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Abstract

We introduce a measure of entropy for any discrete Choquet capacity and we
interpret it in the setting of aggregation by the Choquet integral.
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1 Introduction

Given a probability distribution p = (p1, . . . , pn) ∈ [0, 1]n, with
∑

i pi = 1, the expression

H(p) :=
n∑

i=1

h(pi) ,

where h(x) := −x ln x if x > 0 and 0 if x = 0, is called the Shannon entropy of p, see [16, 17].
This value, well-known in information theory, measures in some sense the uncertainty which
prevailed before an experiment was accomplished, or the information expected from the
experiment. Note that it was characterized axiomatically by many authors, see e.g. [1, 3].

Now, consider a Choquet capacity (or fuzzy measure) on N := {1, . . . , n}, that is, a set
function v : 2N → [0, 1] such that v(∅) = 0, v(N) = 1, and v(S) ≤ v(T ) whenever S ⊆ T .
The following question arises : What is the generalized counterpart of the Shannon entropy
for such a capacity?

For particular capacities, such as belief and plausibility measures, some candidates were
proposed in evidence theory in the early 1980s, see e.g. [2, 7, 8, 19]. However, it seems that
no definition of entropy for a general Choquet capacity was yet proposed in the literature.

In this paper we present an entropy-like measure defined for all discrete Choquet ca-
pacities. This “entropy” was proposed very recently by the author [9] in the framework of
aggregation. Although it has yet to be characterized, it satisfies properties considered as
requisites for defining an entropy. In particular, it collapses into the Shannon entropy as
soon as the capacity is additive.
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The outline of the paper is as follows. In Section 2 we interpret the use of the Shannon
entropy in the context of aggregation. In Sections 3 and 4 we introduce the concept of
entropy of any discrete capacity and we point out several of its properties. In Section 5 we
give an example demonstrating its use in practical situations. Finally, in Section 6 we give
a probabilistic interpretation of it.

In order to avoid a heavy notation, cardinality of subsets S, T, . . . will often be denoted
by the corresponding lower case letters s, t, . . .. Moreover, we will often omit braces for
singletons, e.g., writing T ∪ i instead of T ∪ {i}.

2 Entropy and aggregation operators

Consider the weighted arithmetic mean (WAM) as an aggregation operator:

WAMω(x1, . . . , xn) =
n∑

i=1

ωi xi (x ∈ IRn) ,

with
n∑

i=1

ωi = 1 and ωi ≥ 0 (i ∈ N) .

Clearly, the extent to which the arguments x1, . . . , xn are used in such an aggregation
process strongly depends upon the weight vector ω. For example, consider two weighted
arithmetic means with weight vectors of the form

(1, 0, . . . , 0) and (1/n, . . . , 1/n) ,

respectively. We note that these operators are quite different in the sense that the first one
focuses the total weight on only one argument (projection on the first argument) whereas
the second one distributes the total weight among all the arguments evenly (arithmetic
mean).

In order to capture this idea, we can define a measure of dispersion associated to the
weight vector of the weighted arithmetic mean WAMω as the Shannon entropy of ω:

H(ω) =
n∑

i=1

h(ωi) .

Such a function enables us to measure to what extent the arguments are really used by
the weighted arithmetic mean. In a certain sense the more disperse the ω the more the
arguments are being used in the aggregation process.

Now, consider the so-called ordered weighted averaging operator (OWA), proposed in
1988 by Yager [20]:

OWAω(x1, . . . , xn) =
n∑

i=1

ωi x(i) (x ∈ IRn) ,

with
n∑

i=1

ωi = 1 and ωi ≥ 0 (i ∈ N) ,

where (·) indicates a permutation of indices such that x(1) ≤ · · · ≤ x(n). For this aggregation
operator, the measure of dispersion, which should not be influenced when changing the
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assignment of weights to the arguments, should also be given by the Shannon entropy. In
fact, Yager [20] proposed explicitely to use this concept as measure of dispersion for the
OWA operators.

It is known that H(ω) is maximum only when ω corresponds to the weight vector of
the arithmetic mean, see e.g. [19]:

H(ω) = ln n for ω = (1/n, . . . , 1/n) ,

and minimum only when ω is a binary vector (Dirac measure):

H(ω) = 0 if ωi = 1 for some i ∈ N.

Thus, the measure of dispersion can be normalized into

1

ln n
H(ω) = −

n∑

i=1

ωi logn ωi ,

so that it ranges in [0, 1].

3 Entropy of discrete Choquet capacities

Given a Choquet capacity v on N , the Choquet integral of x = (x1, . . . , xn) ∈ IRn with
respect to v is defined by

Cv(x) =
n∑

i=1

x(i) [v(A(i))− v(A(i+1))] ,

with the convention that x(1) ≤ · · · ≤ x(n). Also A(i) := {(i), . . . , (n)}, and A(n+1) := ∅.
Note that, in this definition, the coefficients of the capacity are interpreted as weights (or
importance) of subsets. For more details, see e.g. [5, 10] and the references therein.

It is easy to see that the WAM operators correspond to the Choquet integrals with
respect to additive capacities (i.e., such that v(S ∪ T ) = v(S) + v(T ) whenever S ∩ T = ∅).
On the other hand, one can show [4] that the OWA operators are exactly those Choquet
integrals which are symmetric, that is, independent of any permutation of the arguments.
Thus, the Choquet integral is a simultaneous generalization of both WAM and OWA oper-
ators.

Starting from these facts, the author [9, §6.2.4] proposed to define the entropy of a
capacity v as a measure of dispersion for the Choquet integral Cv. This measure should
identify with the Shannon entropy when the Choquet integral is either a WAM or an OWA.

On the one hand, comparing

OWAω(x) =
n∑

i=1

x(i) ωi

and

Cv(x) =
n∑

i=1

x(i) [v(A(i))− v(A(i+1))]

suggests proposing as measure of dispersion for Cv a sum over i ∈ N of an average value of

h[v(T ∪ i)− v(T )] (T ⊆ N \ i) ,
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that is, an expression of the form

HM(v) =
n∑

i=1

∑

T⊆N\i
pt h[v(T ∪ i)− v(T )] , (1)

where the coefficients pt (t = |T |) are non-negative and such that
∑

T⊆N\i pt = 1.
On the other hand, imposing the condition

Cv = OWAω ⇒ HM(v) = H(ω) (2)

determines uniquely the coefficients pt, as the following result shows.

Proposition 3.1 Condition (2) holds if and only if

pt =
(n− t− 1)! t!

n!
(t = 0, . . . , n− 1) .

Proof. One can easily show [11, §2.2] that if Cv = OWAω then

v(T ∪ i)− v(T ) = ωn−t (i ∈ N ; T ⊆ N \ i) .

Thus, the measure of dispersion (1) becomes:

HM(v) =
n∑

i=1

∑

T⊆N\i
pt h(ωn−t)

=
n∑

i=1

n−1∑

t=0

(
n− 1

t

)
pt h(ωn−t)

=
n−1∑

t=0

n

(
n− 1

t

)
pt h(ωn−t)

=
n∑

i=1

qi h(ωi) ,

where qi := n
(

n−1
n−i

)
pn−i for all i ∈ N . Hence, condition (2) is equivalent to

n∑

i=1

(qi − 1) h(ωi) = 0 for all weight vectors ω. (3)

Now, let k, l ∈ N , k 6= l, and consider the weight vector ω defined by

ωi =





α , if i = k,
1− α , if i = l,
0 , otherwise,

where α ∈ ]0, 1[. In this case condition (3) becomes

(qk − 1)α ln α + (ql − 1)(1− α) ln(1− α) = 0 (k, l ∈ N ; α ∈ ]0, 1[) .

Replacing α first by 1/2 and then by 1/4 provides qi = 1 for all i ∈ N . This completes the
proof.

We then propose the following definition.
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Definition 3.1 The entropy of a Choquet capacity v on N is defined by

HM(v) :=
n∑

i=1

∑

T⊆N\i

(n− t− 1)! t!

n!
h[v(T ∪ i)− v(T )] .

When the Choquet integral Cv is used as an aggregation operator, the normalized entropy

1

ln n
HM(v)

can be interpreted as the degree to which one uses the arguments x = (x1, . . . , xn) ∈ IRn

when calculating the aggregated value Cv(x).
Introducing the notation γt(n) := (n− t− 1)! t!/n!, we can write

HM(v) =
n∑

i=1

∑

T⊆N\i
γt(n) h[v(T ∪ i)− v(T )] .

Interestingly enough, this expression is very similar to that of the Shapley value of
elements in N , which is a fundamental concept in game theory [18] expressing a power
index:

φi(v) =
∑

T⊆N\i
γt(n) [v(T ∪ i)− v(T )] (i ∈ N) .

4 Properties of HM

To justify the use of this new definition, one can show that it fulfills several properties
required for an entropy (see [1, 3]). In this section we present some of them.

4.1 Symmetry

We observe that HM(v) is symmetric in the sense that permuting the elements of N has no
effect on the dispersion. To prove this, we need the following notation. For any permutation
π on N , we denote by πv the capacity on N defined by πv(π(S)) = v(S) for all S ⊆ N ,
where π(S) := {π(i) | i ∈ S}.

One can easily show that

Cπv(x1, . . . , xn) = Cv(xπ(1), . . . , xπ(n)) (x ∈ IRn) .

Moreover, we have the following result.

Proposition 4.1 For any capacity v on N and any permutation π on N , we have

HM(πv) = HM(v) .

Proof. By definition, we have

HM(πv) =
n∑

i=1

∑

T⊆N\i
γt(n) h[v(π−1(T ∪ i))− v(π−1(T ))]

=
n∑

π−1(i)=1

∑

π−1(T )⊆N\π−1(i)

γt(n) h[v(π−1(T ∪ i))− v(π−1(T ))] .
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Then, setting j := π−1(i) and S := π−1(T ) (implying s = t), we have

HM(πv) =
n∑

j=1

∑

S⊆N\j
γs(n) h[v(S ∪ j)− v(S)] = HM(v) ,

which completes the proof.

4.2 Maximality

We now prove that 0 ≤ HM(v) ≤ ln n and that HM(v) is maximum (= ln n) if and only if
Cv is the arithmetic mean. The proof is a straightforward adaptation of that used for the
Shannon entropy.

Lemma 4.1 If the numbers ci
T > 0 and d i

T ≥ 0 (i ∈ N ; T ⊆ N \ i) are such that

n∑

i=1

∑

T⊆N\i
γt(n) ci

T ≤ 1 and
n∑

i=1

∑

T⊆N\i
γt(n) d i

T = 1

then
n∑

i=1

∑

T⊆N\i
γt(n) d i

T ln(
ci
T

d i
T

) ≤ 0 .

Moreover, the equality holds if and only if

d i
T 6= 0 ⇒ d i

T = ci
T (i ∈ N ; T ⊆ N \ i) .

Proof. Since ln x ≤ x− 1 for all x > 0, we simply have

n∑

i=1

∑
T⊆N\i

d i
T
6=0

γt(n) d i
T ln(

ci
T

d i
T

) ≤
n∑

i=1

∑
T⊆N\i

d i
T
6=0

γt(n) d i
T (

ci
T

d i
T

− 1)

=
n∑

i=1

∑
T⊆N\i

d i
T
6=0

γt(n) ci
T − 1

≤ 1− 1 = 0.

The second part follows from the fact that ln x = x− 1 if and only if x = 1.

Proposition 4.2 For any capacity v on N , we have 0 ≤ HM(v) ≤ ln n. Moreover,
HM(v) = ln n if and only if v(T ) = t/n for all T ⊆ N .

Proof. For all i ∈ N and all T ⊆ N \ i, we have v(T ∪ i) − v(T ) ∈ [0, 1] and hence
h[v(T ∪ i)− v(T )] ≥ 0 and HM(v) ≥ 0.

For the second inequality, we have, since
∑n

i=1 φi(v) = 1,

HM(v)− ln n =
n∑

i=1

∑

T⊆N\i
γt(n) [v(T ∪ i)− v(T )]

(
− ln[v(T ∪ i)− v(T )]− ln n

)

=
n∑

i=1

∑

T⊆N\i
γt(n) [v(T ∪ i)− v(T )] ln

1

n [v(T ∪ i)− v(T )]
.

Applying Lemma 4.1 with ci
T = 1/n and d i

T = v(T ∪ i) − v(T ) leads to HM(v)− ln n ≤ 0.
The equality holds if and only if v(T ∪ i)− v(T ) = 1/n.
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4.3 Decisivity

We now prove that HM(v) is minimum if and only if v is a binary-valued capacity. This
extends the classical decisivity property.

Proposition 4.3 For any capacity v on N , we have HM(v) = 0 if and only if v is a
binary-valued capacity, that is, v(S) ∈ {0, 1} for all S ⊆ N .

Proof. We simply have

HM(v) = 0 ⇔ h[v(T ∪ i)− v(T )] = 0 (i ∈ N ; T ⊆ N \ i)

⇔ v(T ∪ i)− v(T ) ∈ {0, 1} (i ∈ N ; T ⊆ N \ i)

⇔ v(T ) ∈ {0, 1} (T ⊆ N) ,

which proves the result.

Proposition 4.3 is in accordance with the idea of a dispersion measure. Indeed, it can
be easily shown (cf. [12, Theorem 5.1]) that v is a binary-valued capacity if and only if

Cv(x) ∈ {x1, . . . , xn} (x ∈ IRn) .

In other terms, HM(v) is minimum (= 0) if and only if only one argument is used in the
aggregation.

4.4 Boundary conditions

The next result is a straightforward consequence of the definition of HM.

Proposition 4.4 We have

Cv = WAMω or OWAω ⇒ HM(v) = H(ω) .

Proof. Trivial.

4.5 Expansibility

Let k ∈ N be a null element for v, that is, v(T ∪k) = v(T ) for all T ⊆ N \k. Since such an
element does not contribute in the aggregation process, it can be omitted without changing
the result. Indeed, if k is a null element then, denoting by v−k the restriction of v to N \ k,
one can easily show that

Cv(x1, . . . , xn) = Cv−k
(x1, . . . , xk−1, xk+1, . . . , xn) (x ∈ IRn) ,

(see [15]). We then have the following result, which is an extension of the classical expan-
sibility property.

Proposition 4.5 Let v be a capacity on N . If k ∈ N is a null element then

HM(v) = HM(v−k) .
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Proof. Assume that k is a null element. We then have

HM(v) =
n∑

i=1
i 6=k

∑

T⊆N\i
γt(n) h[v(T ∪ i)− v(T )]

=
n∑

i=1
i 6=k

∑
T⊆N\i

T3k

γt(n) h[v(T ∪ i)− v(T )] +
n∑

i=1
i6=k

∑
T⊆N\i

T 63k

γt(n) h[v(T ∪ i)− v(T )] .

However, if T 3 k then

v(T ∪ i)− v(T ) = v((T \ k) ∪ i)− v(T \ k) ,

and hence,

HM(v) =
n∑

i=1
i6=k

∑
T⊆N\i

T 63k

[γt+1(n) + γt(n)] h[v(T ∪ i)− v(T )]

=
n∑

i=1
i6=k

∑
T⊆N\i

T 63k

γt(n− 1) h[v(T ∪ i)− v(T )]

= HM(v−k) ,

which completes the proof.

4.6 Strict increasing monotonicity

For any weight vector ω and any λ ∈ [0, 1], we define the weight vector ωλ by

ωλ := ω + λ (ω∗ − ω) ,

where ω∗ := (1/n, . . . , 1/n). Then it is easy to prove that H(ωλ) is strictly increasing on
the parameter λ, that is,

0 ≤ λ1 < λ2 ≤ 1 ⇒ H(ωλ1) < H(ωλ2) .

In other terms, the Shannon entropy H(ω) strictly increases whenever ω moves closer to
ω∗.

We now prove that a similar property holds for the entropy HM. Let v∗ be the capacity
on N defined by

v∗(S) = s/n (S ⊆ N).

For any capacity v on N , v 6= v∗, and any λ ∈ [0, 1], we define the capacity vλ on N by

vλ := v + λ (v∗ − v) .

Proposition 4.6 Let v be a capacity on N , with v 6= v∗. Then

0 ≤ λ1 < λ2 ≤ 1 ⇒ HM(vλ1) < HM(vλ2) .
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Proof. Let us prove that
d

dλ
HM(vλ) > 0 (λ ∈ ]0, 1[).

For any λ ∈ ]0, 1[, we have

HM(vλ) =
n∑

i=1

∑

T⊆N\i
γt(n) h[δi

T + λ (1/n− δi
T )],

where δi
T := v(T ∪ i)− v(T ). Hence,

d

dλ
HM(vλ) =

n∑

i=1

∑

T⊆N\i
γt(n) (δi

T − 1/n)(1 + ln[δi
T + λ (1/n− δi

T )])

=
n∑

i=1

∑

T⊆N\i
γt(n) (δi

T − 1/n) ln[δi
T + λ (1/n− δi

T )].

Now, for any fixed i ∈ N and T ⊆ N \ i,

• if δi
T > 1/n then

δi
T + λ (1/n− δi

T ) ∈ ]1/n, δi
T [

and hence,
ln[δi

T + λ (1/n− δi
T )] ∈ ] ln(1/n), ln δi

T [

• if δi
T < 1/n then

δi
T + λ (1/n− δi

T ) ∈ ]δi
T , 1/n[

and hence,
ln[δi

T + λ (1/n− δi
T )] ∈ ] ln δi

T , ln(1/n)[

We then have

d

dλ
HM(vλ) =

∑
i∈N

T⊆N\i

δi
T

>1/n

γt(n) (δi
T − 1/n) ln[δi

T + λ (1/n− δi
T )]

− ∑
i∈N

T⊆N\i

δi
T

<1/n

γt(n) (1/n− δi
T ) ln[δi

T + λ (1/n− δi
T )]

>
∑
i∈N

T⊆N\i

δi
T

>1/n

γt(n) (δi
T − 1/n) ln(1/n)− ∑

i∈N
T⊆N\i

δi
T

<1/n

γt(n) (1/n− δi
T ) ln(1/n)

= ln(1/n)
n∑

i=1

∑

T⊆N\i
γt(n) (δi

T − 1/n)

= 0,

which proves the result.
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5 An illustrative example

In this section we give an example, borrowed from Grabisch [5]. Let us consider the problem
of evaluating students in a high school with respect to three subjects: mathematics (M),
physics (P), and literature (L). Usually, this is done by a simple weighted arithmetic mean,
whose weights are the coefficients of importance of the different subjects. Suppose that the
school is more scientifically than literary oriented, so that weights could be for example
ωM = 3/8, ωP = 3/8, and ωL = 2/8, respectively. Then the weighted arithmetic mean will
give the following results for three students a, b, and c (marks are given on a scale from 0
to 20):

Student M P L Global evaluation
(weighted arithmetic mean)

a 18 16 10 15.25
b 10 12 18 12.75
c 14 15 15 14.625

The total weight is well distributed over the three subjects since we have

1

ln n
H(ω) = 0.985 .

Now, if the school wants to favor well equilibrated students without weak points then
student c should be considered better than student a, who has a severe weakness in litera-
ture. Unfortunately, no weight vector (ωM, ωP, ωL) satisfying ωM = ωP > ωL is able to favor
student c. Indeed, we have:

WAMω(14, 15, 15) > WAMω(18, 16, 10) ⇔ ωL > ωM.

The reason of this problem is that too much importance is given to mathematics and
physics, which present some overlap effect since, usually, students good at mathematics are
also good at physics (and vice versa), so that the evaluation is overestimated (resp. un-
derestimated) for students good (resp. bad) at mathematics and/or physics. This problem
can be overcome by using a suitable capacity v and the Choquet integral as follows.

• Since scientific subjects are more important than literature, the following weights can
be put on subjects taken individually: v(M) = v(P) = 0.45 and v(L) = 0.3. Note
that the initial ratio of weights (3, 3, 2) is kept unchanged.

• Since mathematics and physics overlap, the weight attributed to the pair {M, P}
should be less than the sum of the weights of mathematics and physics: v(MP) = 0.5.

• Since students equally good at scientific subjects and literature must be favored, the
weight attributed to the pair {L, M} should be greater than the sum of individual
weights (the same for physics and literature): v(ML) = v(PL) = 0.9.

• v(∅) = 0 and v(MPL) = 1 by definition.

Applying Choquet integral with the above capacity leads to the following new global
evaluations:
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Student M P L Global evaluation
(Choquet integral)

a 18 16 10 13.9
b 10 12 18 13.6
c 14 15 15 14.6

The expected result is then obtained. Also remark that student b has still the lowest
rank, as requested by the scientific tendency of this high school.

Finally, we have
1

ln n
HM(v) = 0.820 ,

which shows that the total weight is still rather well distributed.
Now, in the spirit of the maximum entropy techniques, we might search for a capacity

that both satisfies some linear constraints and maximizes the dispersion. Since HM is clearly
a strictly concave function, the solution of such an optimization problem is unique. Thus,
a possible formulation would be the following:

maximize HM(v)

subject to





v(M) = v(P) ≥ v(L) + ε
v(MP) ≤ v(M) + v(P)− ε

...

where ε > 0 is a threshold fixed beforehand.
For a detailed development about the constraints of such a problem, see Marichal and

Roubens [13].

6 Probabilistic interpretation

In this final section, we give a probabilistic interpretation of HM(v). This interpretation is
similar to that of the Shapley value φi(v) as a mathematical expectation of the marginal
contribution v(T ∪ i)− v(T ) of element i when joining the subset T ⊆ N \ i.

First of all, through the usual identification of subsets S ⊆ N with elements of {0, 1}n,
any Choquet capacity v on N can be viewed as a pseudo-Boolean function fv : {0, 1}n →
[0, 1] that is increasing in each variable and such that

fv(0, . . . , 0) = 0 and fv(1, . . . , 1) = 1 .

The correspondence is written

fv(x) =
∑

T⊆N

v(T )
∏

i∈T

xi

∏

i/∈T

(1− xi) (x ∈ {0, 1}n) ,

and
v(S) = fv(eS) (S ⊆ N) ,

where eS denotes the characteristic vector of S in {0, 1}n.
Define also the first derivative of fv with respect to i ∈ N by

∆i fv(x) := fv(x |xi = 1)− fv(x |xi = 0) (x ∈ {0, 1}n)
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and the gradient of fv by

(grad fv)(x) := (∆1 fv(x), . . . , ∆n fv(x)) (x ∈ {0, 1}n) .

Now, consider {0, 1}n as a probability space with the following distribution:

p(x) =
1

n + 1

(
n∑
i xi

)−1

(x ∈ {0, 1}n) .

This is a well-defined distribution since we have p(x) ≥ 0 for any x ∈ {0, 1}n and

∑

x∈{0,1}n

p(x) =
1

n + 1

∑

T⊆N

(
n

t

)−1

=
1

n + 1

n∑

t=0

1(
n
t

)
∑
T⊆N
|T |=t

1

= 1 .

We now prove that, for any capacity v on N , HM(v) is the mathematical expectation of
the entropy of grad fv for the distribution above. Notice that this entropy is well-defined
even if the components of grad fv do not sum up to one.

Proposition 6.1 For any capacity v on N , we have

HM(v) = E[H(grad fv)] .

Proof. We have successively

E[H(grad fv)] =
1

n + 1

∑

x∈{0,1}n

(
n∑
j xj

)−1 n∑

i=1

h[∆i fv(x)]

=
n∑

i=1

1

n + 1

∑

T⊆N

(
n

t

)−1

h[∆i fv(eT )]

︸ ︷︷ ︸
(∗)

.

Now, partitioning T into K ⊆ N \ i and L ⊆ {i}, the expression (∗) becomes

∑

K⊆N\i

∑

L⊆{i}

(
n

k + l

)−1

h[∆i fv(eK∪L)︸ ︷︷ ︸
=∆i fv(eK)

] =
∑

K⊆N\i

[(n

k

)−1

+

(
n

k + 1

)−1]
h[∆i fv(eK)]

= (n + 1)
∑

K⊆N\i
γk(n) h[∆i fv(eK)]

= (n + 1)
∑

K⊆N\i
γk(n) h[v(K ∪ i)− v(K)],

which completes the proof.

Note that a proof similar to that of Proposition 6.1 gives the following interpretation of
the Shapley value (see also [6]):

φi(v) = E[∆i fv] (i ∈ N) .
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7 Conclusions

We have proposed a measure of entropy for discrete Choquet capacities. In the framework
of aggregation of numerical values by the Choquet integral, this entropy is interpreted as
the degree to which one uses the arguments to calculate the aggregated value.

This new entropy-like function generalizes the Shannon entropy in a rather natural way.
However, there exist other frameworks and other ways of defining an entropy for Choquet
capacities; see e.g. [21, 22]. On this issue, researches are in progress and a comparative
study of two proposals is presented in [14].
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[1] J. Aczél and Z. Daróczy, On measures of information and their characterizations,
(Academic Press, New York–San Francisco–London, 1975).

[2] D. Dubois and A. Ramer, Extremal properties of belief measures in the theory of
evidence, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 1 (1993) 57–
68.

[3] B. Ebanks, P. Sahoo, and W. Sander, Characterizations of information measures,
(World Scientific, Singapore, 1997).

[4] M. Grabisch, On equivalence classes of fuzzy connectives : the case of fuzzy integrals,
IEEE Trans. Fuzzy Systems 3 (1) (1995) 96–109.

[5] M. Grabisch, The application of fuzzy integrals in multicriteria decision making, Eu-
ropean Journal of Operational Research 89 (1996) 445-456.

[6] M. Grabisch, J.-L. Marichal, and M. Roubens, Equivalent representations of set func-
tions, Mathematics of Operations Research 25 (2000) 157–178.

[7] G.J. Klir and A. Ramer, Uncertainty in the Dempster-Shafer theory: a critical re-
examination, Int. J. General Systems 18 (1990) 155–166.

[8] G.J. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications (Prentice
Hall PTR, Upper Saddle River, NJ, 1995).

[9] J.-L. Marichal, Aggregation operators for multicriteria decision aid, Ph.D. thesis, In-
stitute of Mathematics, University of Liège, Liège, Belgium, 1998.
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