and
make available host memory to a system image and to one or more virtual
adapters is to write into the virtual adapter’s resources a system image
buffer association list 1154. In Figure 11, virtual adapter resources 1150
contains a list of PCI bus address pairs (starting and ending address),
where each pair of PCI bus addresses in the list is associated by the
platform hardware to a pair (starting and ending) of addresses of a system
image buffer, such as SI 2 Buffer 1 1166 through SI 1 Buffer N 1180
allocated to system image 1116. At initial configuration, and during
reconfigurations, LPAR manager 708 loads system image buffer association
list 1154 into the virtual adapter resources 1150. The system image buffer
association list 1154 defines the set of addresses that virtual adapter
1112 can use in DMA write and read operations. After the system image
buffer association list 1154 has been created, virtual adapter 1112
validates whether each DMA write or DMA read requested by system image
1116 is contained within a buffer in system image buffer association list
1154. TIf the DMA write or DMA read requested by system image 1116 is
contained within a buffer in the system image buffer association list

1154, then virtual adapter 1112 may perform the operation. Otherwise,

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
18

virtual adapter 1112 is prohibited from performing the operation.
Alternatively, the PCI family adapter 1101 may use a special, LPAR
manager-style virtual adapter (rather than virtual adapter 1112) to
perform the check that determines if DMA write or DMA read operations
requested by system image 1116 is contained within a buffer in the system
image buffer association list 1154. In a similar manner, virtual adapter
1104 associated with system image 1108 may validate DMA write or read
requests submitted by system image 1108. Particularly, virtual adapter
1104 provides validation for DMA read and write requests from system image
1108 by determining whether the DMA write or read requested by system
image 1108 is contained within a buffer in a buffer association list that
contains PCI bus starting and ending address pairs in association with
system image buffer starting and ending address pairs of buffers allocated
to system image 1108 in a manner similar to that described above for

system image 1116 and virtual adapter 1112.

The fourth mechanism that LPAR manager 708 can use to associate and
make available host memory to a system image and to one or more virtual
adapters is to write into the virtual adapter’s resources a single
starting and ending address in system image buffer association list 1154.
In Figure 11, virtual adapter resources 1150 contains a single pair of PCI
bus starting and ending address that is associated by the platform
hardware to a pair (starting and ending) of addresses associated with a
system image buffer, such as SI 2 buffer 1 1166. At initial configuration,
and during reconfigurations, LPAR manager 708 loads the starting and
ending addresses of SI 2 buffer 1166 into the system image buffer
association list 1154 in virtual adapter resources 1150. The system image
buffer association list 1154 then defines the set of addresses that
virtual adapter 1112 can use in DMA write and read operations. After the
system image buffer association list 1154 has been created, virtual
adapter 1112 validates whether each DMA write or DMA read requested by
system image 1116 is contained within the system image buffer association
list 1154. If the DMA write or DMA read requested by system image 1116 is
contained within system image buffer association list 1154, then virtual
adapter 1112 may perform the operation. Otherwise, virtual adapter 1112
is prohibited from performing the operation. Alternatively, the PCI family
adapter 1101 may use a special, LPAR manager-style virtual adapter (rather
than virtual adapter 1150) to perform the check that determines if DMA
write or DMA read requested by system image 1116 is contained within a
page system image buffer association list 1154. In a similar manner,

virtual adapter 1104 associated with system image 1108 may validate DMA

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
19

write or read requests submitted by system image 1108. Particularly,
virtual adapter 1104 provides validation for DMA read and write requests
from system image 1108 by determining whether the DMA write or read
requested by system image 1108 is contained within a buffer in a buffer
association list that contains a single PCI bus starting and ending
address in association with a system image buffer starting and ending
address allocated to system image 1108 in a manner similar to that

described above for system image 1116 and virtual adapter 1112.

Turning next to Figure 12, a functional block diagram of a PCI
family adapter configured with memory addresses that are made accessible
to a system image is depicted in accordance with a preferred embodiment of

the present invention.

Figure 12 depicts four different mechanisms by which a LPAR manager
can associate PCI family adapter memory to a virtual adapter, such as
virtual adapter 1204, and to a system image, such as system image 1208.
Once PCI family adapter memory has been associated to a system image and a
virtual adapter, the system image can then perform Memory Mapped I/0 write
and read (i.e., store and load) operations directly to the PCI family

adapter memory.

A notable difference between the system image and virtual adapter
configuration shown in Figures 11 and Figure 12 exists. In the
configuration shown in Figure 11, PCI family adapter 1101 only holds a
list of host addresses that do not have any local memory associated with
them. If the PCI family adapter supports flow-through traffic, then data
arriving on an external port can directly flow through the PCI family
adapter and be transferred, through DMA writes, directly into these host
addresses. Similarly, if the PCI family adapter supports flow-through
traffic, then data from these host addresses can directly flow through the
PCI family adapter and be transferred out of an external port.
Accordingly, PCI family adapter 1101 shown in Figure 11 does not include
local adapter memory and thus is unable to initiate a DMA operation. On
the other hand, PCI family adapter 1201 shown in Figure 12 has local
adapter memory that is associated with the list of host memory addresses.
PCI family adapter 1201 can initiate, for example, DMA writes from its
local memory to the host memory or DMA reads from the host memory to its
local memory. Similarly, the host can initiate, for example, Memory

Mapped I/0 writes from its local memory to the PCI family adapter memory

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
20

or Memory Mapped I/0O reads from the PCI family adapter memory to the

host’s local memory.

The first and second mechanisms that LPAR manager 708 can use to
associate and make available PCI family adapter memory to a system image
and to a virtual adapter is to write into the PCI family adapter’s
physical adapter memory translation table 1290 a page size and the
starting address of one (first mechanism) or more (second mechanism)
pages. In this case all pages have the same size. For example, Figure 12
depicts a set of pages that have been mapped between the system image 1208
and virtual adapter 1204. Particularly, SI 1 Page 1 1224 through SI 1
Page N 1242 of system image 1208 are mapped (illustratively shown by
interconnected arrows) to virtual adapter memory pages 1224-1232 of
physical adapter 1201 local memory. For system image 1208, all pages 1224-
1242 in the list have the same size. At initial configuration, and during
reconfigurations, LPAR manager 708 loads the PCI family adapter’s physical
adapter memory translation table 1290 with the page size and the starting
address of one or more pages. The physical adapter memory translation
table 1290 then defines the set of addresses that virtual adapter 1204 can
use in DMA write and read operations. After physical adapter memory
translation table 1290 has been created, PCI family adapter 1201 (or
virtual adapter 1204) validates that each DMA write or DMA read requested
by system image 1208 is contained in the physical adapter memory
translation table 1290 and is associated with virtual adapter 1204. If
the DMA write or DMA read requested by system image 1208 is contained in
the physical adapter memory translation table 1290 and is associated with
virtual adapter 1204, then virtual adapter 1204 may perform the operation.
Otherwise, virtual adapter 1204 is prohibited from performing the
operation. The physical adapter memory translation table 1290 also defines
the set of addresses that system image 1208 can use in Memory Mapped I/O
(MMIO) write and read operations. After physical adapter memory
translation table 1290 has been created, PCI family adapter 1201 (or
virtual adapter 1204) validates whether the Memory Mapped I/O write or
read requested by system image 1208 is contained in the physical adapter
memory translation table 1290 and is associated with virtual adapter 1204.
If the MMIO write or MMIO read requested by system image 1208 is contained
in the physical adapter memory translation table 1290 associated with
virtual adapter 1204, then virtual adapter 1204 may perform the operation.
Otherwise virtual adapter 1204 is prohibited from performing the
operation. It should be understood that other system images and associated

virtual adapters, e.g., system image 1216 and virtual adapter 1212, are

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
21

configured in a similar manner for PCI family adapter 1201 (or virtual
adapter 1212) validation of DMA operations and MMIO operations requested
by system image 1216.

The third and fourth mechanisms that LPAR manager 708 can use to
associate and make available PCI family adapter memory to a system image
and to a virtual adapter is to write into the PCI family adapter’s
physical adapter memory translation table 1290 one (third mechanism) or
more (fourth mechanism) buffer starting and ending addresses (or starting
address and length). In this case, the buffers may have different sizes.
For example, Figure 12 depicts a set of varying sized buffers that have
been mapped between system image 1216 and virtual adapter 1212.
Particularly, SI 2 Buffer 1 1244 through SI 2 Buffer N 1248 of system
image 1216 are mapped to virtual adapter buffers 1258-1274 of virtual
adapter 1212. For system image 1216, the buffers in the list have
different sizes. At initial configuration, and during reconfigurations,
LPAR manager 708 loads the PCI family adapter’s physical adapter memory
translation table 1290 with the starting and ending address (or starting
address and length) of one or more pages. The physical adapter memory
translation table 1290 then defines the set of addresses that virtual
adapter 1212 can use in DMA write and read operations. After physical
adapter memory translation table 1290 has been created, PCI family adapter
1201 (or virtual adapter 1212) validates that each DMA write or DMA read
requested by system image 1216 is contained in the physical adapter memory
translation table 1290 and is associated with virtual adapter 1212. If
the DMA write or DMA read requested by system image 1216 is contained in
the physical adapter memory translation table 1290 and is associated with
virtual adapter 1212, then virtual adapter 1212 may perform the operation.
Otherwise, virtual adapter 1212 is prohibited from performing the
operation. The physical adapter memory translation table 1290 also defines
the set of addresses that system image 1216 can use in Memory Mapped I/O
(MMIO) write and read operations. After physical adapter memory
translation table 1290 has been created, PCI family adapter 1201 (or
virtual adapter 1212) validates whether a MMIO write or read requested by
system image 1216 is contained in the physical adapter memory translation
table 1290 and is associated with virtual adapter 1212. If the MMIO write
or MMIO read requested by system image 1216 is contained in the physical
adapter memory translation table 1290 and is associated with virtual
adapter 1212, then virtual adapter 1212 may perform the operation.
Otherwise virtual adapter 1212 is prohibited from performing the

operation. It should be understood that other system images and associated

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
22

virtual adapters, e.g., system image 1208 and associated virtual adapter
1204, are configured in a similar manner for PCI family adapter 1201 (or
virtual adapter 1204) validation of DMA operations and MMIO operations

requested by system image 1216.

With reference next to Figure 13, a functional block diagram of a
PCI family adapter and a physical address memory translation table, such
as a buffer table or a page table, is depicted in accordance with a

preferred embodiment of the present invention.

Figure 13 also depicts four mechanisms for how an address referenced
in an incoming PCI bus transaction 1304 can be used to look up the virtual
adapter resources (including the local PCI family adapter memory address
that has been mapped to the host address), such as virtual adapter
resources 1398 or virtual adapter 1394 resources, associated with the

memory address.

The first mechanism is to compare the memory address of incoming PCI
bus transaction 1304 with each row of high address 1316 and low address
1320 in buffer table 1390. If incoming PCI bus transaction 1304 has an
address that is lower than the contents of high address 1316 cell and that
is higher than the contents of low address 1320 cell, then incoming PCI
bus transaction 1304 is within the high address and low address cells that
are associated with the corresponding virtual adapter. In such a
scenario, the incoming PCI bus transaction 1304 is allowed to be performed
on the matching virtual adapter. Alternatively, if incoming PCI bus
transaction 1304 has an address that is not between the contents of high
address 1316 cell and the contents of low address 1320 cell, then
completion or processing of incoming PCI bus transaction 1304 is
prohibited. The second mechanism is to simply allow a single entry in

buffer table 1390 per virtual adapter.

The third mechanism is to compare the memory address of incoming PCI
bus transaction 1304 with each row of page starting address 1322 and with
each row of page starting Address 1322 plus the page size in the page
table 1392. If incoming PCI bus transaction 1304 has an address that is
higher than or equal to the contents of page starting address 1322 cell
and lower than page starting address 1322 cell plus the page size, then
incoming PCI bus transaction 1304 is within a page that is associated with
a virtual adapter. Accordingly, incoming PCI bus transaction 1304 is

allowed to be performed on the matching virtual adapter. Alternatively,

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
23

if incoming PCI bus transaction 1304 has an address that is not within the
contents of page starting address 1322 cell and page starting address 1322
cell plus the page size, then completion of incoming PCI bus transaction

1304 is prohibited. The fourth mechanism is to simply allow a single entry

in page table 1392 per virtual adapter.

With reference next to Figure 14, a functional block diagram of a
PCI family adapter and a physical address memory translation table, such
as a buffer table, a page table, or an indirect local address table, is
depicted in accordance with a preferred embodiment of the present

invention.

Figure 14 also depicts several mechanisms for how a requestor bus
number, such as host bus number 1408, a requestor device number, such as
host device number 1412, and a requestor function number, such as host
function number 1416, referenced in incoming PCI bus transaction 1404 can
be used to index into either buffer table 1498, page table 1494, or
indirect local address table 1464. Buffer table 1498 is representative of
buffer table 1390 shown in Figure 13. Page table 1490 is representative of
page table 1392 shown in Figure 13. Local address table 1464 contains a
local PCI family adapter memory address that references either a buffer
table, such as buffer table 1438, or a page table, such as page table
1434, that only contains host memory addresses that are mapped to the same

virtual adapter.

The requestor bus number, such as host bus number 1408, requestor
device number, such as host device number 1412, and requestor function
number, such as host function number 1416, referenced in incoming PCI bus
transaction 1404 provides an additional check beyond the memory address

mappings that were set up by a host LPAR manager.

Turning next to Figure 15, a virtual adapter level management
approach is depicted in accordance with a preferred embodiment of the
present invention. Under this approach, a physical or virtual host creates
one or more virtual adapters, such as virtual adapter 1514, that each
contain a set of resources within the scope of the physical adapter, such
as PCI adapter 1532. Each virtual adapter is associated with a host side
system image. A virtual adapter comprises a collection of resources
(either virtualized or partitioned) of the physical adapter. By defining
a virtual adapter entity, all virtual resources associated with a system

image can be collectively manipulated by directing an action to the

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
24

corresponding virtual adapter. For example, a virtual adapter (and all
included virtual resources) can be created, destroyed, or modified by
performing a function targeting the corresponding virtual adapter.
Additionally, the virtual adapter management approach allows all resources
of a virtual adapter to be identified with a single identifier, e.g., a
bus, device, and function number, that is associated with the virtual
adapter. The set of resources associated with virtual adapter 1514 may
include, for example: processing queues and associated resources 1504,
adapter PCI port 1528 for one or more of adapter PCI port 1528 included on
PCI physical adapter 1532, a PCI virtual port 1506 that is associated with
one of the possible addresses on the adapter PCI port 1528, one or more
downstream physical ports 1518 and 1522 for each downstream physical port,
a downstream virtual port 1508 and 1510 that is associated with one of the
possible addresses on physical port 1518 and 1522, and one or more address
translation and protection tables (ATPTs) 1512. A virtual port, as
referred to herein, comprises a software entity that facilitates receiving
and sending of data from and to one or more resources of an input/output
adapter. A virtual port is associated with, or mapped to, a port that is
deployed on the input/output adapter. For example, a virtual port may be
associated with an adapter PCI port with which the input/output adapter
interfaces with a host or a physical port on the adapter that interfaces
with a peripheral or network. A virtual port has an associated
identifier, such as an address, index, or another suitable identifier for
referencing the virtual adapter. A single port, such as a PCI port or a
physical port on an input/output adapter, may have multiple virtual ports
associated therewith. Additionally, a virtual port is preferably
configured to exhibit one or more characteristics of a physical port to

which it is mapped.

Turning next to Figure 16, a flowchart of a virtual adapter resource
modification routine for modifying attributes of resources associated with
a virtual adapter in a data processing system that uses the virtual
adapter management approach described in Figure 15 is depicted in

accordance with a preferred embodiment of the present invention.

The virtual adapter resource modification routine begins by
invocation of a request to modify the attributes of an existing virtual
adapter (step 1700). The request to modify the attributes of a virtual
adapter may be invoked by, for example, a user management interface or an
automated script/workflow. Table A contains examples of various virtual

adapter attributes that may subjected to a modification request.

Number of the
Host that is
associated
with the
Virtual
Adapter

WO 2006/089913 PCT/EP2006/060187
25
TABLE A
Attribute Type Description
New Downstream | Optional The requested downstream network ID:
Virtual ID - For Fibre Channel, N-port ID;
- For Ethernet, MAC Address;
- For Ethernet VLAN, VLAN ID;
- For IP, IP Address;
- For SCSI host; Initiator ID;
- For SCSI target; Target ID.
Existing Optional Use to modify the attributes of an
Adapter existing processing queue, such as
Processing one or more of the following:
Queue (s) - Number of work queue elements,
- Number of scatter and/or gather
elements per work queue element
- The state of processing queue
Additional Optional The requested: number of additional
Adapter processing queues, the number of
Processing queue elements for each queue, and
Queue (s) the number of scatter gather elements
per work queue element. The types of
processing queues requested may one
or more of the following:
- One or more Send/Receive Queue
Pairs; zero, one or more Shared
Receive Queues; one or more
Completion Queues; and one or more
Asynchronous Event Queues.
- An IO Transaction Queue (that
contains Command and Response
elements in a single Queue); zero,
one or more Completion Queues; and
zero, one or more Asynchronous Event
Queues.
- A combination of these two types.
New Optional Only used for PCI-X and PCI-E
Bus/Dev/Func adapters. The requested PCI Bus
Number for Number, Device Number, and Function
Virtual Number (Bus/Dev/Func #).
Adapter
New Host Optional A page or buffer list of host memory
address list addresses associated with the virtual
adapter.
New Optional Only used for PCI-X and PCI-E
Bus/Dev/Func adapters. The PCI Bus Number, Device

Number, and Function Number
(Bus/Dev/Func #) that are assigned to
the Host, where the Host may be a
Physical Host, a Partitioned Host, or
a Virtual Host.

10

15

20

25

30

WO 2006/089913 PCT/EP2006/060187

26

New size of Optional The requested new number of Memory
Verb Memory Translation and Protection Table
Translation entries that are to be assigned to
and Protection the Virtual Adapter. This table is
Table used for accesses through Memory

Regions and Memory Windows.
New size of Optional The requested new number of Host
Host Address Address Translation and Protection
Translation Table entries that are to be assigned
and Protection to the Virtual Adapter. This table is
Table used to validate MMIOs and/or DMAs.
New MSI Level Optional For an adapter capable of supporting
for the message signaled interrupts (MSI),
Virtual the requested new message signaled
Adapter interrupt level (s).
Virtual Optional An TIdentifier requested for the newly
Adapter ID created Virtual Adapter.

The LPAR manager directly, or through another suitable intermediary,
uses the physical adapter’s memory management interface (i.e. the memory
mapped I/0 addresses that are used for virtual adapter configuration
management) to request that the physical adapter modify the attributes of

an existing virtual adapter (step 1708).

The physical adapter checks to see if the number of resources
requested for the modified virtual adapter exceeds the resources available
(step 1724). If the physical adapter does not have sufficient resources to
complete the modify request, then it generates an error with a termination
code that states it had insufficient resources (step 1725) and the virtual

adapter resource modification routine exits (step 1736).

Alternatively, the LPAR manager, rather than the physical adapter,
may check to determine if the physical adapter has sufficient resources to
modify the virtual adapter resources prior to requesting the physical

adapter to modify the virtual adapter resources.

Returning again to step 1724, if the physical adapter does have
sufficient resources to complete the request, then it checks to see if the
request is a request to modify resources that are currently busy (step
1726). If the request doesn’t impact currently busy resources, then the
physical adapter proceeds to modify resource attributes of the virtual
adapter (step 1732). If it is determined that the request does impact
busy resources at step 1726, then the PCI physical adapter initiates a
timer to wait for a quiescent point to be reached (step 1728), that is a

point where there are no more operations that utilize the resource

WO 2006/089913 PCT/EP2006/060187
27

targeted by the virtual adapter resource modification request outstanding

on the downstream and upstream interfaces.

The physical adapter then evaluates whether the quiescent point has
been reached prior to the timeout (step 1730). If the physical adapter
reaches a quiescent point before the timer times out, then it proceeds to
modify the attribute of the virtual adapter according to step 1732.
Otherwise, the virtual adapter resource modification routine generates an
error indicating that the physical adapter was busy and is unable to
complete the request (step 1731), and the routine proceeds to exit

according to step 1736.

When the physical adapter modifies the attributes of the existing
virtual adapter and completes the request, the physical adapter generates
a return message that is conveyed to the LPAR manager (step 1734). TABLE B
shows exemplary attribute information that may be conveyed to the LPAR

manager upon successful modification of virtual adapter resource

attributes.
TABLE B

Attribute Type Description
Downstream Required The assigned downstream network ID:
Virtual ID - For Fibre Channel, N-port ID;

- For Ethernet, MAC Address;

- For Ethernet VLAN, VLAN ID;

- For IP, IP Address:;

- For SCSI host; Initiator ID;

- For SCSI target; Target ID.
Adapter Required The assigned number of processing
Processing queues and the assigned number of
Queue (s) queue elements for each queue. The

types of processing queues requested
may one or more of the following:

- One or more Send/Receive Queue
Pairs; zero, one or more Shared
Receive Queues; one or more
Completion Queues; and one or more
Asynchronous Event Queues.

- An IO Transaction Queue (that
contains Command and Response
elements in a single Queue); zero,
one or more Completion Queues; and
zero, one or more Asynchronous Event
Queues.

- A combination of these two types.

WO 2006/089913

PCT/EP2006/060187

28

Bus/Dev/Func Required Only used for PCI-X and PCI-E
Number for if Adapter | adapters. The assigned PCI Bus
Virtual supports Number, Device Number, and Function
Adapter Virt. Number (Bus/Dev/Func #).

Approach 1
Verb Memory Required The number of Memory Translation and
Translation if Adapter | Protection Table entries that were
and Protection supports assigned to the Virtual Adapter.
Table Entries Network

Stack

Offload
Host Address Required The number of Host Address
Translation if Adapter | Translation and Protection Table
and Protection supports entries that were assigned to the
Table Entries Virt. Virtual Adapter.

Approach 2

or 3
MSI Level for Required For an adapter capable of supporting
the Virtual if adapter | message signaled interrupts (MSI),
Adapter supports the assigned message signaled

MST interrupt level(s).
Virtual Optional An Identifier assigned for the newly
Adapter ID created Virtual Adapter.

Upon conveying the return message to the LPAR manager,

adapter resource modification routine exits according to step 1736.

the virtual

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
29

CLAIMS

1. A method of modifying resources in a logically partitioned data

processing system, the method comprising the steps of:

invoking a request to modify resources associated with a virtual
adapter allocated on a physical adapter, wherein the resources comprise a
subset of physical adapter resources;

conveying the request to the physical adapter; and

responsive to receipt of the request by the physical adapter,
modifying the resources allocated to the virtual adapter on the physical

adapter.

2. The method of claim 1, wherein the step of invoking is performed by
a user management interface that interfaces with a logical partitioning

manager.

3. The method of claim 1, wherein the step of conveying further

includes:

requesting, by a logical partitioning manager interfacing with the
physical adapter, the physical adapter to modify the resources of the
virtual adapter through a memory management interface of the physical

adapter.

4, The method of claim 1, wherein the physical adapter comprises a

peripheral component interconnect family adapter.

5. The method of claim 1, further comprising:

evaluating whether the existing resources associated with the

virtual adapter are sufficient to satisfy the request.
6. The method of claim 5, further comprising:

responsive to determining that the resources associated with the
virtual adapter are containable within existing resources, initiating a

timer.

7. The method of claim 6, further comprising:

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
30

evaluating whether a quiescent point is reached prior to the timer

timing out.

8. The method of claim 7, wherein modifying the resources is performed

responsive to the quiescent point being reached.

9. The method of claim 1, further comprising:

conveying a return message to a logical partitioning manager that

indicates attributes of virtual adapter resources that have been modified.

10. The method of claim 1, wherein the virtual adapter has an associated
identifier comprising a bus number, device number, and function number,
and the request specifies the virtual adapter by referencing the

identifier.

11. A computer program product for modifying resources in a logically
partitioned data processing system, the computer program product

comprising:
first instructions that invoke a request to modify resources
associated with a virtual adapter allocated on a physical adapter, wherein

the resources comprise a subset of physical adapter resources;

second instructions that convey the request to the physical adapter;

and

third instructions that, responsive to receipt of the request by the
physical adapter, modify the resources allocated to the virtual adapter on
the physical adapter.

12. The computer program product of claim 11, further comprising:

fourth instructions that invoke the request by a user management

interface that interfaces with a logical partitioning manager.

13. The computer program product of claim 11, further comprising:

fourth instructions that evaluate whether the resources associated

with the virtual adapter are containable within existing resources.

10

15

20

25

30

35

40

WO 2006/089913 PCT/EP2006/060187
31

14. The computer program product of claim 13, further comprising:

fifth instructions that, responsive to the fourth instructions
determining that the resources associated with the virtual adapter are

containable within existing resources, initiate a timer.

15. The computer program product of claim 14, further comprising:

sixth instructions that evaluate whether a quiescent point is

reached prior to the timer timing out.

16. The computer program product of claim 15, wherein the third
instructions modify the resources responsive to the sixth instructions
determining that the quiescent point has been reached prior to the timer

timing out.

17. The computer program product of claim 11, further comprising:

fourth instructions that convey a return message to a logical
partitioning manager that indicates attributes of the resources that have

been modified.

18. The computer program product of claim 11, wherein the virtual adapter
has an associated identifier comprising a bus number, device number, and
function number, and the request specifies the virtual adapter by

referencing the identifier.

19. A logically partitioned data processing system adapted to modify

virtual adapter resources, comprising:

a physical adapter having a plurality of allocated virtual adapters,
wherein each virtual adapter has a respective subset of resources of the

physical adapter allocated thereto;

a memory that contains a plurality of system images each

respectively associated with a one of the plurality of virtual adapters;

a store containing a logical partitioning manager as a set of

instructions; and

10

15

20

WO 2006/089913 PCT/EP2006/060187

32

a processor that, responsive to execution of the instructions,

generates

a request to modify a subset of resources allocated to a virtual

adapter of the plurality of virtual adapters and that conveys the request

to the physical adapter, wherein the physical adapter modifies the subset

of resources allocated to the virtual adapter responsive to receipt of the

request.

20. The data processing system of claim 19, wherein the store comprises a

system firmware.

21. The
comprises
22. The

conveys a

subset of

23. The

data processing system of claim 19, wherein the physical adapter

a peripheral component interconnect family adapter.
data processing system of claim 19, wherein the physical adapter
return message to the store that specifies attributes of the

resources that have been modified.

data processing system of claim 19, wherein the virtual adapter

has an associated identifier comprising a bus number, device number, and

function number, and the request specifies the virtual adapter by

referencing the identifier.

WO 2006/089913

FIG. 1 iz
00 SMALL LARGE
HOST HOST

e 1O>4-IN83E’_1{12 12}8-IN8§E|;|{36

124

DIRECT
ATTACHED
STORAGE

DIRECT
ATTACHED
STORAGE

108 132

PCT/EP2006/060187

SMALL,
INTEGRATED | 144

148 HOST 152

>‘| NODE ’_4

DIRECT
ATTACHED
STORAGE

156

120

116
NETWORK

20\3 SMALL HOST NODE
PROCESSOR I/0 HIERARCHY
_~201
2(@ PROCESSOR CHIP
MEMORY (WITH PROCESSOR(S)
AND CACHE)

21/2 2161 220 2\07 N224

9281 PCI FAMILY I/0 BRIDGE

FIG. 2
264

NETWORK

2321 236~ |\240
PROCESSOR
PCI FAMILY
I/0 HIERARCHY ADAPTER 2
200 N

PCIFAMILY | 249

N
256

DIRECT

944--] ADAPTER 1

ATTACHED
STORAGE

248 2z

WO 2006/089913

PCT/EP2006/060187

2/12
SMALL INTEGRATED HOST NODE FIG. 3
PROCESSOR I/0 HIERARCHY 302 364
303~ 301
3(@ PROCESSOR CHIP
MEMORY (WITH PROCESSOR(S)
304" AND CACHE)
/ Ve <
312 10 3?:()1 FAMILY |\324
PROCESSOR 1/0
HIERARCHY ADAPTER N_345
300 FeciFamiLy A%AR\EE'TED
ADAPTER
3441 s | STORAGE | -352
FIG. 5
PCI 500
ADDRESS TURNAROUND
PHASE DATA PHASE CYCLE
/ / 504 N
508 512 J 516
ARBITRATION FOR NEXT TRANSFER
53\6 54\0 54\4 PCI-X 520 5/48 5/52 5/56
REQUESTOR | REQUESTOR | REQUESTOR BYTE
MISC TAG BUS DEVICE FUNCTION COUNT
NUMBER | NUMBER | NUMBER
ADDRESS | ATTRIBUTE | RESPONSE TURNAROUND
PHASE PHASE PHASE DATA PHASE CYCLE
/ / / N 524 \
528 532 560 264) 566

ARBITRATION FOR NEXT TRANSFER

WO 2006/089913 PCT/EP2006/060187

402 3/12

\‘ FIG. 4
4(&1 LARGE HOST NODE :‘/03
412 PROCESSOR /0 PROCESSOR 213
C 408 HIERARCHY /O HERARCHY 409 °)
MEMORY PROCESSOR CHIP PROCESSOR CHIP MEMORY
J4 N 251 / F\
41671 440-7| 404 405 | ~418 415
441 PCI FAMILY /0 HUB NON-PCI /0 HUB |_41g
442 443 496" 492

SWITCH SWITCH
NETWORK OR OR NETWORK
ROUTER ROUTER

432 433~ 498 [™-490
PCI FAMILY NON-PCI TO PCI
448" /0 BRIDGE /0 BRIDGE ™-488
446 452f| |\482 ™\-484
444~ | PCIFAMILY PCIFAMILY | 486
ADAPTER ADAPTER
N /
PCI FAMILY 456 480 PCI FAMILY
457" ADAPTER ADAPTER [-474
468 N
473 478
460"

DIRECT
ATTACHED

STORAGE | 476

NETWORK

464

WO 2006/089913

PCT/EP2006/060187

FIG. 6 4/12
684~ | REQUESTOR [REQUESTOR [REQUESTOR | _ o,
~N BUS DEVICE FUNCTION P~ PCI-E
NUMBER NUMBER NUMBER
- -~ 600
< S - oL
620 624 >~_ 628 688 632 636
NN S~ N i / /
FORMAT | TYPE | REQUESTOR ID | RESERVED | TRAFFIC CLASS
6401 ADDRESS/ROUTING
644| LENGTH | ATTRIBUTE TAG RESERVED | BYTE ENABLES N\ gan
TS~ / / N "
~~_ 648 652 656 _———

FRAME |SEQUENCE NUMBER| HEADER | DATAPHASE| CRC | FRAME
/ / / N N N
608 612 664 668 672 680

820 824 828
\ \ /
HOST HOST
HNOUSI\;BBEURS DEVICE FUNCTION
NUMBER NUMBER
g16—~| ADAPTER RESOURCE OR ADDRESS TARGET
\\\\\\\\\\\\\\\\\\ o) FIG. 8
HOST TO ADAPTER PCI-X OR
800] PCI FAMILY
\ /PEI E BUS TRAN\S\AC\TION OAPTER
PROCESSOR. |- ——— "~]] ~=~~.l [PHYSICAL
/O HUB, OR PCI-X OR P\C' ELINK OR VIRTUAL
/O BRIDGE [*—__ __—-1 | ADAPTER
~—~__ 808 __-—- N
ADAPTER TO HOST PCI-X OR 806
PCI-E BUS TRANSACTION \
T 8\0 S~ 832 804
ADAPTER ADAPTER ADAPTER
A BUS DEVICE FUNCTION .
836 NUMBER NUMBER NUMBER 844
g4g—-| HOST RESOURCE OR ADDRESS TARGET

WO 2006/089913

PCT/EP2006/060187

5/12
\
716 720 MEMORY 728 732
N \ / /
APPLICATION | | APPLICATION APPLICATION | | APPLICATION
1A 2 1B 3

SYSTEM IMAGE 1

SYSTEM IMAGE 2

/ A AL A A f I W \
72| || LPAR MANAGER 708 | i 54
TTT 14T pLatrorm ::
| | HARDWARE [~700 | |
| | ||
: : |
738~ T P it Y 7
| r I |
| | I
Y : i i
|
FA’\%\;\SPI%% | VIRTUAL | VIRTUAL
CONFIGURATION | ! ADAPTER T | 74 | ADAPTER 2
RESOURCES | | RESOURCES | RESOURCES
/ : / Y | N
740 | 748 PHYSICAL : 756
| ADAPTER |
| 744~"| CONFIGURATION |
| MEMORY I
|
' | TLAL i PCI FAMILY
I » ADAPTER1 |=-— ADAPTER
: 752~ MEMORY
| VIRTUAL 736
b ——— » ADAPTER2 |« —=
760~"1 MEMORY

PCT/EP2006/060187

WO 2006/089913

6/12

806 06
\ /
2 1H0d | 1HOd
VOISAHd WOISAHd
\\\ ///I// \\\\\\ ///
ON@ \\ - \f\//// /r @ _‘m
\ | 1H0d eldod | | zu1dod | 1H0d /
WNHILA WNHIDA WNHILXT WNHILA
$304N0S3Y / N / N $304N0S3Y
@3LvIo0oSsSY 066 816 1494 ¢c6 @3aLvIo0SSY
aNy S3nano aNv S3NIND
DNISSID0Hd DNISSID0Hd
06 2 HA1dvay TYNLHIA | 431dVaV TYNLHIA 26
— ——
086 4'40) 8¢6 786

I e > ‘ :

S30HN0SAH S304N0STY k k ﬁ a

ININIOYNYIN | 266 zo_ww_mﬁﬁm_%_oo zo_%_m_ﬁm_%_oo 9g6 | ININIDYNYI
AHONIN N | anv ss3€aay aNV SS3Haqy | —L AHONIN
1SOH 140d 1H0d 1SOH
10d 10d
T~ N\E " Y3Ldvay ATIAYA 10d
1H0d 3-19d
HO X-19d X

6 DIH

006

WO 2006/089913

PCT/EP2006/060187

7/12
‘/1016
NON-PRIVILEGED VIRTUALADAPTER |-1020
LEVEL ACCESS LIBRARY
1008
PRIVILEGED VIRTUAL VRTUALADAPTER |-1012 |+
FIG. 10 RESOURCE RESOURCE MANAGEMENT
ALLOCATION LEVEL
PRISCAL RESOURCE | o OSO Averen],
ALLOCATION LEVEL M\
1000
1100
1128~
SYSTEM | SI1PAGET H02¥Y|\7IEC|\¢|\CL)RY
IMAGE 1 TRANSLATION TABLE
1108 1136 1190
> SI1PAGEN PAR HOST
MANAGER | MEMORY
11661 S| 2BUFFER1 [« 708 1re
SYSTEM]
IMAGE 2 > 1158
1116
11801 S 2BUFFERN [«
1112~
VIRTUAL . VIRTUAL
ADAPTER 1 | | PCI FAMILY . | ADAPTER?2
RESOURCES ADAPTER RESOURCES
1120 1101 1150
1122 1104 1154
VIRTUAL ADAPTER 1 VIRTUAL ADAPTER 2

PCT/EP2006/060187

WO 2006/089913

8/12

X4 SN .
R . NOILVTISNVH1 Zlecl
> . AHOW3W H31dvdv Z Y3ldvay
TVIISAHd IVNLHIA
5T »| | 4344ng 2 YA 0671
Hozt 8521~ e
y3ldvay
ATIAVA 12d NIDVd L VA | L
YA . y0C!
: | 43ldvay
TVNLYIA
L I9Vd L VA |e
~-gecl
Ng3Hng zIs P 8vet
0G¢1 . 0¢clt
\ . /
2 yaLdvay Ly3ddngzis PPvel | y3Ldvay
TVNLYIA HO4 == IVNLYIA HOd
S30HN0STY 80. 221 S304N0SIY
— 86¢ | . ===
9lct 378V1 NOILVISNVHL . 80ct
Z I9VINI WILSAS AHOW3N LSOH L 39vd 1 1S L IDVINI WILSAS
TVIISAHd ~
veel
AHOW3 1SOH

PCT/EP2006/060187

WO 2006/089913

9/12

a6e 1| S30un0s38 99€~\I x10q1 + yaLdvay WNIMIA | X 0000 000z zgez 6520 | ¢9EH

L 4ldvay 99€] x 10 a1z yatdvay WNLEIA | X 0000 0000 8E2y €520 | ¢EH

WNLHIA P

ope|] X 100IZHILdvay WNLWA | 00000002 619k ElEL [
ol eor] 9681 X00 01 43LdvQY TVOISAHA | X 0000 0002 619} ELEY |\ ee,
WNLHIA
I7av1 39vd N
8\2 owﬂ om,? VIS~
Y98~T"x 10 ar 1 waLdvay vNLHIA \ X0000 000Z 25€Z 6620 /| X 0000 000 ZSEZ 6820 [~ 99¢t
YSELJ X 10 a1 2 y3Ldvay YNLHIA V X 0000 0000 8€Z¥ €520 © | X 0000 0008 8EZY €520 Nwmw
v
—— X 10 0 2 43LdVaY TYNLYIA | X 0000 0002 619+ €LEL | X 0000 000S 6191 €IEL <
14498
1 x00aI431dvay VOISAHd | X0000 000Z 6191 ELEF | X 0000 000G 619} E1EF k_

veEEL \ 9¢cl

vae NOILYIDOSSY] ssmoavmor | SSTAWHIH K gj¢,
06E L A 378VL H344ng J

HILdVaY ATIAVS 19d 0eel 0zel A4
/ : \/
e £1 DI | , |
q0c|] X 0000 040¥ 6191 EleL
SSIHAQY HILdVay
pogL"

NOILOVSNVHL SNA 3-13d HO
X-13d ‘10d TVNOILNIANCO ONIWOONI

WO 2006/089913

PCT/EP2006/060187

10/12
PCI FAMILY ADAPTER
LOCAL ADDRESS TABLE
1450 Y 1484 1438
O | 1468~ 5 4
> 3253 4363 x »| BUFFER TABLE
1472~ 1418 7432 x
14761 0000 0000 x | PAGETABLE
14&4 sUFFER TABLE L 0 1}34
1490 1498
FIG. 14 N pAGE TABLE
) ™\-1494
\A s\
HOSTBUS | HOST DEVICE |HOST FUNCTION 1400
| NUMBER | NUMBER | NUMBER _[“-1416
01100 b g
0000 0010 b 001 b
1412
ADAPTER RESOURCE OR ADDRESS T\ 1404
_________________________ INCOMING PCI-X,
4313 1619 4010 0000 x OR PCI-E

BUS TRANSACTION

WO 2006/089913 PCT/EP2006/060187

11/12

1528
_ ‘ PCI PORT |”_
1504
BDF 1
1506 :
\ v :
B _‘ BDFN [T\ 1526
1510~
VIRTUAL 2
ADAPTER 1 1508\ 1 L
1 [VP1 VP 1
MEMORY
T [N1512 | VP 2 VP 2
/‘ VP 3 VP 3
VP 4 VP 4
1514 1516 —1 1524
PCI ADAPTER
1932 VPN VP N
1518 PHYSICAL _ PHYSICAL 1522
PORT 1 PORT 2

FIG. 15

WO 2006/089913

12/12

1700~/ REQUEST TO MODIFY THE ATTRIBUTES OF
AN EXISTING VIRTUAL ADAPTER IS INVOKED

!

LPAR MANAGER USES THE PHYSICAL
ADAPTER'S MEMORY MANAGEMENT
INTERFACE TO REQUEST THAT THE PHYSICAL
ADAPTER MODIFY THE ATTRIBUTES OF AN
EXISTING VIRTUAL ADAPTER

1708~

PCT/EP2006/060187

1724 1725
DOES THE /
PHYSICAL HAVE ERROR: INSUFFICIENT
ENOUGH RESOURCES TO COMPLETE RESOURCES
REQUEST
PHYSICAL ADAPTER INITIATES TIME AND WAITS
1728-"| FOR A QUIESCENT POINT TO BE REACHED
QUIESCENT ADAPTER BUSY:
POINT REACHED BEFORE UNABLE TO
TIMEOUT? COMPLETE REQUEST
1730 e S
™ 1731

A
PHYSICAL ADAPTER MODIFIES THE ATTRIBUTES
1732 OF THE EXISTING VIRTUAL ADAPTER

!

PHYSICAL ADAPTER RETURNS THE
ATTRIBUTES OF THE MODIFIED VIRTUAL
ADAPTER TO THE HYPERVISOR

1734~

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/060187

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols}

GO6F

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Y EP 1 508 855 A (VIRTUAL IRON SOFTWARE, 1-20

paragraphs [0004] - [0045]
paragraphs [0052] - [0058]
paragraphs [0062], [0063]

1

paragraphs [0069] - [0076]
paragraphs [0086] - [0095]
paragraphs [0120] - [0126]

figures 1-9

INC) 23 February 2005 (2005-02-23)

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document Is combined with one or more other such docu-
me'r;ts, sr;luch combination being obvious 1o a person skilled
in the art.

& document member of the same patent family

Date of the actual completion of the international search

23 May 2006

Date of mailing of the intemational search report

19/06/2006

Name and mailing address of the 1ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340~3016

Authorized officer

Noll, J

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/060187

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

P,X

ANONYMOUS: "Virtual Interface
Architecture Specification"

MICROSOFT (SPECIFICATION), [Onlinel
16 December 1997 (1997-12-16), XP002377442
Retrieved from the Internet:
URL:http://rimonbarr.com/repository/cs614/
san_10.pdf> [retrieved on 2006-04-19]
cited in the application

page 11 - page 12

page 20 - page 22

pages 55-57

pages 64-66

US 6 111 894 A (BENDER ET AL)

29 August 2000 (2000-08-29)

column 1, Tine 49 ~ column 3, Tine 37
column 3, Tine 60 — column 8, Tine 67
figures 1-5

US 2005/102682 Al (SHAH RAJESH ET AL)
12 May 2005 (2005-05-12)

paragraphs [0011] - [0038]

paragraphs [0001] - [0007]

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) {April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/060187
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1508855 A 23-02-2005 US 2005044301 Al 24-02-2005
US 2005080982 Al 14-04~-2005
WO 2005020073 A2 03-03-2005
US 6111894 A 29-08-2000 NONE
US 2005102682 Al 12-05-2005 W0 2005050443 A2 02-06-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

