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A fail-stop processor halts instead of performing an erroneous state transformation that might be 
visible to other processors, can detect whether another fail-stop processor has halted (due to a failure), 
and has a predefined portion of its storage that will remain unaffected by failures and accessible to 
any other fail-stop processor. Fail-stop processors can simplify the construction of fault-tolerant 
computing systems. In this paper, the problem of approximating fail-stop processors is discussed. Use 
of fail-stop processors is compared with the state machine approach, another general paradigm for 
constructing fault-tolerant systems. 

Categories and Subject Descriptors: B.1.3 [Control S t ruc tu res  and Microprogramming] :  Control 
Structure Reliability, Testing and Fault-Tolerance--redundant design; B.3.4 [Memory St ruc-  
tures]: Reliability, Testing and Fault-Tolerance--redundant design; C.2.4 [Computer -Communi-  
cat ion Networks] :  Distributed Systems; C.4 [Computer  Sys tems Organizat ion] :  Performance 
of Systems--reliability, availability, and serviceability; D.4.5 [Operat ing Systems]: Reliability-- 
checkpoint/restart, fault-tolerance 

General Terms: Reliability 
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1. INTRODUCTION 

Designing and programming a fault-tolerant computing system is a difficult task. 
Due to a failure, a processor might exhibit arbitrary behavior, resulting in 
erroneous outputs or in the destruction of critical state information. Even when 
multiple processors are used, a malfunctioning processor can cause problems by 
causing erroneous state information to be visible to other processors. This could 
have disastrous consequences if these processors take actions based on such 
information. Clearly, using processors that take into account the following 
property avoids these difficulties. 

Halt on Failure Property. A processor will halt instead of performing an 
erroneous state transformation that  will be visible to other processors. 

Processors that  merely halt in response to failures, however, are not sufficient 
for implementing systems whose correctness criteria involve generating outputs 

This work was supported in part by NSF Grant MCS-8103605. 
Author's address: Department of Computer Science, Cornell University, Ithaca, NY 14853. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
© 1984 ACM 0734-2071/84/0500-0145 $00.75 

ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984, Pages 145-154. 



146 Fred B. Schneider 

in a timely manner. Tasks that  were being run on a halted (malfunctioning) 
processor must be continued, if real-time constraints are to be met. This means 
that processors must also satisfy a second property: 

Failure Status Property. Any processor can detect when any other processor 
has failed, and therefore has halted. 

This permits other processors to assume the tasks of a failed processor. Of course, 
there are obvious limitations to this strategy--there must be sufficient processing 
capacity in the smaller system for it to be able to continue performing all of its 
tasks in a timely manner. 

Finally, in order to continue a task that was running on a failed processor, the 
state of that  task must be available to the processor that  is to continue it. This 
can be accomplished by using stable storage--storage that  is unaffected by any 
failure and is accessible to every processor. Thus, we require processors to satisfy 
a third property: 

Stable Storage Property. The storage of a processor is partitioned into stable 
storage and volatile storage. The contents of stable storage are unaffected by any 
failure and can always be read by any processor. The contents of volatile storage 
are not accessible to other processors and are lost as a result of a failure. 

A fail-stop processor is a processor that satisfies the Halt on Failure Property, 
the Failure Status Property, and the Stable Storage Property. To construct a 
fault-tolerant computing system that  can tolerate up to f failures for an applica- 
tion requiring N processors (assuming there are no failures), N + [ fail-stop 
processors are employed. Whenever a fail-stop processor in this system halts, the 
other fail-stop processors detect this and partition its work among themselves by 
reading from its stable storage. 

Fail-stop processors simplify, but do not completely solve, the problem of 
building fault-tolerant computing systems. The problem is simplified because it 
is unnecessary to cope with arbitrary behavior and corrupted state information. 
However, it is still necessary to design programs that  make infrequent references 
to stable storage, which is likely to be expensive and slow, while saving enough 
state information there so that a task can be continued only by accessing stable 
storage. 

Perhaps the strongest argument for investigating the implementation of fail- 
stop processors is that  most protocols for implementing fault-tolerant systems 
assume models where processors are either fail-stop processors or their equiva- 
lent. 1 In some models, instead of the Failure Status Property, "timeouts" are 
used to detect failures. However, use of timeouts requires the further assumption 
that processor clocks are synchronized. Otherwise, two processors might not 
agree that  a third has halted, which can have disastrous consequences if the third 
processor has not. In other models, the Stable Storage Property is not assumed; 
instead, state information is replicated at other processors. However, this turns 
out to be just an approximation of the Stable Storage Property. 

1 The  only work we know of  t h a t  does no t  involve fail-stop or s t ronger  a s sumpt ions  about  processor  
failures is described in [6], [7], and  [9]. 
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Real processors do not  satisfy the Hal t  on Failure, Failure Status,  or Stable 
Storage properties.  In fact, most  real processors are not  even good approximations 
of fail-stop processors. This  is disappointing in light of the number  of protocols 
writ ten tha t  assume processors are fail-stop. In this paper, we develop an 
implementat ion of a fail-stop processor approximation.  This  serves two purposes: 
First, it gives a feel for the cost and complexity of implementing fail-stop 
processors. Comparison of protocols tha t  assume fail-stop processors with pro- 
tocols tha t  make weaker assumptions (e.g., Byzant ine  Agreement  protocols [1, 8, 
10, 11]) is then  possible. Secondly, our fail-stop processor approximation is a 
first step toward a practical realization of fail-stop processors. 

We must  be content  with only an approximation of a fail-stop processor 
because it is impossible to implement  a completely faul t- tolerant  computing 
system using a finite amount  of hardware. With  a finite amount  of hardware, a 
finite number  of failures could disable all error  detection facilities and thereby 
allow behavior tha t  violates the propert ies tha t  define a fail-stop processor. Our 
approximation is for a k-fail-stop processor--a collection of processors and mem- 
ories tha t  behaves like a fail-stop processor unless k + 1 or more failures occur 
within its components .  Obviously, as k approaches infinity, a k-fail-stop processor 
becomes closer to the ideal it approximates.  

We proceed as follows: Section 2 contains the design and correctness argument  
for a k-fail-stop processor. Section 3 concerns techniques to combine a collection 
of k-fail-stop processors into a faul t - tolerant  computing system. In Section 4, the 
fail-stop processor approach is contras ted with the state machine approach, 
another  general technique for construct ing faul t- tolerant  computing systems. 
Finally, Section 5 contains a discussion of other  ways to approximate fail-stop 
processors and considers some open problems. 

2. APPROXIMATING FAIL-STOP PROCESSORS 

A k-fail-stop processor F S P  is implemented by a collection of real processors, 
each with its own storage, tha t  are in terconnected by a communicat ions network. 
Failures tha t  could result in another  fail-stop processor reading the results of an 
erroneous state t ransformat ion are detected by voting; the effects of other  failures 
are masked. The  implementat ion consists of: 

(1) k + 1 p-processes (p for program), each running on its own processor; let 
p (FSP)  = { pl ,  p2 . . . . .  pk+l } be this set of processes; 

(2) 2k + 1 s-processes (s for storage), each running on a different  processor; let 
s (FSP)  = Is1, s2 . . . . .  szk+l} be this set of processes. 

The  question of allocating processors to processes is discussed in Section 3. 
A program running on F S P  is run by each of the k + 1 p-processes in p ( F S P ) .  

Failures tha t  should cause F S P  to halt  are detected by comparing results when 
each p-process in p ( F S P )  writes to stable storage in FSP,  since reading stable 
storage is the only way the effects of a failure can be made visible. Because 
p-processes run on different  processors, they fail independently.  Provided fewer 
than  k ÷ 1 failures occur in the processors running p-processes, if any failure 
tha t  should cause F S P  to be halted occurs then  there will be a disagreement in 
the write requests made by its p-processes. This  disagreement will be detected 
by its s-processes. 
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A copy of the contents of the stable storage of F SP  is stored by each of the 
s-processes in s(FSP).  Since there are 2k + 1 s-processes, each running on a 
different processor, after as many as k failures in these processors a majority of 
them will still be able to access correct values. Of course, this presupposes that 
each correctly functioning s-process updates it state whenever a write is per- 
formed to stable storage; a protocol for this is described below. 

The only way a p-process can access stable storage is by sending messages to 
s-processes. These messages m contain the following information: 

m.time the time at which this request was made according to the local 
clock on the processor running the requesting p-process; 

m.rectime the time this request was received according to the local clock on 
the processor running the s-process receiving the request; 

m.type depending on the request, either "read" or "write"; 
m.var the variable in stable storage to be written if m.type = write; 

the variable in stable storage to be read if m.type = read; 
m.val the value to be written if m.type = write. 

We make the following assumption about the communications network. 

Network Reliability Assumption. Messages are delivered uncorrupted and the 
process orig(m), originating a message m, can be authenticated by its receiver. 

In theory, satisfying this assumption requires that  there be 2k + 1 independent 
and direct communication links between each p-process and s-process. Independ- 
ent channels allow the majority value to be taken as the value of the message-- 
this value will be correct provided fewer than k + 1 failures occur; direct channels 
allow authentication of message origin. In practice, a packet-switching network 
can be made to approximate the Network Reliability Assumption. Checksums 
and message retransmission are used to ensure that messages are delivered 
uncorrupted with high probability; digital signatures implement authentication 
(with high probability). 

An s-process for a k-fail-stop processor FSPi in a system with up to N k-fail- 
stop processors FSP1, FSP2 . . . . .  FSPN executes the program in Figure 1. There, 
"choose (m, M)" stores an arbitrary element from M into m, and "CLOCK" 
evaluates to the current time according to the processor's local clock. "Stable 
[. • • ]" is the copy of stable storage maintained by this s-process. In addition, we 
require that when a p-process pj makes a request to stable storage of FSPi, it 
disseminates the request in a way that  satisfies IC1 and IC2: 

IC1. Ifpj  is nonfaulty, then every nonfaulty s-process s, in s(FSPi) receives the 
request within 5 seconds (as measured on s,'s clock). 

IC2. If s-processes s, and sv in the same k-fail-stop processor are nonfaulty, then 
both of them agree on every request from Pi- 

Condition IC1 ensures that all s-processes receive a message within a bounded 
length of time 5 whenever a request is made by a nonfaulty p-process. Condition 
IC2 ensures that  all s-processes will agree on a request, even if the p-process 
making the request is faulty. IC2 is necessary because a faulty p-process might 
make different requests to two different s-processes. The copies of stable storage 
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owner  := i; fai led := false; 
do true ---*/* major  loop */ 

f o r s : =  1 t o N  
T := CLOCK;  
D := bag of reques ts  m delivered such  that :  

orig(m)  ~ p ( F S P , )  A (m . t ype  = read V m. type  = write) 
do  D ~ ¢- -~  

m i n T  := m i n i m u m  value of  m . t i m e  in D; 
m i n R e c T  := m i n i m u m  value of m.rec t ime  such  that :  

m ~ D A m . t i m e  = m i n T  
i f  m i n R e c T  < T - ~ ---* 

M := bag of reques ts  m such  t h a t  m E D h m . t i m e  = m i n T ;  

D : = D - M ;  
i f  ( V m : m  E M: m. type  = read) --~ 

do M ~  • ---* choose (m, M);  M :-- M - {m}; 
send Stab le  [m.var] to  or ig(m)  

od 
n (Vm, m ' : d i s t i n c t  m, m '  E M:  

m = m '  h m . t ype  = write A orig(m)  ~ o r i g ( m ' ) )  h 

I M t = k + 1 A s = owner  h "~ fa i led)  ---* 
choose (m, M);  
Stab le  [m.var] := m.val  

U o t h e r w i s e  --~ i f  s = owner  h ~ fa i led  ---* 

fa i led  := true; 

f o r a l l  d E p ( F S P I )  s e n d  "hal t"  to  d 
n o t h e r w i s e  ~ skip 
f i  

f i  
n o t h e r w i s e  --.  s k i p  

f i  
od 

rof  
od 

Fig. 1. P rogram for s-process  in F S P i .  

maintained by these s-processes could then become inconsistent if one s-process 
performed an update and another didn't. 

Finally, we require: 

IC3. For each k-fail-stop processor FSP, the clocks of all processors running 
p-processes in p (FSP) are synchronized. 

IC3 ensures that  if a request is made by one nonfaulty p-process in p (FSP) at 
time T on its clock, then, since all processes in p(FSP) are running the same 
program, the same request is made by each other nonfaulty p-process at time T 
on its local clock. 

A number of protocols for establishing IC1 and IC2--called interactive consist- 
ency or Byzantine Agreement--have been developed [1, 8, 10, 11]. In these 
protocols, 5 is based on message delivery time and on maximum difference in the 
clock speeds of any two correctly functioning processors running s-processes. At 
least f + 1 processors are required to handle up to [ faults when messages can be 
authenticated [2]. Since our implementation of a k-fail-stop processor need 
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tolerate at most k failures and involves 2k + I processors for running s-processes, 
IC1 and IC2 can be achieved. 

A protocol for achieving clock synchronization, as required by IC3, is described 
in [3]. The protocol also requires at least f + 1 processors to handle up to [ faults 
when messages can be authenticated. As described above, for a single k-fail-stop 
processor IC3 requires the k + 1 processors running p-processes to have synchro- 
nized clocks. Thus, IC3 can be achieved. 

2.1 Stable Storage Property 

To show that the Stable Storage Property holds for our implementation, we must 
show three things: 

(1) that  a majority of the copies of stable storage are correct and identical as 
long as k or fewer failures occur; 

(2) that a nonfaulty fail-stop processor can write to its stable storage; and 
(3) that any fail-stop processor can read from the stable storage of any fail-stop 

processor F S P  (including its own) regardless of whether FSP  has halted in 
response to a failure. 

The proof that our implementation satisfies part (1) of the Stable Storage 
Property is as follows. All p-processes run the same program, so all nonfaulty 
p-processes make the same requests to stable storage. Since by IC3 the clocks of 
all nonfaulty p-processes are synchronized, the nonfaulty p-processes will all 
make requests at the same time according to their local clocks. By IC1 and IC2, 
if a nonfaulty s-process s, receives the first such request by time Tr on its clock, 
it will receive all such requests by time Tr + 5 on its clock. 

Thus, no request made at time T and received by an s-process at time Tr will 
be added to D after Tr + 5, and all s-processes will have the same request (of 
time T) in their respective D bags by time Tr + 5. No request made at time T 
will be copied from D to M by an s-process before Tr + ~ (on its clock) because 
of the way the s-process program is coded. Thus, the contents of M at each 
nonfaulty s-process will be the same as at every other nonfaulty s-process. 
Execution of the s-process program in Figure 1 is completely determined by the 
contents of M. Consequently, each nonfaulty s-process executes identically, so 
the nonfaulty s-processes will update their copies of stable storage in the same 
way. Since there are 2k + 1 s-processes, at least k + I will be nonfaulty. Therefore, 
a majority of the s-processes will update their copies of stable storage. 

We now turn to part (2) of the Stable Storage Property. Above, we argued that  
all nonfaulty s-processes perform the same changes to stable storage and that  
therefore a majority of the copies of stable storage are correct and identical. 
From the program in Figure 1 it is clear that  a write operation attempted by fail- 
stop processor FSPi is not performed by an s-process unless all k + 1 p-processes 
in p(FSPi)  request it. Moreover, write operations requested by other fail-stop 
processors are ignored because of the s = owner conjunct in the guard. Clearly, if 
all k + 1 p-processes request an operation, then either none or all have failed in 
a way that makes erroneous state information--the value being written--visible 
to other processes. If all have failed then arbitrary behavior is permitted because 
there have been k + 1 failures. If none have failed then the write will be performed 
by the nonfaulty s-processes. 
ACM Transactions on Computer Systems, Vol. 2, No. 2, May 1984. 
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For p-process Pi in FSPi to write to stable storage in FSPI: 
ini t iate a Byzant ine  Agreement  for the  write request  
with all the  s-processes  in s(FSPI). 

For p-process  pj in FSPI to read from stable storage in FSP: 
(1) broadcast  the  read request  to all the  s-processes  in s(FSP), 
(2) use  the  value received from at  least  k + 1 different  s-processes.  

For p-process  P1 in FSPI to de termine  if FSP has  hal ted due to a failure: 
read the  variable failed f rom the  stable storage in FSP. 

Finally, for part (3) it suffices to note that  a read operation attempted by FSPi 
should result in identical responses being sent by nonfaulty s-processes to each 
p-process in p (FSPi). If fewer than k + 1 failures occur then at least k ÷ 1 correct 
values (from a total of 2k + 1) will be received. Thus, by taking the majority 
value of the responses, a p-process can obtain the correct value for the variable 
being read. 

2.2 Halt on Failure Property 

To detect a failure, during each (major) loop iteration it suffices for each 
s-process to check the write requests it has received, since spurious writes are 
the only means by which the effects of a failure can be made visible to another 
process. If 

(a) exactly one write request from each of the k ÷ 1 p-processes has been 
received, and 

(b) all the requests are identical, 

then either all or none of the k ÷ 1 p-processes that  make up FSP are malfunc- 
tioning. (Again, the case where all k ÷ 1 p-processes are faulty need not concern 
us here because the definition of a k-fail-stop processor allows it to display 
arbitrary behavior under these circumstances.) If write requests from only some 
of the k ÷ 1 p-processes in p(FSP) are received, then the p-processes in that  fail- 
stop processor are all sent a "halt" message, and the stable storage variable/ailed 
is set true. (Correctly functioning p-processes will halt upon receiving a "halt" 
message from at least k + 1 s-processes.) Once/ailed is true, the values of the 
variables in the nonfaulty s-processes don't change since the conjunct "-7/ailed" 
guards the assignment statement. 

2.3 Failure Status Property 

The Failure Status Property is implemented by the variable failed. Any process 
can obtain the value of failed at any time by reading it in stable storage. Thus, 
FSP can determine if FSPi has halted due to a failure, by reading failed from 
FSPi's stable storage 

This completes our implementation of a k-fail-stop processor approximation. 
The interface between the s-processes and the p-processes is summarized in 
Table I. 
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3. ASSIGNING PROCESSES TO PROCESSORS 

Consider an application tha t  requires N fail-stop processors to meet  its response- 
t ime constraints,  if no failures occur. For  this implementat ion to be able to 
tolerate up to k failures, N + k independent  k-fail-stop processors are required. 
Use of independent  fail-stop processors ensures tha t  a single failure will cause at 
most  one fail-stop processor to halt. Thus,  provided k or fewer failures occur, 
there will always be at  least N fail-stop processors available to run the application. 

A naive implementat ion of such a computing system will use 3k + 1 proces- 
so r s - -k  + 1 processors for p-processes and 2k + 1 processors for s-processes m 
for each k-fail-stop processor, resulting in a total  of (N + k) × (3k + 1) processors. 
Recall, however, tha t  programs for fail-stop processors will be s t ructured to make 
minimal use of stable storage. Therefore ,  it would be wasteful to dedicate an 
ent ire  processor to running an s-process for a single k-fail-stop processor. 

Suppose a single processor is able to run S s-processes without  delaying any of 
the p-processes tha t  in teract  with those s-processes. Now, we require only 
[ (N + k)/S ] × (2k + 1) processors to run the s-processes and N × (k + 1) 

processors for p-processes. Clearly, this is a decrease in the number  of processors 
over tha t  required for the naive implementat ion.  However,  now the N + k k-fail- 
stop processors are not  independent - -s -processes  of different  fail-stop processors 
share processors. For tunately ,  this is not  a problem because s-processes are 
replicated 2k + 1-fold. Given tha t  we are prepared to tolerate  at  most  k failures, 
even if S = N + k, so tha t  there  are only 2k + 1 processors running the 
s-processes for all N + k k-fail-stop processors and all of the failures occur in 
these processors, there  will still be k + 1 s-processes running on nonfaul ty  
processors for each of the N + k k-fail-stop processors. Thus,  the majori ty of the 
s-processes will be running on nonfaul ty  processors. 

When  a fail-stop processor halts, all of the nonfaul ty  processors running its 
p-processes- -up to k + 1 processors- -hal t .  It  is unlikely tha t  all of  these 
processors are, in fact, faulty. In order to recover nonfaul ty  processors tha t  were 
associated with a fail-stop processor in which there  was a failure, the following 
scheme can be used. 

Processor Recycling Scheme. Processors are par t i t ioned into three groups: 
active, unavailable and available. All processors are initially assigned to the 
available group. As fail-stop processors are configured, processors are removed 
from the available group and placed in the active group. Whenever  a fail-stop 
processor halts, those processors tha t  were running its p-processes are assigned 
to the unavailable group. Processors in the unavailable group run diagnostics, 
and any processor tha t  passes its diagnotics is reassigned to the available group. 

The  Processor  Recycling Scheme reduces the cost of a failure. Wi thout  it, a 
failure causes loss of all of  the processors running p-processes for the fail-stop 
processor in which the failure was detected. Wi th  the Processor  Recycling 
Scheme, only processors tha t  are unable to pass their  diagnostic tests  remain 
unavailable. The  others  are reconfigured into new fail-stop processors. 

4. OTHER APPROACHES TO FAULT-TOLERANCE 

Our implementa t ion of a k-fail-stop processor is an application of the state 
machine approach, a general approach for construct ing distr ibuted programs first 

ACM Transac t ions  on Computer  Systems, Vol. 2, No. 2, May 1984. 



Byzantine Generals in Action: Implementing Fail-Stop Processors • 153 

described in [5], and later extended for environments in which failures could 
occur in [6, 7] and [13]. Given any program, a distributed version that  can tolerate 
up to k failures can be constructed by running that  program on 2k + 1 processors 
connected by a communications network in which message origins can be au- 
thenticated. 2 Byzantine agreement is used to ensure that each instance of the 
program sees the same inputs; majority voting is used to determine the output of 
the computation. 

Consider an application that requires N processors to run and meet its real- 
time constraints. Using the state machine approach directly, a total of N × (2k 
+ 1) processors are required to implement a system that can tolerate up to k 
faults. Each additional "k-fault-tolerant processor" costs 2k + 1 real processors. 
Contrast this with the cost when the fail-stop processor approach is used where 
S s-processes can share a single processor. A total of (N + k) × (k + 1) 
+ [ {N + k)/S ~ × (2k + 1) real processors are required and each additional k- 
fail-stop processor costs {approximately) (k + 1) + (2k + 1)IS processors. Thus, 
there are cases where, to achieve the same degree of fault-tolerance, the fail-stop 
processor approach requires fewer processors than the state machine approach. 

However, direct use of the state machine approach on an application has other 
advantages over the fail-stop processor approach: 

• When using the state machine approach, there is no need to divide the program 
state between volatile and stable storage. Also, there is no need to develop 
recovery protocols that  reconstruct the state of the program based on the 
contents of stable storage. 

• When using the fail-stop processor approach, additional response time is 
incurred when a task is moved from one fail-stop processor to another. Such 
delays are not incurred when the state machine approach is used, since all 
failures are masked. Thus, it might not be possible to use the fail-stop processor 
approach for applications with tight timing constraints. 

• When using the fail-stop processor approach, an expensive Byzantine Agree- 
ment must be performed for every access to stable storage; with the state 
machine approach, Byzantine Agreement need only be performed for every 
input read. Thus, if reading input is a relatively infrequent event, the state 
machine approach will expend less resources in executing Byzantine Agreement 
protocols. 

5. DISCUSSION 

Our k-fail-stop processor approximation is based on the construction of a reliable 
kernel (using the s-processes) that supports stable storage and detects failures. 
The kernel is reliable because it is replicated 2k + 1-fold so that the effects of up 
to k failures are masked. Applications to be run on a k-fail-stop processor 
approximation are replicated only k + 1-fold, which is cheaper but sufficient only 
to detect errors and not to mask them. 

One way to approximate fail-stop processors is described in this paper; a more 
expensive approach was described in [12]. There are undoubtedly other ways to 
approximate fail-stop processors. For example, disks are sometimes considered 
acceptable approximations of stable storage; a triple-redundant bus can be used 

2 If authentication is not possible then 3k + 1 processors are required. 
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to approximate IC1 and IC2 when disseminating requests to disks; and a voter 
can be used to detect failures among processors running p-processes. The Tandem 
system is reported to employ fail-stop (there, called fail-fast) modules imple- 
mented directly by hardware [4]. These approximations are based on engineering 
data about how components usually fail; our approximation made no assumption 
about the nature of failures. On the other hand, our approximation is quite 
expensive--perhaps too expensive for all but the most demanding applications. 
This suggests that it might be worthwhile to pursue investigations into how to 
cheaply implement fail-stop processor approximations, both with and without 
assumptions about failure modes. 
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