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Abstract—In this paper, we propose a simple variant of the original SVRG, called variance reduced stochastic gradient descent
(VR-SGD). Unlike the choices of snapshot and starting points in SVRG and its proximal variant, Prox-SVRG, the two vectors of
VR-SGD are set to the average and last iterate of the previous epoch, respectively. The settings allow us to use much larger learning
rates, and also make our convergence analysis more challenging. We also design two different update rules for smooth and
non-smooth objective functions, respectively, which means that VR-SGD can tackle non-smooth and/or non-strongly convex problems
directly without any reduction techniques. Moreover, we analyze the convergence properties of VR-SGD for strongly convex problems,
which show that VR-SGD attains linear convergence. Different from most algorithms that have no convergence guarantees for
non-strongly convex problems, we also provide the convergence guarantees of VR-SGD for this case, and empirically verify that
VR-SGD with varying learning rates achieves similar performance to its momentum accelerated variant that has the optimal
convergence rate O(1/T?2). Finally, we apply VR-SGD to solve various machine learning problems, such as convex and non-convex
empirical risk minimization, and leading eigenvalue computation. Experimental results show that VR-SGD converges significantly faster
than SVRG and Prox-SVRG, and usually outperforms state-of-the-art accelerated methods, e.g., Katyusha.

Index Terms—Stochastic optimization, stochastic gradient descent (SGD), variance reduction, empirical risk minimization, strongly

convex and non-strongly convex, smooth and non-smooth

1 INTRODUCTION

N this paper, we focus on the following composite opti-
mization problem:

min F(z) def
z€R

fi(z) + g(z) M

S|
NE

K2
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where f(z) =130 fi(z), fi(z): R >R, i=1,...,n are
the smooth functions, and g(z) is a relatively simple (but
possibly non-differentiable) convex function (referred to as
a regularizer). The formulation (1) arises in many places in
machine learning, signal processing, data science, statistics
and operations research, such as reqularized empirical risk
minimization (ERM). For instance, one popular choice of the
component function f;(-) in binary classification problems
is the logistic loss, i.e., fi(x)=log(1 + exp(—b;al x)), where
{(a1,b1),..., (an,by,)} is a collection of training examples,
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and b; € {£1}. Some popular choices for the regularizer
include the /5-norm regularizer (i.e., g(x) = (\/2)||z||?), the
¢1-norm regularizer (ie., g(z) = M|z|1), and the elastic-
net regularizer (i.e., g(z) = (A\1/2)|z[|® + X2|/z|/1). Some
other applications include deep neural networks [1], [2],
[3], [4], [5], group Lasso [6], sparse learning and coding
[7], [8], [9], [10], phase retrieval [11], matrix completion
[12], [13], conditional random fields [14], generalized eigen-
decomposition and canonical correlation analysis [15], and
eigenvector computation [16], [17] such as principal com-
ponent analysis (PCA) and singular value decomposition
(SVD).

1.1 Stochastic Gradient Descent

We are especially interested in developing efficient algo-
rithms to solve Problem (1) involving the sum of a large
number of component functions. The standard and effective
method for solving (1) is the (proximal) gradient descent
(GD) method, including Nesterov’s accelerated gradient
descent (AGD) [18], [19] and accelerated proximal gradient
(APG) [20], [21]. For the smooth problem (1), GD takes the
following update rule: starting with ¢, and for any k£ >0

1 n
Tyl = Th — Nk [n Z Vfi(zr) + Vg(fﬂk)} )
i=1
where 7;, > 0 is commonly referred to as the learning rate
in machine learning or step-size in optimization. When ¢(-)
is non-smooth (e.g., the ¢1-norm regularizer), we typically

introduce the following proximal operator to replace (2),

. 1
T41 = Prox), (yx) := argmin {7H$_yk||2+g($)} ®)
zER? 277k



where y, =z — (i /n) > Vfi(zk). GD has been proven
to achieve linear convergence for strongly convex problems,
and both AGD and APG attain the optimal convergence rate
O(1/T?) for non-strongly convex problems, where 1" denotes
the number of iterations. However, the per-iteration cost of
all the batch (or deterministic) methods is O(nd), which is
expensive for very large n.

Instead of evaluating the full gradient of f(-) at each
iteration, an efficient alternative is the stochastic (or in-
cremental) gradient descent (SGD) method [22]. SGD only
evaluates the gradient of a single component function at
each iteration, and has much lower per-iteration cost, O(d).
Thus, SGD has been successfully applied to many large-
scale learning problems [23], [24], [25], especially training
for deep learning models [2], [3], [26], and its update rule is

Tp1 = Tk — N[V (zr) + Vo(ar)] 4)

where 7, <1/ V'k, and the index ij, can be chosen uniformly
at random from {1,2,...,n}. Although the expectation of
the stochastic gradient estimator Vf;, () is an unbiased es-
timation for Vf(zy), i.e., E[Vf; (xr)] = Vf(z)), the variance
of Vf;.(zx) may be large due to the variance of random
sampling [1]. Thus, stochastic gradient estimators are also
called “noisy gradients”, and we need to gradually reduce
its step size, which leads to slow convergence. In particular,
even under the strongly convex (SC)condition, standard S-
GD attains a slower sub-linear convergence rate O(1/T) [27].

1.2 Accelerated SGD

Recently, many SGD methods with variance reduction have
been proposed, such as stochastic average gradient (SAG)
[28], stochastic variance reduced gradient (SVRG) [1], s-
tochastic dual coordinate ascent (SDCA) [29], SAGA [30],
stochastic primal-dual coordinate (SPDC) [31], and their
proximal variants, such as Prox-SAG [32], Prox-SVRG [33]
and Prox-SDCA [34]. These accelerated SGD methods can
use a constant learning rate 7 instead of diminishing step
sizes for SGD, and fall into the following three categories:
primal methods such as SVRG and SAGA, dual methods
such as SDCA, and primal-dual methods such as SPDC. In
essence, many of the primal methods use the full gradient
at the snapshot Z or the average gradient to progressively
reduce the variance of stochastic gradient estimators, as
well as the dual and primal-dual methods, which leads to
a revolution in the area of first-order optimization [35]. Thus,
they are also known as the hybrid gradient descent method
[36] or semi-stochastic gradient descent method [37]. In
particular, under the strongly convex condition, most of
the accelerated SGD methods enjoy a linear convergence
rate (also known as a geometric or exponential rate) and
the oracle complexity of O((n+L/u)log(1/€)) to obtain an
e-suboptimal solution, where each f;(-) is L-smooth, and
F(-) is p-strongly convex. The complexity bound shows that
they converge faster than accelerated deterministic method-
s, whose oracle complexity is O(n+/L/plog(1/€)) [38], [39].

SVRG [1] and its proximal variant, Prox-SVRG [33], are
particularly attractive because of their low storage require-
ment compared with other methods such as SAG, SAGA
and SDCA, which require storage of all the gradients of
component functions or dual variables. At the beginning of
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the s-th epoch in SVRG, the full gradient Vf(z°7!) is com-
puted at the snapshot 2°!, which is updated periodically.

Definition 1. The stochastic variance reduced gradient estimator
is independently introduced in [1], [36] as follows:

Vfi(a}) = Vi) = V(@) + VFET), )
where s is the epoch that iteration k belongs to.

It is not hard to verify that the variance of the SVRG
estimator Vfi:(x}) (i.e., E[Vfi:(x}) — Vf(2})||?) can be
much smaller than that of the SGD estimator Vf; (z7)
(e, B||Vfi(z5) — Vf(x3)]|?). Theoretically, for non-strongly
convex (Non-SC) problems, the variance reduced methods
converge slower than the accelerated batch methods such as
FISTA [21],ie., O(1/T) vs. O(1/T?).

More recently, many acceleration techniques were pro-
posed to further speed up the stochastic variance reduced
methods mentioned above. These techniques mainly in-
clude the Nesterov’s acceleration techniques in [24], [38],
[39], [40], [41], reducing the number of gradient calcula-
tions in early iterations [35], [42], [43], the projection-free
property of the conditional gradient method (also known
as the Frank-Wolfe algorithm [44]) as in [45], the stochastic
sufficient decrease technique [46], and the momentum accel-
eration tricks in [35], [47], [48]. [39] proposed an accelerating
Catalyst framework and achieved the oracle complexity
of O((n++/nL/u)log(L/p)log(1/e€)) for strongly convex
problems. [47] and [49] proved that the accelerated methods
can attain the oracle complexity of O(nlog(1/€e)++/nL/¢)
for non-strongly convex problems. The overall complexi-
ty matches the theoretical upper bound provided in [50].
Katyusha [47], point-SAGA [51] and MiG [49] achieve the
best-known oracle complexity of O((n++/nL/u)log(1/e))
for strongly convex problems, which is identical to the
upper complexity bound in [50]. Hence, Katyusha and MiG
are the best-known stochastic optimization method for both
SC and Non-SC problems, as pointed out in [50]. However,
selecting the best values for the parameters in the accel-
erated methods (e.g., the momentum parameter) is still an
open problem. In particular, most of accelerated stochastic
variance reduction methods, including Katyusha, require at
least one auxiliary variable and one momentum parameter,
which lead to complicated algorithm design and high per-
iteration complexity, especially for very high-dimensional
and sparse data.

1.3 Our Contributions

From the above discussions, we can see that most of
the accelerated stochastic variance reduction methods such
as [35], [38], [43], [45], [46], [47], [52], [53] and applications
such as [7], [9], [10], [13], [16], [17] are based on the SVRG
method [1]. Thus, any key improvement on SVRG is very
important for the research of stochastic optimization. In this
paper, we propose a simple variant of the original SVRG [1],
called variance reduced stochastic gradient descent (VR-SGD).
The snapshot point and starting point of each epoch in VR-
SGD are set to the average and last iterate of the previous
epoch, respectively. This is different from the settings of
SVRG and Prox-SVRG [33], where the two points of the
former are set to be the last iterate, and those of the latter are



TABLE 1
Comparison of convergence rates of VR-SGD and its counterparts.

SVRG [1] Prox-SVRG [33] VR-SGD

SC, smooth linear rate unknown linear rate
SC, non-smooth unknown linear rate  linear rate
Non-SC, smooth unknown  unknown o1/7)
Non-SC, non-smooth unknown  unknown o1/7T)

set to be the average of the previous epoch. This difference
makes the convergence analysis of VR-SGD significantly
more challenging than that of SVRG and Prox-SVRG. Our
empirical results show that the performance of VR-SGD is
significantly better than its counterparts, SVRG and Prox-
SVRG. Impressively, VR-SGD with varying learning rates
achieves better or at least comparable performance with ac-
celerated methods, such as Catalyst [39] and Katyusha [47].
The main contributions of this paper are summarized below.

o The snapshot and starting points of VR-SGD are set
to two different vectors, i.e., 2°= L3 | 27 (Option
Dorz°= ﬁzzn;ll x§ (Option IT), and z§™ =x5,. In
particular, we find that the settings of VR-SGD allow
us to take much larger learning rates than SVRG,
e.g., 1/L vs. 1/(10L), and thus significantly speed
up its convergence in practice. Moreover, VR-SGD
has an advantage over SVRG in terms of robustness
of learning rate selection.

e Unlike proximal stochastic gradient methods, e.g.,
Prox-SVRG and Katyusha, which have a unified
update rule for the two cases of smooth and non-
smooth objectives (see Section 2.2 for details), VR-
SGD employs two different update rules for the
two cases, respectively, as in (12) and (13) below.
Empirical results show that gradient update rules as
in (12) for smooth optimization problems are better
choices than proximal update formulas as in (10).

o We provide the convergence guarantees of VR-SGD
for solving smooth/non-smooth and non-strongly
convex (or general convex) functions. In comparison,
SVRG and Prox-SVRG do not have any convergence
guarantees, as shown in Table 1.

e Moreover, we also present a momentum accelerated
variant of VR-SGD, discuss their equivalent relation-
ship, and empirically verify that they achieve similar
performance to their variant that attains the optimal
convergence rate O(1/77?).

o Finally, we theoretically analyze the convergence
properties of VR-SGD with Option I or Option II for
smooth/non-smooth and strongly convex functions,
which show that VR-SGD attains linear convergence.

2 PRELIMINARY AND RELATED WORK

Throughout this paper, we use ||-|| to denote the ¢3-norm
(also known as the standard Euclidean norm), and ||-||; is
the £1-norm, ie, |z]1 = 2%, |zi|. Vf(:) denotes the full
gradient of f(-) if it is differentiable, or 9f (-) the subgradient
if f(-) is only Lipschitz continuous. For each epoch s € [5]
and inner iteration k €{0, 1, ..., m—1}, ¢} € [n] is the random
chosen index. We mostly focus on the case of Problem (1)

Algorithm 1 SVRG (Option I) and Prox-SVRG (Option II)

Input: The number of epochs .S, the number of iterations m
per epoch, and the learning rate 7.
Initialize: 2°.
1: fors=1,2,...,5do
2 pf =AY V@Y, ay =20
3 fork=0,1,....,m—1do
4 Pick i}, uniformly at random from [n];
5 Vfig(27) = Vfig (a}) — Vi (@71 + 1%
6 Option I: 23, = @}, — 0| Vfi: (27) —|—Vg(m‘;)},
orxy = Proxf, xp— n%fiz (xi)),
Option II:
o = arg miny ezo {g(y)+y " Vi (a2)+ 5 ly—= %)
8: end for
9:  OptionI: z° = z;,;
10:  OptionILz*=L3"" a3
11: end for
Output: 7°

N

// Last iterate for snapshot T
// Iterate averaging for ©

when each f;(+) is L-smooth', and F () is u-strongly convex.
The two common assumptions are defined as follows.

2.1 Basic Assumptions

Assumption 1 (Smoothness). Each f;(-) is L-smooth, that is,
there exists a constant L >0 such that for all z,y € R,

IVfi(x) = Vi(y)ll < Lijz —yl|. 6)

Assumption 2 (Strong Convexity). F(z) is p-strongly convex,
i.e., there exists a constant ;1> 0 such that for all x,y € R,

F(y) 2 F(@) + (VF(@), y ) + Clle =yl”. @)

Note that when g¢(-) is non-smooth, the inequality in (7)
needs to be revised by simply replacing the gradient VF'(x)
with an arbitrary sub-gradient of F'(-) at z. In contrast,
for a non-strongly convex or general convex function, the
inequality in (7) can always be satisfied with p=0.

2.2 Related Work

To speed up standard and proximal SGD, many stochastic
variance reduced methods [28], [29], [30], [36] have been
proposed for some special cases of Problem (1). In the case
when each f;(z) is L-smooth, f(z) is p-strongly convex,
and g(x) =0, Roux et al. [28] proposed a stochastic average
gradient (SAG) method, which attains linear convergence.
However, SAG, as well as other incremental aggregated gra-
dient methods such as SAGA [30], needs to store all gradi-
ents, so that O(nd) memory is required in general [42]. Sim-
ilarly, SDCA [29] requires storage of all dual variables [1],
which uses O(n) memory. In contrast, SVRG proposed by
Johnson and Zhang [1], as well as Prox-SVRG [33], has the
similar convergence rate to SAG and SDCA, but without the
memory requirements of all gradients and dual variables.
In particular, the SVRG estimator in (5) may be the most

1. In fact, we can extend the theoretical results for the case, when the
gradients of all component functions have the same Lipschitz constant
L, to the more general case, when some component functions f;(-) have
different degrees of smoothness.



popular choice for stochastic gradient estimators. The update
rule of SVRG for the case of Problem (1) when g(-)=0is

Ty =z — V(). ®)

When the smooth regularizer g(-) # 0, the update rule in
(8) becomes: xj,, =z} —n[Vfiz(x}) + Vg(xi)]. Although
the original SVRG in [1] only has convergence guarantees
for the special case of Problem (1), when each f;(x) is L-
smooth, f(z) is p-strongly convex, and g(z) = 0, we can
extend SVRG to the proximal setting by introducing the
proximal operator in (3), as shown in Line 7 of Algorithm 1.
Based on the SVRG estimator in (5), some accelerated
algorithms [38], [39], [47] have been proposed. The proximal
update rules of Katyusha [47] are formulated as follows:

Ty = Wiy + w7+ (1 —wy —we)zy, (9a)

]_ ~
*InyyZ||2+yTVfi;(wZ+1)+g(y)}, (9b)

s .
Ypy =arg mln{ o

y€ERC

st =argmin{ oot T Vet ) +o() 00
where w1, wy € [0, 1] are two parameters. To eliminate the
need for parameter tuning, 7 is set to 1/(3w;L), and wy
is fixed to 0.5 in [47]. In addition, [15], [16], [17] applied
efficient stochastic solvers to compute leading eigenvectors
of a symmetric matrix or generalized eigenvectors of two
symmetric matrices. The first such method is VR-PCA pro-
posed by Shamir [16], and the convergence properties of
VR-PCA for such a non-convex problem are also provided.
Garber et al. [17] analyzed the convergence rate of SVRG
when f(-) is a convex function that is a sum of non-
convex component functions. Moreover, [4], [5] and [54]
proved that SVRG and SAGA with minor modifications can
converge asymptotically to a stationary point of non-convex
functions. Some parallel and distributed variants [55], [56],
[57] of accelerated SGD methods have also been proposed.
An important class of stochastic methods is the prox-
imal stochastic gradient (Prox-SG) method, such as Prox-
SVRG [33], SAGA [30], and Katyusha [47]. Different from
standard variance reduction SGD methods such as SVRG,
the Prox-SG method has a unified update rule for both
smooth and non-smooth cases of g(-). For instance, the
update rule of Prox-SVRG [33] is formulated as follows:

s : v/ s 1 s
Tj4q=argmin {g(y)JFl/TVfi;(iEk)JF? ly—x% Hz} . (10)
yERE n

For the sake of completeness, the details of Prox-SVRG [33]
are shown in Algorithm 1 with Option II. When g(-) is the
widely used ¢>-norm regularizer, i.e., g(-) = (A1/2)| - ||%, the
proximal update formula in (10) becomes

(2 = n¥fig (2)] - an

s 1
T = T,

3 VARIANCE REDUCED SGD

In this section, we propose an efficient variance reduced
stochastic gradient descent (VR-SGD) algorithm, as shown
in Algorithm 2. Different from the choices of the snapshot
and starting points in SVRG [1] and Prox-SVRG [33], the two
vectors of each epoch in VR-SGD are set to the average and
last iterate of the previous epoch, respectively. Moreover,
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unlike existing proximal stochastic methods, we design two
different update rules for smooth and non-smooth objective
functions, respectively.

3.1 Snapshot and Starting Points

Like SVRG, VR-SGD is also divided into S epochs, and each
epoch consists of m stochastic gradient steps, where m is
usually chosen to be ©(n), as suggested in [1], [33], [47].
Within each epoch, we need to compute the full gradient
Vf(2°) at the snapshot Z° and use it to define the variance
reduced stochastic gradient estimator Vf;:(x7) in (5). Unlike
SVRG, whose snapshot is set to the last iterate of the previ-
ous epoch, the snapshot z° of VR-SGD is set to the average
of the previous epoch, e.g., 2° = %Z;"’:l x}, in Option I of
Algorithm 2, which leads to better robustness to gradient
noise?, as also suggested in [35], [46], [61]. In fact, the choice
of Option 1I in Algorithm 2, ie., 7% = m%lzzn:_ll x5, also
works well in practice, as shown in Fig. 2 in the Supple-
mentary Material. Therefore, we provide the convergence
guarantees for our algorithm with either Option I or Option
II in the next section. In particular, we find that one of the
effects of the choice in Option I or Option II of Algorithm 2
is to allow taking much larger learning rates or step sizes
than SVRG in practice, e.g., 1/L for VR-SGD vs. 1/(10L) for
SVRG (see Fig. 1). Actually, a larger learning rate enjoyed by
VR-SGD means that the variance of its stochastic gradient
estimator goes asymptotically to zero faster.

Unlike Prox-SVRG [33] whose starting point is initialized
to the average of the previous epoch, the starting point of
VR-SGD is set to the last iterate of the previous epoch. That
is, in VR-SGD, the last iterate of the previous epoch becomes
the new starting point, while the two points of Prox-SVRG
are completely different, thereby leading to relatively slow
convergence in general. Both the starting and snapshot
points of SVRG [1] are set to the last iterate of the previous
epoch’, while the two points of Prox-SVRG [33] are set to
the average of the previous epoch (also suggested in [1]).
By setting the starting and snapshot points in VR-SGD to
the two different vectors mentioned above, the convergence
analysis of VR-SGD becomes significantly more challenging
than that of SVRG and Prox-SVRG, as shown in Section 4.

3.2 The VR-SGD Algorithm

In this part, we propose an efficient VR-SGD algorithm to
solve Problem (1), as outlined in Algorithm 2 for the case of
smooth objective functions. It is well known that the original
SVRG [1] only works for the case of smooth minimization
problems. However, in many machine learning applications,

2.1t should be emphasized that the noise introduced by random
sampling is inevitable, and generally slows down the convergence
speed in this sense. However, SGD and its variants are probably
the mostly used optimization algorithms for deep learning [58]. In
particular, [59] has shown that by adding gradient noise at each step,
noisy gradient descent can escape the saddle points efficiently and
converge to a local minimum of the non-convex minimization problem,
e.g., the application of deep neural networks in [60].

3. Note that the theoretical convergence of the original SVRG [1]
relies on its Option II, i.e., both Z° and xé“ are set to zj, where k
is randomly chosen from {1, 2, ..., m}. However, the empirical results
in [1] suggest that Option I is a better choice than its Option II, and
the convergence guarantee of SVRG with Option I for strongly convex
objective functions is provided in [62].



Algorithm 2 VR-5GD for solving smooth problems

Input: The number of epochs S, and the number of itera-
tions m per epoch.
Initialize: v} = 7°, and {n,}.
1: fors=1,2,...,5do
2 =AY VAGEY;
fork=0,1,...,m—1do
Pick i} uniformly at random from [n];
Vfis (a3,) = Vfig (x3) — Vi (@Y + 1%
ry =2 —ns[Vfis(xf) +Vg(xf)];
end for
Option L: z5=-L5"1" | a2 // Iterate averaging for &
Option II: 7° = ﬁz;’;‘f x3; // Iterate averaging for T
// nitiate x5! for the next epoch

// Compute the full gradient

10: xf)H: xs.;
11: end for
Output: z° = 7%, if F(z°) < F(%Zilfs), and 7° =

5 =~ .
>0, @° otherwise.

e.g., elastic net regularized logistic regression, the strongly
convex objective function F'(z) is non-smooth. To solve
this class of problems, the proximal variant of SVRG, Prox-
SVRG [33], was subsequently proposed. Unlike the original
SVRG, VR-SGD can not only solve smooth objective func-
tions, but also directly tackle non-smooth ones. That is, when
the regularizer g(z) is smooth (e.g., the £2-norm regularizer),
the key update rule of VR-SGD is

Ty = 75 — 0s[Vfis (23) + Vo(@)]-

When g(z) is non-smooth (e.g., the ¢{;-norm regularizer), the
key update rule of VR-SGD in Algorithm 2 becomes

rj 4, = Prox} (xz — Us%fi; (xi)) .

Unlike the proximal stochastic methods such as Prox-
SVRG [33], all of which have a unified update rule as in (10)
for both the smooth and non-smooth cases of g(-), VR-SGD
has two different update rules for the two cases, as in (12)
and (13). Fig. 1 demonstrates that VR-SGD has a significant
advantage over SVRG in terms of robustness of learning rate
selection. That is, VR-SGD yields good performance within
the range of the learning rate from 0.2/L to 1.2/L, whereas
the performance of SVRG is very sensitive to the selection
of learning rates. Thus, VR-SGD is convenient to be applied
in various real-world problems of machine learning. In fact,
VR-SGD can use much larger learning rates than SVRG for
ridge regression problems in practice, e.g., 8/(5L) for VR-
SGD vs. 1/(5L) for SVRG, as shown in Fig. 1(b).

(12)

(13)

3.3 VR-SGD for Non-Strongly Convex Objectives

Although many stochastic variance reduced methods have
been proposed, most of them, including SVRG and Prox-
SVRG, only have convergence guarantees for the case of
Problem (1), when F'(z) is strongly convex. However, F'(z)
may be non-strongly convex in many machine learning
applications, such as Lasso and ¢;-norm regularized logistic
regression. As suggested in [47], [63], this class of problems
can be transformed into strongly convex ones by adding
a proximal term (7/2)||z —z§|?, which can be efficiently
solved by Algorithm 2. However, the reduction technique

Se —e—n=0.1/L N7 —e—n=0.1/L
) ‘,\ - = -n=0.2/L < - & —=n=0.2/L
ERR'Y ., Lo M=0.3IL 10 2 Lo M=0.31L
3 \t\ E:3 —k=n=04/L| B ~ —%—n=0.4/L
S N “e —v—n=05L| 2 & —v—1=05/L
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E ~ .. -m-n=ozn | E k%( T
2 e 3 L3 ¢ n=03L| 2 W, ¢ n=0.3/L
E_) 0 \ &\ —k= 1=0.4/L E_: 10 *w‘ 4= N=0.4/L
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(a) Logistic regression: A = 10~4 (left) and X\ = 107° (right)
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Fig. 1. Comparison of SVRG [1] and VR-SGD with different learning
rates for solving ¢2-norm regularized logistic regression and ridge re-
gression on Covtype. Note that the blue lines stand for the results of
SVRG, while the red lines correspond to the results of VR-SGD (best
viewed in colors).

may degrade the performance of the involved algorithms
both in theory and in practice [43]. Thus, we use VR-SGD to
directly solve non-strongly convex problems.

The learning rate n, of Algorithm 2 can be fixed to a
constant. Inspired by existing accelerated stochastic algo-
rithms [35], [47], the learning rate in Algorithm 2 can be
gradually increased in early iterations for both strongly
convex and non-strongly convex problems, which leads to
faster convergence (see Fig. 3 in the Supplementary Ma-
terial). Different from SGD and Katyusha [47], where the
learning rate of the former requires to be gradually decayed
and that of the latter needs to be gradually increased, the
update rule of 7, in Algorithm 2 is defined as follows: 7 is
an initial learning rate, and for any s> 1,

1s = 1o/ max{a, 2/(s + 1)}

where 0 <a <1 is a given constant, e.g., «=0.2.

(14)

3.4 Extensions of VR-SGD

It has been shown in [37], [38] that mini-batching can effec-
tively decrease the variance of stochastic gradient estimates.
Therefore, we first extend the proposed VR-SGD method
to the mini-batch setting, as well as its convergence results
below. Here, we denote by b the mini-batch size and I} the
selected random index set Ij; C [n] for each outer-iteration
s€ 5] and inner-iteration k€{0,1,...,m—1}.

Definition 2. The stochastic variance reduced gradient estimator
in the mini-batch setting is defined as

- 1 _ N
Vi (@3) = 3 > [VFila) = VAE D]+ VAET)  (15)
i€y
where I C[n] is a mini-batch of size b.

If some component functions are non-smooth, we can
use the proximal operator oracle [63] or the Nesterov’s



smoothing [64] and homotopy smoothing [65] techniques to
smoothen them, and thereby obtain their smoothed approx-
imations. In addition, we can directly extend our VR-SGD
method to the non-smooth setting as in [35] (e.g., Algorithm
3 in [35]) without using any smoothing techniques.

Considering that each component function f;(z) may
have different degrees of smoothness, picking the random
index 73, from a non-uniform distribution is a much better
choice than commonly used uniform random sampling [66],
[67], as well as without-replacement sampling vs. with-
replacement sampling [68]. This can be done using the same
techniques in [33], [47], i.e., the sampling probabilities for
all f;(z) are proportional to their Lipschitz constants, i.e.,
pi=L;/ Z?Zle. VR-SGD can also be combined with other
accelerated techniques used for SVRG. For instance, the e-
poch length of VR-SGD can be automatically determined by
the techniques in [43], [69], instead of a fixed epoch length.
We can reduce the number of gradient calculations in early
iterations as in [42], [43], which leads to faster convergence
in general (see Section 5.5 for details). Moreover, we can
introduce the Nesterov’s acceleration techniques in [24],
[38], [39], [40], [41] and momentum acceleration tricks in
[35], [47], [70] to further improve the performance of VR-
SGD.

4 ALGORITHM ANALYSIS

In this section, we provide the convergence guarantees of
VR-SGD for solving both smooth and non-smooth general
convex problems, and extend the results to the mini-batch
setting. We also study the convergence properties of VR-
SGD for solving both smooth and non-smooth strongly
convex objective functions. Moreover, we discuss the e-
quivalent relationship between VR-SGD and its momentum
accelerated variant, as well as some of its extensions.

4.1 Convergence Properties: Non-strongly Convex

In this part, we analyze the convergence properties of VR-
SGD for solving more general non-strongly convex prob-
lems. Considering that the proposed algorithm (i.e., Algo-
rithm 2) has two different update rules for smooth and non-
smooth cases, we give the convergence guarantees of VR-
SGD for the two cases as follows.

4.1.1  Smooth Objective Functions

We first provide the convergence guarantee of our algorithm
for solving Problem (1) when F'(x) is smooth. In order to
simplify analysis, we denote F'(z) by f(x), thatis, f;(x) :=
fiz) + g(z) foralli=1,2,...,n, and then g(z) = 0.

Lemma 1 (Variance bound). Let z* be the optimal solution
of Problem (1). Suppose Assumption 1 holds. Then the following
inequality holds

B[V fig(w}) — VI (@) |2 AL (@) F @)+ ()= @)

The proofs of this lemma, the lemmas and theorems
below are all included in the Supplementary Material. Lem-
ma 1 provides the upper bound on the expected variance
of the variance reduced gradient estimator in (5), i.e., the
SVRG estimator. For Algorithm 2 with Option II and a fixed
learning rate 7, we have the following result.
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Theorem 1 (Smooth objectives). Suppose Assumption 1 holds.
Then the following inequality holds

2(m+1)

B[£G)] - 1) < 2 gl @) — S
* 2[7—4m+2]SHxO_x I

where v = (B—1)(m—1), and =1/(Ln).

From Theorem 1 and its proof, one can see that our
convergence analysis is very different from that of existing
stochastic methods, such as SVRG [1], Prox-SVRG [33], and
SVRG++ [43]. Similarly, the convergence of Algorithm 2
with Option I and a fixed learning rate can be guaranteed,
as stated in Theorem 6 in the Supplementary Material. All
the results show that VR-SGD attains a convergence rate of
O(1/T) for non-strongly convex functions.

4.1.2 Non-Smooth Objective Functions

We also provide the convergence guarantee of Algorithm 2
with Option I and (13) for solving Problem (1) when F'(z) is
non-smooth and non-strongly convex, as shown below.

Theorem 2 (Non-smooth objectives). Suppose Assumption 1
holds. Then the following inequality holds

E[F@S)] — F(z*)
2(m+1) 5:,0 o z* - ZEO* ¥ 2
< Gepmg PO = F@ ) + 5o el a1

Similarly, the convergence of Algorithm 2 with Option
II and a fixed learning rate can be guaranteed, as stated in
Corollary 4 in the Supplementary Material.

pB-1L

4.1.3 Mini-Batch Settings
The upper bound on the variance of Vf;: () is extended to
the mini-batch setting as follows.

Corollary 1 (Variance bound of mini-batch). If each f;(-) is
convex and L-smooth, then the following inequality holds
B[V (1) = VI ()]
<ALS(b)[F(2}) — F(2") + F(@*71) = F(a”)]
where 6(b) = (n—>b)/[(n—1)].
This corollary is essentially identical to Theorem 4
in [37], and hence its proof is omitted. It is not hard to verify
that 0 < §(b) < 1. Based on the variance upper bound, we

further analyze the convergence properties of VR-SGD in
the mini-batch setting, as shown below.

Theorem 3 (Mini-batch). If each f;(-) is convex and L-smooth,
then the following inequality holds

]E[F(Q?S)] — F(z")
<25(b)(m+1)
- (mS
where ( = f—1—46(b).

BB-1)L

E[[lz*—2°|%]

From Theorem 3, one can see that when b =n (i.e., the
batch setting), §(n) =0, and the first term on the right-hand
side of the above inequality diminishes. That is, VR-SGD
degenerates to a batch method. When b=1, we have §(1)=
1, and thus Theorem 3 degenerates to Theorem 2.



4.2 Convergence Properties: Strongly Convex

We also analyze the convergence properties of VR-SGD for
solving strongly convex problems. We first give the following
convergence result for Algorithm 2 with Option II

Theorem 4 (Strongly convex). Suppose Assumptions 1, 2 and
3 in the Supplementary Material hold, and m is sufficiently large
so that
_ 2Ln(m+c) c(1—Ln)
(m—1)(1=3Ln) = pn(m—1)(1-3Ln)

where c is a constant. Then Algorithm 2 with Option 1I has the
following geometric convergence in expectation:

E [F(fs) - F(x*)} < pS[F(3) - F(z*)] .

We also provide the linear convergence guarantees for
Algorithm 2 with Option I for solving non-smooth and
strongly convex functions, as stated in Theorem 7 in the
Supplementary Material. Similarly, the linear convergence
of Algorithm 2 can be guaranteed for the smooth strongly-
convex case. All the theoretical results show that VR-SGD
attains a linear convergence rate and at most the oracle
complexity of O((n+L/u)log(1/e€)) for both smooth and
non-smooth strongly convex functions. In contrast, the con-
vergence of SVRG [1] is only guaranteed for smooth and
strongly convex problems.

Although the learning rate in Theorem 4 needs to be
less than 1/(3L), we can use much larger learning rates in
practice, e.g., n = 1/L. However, it can be easily verified
that the learning rate of SVRG should be less than 1/(4L)
in theory, and adopting a larger learning rate for SVRG
is not always helpful in practice, which means that VR-
SGD can use much larger learning rates than SVRG both in
theory and in practice. In other words, although they have
the same theoretical convergence rate, VR-SGD converges
significantly faster than SVRG in practice, as shown by our
experiments. Note that similar to the convergence analysis
in [4], [5], [54], the convergence of VR-SGD for some non-
convex problems can also be guaranteed.

4.3 Equivalent to Its Momentum Accelerated Variant

Inspired by the success of the momentum technique in
our previous work [6], [49], [70], we present a momentum
accelerated variant of Algorithm 2, as shown in Algorith-
m 3. Unlike existing momentum techniques, e.g., [18], [21],
[24], [38], [39], [47], we use the convex combination of the
snapshot 7571 and latest iterate vi for acceleration, i.e.,
Tt ws(viy — 757 = wevp + (1 —we)Z* ' Tt is not
hard to verify that Algorithm 2 with Option I is equiva-
lent to its variant (i.e., Algorithm 3 with Option I), when
ws =max{e,2/(s+1)} and « is sufficiently small (see the
Supplementary Material for their equivalent analysis). We
emphasize that the only difference between Options I and II
in Algorithm 3 is the initialization of z§ and v§.

Theorem 5. Suppose Assumption 1 holds. Then the following
inequality holds:

E[F(@%) - F(z")]
4(1—wy) ~ % 2 . ~0n2

Algorithm 3 The momentum accelerated algorithm

Input: S and m.
Initialize: x} = v} = 2°, {ws}, «>0, and no.
1: fors=1,2,...,5do

2 = LY VAE), n = no/ max{a,2/(s+1)};

3:  Option I: v§ =z, or Option II: 2§ = wsvi+(1—ws)T°7;
4: forkfo,l,..., —1do

5: Pick i}, uniformly at random from [n};

6: Vflk(mk) sz ( ) sz (°~ 1)+M:

7: vk+1 - Uk 775 [vfz (xk) + Vg(xk)]

8: xj . =1T° +ws’(vk+1 -,

9:  end for

10 ==Ly

11: Optlonl x”‘l = xm, or Option IT: vt = v3 ;

12: end for

Output: 7° S, if F(@%) < F(3 9 7)), and 75 =
éz;gzlis otherwise.
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Fig. 2. Comparison of AGD [19], Katyusha [47], Algorithm 3 with Option
I and I, and VR-SGD for solving logistic regression with A = 0.

Choosing m = ©(n), Algorithm 3 with Option II achieves an
€- suboptimal solution (ie., B[F (%)) - F(x )<a) using at most
O(ny/[F /5+\/nL/5 |20 —x*||) iterations.

This theorem shows that the oracle complexity of
Algorithm 3 with Option II is consistent with that of
Katyusha [47], and is better than that of accelerated deter-
ministic methods (e.g., AGD [19]), (i.e., O(ny/L/¢)), which
are also verified by the experimental results in Fig. 2.
Our algorithm also achieves the optimal convergence rate
O(1/T?) for non-strongly convex functions as in [47], [48].
Fig. 2 shows that Katyusha and Algorithm 3 with Option
II have similar performance as Algorithms 2 and 3 with
Option I (ny=3/(5L)) in terms of number of effective passes.
Clearly, Algorithm 3 and Katyusha have higher complexity
per iteration than Algorithm 2. Thus, we only report the
results of VR-SGD (i.e., Algorithm 2) in Section 5.

4.4 Complexity Analysis

From Algorithm 2, we can see that the per-iteration cost
of VR-SGD is dominated by the computation of Vfi:(z}),
Vfi:(z*~1), and Vg(z7}) or the proximal update in (13). Thus,
the complexity is O(d), which is as low as that of SVRG [1]
and Prox-SVRG [33]. In fact, for some ERM problems, we
can save the intermediate gradients Vf;(7°~!) in the com-
putation of i°, which generally requires O(n) additional
storage. As a result, each epoch only requires (n+m) compo-
nent gradient evaluations. In addition, for extremely sparse
data, we can introduce the lazy update tricks in [37], [71],
[72] to our algorithm, and perform the update steps in (12)
and (13) only for the non-zero dimensions of each sample,
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rather than all dimensions. In other words, the per-iteration
complexity of VR-SGD can be improved from O(d) to O(d'),
where d’ < d is the sparsity of feature vectors. Moreover,
VR-SGD has a much lower per-iteration complexity than
existing accelerated stochastic variance reduction methods
such as Katyusha [47], which have more updating steps for
additional variables, as shown in (9a)-(9c).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of VR-SGD for
solving a number of convex and non-convex ERM problems
(such as logistic regression, Lasso and ridge regression),
and compare its performance with several state-of-the-art
stochastic variance reduced methods (including SVRG [1],
Prox-SVRG [33], SAGA [30]) and accelerated methods, such
as Catalyst [39] and Katyusha [47]. Moreover, we apply VR-
SGD to solve other machine learning problems, such as ERM
with non-convex loss and leading eigenvalue computation.

5.1

We used several publicly available data sets in the exper-
iments: Adult (also called a%9a), Covtype, Epsilon, MNIST,
and RCV1, all of which can be downloaded from the LIB-
SVM Data website*. It should be noted that each sample of
these date sets was normalized so that they have unit length as
in [33], [35], which leads to the same upper bound on the Lipschitz
constants L;, i.e, L = L; for all i =1,...,n. As suggested
in [1], [33], [47], the epoch length is set to m = 2n for
the stochastic variance reduced methods, SVRG [1], Prox-
SVRG [33], Catalyst [39], and Katyusha [47], as well as VR-
SGD. Then the only parameter we have to tune by hand
is the learning rate, 7. More specifically, we select learning
rates from {107,2.5 x 107, 5 x 107, 7.5 x 107,107+1}, where
j € {—2,—1,0}. Since Katyusha has a much higher per-
iteration complexity than SVRG and VR-SGD, we compare
their performance in terms of both the number of effective
passes and running time (seconds), where computing a

Experimental Setup

4. https:/ /www.csie.ntu.edu.tw/~cjlin/libsvm/
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single full gradient or evaluating n component gradients is
considered as one effective pass over the data. For fair com-
parison, we implemented SVRG, Prox-SVRG, SAGA, Cata-
lyst, Katyusha, and VR-SGD in C++ with a Matlab interface,
as well as their sparse versions with lazy update tricks, and
performed all the experiments on a PC with an Intel i5-4570
CPU and 16GB RAM. The source code of all the methods is
available at https://github.com/jnhujnhu/VR-SGD.

5.2 Deterministic Methods vs. Stochastic Methods

In this subsection, we compare the performance of stochastic
methods (including SGD, SVRG, Katyusha, and VR-SGD)
with that of deterministic methods such as AGD [18], [19]
and APG [21] for solving strongly and non-strongly convex
problems. Note that the important momentum parameter w
of AGD is w=(VL—/1t)/(V/L+/R) as in [73], while that of
APG is defined as follows: wy = (ar—1)/ag forall k>1
[21], where a1 =(1+4/14+4a3)/2, and ag =1.

Fig. 3 shows the the objective gap (i.e., F'(z®)—F(z*)) of
those deterministic and stochastic methods for solving /o-
norm and ¢;-norm regularized logistic regression problems
(see the Supplementary Material for more results). It can be
seen that the accelerated deterministic methods and SGD
have similar convergence speed, and APG usually performs
slightly better than SGD for non-strongly convex problem-
s. The variance reduction methods (e.g., SVRG, Katyusha
and VR-SGD) significantly outperform the accelerated de-
terministic methods and SGD for both strongly and non-
strongly convex cases, suggesting the importance of vari-
ance reduction techniques. Although accelerated determin-
istic methods have a faster theoretical speed than SVRG for
general convex problems, as discussed in Section 1.2, APG
converges much slower in practice. VR-SGD consistently
outperforms the other methods (including Katyusha) in all
the settings, which verifies the effectiveness of VR-SGD.

5.3 Different Choices for Snapshot and Starting Points

In the practical implementation of SVRG [1], both the s-
napshot z° and starting point x8+1 in each epoch are set
to the last iterate z;, of the previous epoch (i.e., Option I
in Algorithm 1), while the two vectors in [33] are set to the
average point of the previous epoch, L3~ | z7 (i.e., Option
IT in Algorithm 1). In contrast, z° and xSH in our algorithm
are set to =5 | x; and 7, (denoted by Option III, i.e.,
Option I’ in Algorithm 2), respectively.

We compare the performance of the algorithms with the
three settings (i.e., the Options I, II and III listed in Table 2)
for solving ridge regression and Lasso problems, as shown
in Fig. 4 (see the Supplementary Material for more results).
Except for the three different settings for snapshot and start-
ing points, we use the update rules in (12) and (13) for ridge
regression and Lasso problems, respectively. We can see that
the algorithm with Option III (i.e., Algorithm 2 with Option
I) consistently converges much faster than the algorithms
with Options I and II for both strongly convex and non-
strongly convex cases. This indicates that the setting of
Option III suggested in this paper is a better choice than
Options I and II for stochastic optimization.

5. As Options I and II in Algorithm 2 achieve very similar perfor-
mance, we only report the results of our algorithm with Option L.



TABLE 2
The three choices of snapshot and starting points for stochastic variance reduction optimization.
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5.4 Common SG Updates vs. Prox-SG Updates

In this subsection, we compare the original Katyusha algo-
rithm in [47] with the slightly modified Katyusha algorithm
(denoted by Katyusha-I). In Katyusha-I, only the following
two update rules are used to replace the original proximal
stochastic gradient update rules in (9b) and (9¢).

Yrs1 = Yp — ﬂ[ﬁfik(xZH) + Vg(ziiq)],
Zli-i-l = 352-1-1 - [Vfik(mi)+l) + Vg(ﬂci+1)]/(3L).

Similarly, we also implement the proximal versions® for
the original SVRG (called SVRG-I) and VR-SGD (denoted
by VR-SGD-I) methods, and denote their proximal variants
by SVRG-II and VR-SGD-II, respectively. In addition, the
original Katyusha is denoted by Katyusha-II.

Fig. 5 shows the performance of Katyusha-I and
Katyusha-II for solving ridge regression on the two popular
data sets: Adult and Covtype. We also report the results
of SVRG, VR-SGD, and their proximal variants. It is clear
that Katyusha-I usually performs better than Katyusha-II
(i.e., the original Katyusha [47]), and converges significantly
faster in the case when the regularization parameter is 10~%
or 1075. This seems to be the main reason why Katyusha
has inferior performance when the regularization parameter
is relatively large, as shown in Section 5.6.1. In contrast,
VR-SGD and its proximal variant have similar performance,

(16)

6. Here, the proximal variant of SVRG is different from Prox-
SVRG [33], and their main difference is the choices of both the snapshot
point and starting point. That is, the two vectors of the former are set
to the last iterate x,, while those of Prox-SVRG are set to the average
point of the previous epoch, i.e., %Z}lez
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Fig. 6. Comparison of SVRG++ [43], VR-SGD and VR-SGD++ for solv-
ing logistic regression problems on Epsilon.

and the former slightly outperforms the latter in most cases
(similar results are also observed for SVRG vs. its proximal
variant). This suggests that stochastic gradient update rules
as in (12) and (16) are better choices than proximal update
rules as in (10), (9b) and (9¢c) for smooth objective functions.
We also believe that our new insight can help us to design
accelerated stochastic optimization methods.

Both Katyusha-I and Katyusha-II usually outperform
SVRG and its proximal variant, especially when the reg-
ularization parameter is relatively small, e.g, A = 107°.
Moreover, it can be seen that both VR-SGD and its prox-
imal variant achieve much better performance than the
other methods in most cases, and are also comparable to
Katyusha-I and Katyusha-II in the remaining cases. This
further verifies that VR-SGD is suitable for various large-
scale machine learning.
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Fig. 7. Comparison of SAGA [30], SVRG [1], Prox-SVRG [33], Catalyst [39], Katyusha [47], and VR-SGD for solving ¢2-norm (the first row), £;-norm
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5.5 Growing Epoch Size Strategy in Early Iterations

In this subsection, we present a general growing epoch size
strategy in early iterations (i.e., If ms < 2n, msy1 = [pms]
with the factor p > 1. Otherwise, msy1 = my). Different
from the doubling-epoch technique used in SVRG++ [43]
(i.e., msy1 = 2my), we gradually increase the epoch size in
only the early iterations. Similar to the convergence analysis
in Section 4, VR-SGD with the growing epoch size strategy
(called VR-SGD++) can be guaranteed to converge. As sug-
gested in [43], we set m; = |n/4] for both SVRG++ and VR-
SGD++, and p=1.75 for VR-SGD++. Note that they use the
same initial learning rate. We compare their performance for
solving £2-norm regularized logistic regression, as shown in
Fig. 6 (see the Supplementary Material for more results). All
the results show that VR-SGD++ converges faster than VR-
SGD, which means that reducing the number of gradient
calculations in early iterations can lead to faster convergence
as discussed in [42]. Moreover, both VR-SGD++ and VR-
SGD significantly outperform SVRG++, especially when the
regularization parameter is relatively small, e.g., A=1075.

5.6 Real-world Applications

In this subsection, we apply VR-SGD to solve a number
of machine learning problems, e.g., logistic regression, non-
convex ERM and eigenvalue computation.

5.6.1 Convex Logistic Regression

In this part, we focus on the following generalized logistic

regression problem for binary classification,
n

1
min — Z log(1 + exp(—bia?@)

Al
+ Sl + Aellzll (17)
z€RI N ) 2

where {(a;,b;)} is a set of training examples, and A1, A2 >0
are the regularization parameters. Note that when Ay > 0,
fi(x) = log(1+ exp(—b;alx)) + (A1/2)||x||?. The formula-
tion (17) includes the fo-norm (i.e., Ao = 0), /1-norm (i.e.,
A1 =0), and elastic net (i.e., A\; # 0 and Ay # 0) regularized

logistic regression problems. Fig. 7 shows how the objective
gap decreases for the f;-norm, ¢;-norm, and elastic net
regularized logistic regression problems, respectively (see
the Supplementary Material for more results). From all the
results, we make the following observations.

e When the problems are well-conditioned (e.g., \; =
107* or A2 =107%), Prox-SVRG usually converges
faster than SVRG for both strongly convex (e.g.,
fy-norm regularized logistic regression) and non-
strongly convex (e.g., £1-norm regularized logistic
regression) cases. On the contrary, SVRG often out-
performs Prox-SVRG, when the problems are ill-
conditioned, e.g., A1 = 1076 or Ay =107 (see Figs.
11 and 12 in the Supplementary Material). The main
reason is that they have different initialization set-
tings, ie., 2° = z;, and it = xy, for SVRG vs.
° = L3 ap and af™ =LY a7 for Prox-
SVRG.

o Katyusha converges much faster than SAGA, SVRG,
Prox-SVRG, and Catalyst in the cases when the prob-
lems are ill-conditioned, e.g., A\; = 10~%, whereas it
often achieves similar or inferior performance when
the problems are well-conditioned, e.g., A1 = 10~4
(see Figs. 11, 12 and 13 in the Supplementary Materi-
al). Note that we implemented the original algorithm
with Option I in [47] for Katyusha. Obviously, the
above observation matches the convergence prop-
erties of Katyusha provided in [47], that is, only if
mu/L < 3/4, Katyusha attains the oracle complex-
ity of O((n++/nL/u)log(1/€)) for strongly convex
problems.

e VR-SGD converges significantly faster than SAGA,
SVRG, Prox-SVRG and Catalyst, especially when
the problems are ill-conditioned, e.g., Ay = 1076 or
A2 =107% (see Figs. 11 and 12 in the Supplementary
Material). The main reason is that VR-SGD can use
much larger learning rates than them (e.g., 1/L for



11

% SAGA \. 4 SAGA . VN % SAGA
SVRG A\, SVRG Nev SVRG ~
\ - A - SVRG++ AV - A - SVRG++ 10l DA — A - SVRG++ Baa
~ 10" —6—VR-SGD|{ ~ 10* ——VR-SGD|{ ~ A\ ——VR-s6D|| ~ 10* & e,
% % ” e AV < ASSE o,
, ; \, SR g
n Ve v N N At 0 AI% 6
Z Yo, Z N T % Z -
= 198 ‘# X -8 A . X 10° N [}
T 10 NS T 10 N e N T 10 % SAGA
SAT, A N Mo SVRG
g, ~o o, \";, = A = SVRG++
< . :
o~ < . < —o— VR-SGD
. ¥ _ _ .
107 s 102 A +* 102 *® 107
20 40 60 80 0 10 20 30 40 50 0 5 10 15 20 25 30 0 20 40 60 80 100
Gradient evaluations / n Gradient evaluations /n Gradient evaluations /n Gradient evaluations / n
T 0.06 ¢
% SAGA o014 % SAGA 0.429r 14 "% SAGA A T SAGA
0.17 SVRG " SVRG - SVRG i SVRG
i — A - SVRG++ ~ A - SVRG++ i — A - SVRG++ . - A - SVRG++
) ] —6—VR-SGD|| g 04281 |y —o—VR-SGD|] & : —o— VR-SGD
E s E B E *
$ 0165 > ° £y H |2
2 2 0013 2 0427 ) 2 A
3 8 3 3
o) 2 2 2
= = 5 5
O g1 9] o [¢)
0.426
0.012

0.155

0 10 20 30

Gradient evaluations /n

(a) Adult

40 50 0 20 40 60

Gradient evaluations /n

(b) MNIST

80

0 20 40 60

Gradient evaluations /n

80 100 50 100 150

Gradient evaluations /n

200

(c) Covtype (d) RCV1

Fig. 8. Comparison of SAGA [54], SVRG [4], SVRG++ [43], and VR-SGD for solving non-convex ERM problems with sigmoid loss: A = 10~5 (top)
and X = 106 (bottom). Note that z. denotes the best solution obtained by running all those methods for a large number of iterations and multiple

random initializations.

VR-SGD vs. 1/(10L) for SVRG), which leads to faster
convergence. This further verifies that the settings of
both snapshot and starting points in our algorithm
(i.e., Algorithm 2) are better choices than Options I
and II in Algorithm 1.

e In particular, VR-SGD consistently outperforms the
best-known stochastic method, Katyusha, in terms of
the number of passes through the data, especially
when the problems are well-conditioned, e.g., 10~*
and 107° (see Figs. 11 and 12 in the Supplementary
Material). Since VR-SGD has a much lower per-
iteration complexity than Katyusha, VR-SGD has
more obvious advantage over Katyusha in terms
of running time, especially in the case of sparse
data (e.g.,, RCV1), as shown in Fig. 7(b). From the
algorithms of Katyusha proposed in [47], we can see
that the learning rate of Katyusha is at least set to
1/(3L). Similarly, the learning rate used in VR-SGD
is comparable to that of Katyusha, which may be
the main reason why the performance of VR-SGD is
much better than that of Katyusha. This also implies
that the algorithms (including VR-SGD) that enjoy
larger learning rates can converge faster in general.

5.6.2 ERM with Non-Convex Loss

In this part, we apply VR-SGD to solve the following regu-
larized ERM problem with non-convex sigmoid loss:
1 Ay 9
min Z;fz(w) + 5l (18)
where f;(z) = 1/[1 + exp(b;al x)]. Some work [4], [74] has
shown that the sigmoid function usually generalizes better
than some other loss functions (such as squared loss, logistic
loss and hinge loss) in terms of test accuracy especially when
there are outliers. Here, we consider binary classification on
the four data sets: Adult, MNIST, Covtype and RCV1. Note
that we only consider classifying the first class in MNIST.
We compare the performance (including training objec-
tive value and function suboptimality, i.e., F'(z®) — F(x.))

of VR-SGD with that of SAGA [54], SVRG [4], and
SVRG++ [43], as shown in Fig. 8 (more results are provided
in the Supplementary Material), where z, denotes the best
solution obtained by running all those methods for a large
number of iterations and multiple random initializations.
Note that both SAGA and SVRG are two variants of the
original SAGA [30] and SVRG [1]. The results show that
our VR-SGD method has faster convergence than the other
methods, and its objective value is much lower. This implies
that VR-SGD can yield much better solutions than the
other methods including SVRG++. Furthermore, we can see
that VR-SGD has much greater advantage over the other
methods in the cases when the smaller )\ is, which means
that the objective function becomes more “non-convex”.
Moreover, we report the classification testing accuracies
of all those methods on the test sets of Adult and MNIST
in Fig. 9, as the number of effective passes over datasets
increases. Note that the regularization parameter is set to
A =107 It can be seen that our VR-SGD method obtains
higher test accuracies than the other methods with much
shorter running time, suggesting faster convergence.

5.6.3 Eigenvalue Computation

Finally, we apply VR-SGD to solve the following non-
convex leading eigenvalue computation problem:

1 n
—l‘T *E aia? x.
n
i=1

We plot the performance of the classical Power iteration
method, VR-PCA [16], and VR-SGD on Epsilon and RCV1
in Fig. 10, where the relative error is defined as in [16], i.e.,
1Og10(1 - ||ATx||2/(maXu:uTu=1 HATqu)), and A € Réxn
is the data matrix. Note that the epoch length is set to
m =n for VR-PCA and VR-SGD, as suggested in [16], and
both of them use a constant learning rate. The results show
that the stochastic variance reduced methods, VR-PCA and
VR-SGD, significantly outperform the traditional method,
Power. Moreover, our VR-SGD method often converges
much faster than VR-PCA.

(19)

min
r€R:xTr=1
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6 CONCLUSIONS

We proposed a simple variant of the original SVRG [1],
called variance reduced stochastic gradient descent (VR-
SGD). Unlike the choices of snapshot and starting points
in SVRG and Prox-SVRG [33], the two points of each e-
poch in VR-SGD are set to the average and last iterate
of the previous epoch, respectively. This setting allows us
to use much larger learning rates than SVRG, e.g., 1/L
for VR-SGD vs. 1/(10L) for SVRG, and also makes VR-
SGD much more robust to learning rate selection. Different
from existing proximal stochastic methods such as Prox-
SVRG and Katyusha [47], we designed two different update
rules for smooth and non-smooth problems, respectively,
which makes VR-SGD suitable for non-smooth and/or non-
strongly convex problems without using any reduction tech-
niques as in [63]. Our empirical results also showed that for
smooth problems stochastic gradient update rules as in (12)
are better choices than proximal update formulas as in (10).

On the practical side, the choices of the snapshot and
starting points make VR-SGD significantly faster than its
counterparts, SVRG and Prox-SVRG. On the theoretical
side, the setting also makes our convergence analysis more
challenging. We analyzed the convergence properties of VR-
SGD for strongly convex objective functions, which show
that VR-SGD attains a linear convergence rate. Moreover,
we provided the convergence guarantees of VR-SGD for
non-strongly convex functions, and our experimental results
showed that VR-SGD achieves similar performance to its
momentum accelerated variant that has the optimal con-
vergence rate O(1/7?). In contrast, SVRG and Prox-SVRG
cannot directly solve non-strongly convex functions [43].
Various experimental results show that VR-SGD significant-
ly outperforms state-of-the-art variance reduction methods
such as SAGA [54], SVRG [1] and Prox-SVRG [33], and
also achieves better or at least comparable performance
with recently-proposed acceleration methods, e.g., Cata-
lyst [39] and Katyusha [47]. Since VR-SGD has a much
lower per-iteration complexity than accelerated methods
(e.g., Katyusha), it has more obvious advantage over them
in terms of running time, especially for high-dimensional
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sparse data. This further verifies that VR-SGD is suitable
for various large-scale machine learning. Furthermore, as
the update rules of VR-SGD are much simpler than existing
accelerated stochastic variance reduction methods such as
Katyusha, it is more friendly to asynchronous parallel and
distributed implementation similar to [55], [57], [75].
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