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Abstract

In the framework of cooperative
game theory and multicriteria de-
cision making, the concept of in-
teraction index, which can be re-
garded as an extension of that of
value, has been recently proposed
to measure the interaction phenom-
ena among players or criteria. Ax-
iomatizations of two classes of in-
teraction indices, namely probabilis-
tic interaction indices and cardinal-
probabilistic interaction indices, gen-
eralizing probabilistic values and
semivalues, respectively, are first
proposed. Three existing instances
of cardinal-probabilistic interaction
indices encountered thus far in the
literature are also axiomatized.

Key words : Cooperative games,
multicriteria decision making, inter-
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and interaction indices.

1 Introduction

The study of the notion of interaction among
players is relatively recent in the framework of
cooperative game theory. The first attempt is
probably due to Owen [14, §5] for superaddi-
tive games. More recent developments are due
to Murofushi and Soneda [12], Roubens [15],
Grabisch [5], and Marichal and Roubens [11]
and led successively to the concepts of Shap-
ley interaction index, Banzhaf interaction in-
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dex, and chaining interaction index. First ax-
iomatic characterizations of the Shapley inter-
action index and the Banzhaf interaction in-
dex have been recently proposed by Grabisch
and Roubens [7].

The concept of interaction indez, which can
be seen as an extension of the notion of value
[1, 3, 16, 17], is fundamental for it enables
to measure the interaction phenomena !
elled by a game on a set of players.

mod-

In this paper, we propose axiomatizations
of two families of interaction indices intro-
duced by Grabisch and Roubens [8], namely
the broad class of probabilistic interaction in-
dices and the narrower subclass of cardinal-
probabilistic interaction indices obtained by
additionally imposing the symmetry axiom.
Probabilistic interaction indices can be seen
as extensions of probabilistic values studied
by Weber [17]. Cardinal-probabilistic inter-
action indices are generalizations of semival-
ues, which were axiomatized by Dubey et al.
[3]. We also separately characterize the Shap-
ley, Banzhaf, and chaining interaction indices,
which are instances of cardinal-probabilistic
interaction indices.

Besides classical axioms such as Ulinearity
and additivity, the axioms involved in the
characterizations we present can be regarded
as natural generalizations of those used in
the axiomatizations of values. Two of the
most important axioms in the proposed char-

!The expression “interaction phenomena” refers to
complementarity effects or redundancy effects among
players of coalitions resulting from the non additivity
of the underlying game.



acterizations of probabilistic and cardinal-
probabilistic interaction indices are the k-
monotonicity axiom, generalizing the mono-
tonicity axiom [17, §4] (called positivity in [9,
§4|), and the dummy partnership axiom, which
extends the dummy player axiom through the
concept of partnership (see e.g. [9]). The no-
tion of partnership is also at the root of some
of the axioms additionally imposed to char-
acterize the Shapley, Banzhaf, and chaining
interaction indices.

This paper is organized as follows. In the next
section we recall some basic definitions and re-
sults we will use in this paper. Section 3 is de-
voted to the concept of interaction index. An
intuitive approach is adopted to present this
notion and the axiomatizations by Grabisch
and Roubens |7] are recalled. In the last sec-
tion we present our characterization results 2.
Probabilistic and cardinal-probabilistic inter-
action indices are first axiomatized. Then, the
Shapley, Banzhaf, and chaining interaction in-
dices are characterized by imposing additional
axioms.

In order to avoid a heavy notation, we adopt
that used in [7]. Thus, we will often omit
braces for singletons, e.g., by writing v(i), U\
instead of v({i}), U \ {¢}. Similarly, for pairs,
we will write 75 instead of {i, j}. Furthermore,
cardinalities of subsets S,T),..., will be de-
noted by the corresponding lower case letters
S, t,...

2 Preliminary definitions

We consider an infinite set U, the universe of
players. As usual, a game on U is a set func-
2V — R such that v(@) = 0, which
assigns to each coalition S C U its worth v(S).

tion v :

We now recall some concepts and results we
will use throughout.

2.1 Carriers

A set N C U is said to be a carrier (or
support) of a game v when, for all S C U,
v(S) =v(NNS). Thus, a game v with carrier

2The proofs of the theorems presented in the sequel
are available at www.math.byu.edu/~marichal/.

N C U is completely defined by the knowledge
of the coefficients {v(S)}scny and the players
outside N have no influence on the game since
they do not contribute to any coalition.

In this paper, we restrict our attention to fi-
nite games, that is, games that possess finite
We denote by G the set of finite
games on U and by GV the set of games with
finite carrier N C U.

carriers.

2.2 Discrete derivatives

Given a game v € GV and finite coalitions
S, T C U, we denote by Agv(T') the S-
derivative of v at T, which is recursively de-
fined by

Ajv(T) :=v(TUi) —v(T\ i), VieU, and
ASU(T) = Ai[AS\i’U(T)], Vies,

with convention Agv(T) := v(T)
and [6, §2].

: see [4, §1]

We can easily prove by induction on s that,
VT CU\S,

Ago(T) = (-1)* (T UL).

LCS

It is also easy to show that Agv(T) =0,V S €
N,YTCU\S.

2.3 k-monotonicity

Let £ > 2 be an integer. A game v € GV is
said to be k-monotone (see e.g. [2, §2|) if, for
any k coalitions Ay, Ao, ..., A C U, we have

o(Ua)z ¥ cn(na)
i=1 JC{1,...k} ieJ
J£D

(1)
It is easy to verify [2, §2| that k-monotonicity,
with any k£ > 2, implies [-monotonicity for all
l €{2,...,k}. By extension, 1-monotonicity
(which does not correspond to k& = 1 in Eq.
(1)) is defined as standard monotonicity :
v(S) <o(T) whenever S CT CU.

Clearly, a game v € G is 1-monotone if and
only if Aju(T) > 0 for all ¢ € U and all
T C U \i. For k-monotonicity (k > 2) we
have the following result :



Proposition 2.1 Let k > 2. A game v € G
is k-monotone if and only if, for all S C U
such that 2 < s < kand all T C U\ S, we
have Agv(T) > 0.

2.4 Unanimity games

Consider the set GV of games. The unanim-
ity game for T C N, T # @, is defined as
the game up € GV such that, for all S C N,
ur(S) :=1if and only if S O T and 0 other-
wise.

2.5 Permuted games

Following Shapley [16, §2|, given a game v €
G and a permutation 7 on U (i.e., a one-to-
one mapping from U onto itself), we denote
by mv the game defined by mwv[r(5)] := v(S5)
V.S C N, where w(S) :={n(i) | i € S}.

i

2.6 Restricted and reduced games

Given a game v € G" and a coalition A C N,
the restriction of v to A [7] is a game of G4
defined by vA(S) := v(S), V.S C A.

Given a coalition B C N \ A, the restriction
of v to A in the presence of B [7] is a game
of G4 defined by v{]5(S) := v(S U B) — v(B),
VS CA.

Given a game v € GV and a coalition T C
N, T # @, the reduced game with respect
to T [7, 13|, denoted vy, is a game of
GIN\TUITT wwhere [T indicates a single hypo-
thetical player, which is the representative (or
macro player) of the players in T". It is defined

o)(8) = u(S), .

SUMT) =v(suT), "IENAT
2.7 Dummy coalition, null coalition,
partnership, and dummy
partnership

A coalition S C U is said to be dummy in a
game v € GV if v(TUS) = v(T) +v(S) for all
T CU\S. In other words, the marginal con-
tribution of a dummy coalition S to any coali-
tion T not containing elements of .S is simply
its worth v(.5).

A coalition S C U in a game v € GV is said
to be null if it is a dummy coalition in v such
that v(S) = 0.

A dummy (resp. null) player is a dummy
(resp. null) one-membered coalition.

A coalition P C U, P # @, is said to be a
partnership [9, §4] in a game v € GV if, for all
SCP,v(SUT)=v(T)forallTCU\P. In
other words, as long as all the members of a
partnership P are not all in coalition, the pres-
ence of some of them only leaves unchanged
the worth of any coalition not containing ele-
ments of P. Thus, a partnership behaves like
a single hypothetical player, that is, the game
v and its reduced version v(p) can be consid-
ered as equivalent.

Now, a dummy partnership is simply a part-
nership P C U that is dummy. Thus, a
dummy partnership can be regarded as a sin-
gle hypothetical dummy player.

3 The concept of interaction index

3.1 Intuitive presentation

As noticed by Grabisch and Roubens [7], the
fact that in general, for a player ¢ € N in
a game v € GV, the walue of i in v (see e.g.
[1,3,16,17]) is not equal to the coefficient v(7)
shows that players in N have some interest in
forming coalitions. For instance, consider an-
other player j € N and assume that v(i) and
v(y) are small whereas v(ij) is large. Then, i
and j have clearly a strong interest in joining
together. Conversely, it may happen that v(i)
and v(j) are large whereas v(ij) is small, in
which case ¢ and 7 have no interest in joining
together.

In order to intuitively approach the concept of
interaction, consider two players ¢ and j such
that v(ij) > v(i) + v(j). Clearly, the above
inequality seems to model a positive interac-
tion or complementary effect between ¢ and j.
Similarly, the inequality v(ij) < v(i) 4+ v(j)
suggests considering that ¢ and j interact in a
negative or redundant way. Finally, if v(ij) =
v(i) + v(j), it seems natural to consider that
players ¢ and j do not interact, i.e., that they
have independent roles in the game.

A coefficient measuring the interaction be-



tween ¢ and j should therefore depend on the
difference v(ij)—[v(i)+v(j)]. However, as dis-
cussed by Grabisch and Roubens [7], the in-
tuitive concept of interaction requires a more
elaborate definition. Clearly, one should not
only compare v(ij) and v(i) + v(j) but also
see what happens when 4, j, and 75 join coali-
tions. In other words, an index of interac-
tion between i and j in the game v € gh
should take into account all the coefficients of
the form v(T'Ui), v(T'Uj), and v(T Uij), with
T C N\ ij.

Owen [14, §5] defined an interaction index be-
tween two players ij C N in a game v € GV
by

I(v,ij) == >

TCN\ij

(n—1t—2)t!
—— Ay;v(T).
(n—1)! v (T)
Notice that, for a coalition 7" not containing ¢
and j, the expression

Aiju(T) = v(TUif) —v(TUi) —v(TUj)+u(T)

can be regarded as the difference between the
marginal contributions Aju(T' U i) = v(T' U
ij) —v(T'Ui) and Ajo(T) = v(T'Uj) —o(T).
Following Grabisch et al. [6, §2], we shall call
this expression the marginal interaction be-
tween i and j in the presence of T. Indeed, it
seems natural to consider that if Aju(TU7) >
Ajv(T) (resp. <) then i and j interact posi-
tively (resp. negatively) in the presence of T
since the presence of player i increases (resp.
decreases) the marginal contribution of j to
coalition T

The interaction index proposed by Owen,
which was actually rediscovered twenty years
later by Murofushi and Soneda [12], can thus
be regarded as a weighted average of the
marginal interactions between ¢ and j in the
presence of T, all coalitions 1" not containing
7 and j being considered.

Grabisch [5] recently extended the above in-
teraction index to coalitions containing more
than two players. The Shapley interaction in-
dex [5] of a coalition S C N in a game v € GV
is defined by

Isp(v,S) == Z

TCN\S

7(&__:;?;! Ago(T).

This index is an extension of the Shapley value
in the sense that Igp(v,i) and the Shapley
value of 7 in v coincide for all ¢ € U and all
v € G. For S C N, s> 2, it can be interpreted
as a weighted average of Agv(T'), which can
be regarded as the marginal interaction among
players in S in the presence of T. More de-
tails can on the interpretation of interaction
indices can be found in |6, 10].

Two similar indices are due to Roubens [15]
and Marichal and Roubens [11] and are known
as the Banzhaf interaction inder and the
chaining interaction index 3, respectively. The
former extends the Banzhaf value, while the
latter (also) extends the Shapley value. The
Banzhaf interaction index [15] and the chain-
ing interaction indez [11] of a coalition S C N
in a game v € GV are respectively defined by

Ip(v,8) = > in_s Agv(T),

TCN\S
Ip(v,8) =
- 1) 1)
Z S(n s t)n('s—i-t )ASU(T).
TCN\S )

If S ¢ N, we naturally set Igp(v,S) := 0,
Ip(v,S): =0, and I(v,S) := 0.

3.2 Probabilistic and cardinal
probabilistic interaction indices

By analogy with the work of Dubey et al.
[3] and Weber [17] on values, Grabisch and
Roubens [8] defined the class of probabilis-
tic interaction indices and the subclass of
cardinal-probabilistic interaction indices.

A probabilistic interaction indez of a coalition
S C N in a game v € GV is of the form

L(v,8) = Y pP(N)Asu(T), (2)
TCN\S

where, for any S C N, the family of coeffi-
cients {pg,g«(N)}TgN\S forms a probability dis-
tribution on 2V\S. Here again, if S € N, we
naturally set Ip(v,S) :=0.

3Notice that the chaining interaction index was ini-

tially defined in terms of maximal chains of the ordered
set (2N, Q).



A cardinal-probabilistic interaction indez is a
probabilistic interaction index such that, ad-
ditionally, for any S C N, the coefficients
p3(N) (T C N\ S) depend only on the cardi-
nal of the coalitions .S, T', and N, i.e., for any
s €{0,...,n}, there exists a family of nonneg-
ative real numbers {p;(n)}i=o,. n—s fulfilling

> (") =1

t=0

such that, for any S C N and any T C N\ S,
we have p.(N) = pf(n).

The Shapley, Banzhaf, and chaining interac-
tion indices defined above are clearly cardinal-
probabilistic interaction indices.

3.3 Existing characterizations

Setting U := 2Y \ {2}, an interaction index
can be regarded as a function I : G x U — R
such that, for any v € G and any i € U, I(v,1)
is the value of player ¢ in the game v, and
for any S C U such that s > 2, I(v,95) is
a measure of the (simultaneous) interaction
among players in S in the game v.

Grabisch and Roubens recently proposed an
axiomatic characterization of the Shapley and
the Banzhaf interaction indices [7, §3]. We
present their results hereafter, with the only
difference that here we force the second ar-
gument of I to be nonempty. The following
axioms have been considered by Grabisch and
Roubens :

e Linearity aziom (L): I is a linear function
with respect to its first argument.

e Dummy player aziom (D) :If i € U is a
dummy player in a game v € G, then

(i) I(v,i) = v(i),
(ii) for all S C U \ i, S # &, we have
I(v,SUi)=0.

e Symmetry aziom (S) : For any permuta-
tion m on U, and any v € G, we have
I(v,S) = I(mv,n(S)) for all S C U, S #
.

e Recursive aziom (R) : For all finite N C
U,n>2, forall v e GV, we have, V.S C
N,s>2,VjeSs,

I(0,8) = I(o), S\ j) = (N, 5\ 5).

e Efficiency (E) : For all finite N C U, n >
1, and all v € GV, we have

> I(v,i) = v(N).

1EN

e 2-efficiency (2-E) : For all finite N C U,
n > 2, and all v € GV, we have

I(U,Z)+](U,]) :I(U[U}a[m])a \V/Z] C N.

The following theorem was shown by Grabisch
and Roubens in [7, §3] :

Theorem 3.1 Let I be a function from G XU
to R.

(i) I satisfies axiom (L) if and only if, for
any finite N CU,n>1, and any S C N,
s > 1, there exists a family of real con-
stants {a3(N)}rcn such that, for any
v E QN, we have

I(v,8) = > af(N)(T).

TCN

(i1) 1 satisfies azioms (L) and (D), if and
only if, for any finite N C U, n > 1,
and any S C N, s > 1, there ezists a
family of constants {p%(N)}TgN\S such
that, for any v € G, we have

I(v,8) = Y pFN)Agu(T),
TCN\S
and for any S € N, s > 1, and any v €
G, we have I(v,S) = 0.

(13i) I satisfies axioms (L), (D), and (S), if
and only if, for any finite N CU, n > 1,
and any S C N, s > 1, there exists a
family of constants {pj(n)}i=o, . n—s such
that, for any v € G, we have

I(v,8) = Y pj(n)Asv(T),
TCN\S

and for any S € N, s > 1, and any v €
G, we have I(v,S) = 0.



(v) I satisfies azioms (L), (D), (S), (R), and
(E) if and only if I = Igp,.

(v) I satisfies axioms (L), (D), (S), (R), and
(2-E) if and only if [ = Ip.

Parts (iv) and (v) of Theorem 3.1 thus pro-
vide axiomatic characterizations of the Shap-
ley and Banzhaf interaction indices respec-
tively.4

4 New axiomatic characterizations

4.1 Probabilistic and cardinal
probabilistic interaction indices

We shall now axiomatize the class of prob-
abilistic interaction indices and that of
cardinal-probabilistic interaction indices. The
following axioms are first considered :

o Additivity axiom (A) : I is an additive
function with respect to its first argu-
ment.

e Monotonicity axiom (M) : For any mono-
tone game v € G, we have I(v,7) > 0 for
alli e U.

e k-monotonicity aziom (M) : For any k >
2 and any k-monotone game v € G, we
have I(v,S) > 0 for all coalition S C U
such that 2 < s < k.

Axiom (A) indicates that interaction indices
should be decomposable additively whenever
games are decomposable additively. Axiom
(M), used by Weber in [17, §4] to characterize
probabilistic values, concerns only the value
part of I and states that, since in a monotone
game the marginal contributions of a player
are necessarily positive, its value should be
positive. Axiom (M) can be seen as a gen-
eralization of axiom (M) and concerns the in-
teraction part of I. As discussed in [10], in

“It is noteworthy that, since axiom (R) determines
uniquely (v, S), s > 2, from the values I(v,7), 7 € N,
the axioms (L), (D), and (S) are somewhat redundant
in parts (iv) and (v) and are needed only for values
I(v,i), i € N.

a k-monotone game (k > 2), it seems sensi-
ble to consider that there are necessarily com-
plementarity effects among players of coali-
tions containing between 2 and k players. Ax-
iom (MF) then simply states that these effects

should be represented as positive interactions.

We also consider the following fundamental
axiom :

e Dummy partnership aziom (DP) : For
any v € G, if P # @ is a dummy part-
nership in v, then

(i) I(v, P) = v(P),
(ii) for all S C U\ P, S # &, we have
I(v,SUP) = 0.

Axiom (DP) is a natural generalization of ax-
iom (D). As discussed by Weber [17, §3], the
first part of axiom (D) is based on the follow-
ing intuition : since the marginal contribution
of a dummy player to any coalition not con-
taining it is simply its worth, its value should
be its worth as well. Similarly, the first part
of axiom (DP) states that the interaction in-
dex of a dummy partnership P in a game v
should be its worth since the marginal inter-
action among the players in P in the presence
of any coalition T not containing elements of
P is its worth, that is, Apv(T) = v(P).

The second part of axiom (DP) is a natu-
ral extension of the second part of axiom (D)
and says that there should be no interaction
among players of coalitions containing dummy
partnerships.

We now provide axiomatic characterizations
of probabilistic and cardinal-probabilistic in-
teraction indices.

Theorem 4.1 A function I : G xU — R sat-
isfies axioms (A), (M), (M*), and (DP) if and
only if, for any finite N C U, n > 1, and any
S C N, s > 1, there exists a family of non-
negative real constants {p%(N)}TgN\S satis-
fying ZTgN\Spg(N) = 1 such that, for any
v E QN, we have

I(0,8)= 3 pH(N) Asu(T),
TCN\S



and for any S ¢ N, s > 1, and any v € GV,
we have I(v,S) = 0.

Theorem 4.2 A function I : G xU — R sat-
isfies azioms (A), (M), (M¥), (DP), and (S)
if and only if, for any finite N C U, n > 1,
and any S C N, s > 1, there exists a family
of nonnegative real constants {pj(n)}i=o,.. n—s
satisfying > iy ("7 °)pi(n) = 1, such that, for
any v € QN, we have

I(v,S) = Y pj(n)Asv(T),

TCN\S

and for any S ¢ N, s > 1, and any v € GV,
we have I(v,S) = 0.

We shall now proceed with the characteriza-
tions of the Shapley, Banzhaf, and chaining in-
teraction indices which, as mentioned before,
are all instances of cardinal-probabilistic in-
teraction indices.

4.2 Shapley and Banzhaf interaction
indices

The following axiom is first additionally con-
sidered :

o Reduced-partnership-consistency  axiom
(RPC) : If P is a partnership in a game
v € G then I(v, P) = I(v(p}, [P]).

Recall that a partnership can be considered as
behaving as a single hypothetical player. Fur-
thermore, it is easy to verify that the marginal
interaction among the players of a partner-
ship P in a game v € G in the presence
of a coalition T C N \ P is equal to the
marginal contribution of P to coalition T, i.e.,
Apv(T) = v(T'U P) —v(T). In other words,
when we measure the interaction among the
players of a partnership, it is as if we were
measuring the value of an hypothetical player.
Axiom (RPC) then simply states that the in-
teraction among players of a partnership P in
a game v should be regarded as the value of
the reduced partnership [P] in the correspond-
ing reduced game v|p).

We then have the following interesting result :

Proposition 4.1 A function I : G xU — R
that satisfies axioms (L), (D) and (RPC) also
satisfies axiom (DP).

We now state axiomatic characterizations of
the Shapley and Banzhaf interaction indices.

Theorem 4.3 The Shapley interaction indez
18 the only cardinal-probabilistic interaction
index additionally satisfying axioms (E) and
(RPC). As a consequence, the Shapley inter-
action index is the only interaction index sat-
isfying azioms (A), (M), (M*), (D or DP),
(S), (E), and (RPC).

Theorem 4.4 The Banzhaf interaction index
18 the only cardinal-probabilistic interaction
index additionally satisfying azioms (2-E) and
(RPC). As a consequence, the Banzhaf inter-
action index is the only interaction index sat-
isfying azioms (A), (M), (M*), (D or DP),
(S), (2-E), and (RPC).

The following interesting result can be used to
obtain additional characterizations of the two
interaction indices under consideration.

Proposition 4.2 Under azioms (L), (DP),
and (S), axioms (R) and (RPC) are equiva-

lent.

4.3 Banzhaf and chaining interaction
indices

We consider the following additional axiom :

e Partnership-allocation axiom (PA) : If P

is a partnership in v € G then
I(v, P)I(up,i) = I(v,1), Vie P.

Let I, be a cardinal-probabilistic interaction

index, P be a partnership in a game v € GV,

and i be a member of P. Then axiom (PA) is
based on the following intuitions :

1. It is easy to verify that Ip(v,P) is a
weighted average of the marginal contri-
butions v(T'UP) —v(T) (T € N\ P) and
that I,(v,4) is a weighted sum of these
same marginal contributions. In other



words, both Ij(v, P) and I,(v,%) can be
considered as measuring the value in the
game v of the hypothetical macro player
corresponding to P.

2. Let «; be the real number such that
I, (v, P) = a;I(v,1). Notice this equality
still holds if ¢ is replaced with any other
player 5 € P, since all players in a part-
nership play symmetric roles. The coef-
ficient «;, which depends only on P and
v, can then be seen as determining the
way Ip(v, P) is calculated from the value
of any of the players of the partnership,
quantity that contains all the “relevant in-
formation” as discussed in Point 1.

3. It could then be required that the way the
value of P is determined from the value
of a player of the partnership does not de-
pend on the underlying game but only on
P. Coalition P being clearly a (dummy)
partnership in the unanimity game up,
we immediately obtain that a;Ip(up,i) =
1, which justifies axiom (PA).

We now state another characterization of the
Banzhaf interaction index and a characteriza-
tion of the chaining interaction index.

Theorem 4.5 The Banzhaf interaction index
18 the only cardinal-probabilistic interaction
index additionally satisfying axioms (2-E) and
(PA). As a consequence, the Banzhaf interac-
tion index is the only interaction index satisfy-
ing azioms (A), (M), (M*), (DP), (S), (2-E),
and (PA).

Theorem 4.6 The chaining interaction in-
dex s the only cardinal-probabilistic interac-
tion index additionally satisfying axioms (E)
and (PA). As a consequence, the chaining in-
teraction index is the only interaction index
satisfying azioms (A), (M), (M*), (DP), (S),
(E), and (PA).

5 Conclusion

Axiomatic characterizations of the broad class
of probabilistic interaction indices and of the
narrower subclass of cardinal-probabilistic in-
teraction indices have been proposed. The

presented characterizations are based on
natural generalizations of the monotonicity
and dummy player axioms, namely, the k-
monotonicity and the dummy partnership ax-
ioms. Then, by further imposing classical ax-
ioms such as efficiency, 2-efficiency, and addi-
tional axioms based on the concept of part-
nership, we have characterized the Shapley,
Banzhaf, and chaining interactions indices,
which are the three best-known instances of
cardinal-probabilistic interaction indices.
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