What do Compilers Produce?

Pure Machine Code

Compilers may generate code for a
particular machine, not assuming any
operating system or library routines.
This Is “pure code” because It includes
nothing beyond the instruction set.
This form Is rare; it is sometimes used
with system implementation
languages, that define operating
systems or embedded applications
(like a programmable controller). Pure
code can execute on bare hardware
without dependence on any other
software.

CS 536 Spring 2005°

17

Augmented Machine Code

Commonly, compilers generate code
for a machine architecture augmented
with operating system routines and
run-time language support routines.
To use such a program, a particular
operating system must be used and a
collection of run-time support
routines (1/0, storage allocation,

mat
aval
mac

nematical functions, etc.) must be
able. The combination of

nine Instruction and OS and run-

time routines define a virtual

mac
ds a

hine—a computer that exists only
hardware/software combination.

CS 536 Spring 2005°

18

Virtual Machine Code

Generated code can consist entirely of
virtual instructions (no native code at
all). This supports transportable code,
that can run on a variety of
computers.

Java, with its JVM (Java Virtual
Machine) is a great example of this
approach.

If the virtual machine is kept simple
and clean, the interpreter can be
quite easy to write. Machine
Interpretation slows execution speed
by a factor of 3:1 to perhaps 10:1
over compiled code.

A “Just in Time” (JIT) compiler can
translate “hot” portions of virtual
code into native code to speed
execution.

CS 536 Spring 2005°

19

Advantages of Virtual
Instructions

Virtual instructions serve a variety of
puUrposes.

. They simplify a compiler by providing
suitable primitives (such as procedure

calls, string manipulation, and so on).

. They contribute to compiler
transportability.

. They may decrease in the size of
generated code since instructions are
designed to match a particular
programming language (for example,
JVM code for Java).

Almost all compilers, to a greater or
lesser extent, generate code for a
virtual machine, some of whose
operations must be interpreted.

CS 536 Spring 2005°

20

Formats of Translated
Programs

Compilers differ in the format of the
target code they generate. Target
formats may be categorized as
assembly language, relocatable binary,
Or memory-image.

. Assembly Language (Symbolic) Format

A text file containing assembler
source code Is produced. A number of
code generation decisions (Jump
targets, long vs. short address forms,
and so on) can be left for the
assembler. This approach is good for
Instructional projects. Generating
assembler code supports cross-
compilation (running a compiler on
one computer, while its target is a
second computer). Generating

CS 536 Spring 2005°

21

assembly language also simplifies
debugging and understanding a
compiler (since you can see the
generated code).

C rather than a specific assembly
language can generated, using C as a
“universal assembly language.” C is
far more machine-independent than
any particular assembly language.
However, some aspects of a program
(such as the run-time representations
of program and data) are inaccessible
using C code, but readily accessible in
assembly language.

. Relocatable Binary Format

Target code may be generated in a
binary format with external references
and local instruction and data
addresses are not yet bound. Instead,

CS 536 Spring 2005°

22

addresses are assigned relative to the
beginning of the module or relative
to symbolically named locations. A
linkage step adds support libraries
and other separately compiled
routines and produces an absolute
binary program format that Is
executable.

. Memory-Image (Absolute Binary) Form

Compiled code may be loaded into
memory and immediately executed.
This Is faster than going through the
Intermediate step of link/editing. The
ability to access library and
precompiled routines may be limited.
The program must be recompiled for
each execution. Memory-image
compilers are useful for student and
debugging use, where frequent

CS 536 Spring 2005°

23

changes are the rule and compilation
costs far exceed execution costs.

Java Is designed to use and share
classes defined and implemented at a
variety of organizations. Rather than
use a fixed copy of a class (which may
be outdated), the JVM supports
dynamic linking of externally defined
classes. When first referenced, a class
definition may be remotely fetched,
checked, and loaded during program
execution. In this way “foreign code”
can be guaranteed to be up-to-date
and secure.

CS 536 Spring 2005°

24

The Structure of a Compiler

A compiler performs two major tasks:

. Analysis of the source program being
compiled

. Synthesis of a target program

Almost all modern compilers are
syntax-directed: The compilation
process Is driven by the syntactic
structure of the source program.

A parser builds semantic structure out
of tokens, the elementary symbols of
programming language syntax.
Recognition of syntactic structure is a
major part of the analysis task.

Semantic analysis examines the
meaning (semantics) of the program.
Semantic analysis plays a dual role.

CS 536 Spring 2005°

25

It finishes the analysis task by
performing a variety of correctness
checks (for example, enforcing type
and scope rules). Semantic analysis
also begins the synthesis phase.

The synthesis phase may translate
source programs into some
Intermediate representation (IR) or it
may directly generate target code.

If an IR Is generated, It then serves as
Input to a code generator component
that produces the desired machine-
language program. The IR may
optionally be transformed by an
optimizer so that a more efficient
program may be generated.

CS 536 Spring 2005°

26

Abstract

Source
Program Tokens S%’pé?(
—» Scanner ——»| Parser |———[Type Checker
(Character (AST) o
Stream) ® 4 _ Decorated
\ / s AST
\ / -
\ / o7
/
\) e e 4 Translator
\ / _ d P q
- Intermediate
S K 7 - Representationl— — —
g I
Symbol Tables‘
- - — — — — — — »f . (IR)
- Optimizer | |
~N
~ I
TN IR l* -
~
~
> ~N
R Code
Generator

Target Machine
Code

The Structure of a Syntax-Directed Compiler

CS 536 Spring 2005°

27

Scanner

The scanner reads the source
program, character by character. It

grou

ns Individual characters into

tokens (identifiers, integers, reserved

WOIC

s, delimiters, and so on). When

necessary, the actual character string
comprising the token is also passed

along for use by the semantic phases.

The scanner does the following:

. It puts the program into a compact
and uniform format (a stream of
tokens).

. Jte

liminates unneeded Information

(such as comments).

. It sometimes enters preliminary
Information into symbol tables (for

CS 536 Spring 2005°

28

example, to register the presence of a
particular label or identifier).

. It optionally formats and lists the
source program

Building tokens is driven by token
descriptions defined using regular
expression notation.

Regular expressions are a formal
notation able to describe the tokens
used in modern programming
languages. Moreover, they can drive
the automatic generation of working
scanners given only a specification of
the tokens. Scanner generators (like
Lex, Flex and Jlex) are valuable
compiler-building tools.

CS 536 Spring 2005°

29

Parser

Given a syntax specification (as a
context-free grammar, CFG), the
parser reads tokens and groups them
Into language structures.

Parsers are typically created from a
CFG using a parser generator (like
Yacc, Bison or Java CUP).

The parser verifies correct syntax and
may Issue a syntax error message.

As syntactic structure is recognized,
the parser usually builds an abstract
syntax tree (AST), a concise
representation of program structure,
which guides semantic processing.

CS 536 Spring 2005°

30

Type Checker
(Semantic Analysis)

The type checker checks the static
semantics of each AST node. It
verifies that the construct is legal and
meaningful (that all identifiers
Involved are declared, that types are
correct, and so on).

If the construct is semantically
correct, the type checker “decorates”
the AST node, adding type or symbol
table information to it. If a semantic
error Is discovered, a suitable error
message Is issued.

Type checking is purely dependent on
the semantic rules of the source
language. It is independent of the
compiler’s target machine.

CS 536 Spring 2005°

31

Translator
(Program Synthesis)

If an AST node Is semantically correct,
It can be translated. Translation
Involves capturing the run-time
“meaning” of a construct.

For example, an AST for a while loop
contains two subtrees, one for the
loop’s control expression, and the
other for the loop’s body. Nothing In
the AST shows that a while loop
loops! This “meaning” Is captured
when a while loop’s AST is translated.
In the IR, the notion of testing the
value of the loop control expression,
and conditionally executing the loop
body becomes explicit.

The translator is dictated by the
semantics of the source language.

CS 536 Spring 2005°

32

Little of the nature of the target
machine need be made evident.
Detailed information on the nature of
the target machine (operations
avalilable, addressing, register
characteristics, etc.) Is reserved for
the code generation phase.

In simple non-optimizing compilers
(like our class project), the translator
generates target code directly,
without using an IR.

More elaborate compilers may first
generate a high-level IR (that is
source language oriented) and then
subsequently translate it into a low-
level IR (that Is target machine
oriented). This approach allows a
cleaner separation of source and
target dependencies.

CS 536 Spring 2005°

33

Optimizer

The IR code generated by the
translator Is analyzed and
transformed into functionally
equivalent but improved IR code by
the optimizer.

The term optimization is misleading:
we don’t always produce the best
possible translation of a program,
even after optimization by the best of
compilers.

Why?

Some optimizations are impossible to
do in all circumstances because they
Involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

CS 536 Spring 2005°

34

Other optimizations are too expensive
to do In all cases. These involve NP-
complete problems, believed to be
Inherently exponential. Assigning
registers to variables is an example of
an NP-complete problem.

Optimization can be complex; it may
Involve numerous subphases, which
may need to be applied more than
once.

Optimizations may be turned off to
speed translation. Nonetheless, a well
designed optimizer can significantly
speed program execution by
simplifying, moving or eliminating
unneeded computations.

CS 536 Spring 2005°

35

Code Generator

IR code produced by the translator is
mapped Into target machine code by
the code generator. This phase uses
detailed information about the target
machine and includes machine-
specific optimizations like register
allocation and code scheduling.

Code generators can be quite complex
since good target code requires
consideration of many special cases.

Automatic generation of code
generators Is possible. The basic
approach iIs to match a low-level IR
to target instruction templates,
choosing instructions which best
match each IR instruction.

A well-known compiler using
automatic code generation

CS 536 Spring 2005°

36

techniques Is the GNU C compiler.
GCC is a heavily optimizing compiler
with machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and C++).

CS 536 Spring 2005°

37

Symbol Tables

A symbol table allows information to
be associated with identifiers and
shared among compiler phases. Each
time an identifier is used, a symbol
table provides access to the
Information collected about the
Identifier when its declaration was
processed.

CS 536 Spring 2005° 38

