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We derive two-point step sizes for the steepest-descent method by approximating
the secant equation. At the cost of storage of an extra iterate and gradient, these
algorithms achieve better performance and cheaper computation than the
classical steepest-descent method. We indicate a convergence analysis of the
method in the two-dimensional quadratic case. The behaviour is highly remark-
able and the analysis entirely nonstandard.

1. Introduction

TrE classical steepest-descent method (see Cauchy [4]) for the unconstrained
minimization of f: R*— R is of the form

Xpi1 =X + ody. (§))]
The search direction d, € R" is chosen as the negative gradient of f at x;:
d, = —Vf(xe), 2)
and the step size a; is given by

o, = arg min f(x, + ady). 3)

We will denote g = g(xc) = Vf (x0)-

Despite its simplicity and the optimal property (3), the steepest-descent method
performs poorly. It converges linearly and is badly affected by ill-conditioning
(see Akaike [1]). Nevertheless, the understanding of its behaviour is fundamental
to the theory and design of optimization algorithms (see Luenberger [7]).

In this paper, we propose two new step sizes for use in conjunction with the
negative gradient direction (2). These step sizes require less computational effort
than (3), and the resulting algorithms seem to be less sensitive to ill-conditioning.
More important however, from a theoretical point of view, is the marked
difference between the behaviour of these algorithms and steepest descent. We
derive these step sizes in Section 2. A numerical example typical of the behaviour
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142 JONATHAN BARZILAI AND JONATHAN M. BORWEIN

of these algorithms is given in Section 3, and their rate of convergence in the
two-dimensional case is analysed in Section 4. The analysis is of theoretical
interest, because the unusual behaviour of the new algorithms requires the use of
a nonstandard approach. Finally, in Section 5 we comment on implications of our
results. '

2. Derivation of step sizes

In this paper we study the iteration Xy, =X« — Sc&, where S has the form
S, = a1, and a; minimizes ||Ax — aAg|?, with Ax=x,—x,_; and Ag=g;—
gx_1. The motivation for this choice is that it provides a two-point approximation
to the secant equation underlying quasi-Newton methods (see Dennis & Mor€ [5]
for a general discussion of quasi-Newton methods and Barzilai & Ben-Tal [3] for
a comparison of one-point vs. two-point algorithms). This yields the iteration

X1 =Xk~ OB 4)
where «; is given by
ak=<Ax) Ag>/(Ag’ Ag); )

and (a, b) denotes the scalar product of the vectors a and b.
By symmetry, we may minimize [aAx— Ag||* with respect to a. The
corresponding step size turns out to be

a, = (Ax, Ax)/{Ax, Ag). (6)

Note that, in the one-dimensional case, the algorithm defined by (4) together
with either (5) or (6) is the secant method. Note also that these algorithms are
applicable to the solution of the equation g(x) =0, where g: R"— R”, with a
Jacobian that is not necessarily symmetric.

3. Numerical example

To compare the behaviour of the classical steepest-descent method with the
two methods obtained by using the step sizes (5) and (6), we minimize the
function f(x) = 3(x, Ax) — (b, x), where

20 0 0 O

0 10 0 0
=10 o020l b=(1,1,11).

0 001

Note that, even when f is a quadratic, i.e. V2f = A is constant, the two-point step
sizes (5) and (6) are cheaper to compute than the steepest-descent step size

= (e &)/ {8k A8k)- (7

Errors for the steepest-descent and the two-point algorithms are listed in
Tables 1-3. the tables list the (Euclidean) norm of the gradient g, the step size

E

x

llgell

2-000000000 E
1-849229855 E
1-332088978 E
1-371336685 E
1-008379568 E
1-050028508 E
7787055015 E
8181936146 E
6-108111137E
6461735081 E
4.847354600 E
5:153025020

e
NR OV IWUn WP

171 2:984608494 E
172 3-203263464 E
173 2-426587526 E
174 2-604361399 E
175 1-972897626 E
176 2-117433792E
177 1-604032417 E
178 1-721545185E
179 1-304132540E
180 1-399674380 E
181 1-060303808 E
182 1-137982548 E
183 8-620628156 E

a,, and the quantity G,
Section 4. All algorithn
one-point step size (7),
and (6) (with step size
PLUS/PC on an IBM P
when ||g(x)|| <107

This example is typi
algorithms is very simil
one-point algotithm. Th
the case in general.

4. Analysis of convergence

In two dimensions, v
case, and we now do so.
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>

llgell

417

G

2-000000000E 000
1-849229855E 000
1-332088978 E 000
1-371336685 E 000
1-008379568 E 000
1-050028508 E 000
7-787055015 E —001
8-181936146 E —001
6-108111137 E —001
6-461735081 E —001
4.847354600 E —001
5-153025020 E —001

—
N OWoo IO W

171 2-984608494 E —008
172 3203263464 E —008
173 2-426587526 E —008
174 2-604361399 E —008
175 1-972897626 E —008
176 2-117433792 E —008
177 1604032417 E —008
178 1-721545185 E —008
179 1:304132540 E —008
180 1399674380 E —008
181 1-060303808 E —008
182 1-137982548 E —008
183 8-620628156 E —009

1212121212 E -001
7-963901542 E —002
1-127377746 E -001
8-020781752 E —002
1-133463025 E —001
8-049623326 E —002
1138600987 E —001
8-072316633 E —002
1-142513869 E —001
8-089015460 E —002
1-145320525 E —001
8-100693746 E —002

1150846953 E —001
8-122983744 E —-002
1-150846953 E —001
8-122983752 E —002
1150846952 E —001
8-122983720 E —002
1-150846936 E —001
8-122983804 E —002
1-150846924 E —001
8-122983788 E —002
1150846926 E —001
8-122983846 E —002
1-150846933 E —001

8-549127640 E —001
5-189012029 E —001
1-059794639 E —000
5-407043781 E —001
1-084311605E 000
5-499767190 E —001
1103991388 E 000
5-573162281 E —001
1-119140047E 000
5-627445328 E —001
1-130094914E 000
5-665549695 E —001

1-151888863E 000
5-738608549 E —001
1-151888860E 000
5-738608549 E —001
1151888861 E 000
5-738608570 E —001
1-151888838 E 000
5-738608682 E —001
1-151888821 E 000
5-738608743 E — 001
1-151888816 E 000
5-738608822 E —001
1-151888825E 000

a,, and the quantity Gi = llge+ll
Section 4. All algorithms are started
one-point step size (7

), and x; =x2=

2/||gc|I? used to analyse the convergence rate in
at the origin, i.e. x;=(0,0,0, 0) for the
(0,0, 0, 0) for the two-point step sizes (5)

and (6) (with step size a,=0/0=1.) The algorithms were coded in APL*
PLUS/PC on an IBM Personal Computer with an 8087 coprocessor. We stopped
when ||g«(x)|| <107

This example is typical of many we ran: the behaviour of the two-point
algorithms is very similar, and both are significantly faster than the classical
one-point algotithm. The analysis of the next section suggests that this indeed is
the case in general.

4. Analysis of convergence rate

In two dimensions, we can analyse explicitly the positive definite quadratic
case, and we now do so. To study the quadratic case, with

fx)=3x"0x—b'x+c,
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TABLE 2

Errors for the two-point algorithm with step (5)

Error.

gl

277

G

2-000000000 E 000
2-104755618 E 001
6-670173211E 000
1-697313884 E 000
9-775482639 E —001
5-618310441 E —001
4-321754377 E —001
2-071173278 E —001
1-316029653 E 000
2-464307889 E —002
1-426728071 E —002
9-569111327 E —003
7-038199027 E —003
3-613209171 E —003
2-673077071 E —003
5-005078082 E —003
2-631068008 E —004
2-526607454 E —004
7-908269786 E —005
7-095828174 E —005
1-598051002 E -005
3-430096264 E —006
2-919774622 E —005
1-923637403 E —007
9-612272894 E —008
2-208341036 E -010

1-000000000 E 000
6-534653465 E —002
5-266747102 E —002
5-342022916 E —002
9-626310100 E —002
1-154512281 E —001
4.347699330 E —001
3-807080298 E —001
5-041534722 E —002
5-001051865 E —002
7-389820331 E —002
1-209389230 E —001
2-482426364 E —001
5.541214228 E -001
2-883826457 E —001
1-001678954 E —001
9.956182394 E —002
5-096258259 E —002
5-061897578 E —002
3-874271444 E —001
4-999713616 E —001
4-757638507 E —001
5-001113713 E —002
5-000216906 E —002
9.977221465 E —002
1000000022 E —001

1-107500000 E 002
1-004316268 E —001
6-475154033 E —002
3-317050549 E —001
3-303201353 E —-001
5-917097096 E —001
2-296744619 E —001
4-037369346 E 001
3:506376805 E —004
3-351910989 E —001
4.498428297 E —001
5-409783352 E —001
2-635500606 E —001
5-473142473 E —001
3:505893771 E 000
2-763391604 E —003
9-221708673 E —001
9-796871398 E —002
8-050877670 E —001
5-071951483 E —002
4-607139320 E —002
7-245794986 E 001
4-340580021 E —005
2-496926497 E —001
5-278130229 E —006
1-085445105 E —002

we first note that, using (5),

Xps1 =X — O (Qxp — b),

_ (8 — 8k—1, Xk - Xi-1) _ (8r=1, Ogi—1)

k

Thus ge+1 =8k — 0,08

We can assume that Q is of the form Q =

with U orthogonal, then

To simplify the notation in the analysis that follows, we parametrize g, =
a (A", 1) with &, >0. (The analysis shows that the first term is positive.)
Using this parametrization, we get

Bke1 = ak(lm"(l - o), £(1- Aak))y

Hence

- (gk — 8k-1, 8k —gk-1> - <ng—1, ng—1> ’

Ox,—b=g,

Ox1 = Ox) — 0, 0gs.

1 0
[O A] with A =1, since, if y. = Ug,

(Fe+1s .Yk+1>/<)’k, Vi) = (8r+1s gk+1>/<gk’ gk)’

8k+1 = Azmk_l + A.Z(

=(A-1)

, klzmk_l
APt 4 A2

O = (A2t 4 A)[(A2mr + A2),

(A% — A)A™, 22 (1 — A))

(A“”"k‘z”‘k-l’ :Fl).

k llgeli

2 2-000000000 E
3 2-104756518 E
4 2-713844044 E
5 2-994865127 E
6
7
8

7-415329742 E -
5-735245384E -

7-395997585E -

9 5-504678760 E -
10 6-061557888 E -
11 7:204225765 E -
12 6-534149118 E -
13 4.280539524 E -

14 2-801786298 E -
15 2-284800386 E -
16 2-991780903 E -
17 9-417777814 E -
18 1.786895454 E -
19 5-419356357E -
20 4-815155825 E -

21 8:239370279 E -
22 7-366507283 E -
23 8:776530117 E -
24 4-355755920E -
25 2:177848363 E -
26 1-769866299 E -

If we start with

8o°

(for comparison with stet

T M= 1)
ay=1, a-

Note that the general s
(6

m, =1+ 2¥

for some constant scalar

consecutive values of my

0+ implies |a) <&

(A —1) || on every iter
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tep

©)

Gi

1-107500000 E 002
1-004316268 E —001
6-475154033 E —002
3-317050549 E —001
3-303201353 E —001
5-917097096 E —001
2-296744619 E —001
4-037369346 E 001
3-506376805 E —004
3-351910989 E —001
4-498428297 E —001
5-409783352 E —001
2-635500606 E —001
5-473142473 E —001
3-505893771 E 000
2-763391604 E —003
9-221708673 E —001
9-796871398 E —002
8-050877670 E —001
5-071951483 E —002
4-607139320 E —002
7-245794986 E 001
4-340580021 E —005
2-496926497 E —001
5-278130229 E —006
1-085445105 E —002

= gk;

X1 = Oxp — 0,08k

1 A= 1, since, if y, = Ug,

Tk> gk)

;, we parametrize g, =
: first term is positive.)

LAY (A2 D),
L=4))

1).
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Errors for the two-point algorithm with step 6)

k figell 72 Gy
2 2.000000000 E 000 1-000000000 E 000 1-107500000 E 002
3 2-104756518 E 001 1-212121212 E =001 1-662516816 E 000
4 2-713844044 E 001 5-515438247 E —002 1-217824662 E —002
5 2-994865127E 000 5-015928785 E —002 6-130648239 E —~002
6 7-415329742 E —001 5473128024 E —002 5-981954047 E —001
7 5.735245384 E —001 2-149779845 E —001 4-380743717 E —001
8 7-395997585 E —001 3-439341351 E —001 2:102868447E 000
9 5.504678760 E —001 2-109907996 E —001 1-212563677E 000
10 6-061557888 E —001 1-024061516 E —001 1:412557431 E —002
11 7-204225765 E —002 9-992090956 E —002 8:226279372 E —001
12 6-534149118 E —002 7-792830276 E —002 4291597069 E —001
13 4-280539524 E —002 6-786426828 E —002 4-284160804 E —001
14 2-801786298 E —002 8-882203072 E —002 6-650185209 E —001
15 2-284800386 E —002 2-101416069 E —001- 1-714600888 E 000
16 2991780903 E —002 2.221805587 E —001 9-909179687E 000
17 9-417777814 E —002 5895504423 E —002 3.599990937 E -002
18 1-786895454 E —002 5-023775240 E —002 9198078913 E —002
19 5-419356357 E —003 5-569706724 E —002 7-894511705 E —001
20 4-815155825 E —003 4-990214595 E —001 2927974897 E —004
21 8:239370279 E —005 4.999838767 E —001 7-993467323E 001
22 7-366507283 E —004 5-059567565 E —002 1-419457683 E —004
23 8-776530117 E —006 5-000000143 E —002 2-463096211 E —005
24 4-355755920 E —008 5-000246318 E —002 2499932052 E —001
25 2:177848363 E —008 1-000025482 E —001 6-604282526 E —005
26 1-769866299 E —010 1-000082555 E —001 6399668062 E —001

If we start with

A-1

=A)1) =A'._ _l:—
go=(1) 81 A+1(A 1)

(for comparison with steepest descent), this leads to |
g = o (A™, (1)),
“mp=1, m;=-1, My =1+m—2my_y,

A-1 APt

ap=1, ;= m, a’k+1=(}~“1)ma’k'

Note that the general solution of the recurrence relation for m, is given by (see
(6])
m, =1+2%6 cos (¢ +karctan /7) (k=0,1,2,...)

for some constant scalars 6 and ¢. When k is large, at least one of any four
consecutive values of m, must be large and negative. Hence the expression for
., implies |ag. 1| <oy at least once every four iterations, while &g, <
(A—1) |e| on every iteration. To analyse the behaviour of the error terms, we
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define G, = ||gx+1/1%/l|gx|* and A, = m, — my;. Note that, in the notation above,

A, =210 cos[¢ + (k — 1) arctan /7] (k=0,1,2,...).
Now

Azmk—l 2 )’Zﬁk+1 +1
G = <(’1 ~ Dy /12> A2t 1
A28 Pt ]
(A% +2)* A+ 1

(A1) AP AR
T (A% AR AP+

=(h—1)?

Using Baker’s work (see [2]) on the transcendence of logarithms, we can prove
that |m,| tends to infinity. We take this result as given, although the analysis
could be largely carried out without it. This implies that |A,| also tends to infinity,
since A, =2my_, — 1. With this in mind, we now break up the analysis to three
cases, as follows.

Case (i) Ar<O0.
A—1V R
G = ( Fy ) (1 + A5 1222 + 1)
(A - 1>2 A2+ A”-Ak< <A - 1)2
A A2mer1 \ A )]

Cask (ii)) A, >0and m, <0.
AZA 4 Q2
(A + A% (1 + A7™)
Cask (iii) A, >0 and m,>0.
Gi < (A — 1)2 (A2 + 1)/A2 < (A — 1)H(A72%+ A727) = 0.

—(A—=1)?  as|m|—oand |A;|—>c.

Ge=(A- 1)2

We see that, in case (ii), G, may increae (cf. the examples above). This will not
happen if A <2, but in general we do not have monotonicity. Since the sign of m,
behaves like that of cos (k arctan /7), we may expect increases every 5-6 steps.
In fact, A, is also governed by a Fibonacci-like recurrence relation, and can be
solved analytically, yielding

my, =3 + 2¥*% cos (k arctan /7), A, =28*1cos (k arctan /7).
From this one can establish that, asymptotically,
gl < [(h— D/APA " < ca 2

so that the asymptotic convergence rate of ||gkll is /2.
This analysis rested critically on beginning with a steepest-descent step. Indeed,
as Ya-xiang Yuan has pointed out to us, m; =3 for all k satisfies the relation

Mgy =1+ m —2my,_, an

and

for (5) and (6) respectivel
be obtained if m, does
numerically unstable, and

5, Concluding remarks

The classical steepest-de
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Mppr = 1+ My =21y q and leads to the gradient sequences
(50 1]
8=\ 1/ L=

(T
8=+ 1/ -1y
for (5) and (6) respectively. These show that an only linear convergence rate may

be obtained if m, does not tend to infinity. However, these solutions are
numerically unstable, and one might argue that they will not show up in practice.

and

5. Concluding remarks

The classical steepest-descent method was proposed by Cauchy [4] in 1847, and
its first partial analysis is due to Forsythe & Motzkin [8] in 1951. But the full
analysis of this algorithm by Akaike (in 1959) is quite nonstandard. In view of the
highly remarkable behaviour of the new algorithms and the fact that they are
not monotone, it is probably not surprising that our analysis, too, is entirely
nonstandard.

A better understanding of the behaviour of the new algorithms is important for
a better understanding of the general theory of optimization algorithms, and may
lead to a better design of new algorithms. The analysis of the new algorithms (and
the example of Section 3) clearly suggests that the latter constitute a substantial
improvement over the classical steepest-descent method. In general, it seems that
the behaviour of these algorithms depends on the clustering of the eigenvalues,
not just on the condition number. In the two-dimensional case we have shown
that, surprisingly, as A increases (ill conditioning), the convergence rate improves.
It follows that the performance of the steepest-descent method cannot be
attributed solely to the choice of the search direction. Indeed, Akaike’s analysis
of the behaviour of the steepest-descent method (see Akaike [1]) depends heavily
on the step size being give by (4). Clearly, the behaviour of any algorithm
depends on the choice of a step size no less than it depends on the choice of a
search direction.

Finally, note that, since the two-point algorithms are not descent algorithms,
they have an advantage in that the restriction to descent algorithms often results
in small step sizes for ill-conditioned problems. This may seem, however,
undesirable since it is difficult to control nonmonotone algorithms. It is possible
to overcome this difficulty without losing the benefit of the more general
nondecreasing two-point algorithms, by using the following simple scheme. If for
some iteration the norm of the gradient is not decreased, then compute the point
obtained by using steepest descent as well as the point obtained by performing N
iterations of the two-point algorithm for some fixed number N, starting in both
cases from the last point computed. Of the two points obtained this way, choose
the one with the lower value for the gradient norm as the next point. Our
experience shows (compare Section 3 above) that the number of steps in which
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this extra computation is needed is small, and that a small value of N (say 2 or 3)
is a reasonable value to use.
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