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This paper derives a simple sufficient condition for strict stationarity in the ARCH(∞) class of
processes with conditional heteroscedasticity. The concept of persistence in these processes is ex-
plored, and is the subject of a set of simulations showing how persistence depends on both the
pattern of lag coefficients of theARCHmodel and the distribution of the driving shocks. The results
are used to argue that an alternative to the usual method of ARCH/GARCH volatility forecasting
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1. Introduction

The ARCHandGARCH and related classes of volatilitymodels are employed to exploit the fact of local persistence in the volatility of
returns processes, so as to predict volatility a number of steps into the future. Notwithstanding the large volume of research that has
been devoted to understanding these models since their inception, there remains a degree of mystery surrounding their dynamic
properties, and hence the degree to which they assist the effective forecasting of future volatility. Analogies drawn from the theory
of linear processes in levels have sometimes been invoked inappropriately in attempts to explain their behaviour, as has been detailed
in Davidson (2004) among other commentaries.

This paper considers the ARCH(∞) model of an uncorrelated returns sequence {ξt} in which, for − ∞ b t b ∞,
ξt ¼
ffiffiffiffiffi
ht

q
zt
where zt ~ i. i. d. (0, 1) and
ht ¼ ω þ
X∞
j¼1

θ jξ
2
t− j ð1Þ
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withω N 0, θj ≥ 0 for all j and S=∑j = 1
∞ θj b ∞. Interest focuses on the three salient features of models of this type: the value of S; the

decay rate of the lag coefficients; and the distribution of zt. Having regard to the first of these features, it is well known that S b 1 is a
necessary condition for covariance stationarity. Unless this condition applies it is inappropriate to speak of ht as the ‘conditional
variance’ although it is always well-defined as a volatility indicator. In respect of the second feature, it is also well known that the
Bollerslev (1986) GARCH class of models imposes exponential decay rates on the coefficients, and the HYGARCH class due to
Davidson (2004) which includes the FIGARCH model of Baillie et al. (1996), embodies hyperbolic decay rates. In respect of the
third, the disturbances are often specified to be Gaussian, even though it is a well-known stylized fact that the residuals from estimat-
ed GARCH models in financial data can exhibit excess kurtosis.

The question of strict stationarity in covariance nonstationary processes was first examined by Nelson (1990). In the GARCH(1,1)
model
Pleas
Finan
ht ¼ γ þ αξ2t−1 þ βht−1 ð2Þ
which has the form of (1) with ω= γ/(1− β), and θj = αβ j − 1 so that S= α/(1− β), he showed the necessary and sufficient con-
dition for strict stationarity to be
E log αz21 þ β
� �

b 0: ð3Þ
Subsequent work on this problem notably includes Bougerol and Picard (1992) who consider the GARCH (p, q) extension of
Nelson's result, and emphasize the role of the negativity of the top Lyapunov exponent of a certain sequence of random matrices.
Kazakevičius and Leipus (2002) show that a necessary condition for a stationary solution in the ARCH (∞) class is
log S b−E log z21
� �

ð4Þ
while Douc et al. (2008) prove a sufficient condition of the form
E z1j j2p
X∞
j¼1

θpj b1; some p ∈ ð0;1�: ð5Þ
In this paperwe consider conditions for strict stationarity, but also thewider question of the persistence of stationary volatility pro-
cesses; specifically, how long episodes of high volatility tend to persist, once initiated, and hence how far into the future variations in
volatility may feasibly be forecast. This notion of persistence, which is independent of the existence of moments, is made precise in
Section 3,wherewe define it in terms of the (in)frequency of crossings of themedian in successive steps. Thus, a processwhich crosses
the median at most a finite number of times in a realization of length T, as T → ∞, is necessarily nonstationary, either converging or
diverging. At the other extreme, a serially independent process crosses the median with probability 1/2 at each step, by construction.
Conditions for strict stationarity of a process in effect define the boundary beyondwhich persistence becomes divergence, and there is
no reversion tendency defining a stationary distribution. In Section 2, a decomposition of the ARCH(∞) equation is introduced which
simplifies the problem of seeing how persistence and stationarity depends on the various model features. We use this representation
to derive a new sufficient condition for strict stationarity. In the GARCH(1,1) case where the stationarity boundary in the parameter
space is known, we show numerically that our condition is not too far from necessity, in contrast to a strong condition such as (5).
The properties of thesemodels are shown to be the result of rather complex interactions between the shock distribution and the linear
structure. Section 4 reports a comprehensive set of simulations, covering covariance stationary, strictly stationary and nonstationary
cases. Section 5 considers the implications of our analysis for the optimal forecasting of volatility, and investigates alternatives to
the minimum mean squared error criterion, which is conventional but not necessarily optimal in the context of highly skewed vola-
tility processes. Section 6 contains concluding remarks, and proofs of the propositions stated in Section 2 are gathered in Appendix A.

2. Stationarity and persistence in the ARCH(∞) Class

Write (1) in the alternative form
ht ¼ ω þ
X∞
j¼1

ψ jtht− j ð6Þ
where
ψ jt ¼ θ jz
2
t− j: ð7Þ
In words, we can describe this as an infinite-order linear difference equation with independently distributed random coefficients.
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To focus attention on the persistence properties of (6), it is helpful to apply a variant of the so-called Beveridge and Nelson (1981)
decomposition (henceforth, BN), which was introduced as a tool of econometric analysis by Phillips and Solo (1992). The BN decom-
position is the easily verified identity for polynomials λ(x) = ∑j = 0

∞ λjx
j having the form
Pleas
Finan
λ xð Þ ¼ λ 1ð Þ þ λ� xð Þ 1−xð Þ
where λj⁎ = − ∑k = j + 1
∞ λk. In the present application we consider, for each t, the stochastic polynomial in the lag operator
ψt Lð Þ ¼
X∞
j¼0

ψ jtL
j

where the coefficients are given by (7) with ψ0t = θ0 = 0. The BN form of this expression is
ψt Lð Þ ¼ Ψt þ ψ�
t Lð Þ 1−Lð Þ
where
Ψt ¼ ψt 1ð Þ ¼
X∞
j¼1

ψ jt ð8Þ
and note that
E Ψtð Þ ¼ S: ð9Þ
The coefficients of ψt⁎(L) are ψ0t⁎ = 0 and, for k ≥ 1,
ψ�
kt ¼ −

X∞
l¼kþ1

θlz
2
t−l ≤ 0: ð10Þ
Accordingly write (6) as
ht ¼ ω þΨtht−1 þ Rt ð11Þ
where
Rt ¼
X∞
k¼1

ψ�
ktΔht−k: ð12Þ
Note that if {ht} is a stationary process, the terms Δht are negatively autocorrelated and their contribution to the dynamics is
therefore high-frequency, in general. That the longer-run persistence and stationarity properties of the process depend critically on
the distribution of the sequence {Ψt} is shown by the following proposition. (Proofs are gathered in the Appendix A).

Proposition 2.1. If the stochastic process {ht⁎}t = − ∞
∞ where
h�t ¼ ω þΨth
�
t−1 ð13Þ
satisfies a sufficient condition for P(ht⁎ b ∞) = 1, then P(ht b ∞) = 1 also holds for (6).

With this consideration inmindwe give the following result, establishing a sufficient condition for stationarity of {ht}. For conve-
nience of notation, let the symbol ζ denote the constant E(logΨt), not depending on t since {zt} is i.i.d.

Proposition 2.2. If
ζ b 0 ð14Þ
then {ht⁎}t = − ∞
∞ defined by (13) is strictly stationary and ergodic.

Sufficiency of the covariance stationarity condition S = E(Ψt) b 1 follows from Proposition 2.2 by the Jensen inequality.
Consider this result in the case of the GARCH(1,1) process in (2). This is a special case because, uniquely among ARCH(∞)

processes, it can be expressed exactly in the form of (13). In other words, we may write the model as
ht ¼ γ þΨ†
t ht−1 ð15Þ
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Fig. 1. Gaussian GARCH(1,1) model: (α, β) pairs where ζ = 0 and stationarity boundary points (Nelson, 1990).
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where Ψt
† = αzt − 1

2 + β and γ = ω(1 − β). Proposition 2.2 can be applied directly to (15) to obtain condition (3), which Nelson
(1990) shows to be necessary as well as sufficient. However, writing the model in its ARCH(∞) representation with
1 Not

Pleas
Finan
Ψt ¼ αz2t−1 þ αβz2t−2 þ αβ2z2t−3 þ⋯
as in (8), we obtain
ζ ¼ E logΨtð Þ ¼ E log αz2t−1 þ βΨt−1

� �h i
: ð16Þ
In the case β = 0, so that S = α, the conditions (3) and (14) match. They also match the necessary condition (4) which for the
GARCH(1,1) case becomes
E log αz21
� �

b log 1−βð Þ:
Also, letting β → 1 while letting α tend to zero at such a rate as to fix the sum of the coefficients at S = α/(1 − β), note that
condition (14) in case of (16) implies the covariance stationarity condition S b 1. This follows because Ψt → S almost surely as
α → 0 by the strong law of large numbers, noting that it is a weighted average of i.i.d. random variables with means of unity and
weights with finite sum S.

For the intermediate cases with 0 b β b 1, conditions (3) and (14) do not match but can be compared, giving an opportunity
to verify the sharpness of the latter condition. Some numerical experiments with Gaussian shocks are illustrated in Fig. 1, showing
a-values at which ζ ≈ 0 for β = 0, 0.1, 0.2, …, 0.9. The mean is estimated in each case as the average of 20,000 values of log(Ψt)
whereΨt is calculated from a generated i.i.d. Gaussian sequence {zt} and the recursionΨt= αzt − 1

2 + βΨt − 1. The actual stationarity
boundary points from (3) are shown for comparison, as plotted in Figure 1 of Nelson (1990).1 By comparison, note that the sufficient
condition (5) of Douc et al. (2008) is substantially stronger than the bound of Proposition 2.2. For the cases illustrated in Fig. 1, the
boundary value of S= α/(1− β) ranges from 1 at β=0.9 up to 2.1 at β=0.1. In the Gaussian case, a lower bound on E|z1|2p is

ffiffiffiffiffiffiffiffi
2=π

p
¼ 0:798at p=0.5,whereas S is a lower bound on the second factor of condition (5). Formost of these cases, there is no value p∈ (0, 1]
close to meeting the stated condition.

The way in which these conditions depend on the distribution of z12 can be appreciated by considering Figs. 2–4, which show sim-
ulated paths (T= 5000, with 10,000 presample steps) for three cases of the IGARCH(1,1)model, withω=1 and β=0.9 in each case.
These are among themodels studied in Section 4 of the paper. The sole difference between the three cases comes from the shock dis-
tributions, which are, respectively, the Student twith 3 degrees of freedom, the Gaussian, and the uniform, in each case normalized to
zero mean and unit variance. Estimates of− E(log z1

2) (computed as averages of samples of size 20,000) are, respectively, 2.02 for the
Student(3), 1.25 for the Gaussian, and 0.87 for the uniform case. These may be compared with log(S)= 0 in the light of the necessary
e that the axes in our figure are interchanged relative to Nelson's figure.
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Fig. 2. Simulation of IGARCH(1,1) with β = 0.9 and Student(3) shocks.
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stationarity condition (4). The plots show how these characteristics map into differences in persistence, pointing up the somewhat
counter-intuitive effect of fat tails on persistence.

Turning now to the general ARCH(∞) case, note first that from (9) and ω N 0 it follows that the existence of E(ht⁎) requires S b 1,
mirroring the full model in (11); in the same case, observe that E(Rt) = 0. Except in the case where S b 1, stationarity depends on
the distribution of Ψt and particularly on the degree of positive skewness which, as a moving average of squared shocks, Ψt must
exhibit in some degree. If the mass of the distribution of Ψt falls below one, the mass of the distribution of logΨt is in the negative
part of the line. While E(logΨt) b log S by the Jensen inequality, the logarithm of a positive and positively skewed random variable
has a more nearly symmetric distribution than the variable itself. Hence, E(log Ψt) lies correspondingly closer to Median
(log Ψt) = log(Median(Ψt)), which in turn lies further below log S, as the skewness is greater. In terms of the dynamics of the pro-
cess, to the extent thatΨt is symmetrically distributed about itsmean S, and S ≥ 1, the probability that a step is convergent, in the sense
of Proposition 2.1, is relatively small. The stochastic difference equation defined by (13) must, with the complementary probability,
behave like either a unit root process with positive drift or an explosive process. However, skewness will increase the proportion of
the realizations falling below the mean, yielding stationary behaviour on more frequent occasions, compensated by less frequent
but larger excursions above the mean.

In this context, we can appreciate the rather complex role played by the rate of decay of the nonnegative sequence {θj}j = 1
∞ , given

its fixed sum S = E(Ψ1). First, note that the skewness ofΨ1 derives from and is bounded by the skewness in the distribution of the
increments {zs2, s ≤ 0}. Hence, the necessary condition (4) can be understood as the minimal condition for non-divergence when
S ≥ 1. This condition would also be sufficient in the case θj = 0 for j N 1 and S= θ1 = 1 (the IARCH(1) model), in which case the dis-
tributions ofΨ1 and z1

2 match. However, whenΨ1 is a moving average of the {zs2} process, the distribution ofΨ1 depends critically on
the distribution of the lag coefficients. Since the lag weights have a finite sum S, the effects of a longer or shorter average lag are to
introduce different degrees of averaging of the squared shocks. The somewhat complex nature of this relation depends on the exis-
tence of a trade-off between two countervailing effects. Assuming that z1 possesses a fourth moment, the central limit theorem im-
plies that Ψ1 is attracted to the normal distribution, with skewness increasingly attenuated, as lag decay gets slower. At the same
time, the lawof large numbers implies that the variance ofΨ1 is smaller. The first of these effects is tending to increase the persistence
of the {ht⁎} process, while the second is tending to lower the influence of ht⁎ on the volatility of ξ�t ¼

ffiffiffiffiffi
h�t

q
zt , simply because the noise

contribution from zt becomes more dominant as the variations in ht⁎ are attenuated. It is therefore difficult to predict the effect of
changing the lag decay rate in any given case.

To summarize: if the contribution of the term Rt in (11) to the persistence properties can be largely discounted, as we argue, the
persistence and stationarity of the ARCH(∞) process can be related, through the distribution ofΨ1, to the three key factors: S, the rate
of decay of the lag coefficients, and the marginal distribution of z1. Greater/smaller kurtosis of z1 implies greater/smaller positive
skewness in the distribution of z12, and hence gives rise to less/more persistence in {ht}, other things equal. A longer average lag
can, counterintuitively, imply a lesser degree of persistence in the observed process, virtually the opposite of the role of lag decay
in models of levels, where the sum of the lag coefficients is not constrained in the same way, and shocks are viewed implicitly as
Fig. 3. Simulation of IGARCH(1,1) with β = 0.9 and Gaussian shocks.
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Fig. 4. Simulation of IGARCH(1,1) with β = 0.9 and uniform shocks.
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having a symmetric distribution. Finally, it is most important to note that the distinction between exponential and hyperbolic decay
rates has quite different implications here than in models of levels. There is no counterpart to so-called longmemory in levels, other-
wise called fractional integration. The dynamics are nonlinear and there is no simple parallel with linear time series models. The
closest analogy is with a single autoregressive root which in the covariance nonstationary cases is local to unity.

In the remainder of the paper, we report some simulations to throw light on the volatility persistence properties of alternative
simple cases of the ARCH(∞) class. However before that is possible we need a framework for comparing persistence in general
time series processes. The next section considers some alternative approaches.

3. Measuring the persistence of stationary time series

The persistence, or equivalently memory, of a strictly stationary process can be thought of heuristically in terms of the degree to
which the history of the process contains information to predict its future path, more accurately than by simple knowledge of the
marginal distribution. In the context of univariate forecasting, forecastability must entail that changes in the level of the process are
relatively sluggish. It is customary to measure this type of property with reference to the autocovariance sequence, but this is not a
valid approach in the absence of second moments.

We resort instead to the idea that the key indicator of persistence is the (in)frequency of reversion towards a point of central ten-
dency.Wemay formalize this notion by defining the persistence of an arbitrary sequence {Xt}t = 1

T specifically in terms of the number
of occasions onwhich the series crosses itsmedian point. The directmeasure of this property, which iswell defined and comparable in
any sample sequencewhatever, is the relativemedian-crossing frequency, although it'smore convenient to consider the complemen-
tary relative frequency of non-crossings. We therefore define
Pleas
Finan
JT ¼ 1
T

XT
t¼2

I Xt−MTð Þ Xt−1−MTð Þ N 0ð Þ ð17Þ
where T is sample length, I(.) denotes the indicator of its argument andMT is the samplemedian. JTmeasures the persistence of a sam-
ple as a point in the unit interval.When the sequence is serially independent, JT→ 1/2 as T→∞, almost surely, by construction. In other
words, under independence half of the pairs of successive drawingsmust fall on different sides of themedian on average. The extreme
cases are JT → 0 (anti-persistence) and JT → 1 (persistence). In the latter case, at most a finite number of median crossings as T → ∞
implies that the sequence either converges, or diverges to infinity. In neither case can it be strictly stationary. The condition limsup
JT b 1 is evidently necessary for strict stationarity.

JT in (17) applied to a given sequence measures what wemay designate persistence in levels. Persistence in volatility is measured
by the statistic analogous to JT for the squared or (equivalently) absolute values of the series. From the standpoint of returns it is sec-
ond order persistence, so defined, that is our interest in the present analysis. The JT statistic can be computed for arbitrary transforma-
tions of the variables, and a necessary and sufficient condition for strict stationarity would appear to be that the sequences {JT, T ≥ 2}
are bounded below 1 for all such variants. However, the two leading cases mentioned appear the important ones in the usual time
series context.

JT is an ordinal measure that is well defined regardless of the existence of moments and is also invariant under monotone trans-
formations. Thus, the cases Xt = ξt2 and Xt = |ξt| must yield the same value of JT. More interestingly, it is invariant under the operation
of forming the normalized ranks of the series, {xt}t = 1

T . Letting F̂T denote the empirical distribution function
F̂ T zð Þ ¼ T−1XT
s¼1

I Xs≤zð Þ;
xt ¼ F̂ T ðXtÞdenotes the relative position ofXt in the sorted sequence X(1),…, X(T). The samplemedian of the normalized ranks tends to
1/2 by construction, and when the sample is large enough, JT must have the same value for {xt}t = 1

T as it does for the original series
{Xt}t = 1

T . The ranks are also invariant under monotone transformations of the series, so yielding the same values for Xt = ξt2 and
Xt = |ξt| in particular.
e cite this article as: Davidson, J., Li, X., Strict stationarity, persistence and volatility forecasting in ARCH(∞) processes, J. Empir.
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Conventional approaches to measuring persistence, for levels or squares/absolute values as the case may be, are based on the
autocovariance sequence. There is particular interest in the property of absolute summability of this sequence, often called weak de-
pendence, with strong dependence defining the non-summable case.2 Popular persistencemeasures based on the autocovariance se-
quence are the so-called GPH log-periodogram regression estimators (for different bandwidths) of the fractional persistence
parameter d, originally due to Geweke and Porter-Hudak (1983). In principle, GPH estimators provide a test of the null hypothesis
of weak dependence, although they are well-known to be subject to finite sample bias except under the null of white noise.

Our present interest is due to the fact that the longmemory paradigm has proved popular in volatilitymodelling, and GPH estima-
tion can be validly performed on the normalized ranks of a series regardless of the covariance stationarity property. The particular
problem faced in the context of nonstationary volatility is the existence of excessively influential outlying observations, which may
invalidate the usual assumptions for valid inference. Rank autocorrelations are free of these influences andmay focusmore specifically
on measuring persistence as characterized here. We should emphasize, though, that our present concerns are not primarily hypoth-
esis testing, but rather to compare and rank different models according to their persistence characteristics.

To calibrate the performance of these alternative measures, we generated some pure fractional series, otherwise known as I(d)
processes, for a range of values of d, in samples of size T= 10,000, with 5000 pre-sample observations. However, the driving shocks
were generated to have anα-stable distributionwithα=1.8 andβ=1,whereβ is the skewness parameter. The series so constructed
do not have second moments and superficially resemble volatility series (after centring) while having a conventional and well-
understood linear dependence structure.

Three statistics were computed for these series: JT in (17), the GPH estimator with bandwidth
ffiffiffi
T

p
for the original series, and also

the same GPH estimator for the series of normalized ranks. The simulations were repeated 100 times and the means and standard
deviations (in parentheses) of the replications are recorded in Table 1, where d̂

R denotes GPH for the ranked data.
The JT statistics discriminate rather clearly between the independent case at one end of the dependence spectrum and the strictly

nonstationary unit root at the other. The GPH estimates for the raw data in fact behave like consistent estimates of d, while the rank
correlation-based estimator appears biased upwards. This is a slightly counter-intuitive result that may or may not be specific to the
example considered. However, in our applicationwe are seeking only to rankmodels, in contexts where a parameter dwith the usual
linear property is not typically well defined. (In particular, it does not correspond to the ‘d’ appearing in FIGARCH and HYGARCH
models.) We carry this alternative along, chiefly, in a spirit of curiosity about the performance of a seemingly natural measure in
the context of an exploration of ‘long memory in volatility’.

4. Some simulation experiments

In this section, we evaluate and compare the properties discussed in Section 2 in the GARCH(1,1) and the ‘pure’ HYGARCH/
FIGARCH model. The respective data generation processes are of the form ξt ¼

ffiffiffiffiffi
ht

p
zt where zt ~ i. i. d. (0, 1) and either
2 The
(2009).

Pleas
Finan
ht ¼ ω þ 1−
1−δL
1−βL

� �
ξ2t ð18Þ
where δ N 0 and 0 ≤ β b min(1, δ) or
ht ¼ ω þ α 1− 1−Lð Þd
� �

ξ2t ð19Þ
whereα N 0 and 0 b d ≤ 1. (See e.g. Davidson (2004) for the context of these examples.) In (18),whichmatches (2) on setting δ=α+
β, S=(δ−β)/(1−β);whereas in (19), S=α. Setting δ=1andα=1, respectively, yields the covariance nonstationary IGARCH and
FIGARCH models, whereas setting these parameters strictly less than one implies covariance stationarity.

The simulations set a range of values for each of the parameter pairs (δ, β) and (α, d). Covariance stationary cases are specified
having δ = 0.8 and α = 0.8 respectively. We also simulate nonstationary cases, with δ = 1, δ = 1.2 and α = 1, α = 1.2. For each
of these cases, three values of β and three values of d are chosen, being careful to note that the average lag varies inversely with d
(which is of course to be understood as a differencing parameter, not an integration parameter). For each of the nine parameter
pairs selected, three different generation processes for zt are compared: in decreasing order of kurtosis, these are the normalized Stu-
dent t(3), zStð3Þ ¼ tð3Þ=

ffiffiffi
3

p
; the standard Gaussian, zG; and the normalized uniform distribution, zU ¼

ffiffiffiffiffiffi
12

p
ðU½0;1�−1=2Þ.

Tables 2 and 3 show the results for samples of size T= 10,000, with 5000 pre-sample observations to account for any start-up ef-
fects. The reported values are the averages of 100 Monte Carlo replications of the generation process, with the replication standard
deviations shown in parentheses as a guide to the stability of these persistence indicators. The rows of the tables show the following:
first, the samplemean, samplemedian, and sample logarithmicmean of the random sequences {Ψt}t = 1

T as defined in (8); second, the
values of JT for various series defined in Section 2: the squared returns, the conditional volatilities ht, and also the remainder term Rt=
ht − ω− Ψtht − 1. The final columns of the tables show, for an alternative view of the persistence, the GPH estimators based on the
rank correlations of the squared returns.
well-known difficulty of discriminating between these cases in a finite sample has recently been studied in detail by one of the present authors, see Davidson

e cite this article as: Davidson, J., Li, X., Strict stationarity, persistence and volatility forecasting in ARCH(∞) processes, J. Empir.
ce (2015), http://dx.doi.org/10.1016/j.jempfin.2015.08.010

http://dx.doi.org/10.1016/j.jempfin.2015.08.010


Table 1
Persistence measures in a fractional linear time series, T = 10,000. (Means of 100 replications with standard errors in pa-
rentheses).
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The salient points of interest in these experimental results seem to us to be the following. First, the relationships between the
proximity of the mean of Ψt (measuring S) to the corresponding median,3 and also the proximity of the logarithmic mean to
zero, and the measured persistence of the squared returns. Second, we note that the measured persistence of Rt is in general
much lower than that of ht, confirming the fact that Ψt is the key determinant of persistence. Third, we draw attention to the
relative persistence of the squared returns and of the volatility series. In the former case, for given δ (or α), and given shock dis-
tribution, the median-crossing frequencies (measured by 1 − JT) actually rise as the lag decay rates decrease, either through β
increasing, or d decreasing. In other words, longer average lags imply less persistence. The reason for this phenomenon has been
discussed in Section 2, and the interesting observation is that this effect is large enough to counteract the increased persistence
in volatility, ht, which is also observed.

Finally, we draw attention to the cases with δ=1.2 and α=1.2, where instances of the logarithmic mean exceeding zero are re-
corded. In the GARCH case, there is clearly a close correspondence between this occurrence and the evidence that stationarity is vio-
lated, in the sense that the median is crossed fewer than ten times in 10,000 steps. The necessary condition (4) can also be checked
out. Compare the estimated values of − E(log zt

2) for the three distributions, as reported in Section 2. When S = 3 so that log
(S) = 1.09, which is the GARCH case corresponding to δ = 1.2 and β = 0.9, only the uniform distribution case actually violates the
necessary condition, but all the distribution alternatives appear nonstationary. All the HYGARCH examples appear stationary,
although the uniform case with d = 0.5 appears the closest to divergent.

The estimates of the fractional integration parameter in the last column of the tables are of interest in reflecting the persistence
measured by JT quite closely, increasing across the rangewith β, but are non-monotonewith respect to d. Observe that, for the normal
and uniform cases in Table 3, the values obtained for d=0.5 are generally greater than those for either d=0.9 or d=0.1. When the
volatility is covariance nonstationary thesemeasures can be quite large, andwhen it is strictly nonstationary, they fall close to unity. In
a series of insightful papers, Mikosch and Stărică (2003, 2004) argue that long range dependence of volatility in financial data should
be attributed to structural breaks in the unconditional variance, rather than to GARCH-type dynamics. However, it is clear that appar-
ent long range dependence can be observed in the stationary cases simulated here. We would agree with these authors that the ev-
idence of long-range dependence is spurious, in the sense that it is not generated by a fractionally integrated structure, as it is in
Table 1 for example. However, our diagnosis of the cause does not invoke structural breaks. Rather, we see it as a phenomenon
analogous to having an autoregressive root local to unity in a levels process, leading to Ornstein–Uhlenbeck-type dynamics which
are easily confusedwith longmemory in finite samples. However, the analogy is necessarily a loose one in view of the special features
of the volatility process which we have detailed in Section 2.
5. Implications for volatility forecasting

When usingmodels of the ARCH/GARCH class for volatility forecasting two ormore steps ahead, the usualmethodology is to apply
the standard recursion for a minimummean squared error (MSE) forecast, with ξT + j

2 for j N 0 replaced by its (assumed) conditional
expectation. Amongmany references describing this technique see for example Poon (2005) page 39 and also the Eviews 8UserGuide
(2013), page 218, for a practical implementation.
3 The medians are much better determined than the skewness coefficients, which were also computed, but not reported since they convey a very similar picture to
the mean–median gaps.
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Table 2
Series properties and persistence measures for the GARCH(1,1) model.
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In other words, if ht is defined by (1) (and implicitly assuming the parameters are replaced by appropriate estimates) we would
replace ξt2 by Et − 1ξt2 = ht, and so set4
4 We

Pleas
Finan
ĥtþ1jt−1 ¼ ω þ θ1ht þ
X∞

j¼2
θ jξ

2
t− jþ1: ð20Þ
The volatility forecast error accordingly has the form
f tþ1jt−1 ¼ htþ1−ĥtþ1jt−1

¼ θ1 ξ2t −ht
� �

¼ θ1ht z2t −1
� �

:

ð21Þ
In the general k-step ahead case,
ĥtþkjt−1 ¼ ω þ
Xk−1

j¼1
θ jĥt− jþkjt−1 þ θkhtþ

X∞
j¼kþ1

θ jξ
2
t− jþk: ð22Þ
call this expression the two-step volatility forecast since ht itself is of course the one-step forecast.
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Table 3
Series properties and persistence measures for the HY/FIGARCH model.
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and so
Pleas
Finan
f tþkjt−1 ¼
Xk−1

j¼1
θ j f t− jþkjt−1þ

Xk
j¼1

θ jht− jþk z2t− jþk−1
� �

: ð23Þ
For example, consider the GARCH(1,1) model in (18) which rearranges as
htþ1 ¼ ω 1−βð Þ þ δ−βð Þz2t þ β
h i

ht :
If zt2 is replaced by Et − 1zt
2 = 1 to construct the forecast, (21) reduces to
f tþ1jt−1 ¼ δ−βð Þht z2t −1
� �

:

The problemwith this formulation, as the preceding analysis demonstrates, is that due to the skewness of the distribution of zt2, the
meanmay not be the best measure of central tendency. The persistence of the process, and hence its forecastability, will be exagger-
ated by this choice. In effect, the problem is closely allied to that of forecasting in model (13) by using S as the forward projection for
unobservedΨt. S is not the value thatΨt is close towith highest probability, and hence the one that will deliver an accurate projection
with high probability. Themajority of volatility forecasts will be “overshoots”, balanced by a smaller number ofmore extreme “under-
shoots”. The forecast is unbiased in the sense E(ft + k|t − 1) = 0 when this expectation is defined, but this condition excludes the
IGARCH and FIGARCH and other nonstationary cases. Even if the mean squared forecast error is defined, in this context, it is not
clear that the MSE is an appropriate loss function.
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We investigated this issue experimentally with the results reported in Tables 4 and 5 for the GARCH(1,1) and pure HY/FIGARCH
models respectively. We studied the distribution of errors in the two-step forecasts constructed under different assumptions about
the appropriate measure of central tendency of the shocks, denoted byM in the definition
Table 4
MAV 2-

Mode

δ

0.8

1.0

Pleas
Finan
f tþ1jt−1 ¼ θ1ht z2t −M
� �

: ð24Þ
The median absolute values (MAVs) of the variables defined in (24) were computed for six choices of M. In the tables, the mini-
mum value of the MAV in each row is indicated in boldface. Note that in only two of these cases does M exceed 0.5 and in both,
the difference from the adjacent lower value is minimal. The rule that M = 0.1 gives the best result for the Student(3) case, M =
0.3 for the Gaussian case andM= 0.5 for the uniform case appears to hold quite generally. The implication may be that future vola-
tility is significantly overstated by conventional procedures.

We can reasonably assume that the optimalM values are those closest to themodes of the respective distributions.While estimat-
ing the mode of an empirical distribution is not a straightforward procedure, constructing medians is easy and the medians of our
squared normalized distributions, estimated from samples of size 10,000, are 0.763 for the uniform, 0.423 for the Gaussian and
0.176 for the Student(3). In default of a more precise analysis, a rough and ready rule of thumb would be to estimate the
MAV-minimizingM by 2/3 times the sample median of the normalized residuals. This corresponds to computing the k-step volatility
forecasts by the recursion
ĥtþkjt−1 ¼ ω þ 2
3
Median z2t

� �Xk
j¼1

θ jĥt− jþkjt−1 þ
X∞

j¼kþ1
θ jξ

2
t− jþk ð25Þ
where ĥtjt−1 ¼ ht .
Amore extensive simulation study than the present onewould be needed to confirm this recommendation.We do note, however,

that the rule would apply successfully in both the covariance stationary and the covariance nonstationary cases that have been sim-
ulated here. Although ht has the interpretation of a conditional variance only in the stationary case, note that the problemwehighlight
is not connected with the non-existence ofmoments. It is entirely amatter of adopting aminimumMSE estimator of a highly skewed
distribution, such that the outcome is overestimated in a substantially higher proportion of cases than it is underestimated.

6. Concluding remarks

In this paper we have investigated the dynamics of certain conditional volatility models with a view to understanding their pro-
pensity to predict persistent patterns of high or low volatility. Understanding how persistence depends on the various model charac-
teristics, while intriguing and often counterintuitive, is perhaps a matter of mainly theoretical interest. However, there is also an
importantmessage here for practitioners. Conventional forecastingmethodologies that are optimal under the assumption of symmet-
rically distributed shocksmay be viewed as overstating the degree of future volatility. This is, of course, an issue essentially of the pre-
ferred choice of loss function. Practitioners may validly elect to favour the unbiasedness and minimum MSE properties over
minimizing the MAV. They should nonetheless not overlook the fact that the usual rationale for the former criterion implicitly
assumes a Gaussian framework, and is arguably inappropriate in the context of predicting volatility.
step forecast error in GARCH(1,1), against M (see (24)).

l M

β Dist'n 1 0.9 0.7 0.5 0.3 0.

0.1 St(3) 0.070 0.063 0.049 0.035 0.020 0.010
N 0.078 0.070 0.054 0.041 0.032 0.047
U 0.091 0.083 0.071 0.066 0.085 0.121

0.4 St(3) 0.171 0.153 0.118 0.084 0.052 0.028
N 0.204 0.185 0.148 0.115 0.090 0.111
U 0.232 0.216 0.184 0.162 0.176 0.246

0.7 St(3) 0.073 0.065 0.050 0.036 0.022 0.010
N 0.076 0.069 0.055 0.041 0.028 0.034
U 0.076 0.070 0.058 0.046 0.045 0.065

0.1 St(3) 0.094 0.084 0.064 0.045 0.028 0.015
N 0.122 0.110 0.088 0.069 0.061 0.085
U 0.184 0.174 0.160 0.161 0.193 0.257

0.5 St(3) 0.338 0.303 0.234 0.168 0.108 0.069
N 0.693 0.637 0.536 0.446 0.386 0.410
U 1.198 1.150 1.076 1.034 1.067 1.248

0.9 St(3) 0.246 0.221 0.173 0.127 0.085 0.054
N 1.118 1.033 0.876 0.734 0.621 0.592
U 2.352 2.267 2.109 1.984 1.932 2.103
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Table 5
MAV 2-step forecast error in HY/FIGARCH, against M (see (24)).

Model M

α d Dist'n 1 0.9 0.7 0.5 0.3 0.1

0.8 0.9 St(3) 0.038 0.034 0.026 0.018 0.011 0.005
N 0.043 0.039 0.030 0.023 0.017 0.026
U 0.050 0.046 0.039 0.036 0.048 0.068

0.5 St(3) 0.156 0.140 0.108 0.078 0.049 0.027
N 0.216 0.196 0.157 0.122 0.094 0.114
U 0.244 0.226 0.192 0.166 0.182 0.257

0.1 St(3) 0.053 0.047 0.036 0.026 0.016 0.007
N 0.055 0.049 0.039 0.029 0.019 0.024
U 0.053 0.049 0.041 0.032 0.031 0.045

1.0 0.9 St(3) 0.050 0.045 0.034 0.024 0.014 0.008
N 0.073 0.066 0.053 0.041 0.036 0.050
U 0.116 0.110 0.101 0.101 0.120 0.161

0.5 St(3) 0.300 0.269 0.208 0.150 0.097 0.060
N 1.382 1.271 1.060 0.874 0.734 0.751
U 3.862 3.688 3.372 3.164 3.198 3.838

0.1 St(3) 0.429 0.384 0.298 0.216 0.138 0.076
N 0.663 0.603 0.488 0.379 0.279 0.314
U 0.658 0.614 0.526 0.440 0.419 0.599
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Appendix A. Proofs

A.1. Proof of Proposition 2.1

First, consider the case of where {ψjt} is replaced by {ψj}, a nonstochastic sequence of coefficients. Then
Pleas
Finan
ht ¼ ω þ
X∞
j¼1

ψ jht− j ð26Þ
with ω N 0 and ψj ≥ 0 for all j ≥ 1 has a stable, positive solution if and only if this is true of the equation
h�t ¼ ω þ
X∞
j¼1

ψ j

0
@

1
Ah�t−1: ð27Þ
Stable solutions of (26) and (27), if they exist, are both of the form
ω
1−
X∞

j¼1
ψ j

N 0
implying in both cases the necessary and sufficient condition
X∞
j¼1

ψ j b 1: ð28Þ
Next, consider the stochastic sequence {ψjt}. Let this be randomly drawn at date t0, as the functional of the random sequence
fzt0− j; jN0g, and then let a step be taken according to either (6) or (13). Call this in either case a convergent step if∑∞

j¼1ψ jt0 ¼ Ψt0b1.
That is, if the process is allowed to continue with this same fixed drawing, the sequence of steps so generatedmust approach the par-
ticular solution
h0 ¼ ω
1−Ψt0

: ð29Þ
This is a drawing from the common distribution of stable solutions, which are almost surely finite.
Suppose that every step taken is convergent, in this sense. Then, the sequence is always moving so as to reduce its distance from

some point in the distribution of stable solutions. It therefore cannot diverge. More generally, let each step have a certain fixed prob-
ability of being convergent. The probability that the sequence diverges can be reduced to zero by setting this probability high enough.
This is, from elementary considerations, a sufficient condition for {ht⁎} to be finite almost surely.
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To show that the same condition is sufficient for {ht} generated by (6) to be finite almost surely, first note that the step defined by
(13) can be written for given Ψt0 in the form
5 Nel
(1988)

Pleas
Finan
Δh�t ¼ Ψt0
−1

� �
h�t−1−h0
� �

: ð30Þ
In this representation, the condition for a convergent step is that Δht⁎ and h�t−1−h0 have different signs. Nowwrite the BN form of
(11) in the equivalent representation, as
Δht ¼ Ψt0
−1

� �
ht−1−h0
� �

þ R0
t ð31Þ
where the remainder, like Ψt0 , is specified for the particular shock sequence fzt0− j; j N 0g as
R0
t ¼

X∞
k¼1

ψ�
kt0

Δht−k: ð32Þ
In this case, Ψt0 b 1 does not imply Δhtðht−1−h0Þ b 0 since the sign of Δht also depends on Rt
0.

For the case ht−1 Nh0, consider the circumstances in which Rt
0 N 0. Rearrangement of the sum of (32) leads to
R0
t ¼ −

X∞
k¼2

θkz
2
t0−k ht−1−ht−kð Þ
so that a necessary condition for Rt0 N 0 is that ht − 1 b ht − k for at least one value of k N 1. This shows that withΨt0b1 a sequence
{ht} generated by (31) can never diverge, and is almost surely finite. Conversely, if ht−1 b h0 the necessary condition for Rt

0 b 0 is
ht − 1 N ht − k for at least one k N 1, although this case is not critical to the property P(ht b ∞) = 1. ■

A.2. Proof of Proposition 2.2

The solution of (13) is
h�t ¼ ω 1þ
X∞
m¼1

∏
m−1

k¼0
ψt−k

 !
: ð33Þ
Since ∑j = 0
∞ θj b ∞ and the sequence {∑j = 1

m θjzt − j
2 , m ≥ 1} is monotone, Ψt is a measurable function of {zs, − ∞ b s b t} by (e.g.)

Davidson (1994), Theorems 3.25 and 3.26. The sequence {Ψt,−∞ b t b∞} is therefore strictly stationary and ergodic.5 It follows by the
ergodic theorem that
1
m

Xm−1

k¼0

logΨt−k →
a:s:

ζ : ð34Þ
Hence, with probability one,
lim sup
m→∞

e−mζ ∏
m−1

k¼0
Ψt−k b∞
for − ∞ b t b ∞. There therefore exists N b ∞ such that ht⁎ = h1t⁎ + O(eNζ) with probability 1, where
h�1t ¼ ω 1þ
XN
m¼1

∏
m−1

k¼0
ψt−k

 !
: ð35Þ
The remainder term can be made as small as desired by taking N large enough, and (35) is a measurable function of
{zs, − ∞ b s b t} by (e.g.) Davidson (1994) Theorem 3.25. Strict stationarity and ergodicity of {ht⁎, − ∞ b t b ∞} follows,
completing the proof. ■
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