
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2018

Tiresias: predicting security events

through deep learning

Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, Gianluca Stringhini. 2018. "Tiresias:

Predicting Security Events Through Deep Learning." Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security - CCS '18. the 2018 ACM SIGSAC

Conference. 2018-10-15 - 2018-10-19. https://doi.org/10.1145/3243734.3243811

https://hdl.handle.net/2144/34939

Downloaded from DSpace Repository, DSpace Institution's institutional repository

Tiresias: Predicting Security Events Through Deep Learning
Yun Shenq, Enrico Mariconti♣, Pierre-Antoine Vervierq, and Gianluca Stringhini♠♣

qSymantec Research Labs, ♣University College London, ♠Boston University
{yun_shen,pierre-antoine_vervier}@symantec.com, e.mariconti@cs.ucl.ac.uk, gian@bu.edu

ABSTRACT
With the increased complexity of modern computer attacks, there
is a need for defenders not only to detect malicious activity as it
happens, but also to predict the specific steps that will be taken
by an adversary when performing an attack. However this is still
an open research problem, and previous research in predicting
malicious events only looked at binary outcomes (e.g., whether an
attack would happen or not), but not at the specific steps that an
attacker would undertake. To fill this gap we present Tiresias, a
system that leverages Recurrent Neural Networks (RNNs) to predict
future events on a machine, based on previous observations. We
test Tiresias on a dataset of 3.4 billion security events collected
from a commercial intrusion prevention system, and show that our
approach is effective in predicting the next event that will occur
on a machine with a precision of up to 0.93. We also show that the
models learned by Tiresias are reasonably stable over time, and
provide a mechanism that can identify sudden drops in precision
and trigger a retraining of the system. Finally, we show that the
long-term memory typical of RNNs is key in performing event
prediction, rendering simpler methods not up to the task.

CCS CONCEPTS
• Security andprivacy→ Systems security; •Computingmethod-
ologies → Neural networks;

KEYWORDS
System Security, Recurrent Neural Network, Prediction

ACM Reference Format:
Yun Shenq , EnricoMariconti♣, Pierre-Antoine Vervierq , andGianluca Stringhini♠♣.
2018. Tiresias: Predicting Security Events Through Deep Learning. In 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS
’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The techniques used by adversaries to attack computer systems and
networks have reached an unprecedented sophistication. Attackers
use multiple steps to reach their targets [3, 33] and these steps are of
heterogeneous nature, from sending spearphishing emails contain-
ing malicious attachments [17], to performing drive-by download

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

attacks that exploit vulnerabilities in Web browsers [5, 26], to priv-
ilege escalation exploits [25]. After the compromise, miscreants
can monetize their malware infections in a number of ways, from
remotely controlling the infected computers to stealing sensitive
information [6, 31] to encrypting the victim’s data and holding it
hostage [12, 14].

Traditionally, the computer security community has focused on
detecting attacks by using a number of statistical techniques [5, 7, 9,
15, 32, 34]. While this is inherently an arms race, detection systems
provide the foundation for network and system defense, and are
therefore very important in the fight against network attacks. More
recently, the attention of the community switched to predicting
malicious events. Recent work focused on predicting whether a data
breach would happen [18], whether hosts would get infected with
malware [1], whether a vulnerability would start being exploited
in the wild [28], and whether a website would be compromised
in the future [30]. These approaches learn the attack history from
previous events (e.g., historical compromise data) and use the
acquired knowledge to predict future ones. Being able to predict
whether an attack will happen or not can be useful in a number of
ways. This can for example inform law enforcement on the next
target that will be chosen by cybercriminals, enable cyber insurance
underwriters to assess a company’s future security posture, or assist
website administrators to prioritize patching tasks.

While useful to predictively assess risk in systems and orga-
nizations, existing prediction systems have two main limitations.
First, they only focus on predicting events with a binary outcome
(e.g., whether an attack or a data breach will happen) but do not
provide any insights on the techniques and the modus operandi
that will be followed by attackers. Second, these systems need la-
beled data to build a model and be able to make a decision, and
it is not always easy to obtain such labeled data at a scale that
allows to train an accurate model. One additional issue is that at-
tackers operate changes to their modus operandi over time, and
therefore both feature engineering and binary detection systems
themselves need to be updated and retrained to keep performing
accurate detections [20].

In this paper, we go beyond predicting a binary outcome on
security events, but we rather want to predict the exact actions that
will be taken by an attacker when performing a computer attack. To
this end, we leverage recent advances in the area of deep learning
to develop Tiresias, a system that learns from past system events
and can predict the specific event that will happen next. Tiresias
can provide much more precise predictive information compared
to previous work, allowing companies to deploy truly proactive
countermeasures based on the predicted information. For example,
this system could predict which particular CVE will be used by an
attacker when mounting a multi-step attack against a server, or
assess the potential severity of an attack by only looking at its early
steps.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

e14e15 … e10e20e11e8e12e4e5 … e12e11e0 e3e9S1

e4e27e10 e28e11 e7e12 e5 …e4 e12S2

e4e41… e5 e22 e21e7e12S3

e23 e4e9 e3 e4e3e9 e23e3e9 e19 e24 e25 e26 e12 e13

e21 e19 e24e25e30 e31

… e9 e3e9 e3…e6 e12e19 e24e25e30e23

Figure 1: Three endpoints undergoing a coordinated attack. {e0, ..., e13} are events involved in the coordinated attack and high-
lighted in bold.

We test Tiresias on a dataset of 3.4 billion security events col-
lected by a commercial intrusion prevention system from a daily
population of 740k machines over a period of 27 days. We show
that Tiresias is effective in predicting the specific malicious event
that will occur with a precision of up to 0.93. We also show that
the models trained by Tiresias are fairly stable, with the detection
performance changing slowly. We however identify sudden drops
in prediction precision, due to unexpected changes in the observed
attacks and systems (e.g., new vulnerabilities being discovered or
old ones being patched). In these cases, we show that Tiresias
can automatically identify the issue and trigger a retraining of the
system. We demonstrate that the long-term memory provided by
Recurrent Neural Networks is key to performing an accurate pre-
diction when dealing with complex multi-step attacks and the noise
generated by legitimate or non-related malicious events in the wild;
in fact, we show that Tiresias clearly outperforms simpler systems
that are only based on short-term memory (e.g., Markov Chains).

2 BACKGROUND AND MOTIVATION
To illustrate the complexity of keeping track of events across differ-
ent machines, consider the real-world example in Figure 1. We show
three endpoints undergoing a coordinated attack to Apache Web
servers (see Section 6 for the detailed case study), where {e0, ..., e13}
are events involved in this attack and are highlighted in bold. This
coordinated attack consists of three parts: (i) run reconnaissance
tasks if port 80/tcp (HTTP) is open (e.g., e4 is default credential lo-
gin, e5 is Web server directory traversal), (ii) trigger a list of exploits
against the Web application framework Struts (e.g., e8 is an exploit
relating to Apache Struts CVE-2017-12611, e11 is an attempt to use
Apache Struts CVE-2017-5638, e13 tries to exploit Apache Struts
CVE-2017-9805, etc.) and (iii) execute a list of exploits against other
possible applications running on the system (e.g., e2 exploits Word-
press arbitrary file download, e9 targets Joomla local file inclusion
vulnerability, etc).

The first challenge that we can immediately notice in Figure 1
is that even though those three endpoints are going through the
same type of attack, there is not an obvious pattern in which a
certain event ei would follow or precede another event ej given
ei , ej ∈ {e0, ..., e13}. For example, e12 (Malicious OGNL Expression
Upload) can be followed by e4 (HTTP Apache Tomcat UTF-8 Dir
Traversal) and e13 (Apache Struts CVE-2017-9805) in s1, yet, it
is followed by e7 (Wordpress Arbitrary File Download) and e11
(Apache Struts CVE-2017-5638) in s2.

The second challenge is that the endpoints may observe other
security events not relating to the coordinated attack. For example,
in s3, we can observe a subsequence {e4, e41, ..., e5, e22, e21, e7} in
which e5 is followed by a number of unrelated events including e41
(WifiCam Authentication Bypass) before reaching e5. Note that the

other noisy events are omitted for the sake of clarity. Between e5
and e7, there were two other noisy event e22 (Novell ZENWorks
Asset Management) and e21 (ColdFusion Remote Code Exec).

More interestingly, some of these endpoints may potentially ob-
serve different attacks from various adversary groups happening at
the same time. For example, we observe {e9, e19, e24, e25, e26, e12} in
s1, {e4, e19, e30, e25, e24, e31, e12} in s2, and {e6, e23, e19, e30, e25, e24, e12}
in s3. It is possible that e19 (SMB Validate Provider Callback CVE-
2009-3103), e25 (SMB Double Pulsar Ping), and e24 (Microsoft SMB
MS17-010 Disclosure Attempt) could be part of another coordinated
attack. Facing these challenges, it is desirable to have a predictive
model that is able to understand noisy events, recognize multiple
attacks given different contexts in a given endpoint, and correctly
forecast the upcoming security event. This is a more complex and
difficult task than detecting each malicious event passively.
Problem Formulation. We formalize our security event predic-
tion problem as follows. A security event ej ∈ E is a timestamped
observation recorded at timestamp j, where E denotes the set of
all unique events and |E | denotes the size of E. A security event
sequence observed in an endpoint si is a sequence of events ordered
by their observation time, si = {e

(i)
1 , e

(i)
2 , ..., e

(i)
n }. We define the

to-be-predicted event as target event, denoted as etдt . Each target
event etдt is associated with a number of already observed security
events, denoted as l . The problem is to learn a sequence prediction
function f : {e1, e2, ..., el } → etдt that accepts a variable-length
input sequence {e1, e2, ..., el } and predicts the target event etдt for
a given system. Note that our problem definition is a significant
departure from previous approaches that accept only fixed-length
input sequences. We believe that a predictive system should be capa-
ble of understanding and making predictions given variable-length
event sequences as the contexts, hence our problem definition is a
better formulation inline with real world scenarios.

3 METHODOLOGY
In this section we describe the system architecture and the technical
details behind Tiresias.

3.1 Architecture Overview
The architecture and workflow of Tiresias is depicted in Figure 2.
Its operation consists of four phases: ❶ data collection and prepro-
cessing, ❷ model training & validation, ❸ security event prediction,
and ❹ prediction performance monitoring.
Data collection and preprocessing (❶). Tiresias takes as input
a sequence of security events generated by endpoints (e.g., comput-
ers that installed a security program). The goal of the data collection
and preprocessing module is to prepare both the training and val-
idation data to build Tiresias’ predictive model. Tiresias then
consumes that raw security event data generated from millions of

e1, e10, …, e7, e100, e3

e12, e500, …, e9, e1, e31

e1000, e4, …, e0, e101, e8

e41, e17, …, e0, e78, e0

e19, e300, …, e7, e1, e14

Data
Collection

&
Preprocessing

Unit

Training

Validation

event1 event2 event3 event4 event5

event2 event3 event4 event5 event6

LSTM Memory
Array Cell

Security eventsAdversaries TIRESIAS

 Prediction
 Performance

 Monitor

Data flow

Prediction Engine

1 4

Monitoring flow

3

2.a

2.b

Figure 2: Tiresias collects security events from machines that have installed an intrusion protection product. The sequential
events from these machines are collected, preprocessed and then used to build and validate Tiresias’ predictive model. The
optimal model is then used in operations and its performance is monitored to ensure steadily high prediction accuracy.

machines that send back their activity reports. The collection and
preprocessing module reconstructs the security events observed on
a given machine si as a sequence of events ordered by timestamps,
in the format of si = {e

(i)
1 , e

(i)
2 , ..., e

(i)
n }. The output of the data

collection and preprocessing module is D = {s1, s2, ..., sm } where
m denotes the number of machines. Finally, we build the training
data DT and validation data DV from D for the next stage, where
DT ∩ DV = ∅.
Model training and validation. The core of Tiresias consists of
the training of a recurrent neural network with recurrent memory
cells (❷.a, see Section 3.2 for technical details about recurrent mem-
ory cells). Essentially, Tiresias specifies a probability distribution
of ew+1 possible events given historical observed events {e1, ..., ew },
wherew refers to the rollback window size, by applying an affine
transformation to the hidden layer followed by a so f tmax ,

Pr (ew+1 |e1:w) =
exp(hw · p j + qj)∑

j′∈E exp(hw · p j
′
+ qj

′
)

(1)

where p j is the j-th column of output embedding P ∈ Rm×|V |

and qj is a bias term. Given the training data DT , Tiresias’ training
objective is therefore to minimize the negative log-likelihood L of
all the event sequences:

L = −

|DT |∑
t=1

Pr (et |e1:t−1 : θ) (2)

We use the validation data DV to verify if the parameters θ identi-
fied during the training phase can achieve reasonable prediction
performance (❷.b). It is important to note that DT and DV come
from different machines so as to verify the general prediction capa-
bility of Tiresias on the endpoints that are not part of the training
data.
Security event prediction (❸). Once the model is trained, Tire-
sias takes the historical events {e0, ..., ei } as the initial input (i.e.,
a variable-length input sequence inline with the real-world sce-
nario) and predicts the probability distribution of ei+1 given E as
Pr [ei+1 |e0:i] = {e1 : p1, e2 : p2, ..., e |E | : p |E |}. Our strategy is to

sort Pr [ei+1 |e0:i] and choose the event with the maximum proba-
bilistic score. Tiresias then verifies with the actual event sequence
whether ei+1 is the correct prediction. In case of a wrong prediction,
Tiresias updates its contextual information accordingly. Section 6
provides a detailed case study of the security event prediction phase
in a real-world scenario.
Prediction performance monitoring (❹). Finally, in an effort to
maintain the prediction accuracy as high as possible, the prediction
performance monitor tracks and reports the evolution of different
metrics, such as the Precision, Recall, and F1 of the current model.
It is possible to elaborate such metrics on Tiresias’ implementation
in the wild as it is immediately possible to see whether Tiresias pre-
dicted the right event. If the predictions precision is dropping below
a certain threshold, the system would automatically understand
that is necessary to retrain the model.

3.2 Recurrent Memory Array
Long short-term memory (LSTM) and variants such as gated recur-
rent units (GRU) are the most popular recurrent neural network
models for sequential tasks, such as in character-level language
modeling [13]. One common approach to deal with complex sequen-
tial data is using a stacked RNNs architecture. Essentially, stacking
RNNs creates a multi-layer feedforward network at each time-step,
i.e., the input to a layer being the output of the previous layer. In
turn, stacking RNNs automatically creates different time scales at
different levels, and therefore a temporal hierarchy [8]. This ap-
proach has been proven practical and achieving good accuracy in
various cases, such as log prediction [22], binary function recogni-
tion [29], and function type recovery [4]. Nevertheless, despite the
proven success of stacked RNNs, one complication incurred by such
strategy is the lack of generalization to new data, e.g., stacking
mechanisms chosen and tuned for current training data require
vigorous evaluation and may not adapt well to the new data at
run time [37]. Therefore, rather than stacking multiple layers of
RNNs, it would be ideal to build more complex memory structures
inside a RNN cell to retain temporal memories while keeping a
single layer RNN network to maintain computational efficiency

D1

01/
11

17/
11

D2

08/
11

2017 2018

23/
11

08/
12

23/
12

01/
01

03/
01

08/
01

23/
01

08/
02

23/
02

Figure 3: Summary of the security event datasets used in this
paper.

when training. To achieve both goals, we propose to leverage the
recurrent memory array by Rocki [27]; this is doable by modifying
LSTM architectures, while it is not available on GRU architectures.

Following the notation in Rocki [27], we can formally define the
recurrent memory array as follows in Eq. 3.

f tk = σ (Wf kx
t +Uf kh

t−1 + bf k)

itk = σ (Wikx
t +Uikh

t−1 + bik)

otk = σ (Wokx
t +Uokh

t−1 + bok)

c̃tk = tanh(Wckx
t +Uckh

t−1 + bck)

ctk = f tk ⊙ ct−1k + itk ⊙ c̃tk

ht =
∑
k

otk ⊙ tanh(ctk) (3)

where f denotes forget gates, i denotes inputs, o denotes outputs, c
denotes cell states, and h denotes the hidden states. Here, ⊙ repre-
sents element-wise multiplication. It is straightforward to notice
that parameter k directly controls the number of cell memory vec-
tors, which enables the recurrent memory array to build an array-
like structure similar to the structure of the cerebellar cortex [27].

To deal with noisy sequential input data (Section 4) as observed
in the real world, we follow the stochastic design outlined in [27]
by treating initial output gate activations as inputs to a so f tmax
output distribution, sampling from this distribution, and selecting
the most likely memory cell to activate (see Eq. 4).

p(i = k) =
eo

t
k∑

k o
t
k

ht = oti ⊙ tanh(cti) (4)

Eq. 4 identifies the probability of a memory cell i to be activated
and update ht accordingly using this cell while the rest of memory
cells are deactivated. Hence, instead of summarizing all cell memory
(see Eq. 3), only one output is used in this stochastic design that
is resilient to noisy input. We refer interested readers to [27] for
theoretical proofs and empirical comparison studies with the other
state-of-the-art RNN architectures.

4 DATASETS
Tiresias is a generic system that can be used to predict security
events on different protection systems. To evaluate its performance

in this paper, we focus specifically on security event data collected
from Symantec’s intrusion prevention product. Symantec offers
end users to explicitly opt in to its data sharing program to help
improving its detection capabilities. To preserve the anonymity of
users, client identifiers are anonymized and it is not possible to
link the collected data back to the users that originated it. Meta-
information associated with a security event is recorded when the
product detects network-level or system-level activity that matches
a pre-defined signature. From this data we extract the following
information: anonymized machine ID, timestamp, security event
ID, event description, system actions, and other information (e.g.,
file SHA2) if any. Note that we use the anonymized machine ID to
reconstruct a series of security events detected in a given machine
and discard it after the reconstruction process is done.

To thoroughly investigate the effectiveness, stability and reusabil-
ity of Tiresias, we collected 27 days of data, summarized in Figure
3. We compile two separate datasets. The first one, which we call
D1, spans a period of 17 days in November 2017 (1 November -
17 November), and is composed of over 2.2 billion security events.
We use the first five days (1 November - 5 November) of D1 to
validate our approach and for a comparison study against three
baseline methods (see Section 5). We later use the first seven days
(1 November - 7 November) of D1 to build models with varied
length of training period, and study the stability of our approach
by evaluating the prediction accuracy for the rest of the 10 days
of data (8 November - 17 November) from D1. We also compile
another dataset, which we call D2. This dataset is composed of 1.2
billion security events collected on the 8th and 23rd day of each
month between November 2017 and February 2018, and the first
three days in January 2018. D2 is used to understand whether the
system retains its accuracy even in a longer term scale: training
sets based on D1 are months older than part of the data in D2. We
use the first three days in January 2018 to build new models and
compare them to the models built with data from D1 (1 November
- 7 November) and study their prediction performance with a focus
on Tiresias’ reusability (see Section 5.5). On average, we collect
131 million security events from 740k machines per day, roughly
176 security events per machine per day. In total, the monitored
machines generated 4,495 unique security events over the 27 day
observation period.
Data Limitations. It is important to note that the security event
data is collected passively. That is, these security events are recorded
only when corresponding signatures are triggered. Any events pre-
emptively blocked by other security products cannot be observed.
Additionally, any events that did not match the predefined signa-
tures are also not observed. Hence the prediction model used in this
paper can only predict the events observed by Symantec’s intru-
sion prevention product. We discuss more details on the limitations
underlying the data used by Tiresias in Section 7.

5 EVALUATION
In this section we describe the experiments operated to evaluate
Tiresias. We designed a number of experiments that allow us to
answer the following research questions:

• What is Tiresias performance in identifying the upcoming
security event (Section 5.2) and how does its performance

D1

01/
11

02/
11

03/
11

04/
11

05/
11

Train Test

Figure 4: Experimental setup for Tiresias’ prediction evalua-
tion (Section 5.2) and comparison study with baseline meth-
ods (Section 5.3).

compare to the baseline and state-of-the-art methods (Sec-
tion 5.3)?

• How do variations in the model’s training period affect the
performance (Section 5.4)?

• Can we reuse a trained Tiresias model for a given period of
time and when do we need to retrain the model (Section 5.5)?

• What is the influence of the long-term memory of Recurrent
Neural Network models to achieve security event prediction
(Section 5.6)?

5.1 Experimental Setup
Implementation. We implemented Tiresias in Python 2.7 and
TensorFlow 1.4.1. Experimentally, we set the number of unrollingw
to 20, the training batch size to 128, the number of memory array k
(see Section 3.2) to 4 and the number of hidden LSTMMemoryArray
units to 128. We find these parameters offering the best prediction
performance given our dataset. All experiments were conducted
on a server with 4 TITAN X (Pascal) 12GB 1.5G GPUs with the
CUDA 8.0 toolkit installed. All baseline methods are implemented
in Python 2.7 and experimented on a server with a 2.67GHz Xeon
CPU X5650 and 128GB of memory.
Evaluation setup. To form a concrete evaluation setup, for both
Tiresias and other baseline methods experiments, we split the in-
put data and use 80% for training, 10% for validation, and 10% for
test. We strictly require that training, validation and test data to
come from different machines so as to verify Tiresias’ general pre-
diction capability in the endpoints that are not part of the training
data. Specifically, we train Tiresias for 100 epochs, validate model
performance after every epoch and select the model that provides
the best performance on validation data.
Evaluation metrics.We use the precision, recall, and F1 metrics
to evaluate prediction results from the models. In our experimental
setup, we calculate these metrics globally by counting the total
true positives, false negatives and false positives. It is important to
note that Tiresias accepts variable-length security event sequences.
We specially hold out the last event as the prediction target etдt
for evaluation purposes. Section 6 showcases how Tiresias can be
leveraged to accomplish step-by-step prediction with a single event
as the initial input.

5.2 Overall Prediction Results
In this section we evaluate the performance of our security event
forecast model in predicting the exact upcoming event. This is a
challenging task that a predictive system for security events aims
at resolving due to the fact that there are 4,495 security events as

Test Date (Evaluation Metric - Precision)
Method 01/Nov 02/Nov 03/Nov 04/Nov 05/Nov
Spectral 0.05 0.031 0.023 0.013 0.02

Markov Chain 0.62 0.56 0.56 0.53 0.52
3-gram 0.67 0.54 0.61 0.592 0.601
Tiresias 0.83 0.82 0.83 0.82 0.81

Table 1: Prediction precision comparison study: Tiresias vs.
baseline approaches.

possible candidates in our dataset (see Section 4) and an exact event
should be correctly predicted.
Experiment setup. We use the experimental setup as illustrated
in Figure 4 for Tiresias’ performance evaluation. FromD1, we train
our predictive model using one day of data and evaluate Tiresias
on both the same day and the following days until 5 November
2017. For example, we train Tiresias using data from 2 November
and evaluate its prediction performance from 2 November to 5
November.
Experiment results. Following our general experimental evalua-
tion setup, we randomly select 14, 396 machines from the first days
of November that are not part of the data used in the training set of
the initial model. We focus on predicting the last event occurring
on a machine given the sequence of previously-observed events. As
shown in Figure 5, Tiresias is able to achieve over 80% precision,
recall, and F1-measure in predicting the exact upcoming security
event when evaluating on the same day test data. Figure 5 shows
that, when training on one day, and testing on the same day and the
following ones, the values of the Precision, Recall and F1 do not de-
crease dramatically. When it does, it decreases, in the worse case, of
less than 0.05. The Figure also shows that Precision (Figure 5a) and
Recall (Figure 5b) are well balanced and have very similar values
and exactly the same scale (from 0.87 to 0.795). This result shows
that Tiresias can offer good prediction results. There is no security
event dominating in our dataset, which may lead to biased but bet-
ter prediction performance. The top 3 events in our training data
are: (i) Microsoft SMB MS17-010 Disclosure Attempt (19.8%), (ii)
SMB Double Pulsar Ping (16.4%), and (iii) Unimplemented Trans2
Subcommand (16.1%). The top 3 events in our test data are ranked
as follows: (i) Microsoft SMB MS17-010 Disclosure Attempt (9.85%),
(ii) HTTP PE Download (6.3%), and (iii) DNS Lookup Failures (3.5%).
Interestingly, the dominant events in training and test are different,
which makes Tiresias’ prediction results even stronger.

Over the days, we observe a trend that the prediction perfor-
mance of Tiresias drops slightly in terms of all three evaluation
metrics. Take the model trained on 2 November for example, its
prediction precision drops by 4% from 0.83 to 0.79. In Section 5.4
we study if variations (e.g., a longer training period) in the model’s
training data would offer better performance and how stable the
trained Tiresias performs over consecutive days. Note that ‘micro’-
averaging in a multi-class setting produces equal Precision, Recall
and F1-Measure. For the rest of the evaluation process, we therefore
use precision as the main evaluation metric.

5.3 Comparison Study
In this section we aim at studying whether the higher complexity
of Recurrent Neural Networks is required for the task of predict-
ing security events, or whether simpler baseline methods would

01/11 02/11 03/11 04/11 05/11
Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(a) Precision

01/11 02/11 03/11 04/11 05/11
Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(b) Recall

01/11 02/11 03/11 04/11 05/11
Test Date

01/11

02/11

03/11

04/11

05/11

Tr
ai

ni
ng

 D
at

e

0.795

0.810

0.825

0.840

0.855

0.870

(c) F1-Measure

Figure 5: Precision, Recall, and F1-Measure of overall Tiresias’s performance. Tiresias is trained using one day of data and
evaluated on both the same day and the following days until 5 November 2017.

be enough for the task at hand. For comparison purposes, we im-
plemented first-order Markov Chain [23] and 3-gram model [2]
(equivalent to the second order Markov Chain model) in Python
2.7.1. Note that it is natural to consider a higher order (e.g., n-order
where n > 2) Markov Chain model for security event prediction,
however, due to the exponential states issue associated with high or-
der Markov Chain models, it is computationally costly to build such
a high order model for 4,495 events. Finally we use the sp2learning1
package to build a spectral learning model [11] for sequence pre-
diction as the third baseline prediction model. These three methods
are often used to model sequences of elements in several fields and,
being simpler than our RNN models and widely used in sequence
prediction, they are relevantly good baselines to compare Tiresias
with.
Experiment setup. The comparison study uses daily data (1 No-
vember - 5 November) from D1. To evaluate Tiresias in this case,
all training, validation, and test data come from the same day.
Comparison study results. Table 1 shows the precision of Tire-
sias compared to simpler systems. Table 1 shows that Tiresias
outperforms the baseline methods but also that 3-grams perform
better than Markov Chains, and Markov Chains perform better
than the spectral learning method. This particular order shows the
importance of sequence memory as the system that performs best
among the baselines is the 3-grams. However, 3-grams are less effec-
tive than Tiresias. This is due to two of the main characteristics of
neural networks: the capacity of filtering noise and the longer term
memory. As Table 1 shows, Tiresias has precision values higher
than 0.8 in all the five days of tests showing a very good level of
reliability. In Section 5.6 we show that the long-term memory that
is an important feature of RNNs plays a key role in correctly predict-
ing security events. Note that we didn’t report a comparison of the
computation time among the methods due to the fact that Tiresias
leverages GPUs to train RNN models and the baseline methods rely
on traditional CPUs, and therefore Tiresias is in general much
quicker to run. For example, our 3-gram implementation took over
10 days for training, yet Tiresias requires only ∼10 minutes per
epoch using GPUs.

5.4 Influence of Training Period Length
In this section we look at whether training Tiresias on longer
periods of time achieves better prediction performance.

1https://pypi.org/project/Sp2Learning/1.1.1/

D1

01/
11

07/
11

Train Test

08/
11

17/
11

04/
11

…

Figure 6: Experimental setup for multiple day evaluation of
Tiresias (Section 5.4).

Experiment setup.We use the experimental setup as illustrated
in Figure 6 for Tiresias’ performance evaluation. From D1, we
train our predictive model using one day of data and evaluate
on the test data from 8 November to 17 November. For example,
we train Tiresias using data from 2 November and evaluate its
prediction performance on test data from 8 November to 17 No-
vember. To evaluate if a longer training period can offer better
prediction performance, we also train our predictive model using
one week of data (from 1 November to 7 November) and evaluate
its performance in the aforementioned period.
Experiment results. In this experiment we evaluate the perfor-
mance of our security event forecast model in predicting the exact
upcoming event several days after the initial model was trained.
The goal is to determine how well our predictive model ages in the
short term and to make sure that it remains effective in predicting
security events without the need to re-tune it after this period of
time.

The question that this experiment is trying to answer is whether
there is a difference in training the models over longer periods
of time, such as one week, rather than one day. Table 2 provides
some insights into this question. First, we used the first five days
of November on their own to build five models. Second, we built
one single model from the first seven days of the same month. We
then tested the six different models (five based on one day of data
and one based on one week of data) on ten days of data from 8
November to 17 November. Overall, the training over one week of
data produces similar results as those obtained using training over
only one day of data. On average, Tiresias trained with one week
data can achieve a precision score of 0.819, which is 0.3% higher
than that of the models trained with one day data.

These results demonstrate that Tiresias can offer good accuracy
with stable performance over time since the standard deviation
of precision scores over the measurement period of 10 days is

01/
11

07/
11

08/
11
23/

11
08/

12
23/

12
08/

01
23/

01
08/

02
23/

02

08/
01

23/
01

08/
02

23/
02

D1

Train Test

D2

Train Test

01/
01

03/
01

Figure 7: Experimental setup for Tiresias reliability evalua-
tion (Section 5.5).

small (∼0.02). However, on 8 November and on 16 November the
results are slightly different, exhibiting a higher accuracy for the
week-long trained model. While in the first case (8 November) it
is probably due to the proximity of the test day to the training
week, the second case (16 November) appears to be an outlier. We
further observe that the time proximity of the training and test
data appears to have a positive impact on the prediction accuracy.
Indeed, we can see that the model trained over one day of data is as
efficient as the one trained over one week of data when tested on
alerts generated only a few days later, probably due to the similarity
among attack behaviors observed within a few days. The week-
long trained model appears to be more efficient in the presence of
deviating, or outlying attack behaviors in the test phase. This can
easily be explained by the fact that the more data is used to build
a model the more complete the model is. Hence it can better deal
with rare events or deviating attack behaviors.

One of the reasons why Tiresias’ prediction precision might
suddenly decrease is if the set of alerts significantly changes from
a day to another, for example because a new vulnerability starts
being exploited in the wild, a system patch fixes an existing one, or
a major version of a popular software gets released. For this reason,
in our architecture discussed in Section 3 we included a component
that monitors the performance of Tiresias and can trigger a re-
training of the system if it is deemed necessary. In the experiment
discussed in Table 2, for example, the precision performance on 16
November drops by 6.9% on average from 8 November. This could
indicate to the operator that something significant changed in the
monitored systems and that Tiresias needs to be retrained. As we
will show in Section 5.7, this can be done in batch and it takes well
less than a day to complete.

5.5 Stability Over Time
In this Section we evaluate Tiresias’ prediction accuracy when
the training data is several months older than the test data. Our
goal is to evaluate the reliability of the model in case there is no
retraining for several months. As we discussed, Tiresias is able
to detect when it needs to be retrained, however this operation
does not come for free and therefore it is desirable to minimize it
as much as possible.
Experiment setup. The experimental setup is illustrated in Fig-
ure 7. We train our predictive model using both one day of data
(from 1 November to 5 November respectively) and one week of

data (from 1 November to 7 November) from D1. Additionally for
comparison purposes, we train three more predictive models using
one day of data (from 1 January to 3 January respectively) from
D2. The test data consists of two days per month (on the 8th and
the 23rd) so as to obtain a representative dataset from November
2017 until February 2018.
Experiment results. Table 3 shows the results obtained using the
same training sets as in the previous Section augmented with three
days in January, i.e., one day-long model for each of the first five
days of November 2017, one week-long model for the first seven
days of the same month and one day-long model for each of the
first three days of January 2018. The prediction precision results
presented in Table 3 show consistency through the different training
sets and a good level of stability, as the performance does not
decrease dramatically over time. Moreover, the week-long training
set does not show increased accuracy compared to the day-long
ones. These new results thus confirm those from Section 5.2 and
show that (i) the model quickly converges towards high accuracy
with only one or a few days of training data, and (ii) the model ages
very well even months after it was built.
December discontinuity. Table 3 shows a particular behavior be-
tween 8 December and 23 December: Tiresias’ precision increases.
We would normally expect the system’s precision to slightly de-
crease over time, possibly following a pattern, while in this case
the precision increases. To investigate this phenomenon, we looked
for potential differences in the raw data and noticed that the test
data collected after 8 December exhibits a significant deviation with
respect to one specific security event ID: the presence of one of
the top three recorded alarms decreased by an order of magnitude,
having a comparable number of occurrences to alerts occupying
the 4th to 10th position. The alarm is related to DoublePulsar, a
vulnerability disclosed in the first half of 2017. Such change may be
due to different reasons. The most probable reason, however, could
be the installation of patches: Microsoft releases monthly updates
for Windows every 2nd Tuesday of the month (e.g., 12 December
2017) and many software- and hardware-related companies release
patches immediately following Microsoft’s. Finally, a small change
to the IPS signatures or to the attack modus operandi can heavily
impact the hit rate of a given alarm.
Comparison study. To further investigate this December disconti-
nuity phenomenon we decided to assess the impact of the training
data on the model accuracy. To this end, we considered the training
sets from data collected on the first three days of January and tested
on the January and February dates (bottom part of Table 3). We can
see that Tiresias trained in January performs slightly better than
when trained in November. These results show that the results by
Tiresias remain reliable even months after the system was trained.
Nevertheless, in the case of a sudden decrease in precision due to
an adverse change in the data (e.g., the emergence of a new attack),
Tiresias would be able to detect this and prompt a retraining, as
discussed in Section 3.

5.6 Sequence Length Evaluation
In Section 5.3 we showed that Tiresias outperforms simpler sys-
tems that do not take advantage of long-term memory in the same

Test Date (Evaluation Metric: Precision)
Model

Training Date 08/Nov 09/Nov 10/Nov 11/Nov 12/Nov 13/Nov 14/Nov 15/Nov 16/Nov 17/Nov

01/Nov 0.815 0.823 0.822 0.794 0.789 0.814 0.817 0.816 0.746 0.774
02/Nov 0.821 0.827 0.826 0.801 0.792 0.82 0.819 0.82 0.76 0.79
03/Nov 0.822 0.827 0.826 0.80 0.794 0.82 0.82 0.817 0.742 0.769
04/Nov 0.820 0.828 0.827 0.797 0.797 0.822 0.823 0.82 0.75 0.77
05/Nov 0.817 0.825 0.823 0.791 0.791 0.818 0.815 0.815 0.747 0.775

01/Nov - 07/Nov 0.836 0.83 0.823 0.82 0.801 0.815 0.816 0.812 0.783 0.773

Table 2: Evaluation of Tiresias’ prediction precision between 8th November and 17th November.

Model
Training Date(s)

Test Date (Evaluation Metric: Precision)
2017 2018

08/Nov 23/Nov 08/Dec 23/Dec 08/Jan 23/Jan 08/Feb 23/Feb
01/Nov 0.815 0.785 0.832 0.899 0.899 0.921 0.93 0.921
02/Nov 0.821 0.8 0.835 0.895 0.896 0.921 0.931 0.918
03/Nov 0.822 0.782 0.835 0.898 0.899 0.923 0.93 0.922
04/Nov 0.820 0.793 0.834 0.901 0.898 0.922 0.929 0.921
05/Nov 0.817 0.79 0.833 0.9 0.898 0.921 0.929 0.92

01/Nov-07/Nov 0.836 0.788 0.829 0.895 0.892 0.917 0.925 0.915
01/Jan - - - - 0.905 0.927 0.931 0.926
02/Jan - - - - 0.908 0.926 0.930 0.924
03/Jan - - - - 0.914 0.933 0.935 0.929

Table 3: Evaluation of Tiresias’s prediction precision on every 8th and 23rd of each month.

way as the RNN model used by our approach. In general, under-
standing how Deep Learning models work is challenging, and they
are often treated as black boxes. To make matters more complex,
RNNs do not only rely on long-termmemory, but also on short-term
memory, in particular to filter out noise.

In this section we aim at understanding whether long-term mem-
ory is more influential in making decision than short-term memory
or vice versa. With relying on short-term memory we mean a
system that relies on a few elements of the sequence to make its
decision, that is, the ones closest to the element that the system is
trying to guess. With relying on long-term memory we mean when
the system uses the whole sequence or a large part of it to take
its decision on what the next security event could be. Intuitively,
if short-term memory was predominant, we would not expect the
performance of Tiresias to increase with the number of observed
events.

As looking into the Neural Network weights may be a compli-
cated way to understand which type of memory is more important
for the model, we decided to focus on the occurrences of success-
fully and unsuccessfully guessed events. Every event guessed by
Tiresias has a probability (confidence score) associated to it. First,
we look at the distribution of the confidence scores among success-
fully guessed events (Figure 8a) and unsuccessfully guessed ones
(Figure 8b). As it can be seen, both types of events present a very
skewed distribution in their confidence scores, with a negligible
number of events being predicted with a probability of less than
0.5.

To better understand if Tiresias’ results are mainly due to the
use of long-term rather than short-term memory, we checked how
unique the sequences on which Tiresias makes its decisions are.
These quantitative results can hint at which kind of approach is
used by the algorithm. We try to evaluate the occurrences of the
sequence in which the system tried to guess the last event compared
to all those that differ from it for the last event (the one that Tiresias
tried to guess). This analysis is carried out for sequences of length
i+1, (i = 2, ..., 9)where i represents the number of events before the

last we take into consideration. For all the successful/unsuccessful
sequences we calculate the ratio between the times in which we
had those i events and Tiresias predicted the last event correctly
and the times in which we had the same i events followed by any
event (included the right one). According to the probability value
of the guessed event, we calculate the average probability.

Figure 9a shows the data for all the sequences for which the last
event has been correctly guessed by Tiresias. Note that the X axis
starts at 0.5 because, as Figures 8a and 8b showed, the number of
predictions with a lower confidence is very low. The values for i
(sequence length) less than 5 show that the system’s prediction is
not very confident. Longer sequences (i greater than 5), instead,
are more unique and often correctly predict the last event. The
opposite happens when we evaluate the sequences involving events
not guessed correctly by our system (Figure 9b). In fact, the left
part of the graph presents sequences where the wrongly guessed
event was rarely the one following the i previous events. This may
mean that in those cases there are sequences that differ only for
the last event and a few events are quite frequent.
Takeaways. Long sequences including the guessed event are more
frequent when we analyze the successful guesses. This situation is
more common than the unsuccessful guesses as the system reaches
high accuracy. Therefore, according to the graphs the system seem
to rely more on long-term memory than short-term memory.

5.7 Tiresias Runtime Performance
We now discuss the specific characteristics of the system and its
runtime performance.

The training phase is the longest one: building a Tiresias model
is a long process that can be performed offline. Tiresias takes
around 10 hours to retrain the model. Considered the stability of
the model, which as shown in Section 5.5 can be effective for long
periods of time, rebuilding the model does not have to be done every
day. We also showed that it is possible to identify when the system
needs retraining because of a discontinuity in the distribution of
events (see Section 5.4). Once trained, Tiresias takes 25ms to 80ms

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
confidence level

0

2000

4000

6000

8000

10000

12000

14000

16000

o
cc

u
rr

e
n
ce

s

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
confidence level

0

200

400

600

800

1000

1200

1400

1600

o
cc

u
rr

e
n
ce

s

0.0

0.2

0.4

0.6

0.8

1.0
ra

ti
o

(b)

Figure 8: Quantity of successfully and unsuccessfully
guessed events. The Y axis on the left of each graph is the
occurrence of successes/failures with at least the probabil-
ity indicated on the X axis according to the system. The Y
axis on the right is the ratio between the value on the other
Y axis and the total of successes/failures.

to predict the upcoming event using the variable-length security
events in a given system.

Tiresias’ predictive model trained using one day of data is about
31MB. It can be easily pushed to the endpoints with limited network
footprint. Note that with the advance of deep learning libraries,
especially the recent development of TensorFlow, it is feasible for
Tiresias to be deployed not only in traditional endpoints (e.g., PCs)
but in mobile and embedded devices as well. This is another aspect
that exemplifies the general applicability of Tiresias.

6 CASE STUDIES
In this section we describe a set of case studies showcasing the
capabilities of Tiresias in different real-world scenarios. We first
show how Tiresias can be used to detect a coordinated multi-step

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

S
e
q
u
e
n
ce

 A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e

Sequence percentage

sl = 2
sl = 3
sl = 4
sl = 5
sl = 6
sl = 7
sl = 8
sl = 9

(a)

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

S
e
q
u
e
n
ce

 A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e

Sequence percentage

sl = 2
sl = 3
sl = 4
sl = 5
sl = 6
sl = 7
sl = 8
sl = 9

(b)

Figure 9: The plots show the percentage of the sequences
correctly guessed (a) or failed to guess (b) with respect to se-
quences that share all the events but the last. On the X axis,
as for Figures 8a and 8b there is the confidence level of the
sequences used by the system. Figures show that sequences
of at least 5 events (sl >=5) are quite unique, therefore long
term memory is a crucial factor in the system accuracy.

attack against a Web server (Section 6.1). We then provide a number
of real-world settings in which Tiresias’ prediction labels can be
modified to achieve specific goals, for example predicting entire
classes of attacks (Section 6.2).

6.1 Predicting events in a multi-step attack
The first scenario where Tiresias’ prediction capability can be
leveraged is when facing multi-step, coordinated attacks, i.e., a
single attack involving multiple steps performed sequentially or in
parallel by an attacker and resulting in multiple alerts being raised
by the IPS. The difficulty of identifying such attacks originates from
the fact that some of the intermediate steps of a multi-step attack
can be considered benign when seen individually by an IPS engine.

Moreover, most attacks observed in the wild are the result of auto-
mated scripts, which are essentially programmed to check for some
precondition on the victim systems and subsequently trigger the
adequate exploit(s). For instance, an attack might consists of the
following steps: (i) run reconnaissance tasks if port 80/tcp (HTTP)
is open, (ii) trigger a list of exploits against the Web application
framework, e.g., Apache and (iii) execute a list of exploits against
other possible applications running on top of it. Therefore, we may
not observe all steps of an attack on every victim system, depending
on which branches of the attack scripts were executed. This vari-
ability of observed events across systems hinders the identification
of the global multi-step attack.

To identify candidate multi-step attacks in our dataset of IPS
events we used the following approach. For each event ei observed
on any of the monitored machines we compute its frequency of
occurrence across all machines. We then consider a candidate multi-
step attack any sequence of events ei occurring at the same fre-
quency with an error margin of 10% to capture the variability in
attacks as explained above. We also set a support threshold on the
number of machines exhibiting that sequence so as to avoid a bi-
ased frequency obtained from too few samples. To uncover the
case study presented here we empirically set this threshold to 1000
machines. For network-sourced attack steps, we also extract the
source IP address to determine the likelihood of the global event
sequence to be generated by a single attacker.

We present the case of a multi-step attack captured by the IPS and
which was successfully learned by the prediction tool. The attack
consists of multiple attempts to exploit a Web server and the Web
application running on top of it. First, the attacker checks the Web
server software for several vulnerabilities. In this case, it quickly
identifies the server as running Apache and then attempts to exploit
several vulnerabilities, such as Struts-related vulnerabilities. It then
switches to checking the presence of a Web application running
on top and then fingerprinting it. In this step, the attacker triggers
different exploits against known vulnerabilities in various Content
Management Systems, such as Wordpress, Drupal, Joomla. Eventu-
ally, the attack appears to fail as the various steps are individually
blocked by the IPS.

To be able to visualize the decision process and explain how
Tiresias operates given the aforementioned multi-step attack, we
feed Tiresias a list of security events from a machine that was
under the coordinated attack. By putting Tiresias in this real-world
environment, we are able to visualize how Tiresias predicts the
upcoming events as illustrated in Figure 10. Note that events {e0, ...,
e13} belong to the coordinated attack.

The process operates as follows. Takemachine1 in Figure 10a for
example, Tiresias takes event e10 as the initial feed and predicts the
upcoming event e12. It then verifies with the actual event to check if
e12 is the correct prediction. In our case, e12 is the correct prediction
with a confidence score higher than 0.5 (therefore e12 in a green
box in Figure 10a). Tiresias automatically leverages both e10 and
e12 as “contextual information” to enable its internal memory array
cells to better predict the next event. The same step is repeated: e8
is correctly predicted, Tiresias uses e10, e12, and e8 to prepare its
internal cells. In the case that Tiresias makes a wrong prediction,
e.g., it predicts e10 instead of the actual observed event e5 (e10 is
enclosed in a red box in Figure 10a), Tiresias uses the actual event

e5 together with previous historical events. This enables Tiresias
to stay on track with the observed events and predict events that
are closely relating to those of the coordinated attack. This may lead
Tiresias to incorrectly predict some random attacks the system
experienced. For example, e55 is a ‘PHP shell command execution’
attack which was observed in the security event sequences, but not
part of this particular coordinated attack. It is important to notice
that Tiresias is able to correctly predict e13 (an attack relating
to CVE-2017-9805) that was not presented in the previous events,
even thought its predecessors, such as e12, e3, e10, appeared multiple
times. We consider this a good example of Tiresias using long-term
memory to carry out the correct prediction as detailed in Section 5.6.
It is also interesting to see how Tiresias adapts itself during its
operation as shown in Figure 10b (multiple e7 and e6 in dashed line
rectangles). We can observe that Tiresias did not correctly predict
e6 twice when given e7 (see ❶ and ❷). Nevertheless, Tiresias is
capable of leveraging the contextual information (i.e., the actual
observed events) to rectify its behavior. As we can observe in ❸,
Tiresias is able to make a borderline prediction and in ❹ Tiresias
makes a confident and correct prediction of e6.

To further exemplify Tiresias’ sequential prediction capability
in the above setup, we run it on 8 February (2018) test data using
the model trained on 3 January (2018) and predict all upcoming
events of 200 randomly selectedmachines (this effectively generates
32,391 sequences due to the step-by-step setup) with a precision
of 94%, and against 8 December (2017) test data using a model
trained on 4 November (2017) and obtain a precision of 80.89%.
These experimental results provide additional evidence of Tiresias’
prediction capability in a real-world environment.

6.2 Adjusting the prediction granularity
The goal of Tiresias is primarily to accurately determine the next
event that is going to occur on a given monitored system. In some
cases multiple security events might share some common traits.
For example, multiple IPS events can be used to describe different
attacks against a particular software application, network protocol,
etc. These shared traits can then be used to categorize such events.
This categorization is specific to the security application that gen-
erated these events. Also, the categorization process undoubtedly
results in a compressed and coarser-gained set of security events. In
this section we describe several cases where such a categorization
can be leveraged when the system fails to predict the exact security
event but successfully predicts the exact traits, or categories of the
attacks, such as the targeted network protocol and software appli-
cation, or the attack type. To begin with, we extracted categories
from the IPS signature labels and descriptions. These categories
correspond to characteristics of attacks described by these signa-
tures and are defined as follows. Whenever possible, we identify the
verdict of the signature, the severity of the attack, the type of attack,
e.g., remote command execution (RCE), SQL injection, etc, the
targeted application, if any, the targeted network protocol, if any, and
whether the attack exploits a particular CVE. There is thus a one-
to-many relationship between each signature and the categories it
belongs to. We then uncover machines for which the categories of
a mistakenly predicted event matches exactly the categories of the

start

end

e10 e12 e8 e10 e29 e28 e7 e11 e7 e6 e9 e55 e3 e9 e0 e6

e3 e7 e2 e12 e7 e6 e55 e7 e9 e3 e10 e11 e8 e21 e7 e12

e13

(e5) (e3) (e7)

(e4) (e55) (e1)

(a) Tiresias prediction process inmachine1
start

end

e31 e23 e41 e4 e7 e11 e12 e11 e8 e46 e5 e29 e9 e3 e9 e3

e9 e3 e7 e18 e7 e6 e7 e6 e55 e10 e12 e7 e6 e12

(e18)

(e0) (e2)

(…)correct borderline incorrect real event

(e10)

e7 e6

(e11)

(b) Tiresias prediction process inmachine2

Figure 10: Step by step visualization of Tiresias prediction process in two real systems. Tiresias starts with event e10 and
e31 respectively as the initial feed and predicts the upcoming security event step by step. The predictions are colored by their
probabilistic scores, where green indicates Tiresias returns a correct predictionwith probabilistic score greater than 0.5, orange
indicates Tiresias returns a correct event prediction with probabilistic score less than 0.5 (but remains the largest probabilistic
score), and red indicates a wrong prediction (the actual events are shown in parentheses in this case).

correct prediction. About 3.5% of failed prediction results exhibit
this pattern.

For our first example we consider a machine that was targeted
by the Shellshock exploits targeting the Unix shell BASH. Several
vulnerabilities were uncovered in the context of these infamous
attacks, namely CVE-2014-6271, CVE-2014-6277, CVE-2014-6278,
CVE-2014-7169, CVE-2014-7186 and CVE-2014-7187. These six vul-
nerabilities translate into six IPS signatures. These signatures all
belong to the same categories, which include (i) block, (ii) high, (iii)
RCE, (iv) bash and (v) CVE. These categories mean that the exploit
attempt is meant to be (i) blocked because its potential security
impact on the targeted machine is of (ii) high severity. This verdict
is explained by the fact that, if successful, the exploit would enable
the attacker to perform a remote code execution (or RCE) by exploit-
ing a known vulnerability (with an assigned CVE identifier) against
the Unix shell BASH. In this case study, a machine was targeted by
several of the Shellshock exploits. After observing an attempt to
exploit CVE-2014-6271, the system predicted another attempt to
exploit the same vulnerability, instead of the correct prediction for
CVE-2014-6278. While the event-level prediction result is wrong,
the category-level prediction successfully identify an attempt to
exploit a Shellshock vulnerability.

The second example is related to a machine that has apparently
visited or have been triggered to visit a website distributing fake
anti-virus software. Several IPS signatures have been defined to
capture different aspects of these malicious websites, for instance,
regular expressions matching specific HTML content, suspicious
JavaScript code, etc. In this example, the system predicted that
the machine would be redirected to a fake AV website containing
a particular piece of malicious HTML code while in reality, the
machine was redirected to a fake AV website containing a malicious
piece of JavaScript code.

Additionally, we evaluate the performance of our security event
forecastmodel in predicting if the upcoming event should be blocked
or allowed, a relaxation as the aim is not to determine the exact
event that will happen, but if it is a low-priority alarm (that is
still allowed by the product we receive the data from) or if it is
a high-priority one (that is blocked immediately). This is one of
the essential tasks that a predictive intrusion prevention system
needs to resolve. Our experiment shows that the proposed predic-
tive model is able to achieve 88.9% precision in predicting if the
upcoming event should be blocked or allowed. This represents a 8%
precision increase comparing to the exact event prediction on the
same day. Nevertheless, The added value of adjusting the prediction
granularity obviously depends on the accuracy of the categorization
and the expected level of granularity of the prediction.

7 DISCUSSION
Limitations of Tiresias. A recurrent neural network, broadly
speaking, is a statistical model. The more the model “sees” (i.e., the
more training data) the better the prediction performance is. For
rare events, since the model does not have enough training samples,
Tiresias may not correctly predict these rare intrusion attempts.
Existing statistical and machine learning methods are yet to offer
a satisfactory solution to this problem [16, 35, 36]. It would also
be interesting to understand whether the recent work by Kaiser et
al. [10] that makes deep models learn to remember rare words can
be applied to predict rare intrusion attempts. DeepLog, a previously
proposed system [22], focused on anomaly detection in regulated
environments, such as Hadoop and OpenStack, with limited variety
of events. In such a specific log environment, DeepLog is able to use
a small fraction of normal log entries to train and achieves good de-
tection results. Nevertheless, DeepLog still requires a small fraction
of normal log entries would generate enough representative events

and patterns. Another limitation following rare events prediction is
model retraining when new security events (e.g., new signatures)
are created. This retraining is inevitable because machine learning
models can only recognize events they have been trained upon. Our
experimental results (Section 5.3) show that Tiresias takes around
10 hours to retrain and can be redeployed in a timely fashion in a
real-world scenario. As mentioned in Section 5.6 the nodes that are
activated in an LSTM are not easy to examine. For this reason we
cannot guarantee that the system does not take into consideration
spurious correlations. At the same time we tried to limit this issue
by extensively evaluate Tiresias over a large amount of data and
in different settings.
Data limitations. For its operation, Tiresias relies on a dataset
of pre-labeled security events. An inherent limitation of this type
of data is that an event can be labeled only if it belongs to a known
attack class. If, for example, a new zero-day vulnerability started
being exploited in the wild, this would not be reflected in the data
until a signature is created for it. To reduce the window between
when an attack is being run and when it starts being detected by
an intrusion prevention system security companies typically use
threat intelligence systems and employ human specialists to analyze
unlabeled data looking for new attack trends.
Tiresias performance. Sections 5 and 6 show the effectiveness of
the system. The prediction of a security event in such a complicated
environment is an important challenge. Tiresias shows the ability
of effectively tackling this challenge, showing stability, even when
the training set is months older than the test set, and robustness to
noise while detecting multistage attacks. We evaluated Tiresias
over different time periods to thoroughly prove its qualities; as
we discussed, the system may need retraining only in case the
data presents radical changes, while its precision does not decrease
quickly if the training set is older than the test set. The system can
support different dimensions of the training set as it has been tested
using one day or one week of data. The differences are minimal:
performance is extremely similar, but weekly training seems slightly
more robust to anomalies on a specific day of data. However, weekly
training sets require more time to build the model. Sections 5.6 and 6
show how long-termmemory and noise filtering are both important
factors in the precision of the neural networks, explaining why the
baseline methods used in Section 5.3 are less precise than Tiresias.
Deployment. The architecture of Tiresias enables it to be reason-
ably flexible in terms of real-world deployment. Tiresias can be
deployed for each endpoint to proactively defend against attacks as
we can see in Section 6. At the same time, Tiresias can be tailored
to protect an enterprise by training with the data coming from
that enterprise only and thus better deal with the attacks targeting
that enterprise. Note that Tiresias’ predictive model trained using
one day of data is about 31MB. It can be easily pushed to the end-
points with limited network footprint. Together with the mobile
TensorFlow library, it is practically feasible for Tiresias to protect
mobile/embedded devices by training with security event data com-
ing from those devices only. For example, Tiresias can be trained
using the data collected by smart routers with an IPS installed and
deployed in these routers to protect smart home environments.
Evasion. Tiresiasmay be subject to evasion techniques from mali-
cious agents. A vulnerability of deep learning systems is that while
the system is classifying samples, it adapts its rules. Therefore, it

may be subject to poisoning attacks from a criminal who influences
the decision rules using fake actions before attacking the victim.
However, to achieve such evasion, the attackers must apply such
fake actions at a massive scale and target thousands of machines. A
technique that could be used by adversaries is mimicry attacks, i.e.,
evading security systems by injecting many irrelevant events to
cover the alerts generated by a real attack. We argue that Tiresias
has the potential to be resistant to these attacks. Indeed, we have
seen in the case studies that Tiresias is able to filter out the noise
from the sequences of events observed on the machines, and detect
the important events correctly. An interesting future work would
be to be able to quantify the amount of events necessary to evade
systems like Tiresias. Zero day attacks may be difficult to detect: a
zero day attack may replicate known sequences of actions to exploit
new vulnerabilities, but that would still be detected; when the zero
day is applying a new kind of multi-step attack that has a different
sequence of events, it may not be detected.

8 RELATEDWORK
In this section, we broadly reviewed previous literature in both
forecasting security events and deep learning, especially recurrent
neural networks (RNNs), applications in security analytics.

8.1 Security Event Forecast
System-level security event forecast. Soska et al. [30] proposed
a general approach to predict with high certainty if a given website
will become malicious in the future. The core idea of this study is
building a list of features that best characterize a website, including
traffic statistics, filesystem structure, webpage structure & contents
and statistics heuristic of dynamic features (e.g., contents). These
features are later used to train an ensemble of C4.5 classifiers. This
model is able to achieve operate with 66% true positives and 17%
false positives given one-year data. Bilge et al. [1] proposed a system
that analyzes binary appearance logs of machines to predict which
machines are at risk of infection. The study extracts 89 features
from individual machine’s file appearance logs to produce machine
profile, then leverages both supervised and semi-supervised meth-
ods to predict which machines are at risk. In terms of machine wise
infection prediction, RiskTeller can predict 95% of the to-be-infected
machines with only 5% false positives; regarding enterprise-wise
infection prediction, Riskteller can, on average, achieve 61% TPR
with 5% FPR.
Organization-level security event forecast. Liu et al. [18] ex-
plored the effectiveness of forecasting security incidents. This study
collected 258 externally measurable features about an organiza-
tion’s network covering two main categories: mismanagement
symptoms (e.g., misconfigured DNS) and malicious activities (e.g.,
spam, scanning activities originated from this organization’s net-
work). Based on the data, the study trained and tested a Random
Forest classifier on these features, and are able to achieve with 90%
True Positive (TP) rate, 10% False Positive (FP) rate and an overall ac-
curacy of 90% in forecasting security incidents. Liu et al. [19] carried
out a follow-up study on externally observed malicious activities
associated with network entities (e.g., spam, phishing, malicious
attacks). It further proved that when viewed collectively, these ma-
licious activities are stable indicators of the general cleanness of

a network and can be leveraged to build predictive models (e.g.,
using SVM). The study extracts three features: intensity, duration,
and frequency, from this activity data. It later trained a SVM model
using these features and achieved reasonably good prediction per-
formance over a forecasting window of a few months achieving
62% true positive rate with 20% false positive rate.
Cyber-level security event forecast. Sabottke et al. [28] con-
ducted a quantitative and qualitative exploration of the vulnerability-
related information disseminated on Twitter. Based on the analytical
results, the study designed a Twitter-based exploit detector, building
on top 4 categories of features (Twitter Text, Twitter Statistics, CVSS
Information and Database Information), for early detection of real-
world exploits. This classifier achieves precision and recall higher
than 80% for predicting the existence of private proof-of-concept ex-
ploits when only the vulnerabilities disclosed in Microsoft products
and by using Microsoft’s Exploitability Index are considered.

8.2 Recurrent Neural Network Applications in
Security Research

Binary Analysis. Shin et al. [29] leveraged recurrent neural net-
works (RNN) to identify functions (e.g., function boundaries, and
general function identification) in binaries. For each training epoch,
the RNN model is trained on N examples (an example refers to
a fixed-length sequence of bytes). The authors used one-hot en-
coding to convert each byte in a given example into a 256-vector,
and associated a function start/end indicator with each byte (i.e.,
a 256-vector). Once the model is trained, it effectively serves as a
binary classifier and outputs a decision for that byte as to whether
it begins a function or not. The authors consequently combine
the predictions from each model using simple heuristic rules to
achieve aforementioned function identification tasks. It is claimed
that this system is capable of halving the error rate on six out of
eight benchmarks, and performs comparably on the remaining two.
Chua et al. [4] presents eklavya, a RNN-based engine to recover
function types (e.g., identifying the number and primitive types of
the arguments of a function) from x86/x64 machine code of a given
function without prior knowledge of the compiler or the instruc-
tion set. On the condition that the boundaries of given functions
are known, eklavya developed two primary modules - instruction
embedding module and argument recovery module - to recover
argument counts and types from binaries. The instruction embed-
ding module takes a stream of functions as input and outputs a
256-vector representation of each instructions. After the instruc-
tions are represented as vectors, argument recovery module uses
these sequences of vectors as training data and trains four RNNs for
four tasks relating to function types recovery. The authors reported
accuracy of around 84% and 81% for function argument count and
type recovery tasks respectively.
Anomaly Detection. Du et al. [22] proposed DeepLog, a deep
neural network model utilizing Long Short-Term Memory (LSTM),
to learn a system’s log patterns (e.g., log key patterns and corre-
sponding parameter value patterns) from normal execution. At
its detection stage, DeepLog uses both the log key and parameter
value anomaly detection models to identify abnormal log entries.
Its workflow model provides semantic information for users to

diagnose a detect anomaly. The author reported that DeepLog out-
performed other existing log-based anomaly detection methods
achieving a F -measure of 96% in HDFS data and a F -measure of
98% in OpenStack data.
Password Attack. Melicher et al. [21] used artificial neural net-
works to model text passwords’ resistance to guessing attacks and
explore how different architectures and training methods impact
neural networks’ guessing effectiveness. The authors demonstrated
that neural networks guessed 70% of 4class8 (2,997 passwords that
must contain all four character classes and be at least eight char-
acters) passwords by 1015 guesses, while the next best performing
guessing method (Markov models) guesses 57%.
Malware Classification. Pascanu et al. [24] model malware API
calls as a sequence and use a recurrent model trained to predict
next API call, and use the hidden state of the model (that encodes
the history of past events) as the fixed-length feature vector that is
given to a separate classifier (logistic regression or MLP) to classify
malware.

The closest work to this paper is DeepLog [22]. However, DeepLog
focused on anomaly detection in regulated environment such as
Hadoop andOpenStackwith limited variety of events (e.g., 29 events
in Hadoop environment and 40 events in OpenStack). In such a
very specific log environment, DeepLog was able to use a small
fraction of normal log entries to train and achieve good detection
results. Our work aims at understanding multi-steps coordinated
attacks in a noisy environment with a wide variety of events (i.e.,
4,495 unique events in our dataset) and prediction in this setup is a
far harder problem comparing to DeepLog. Additionally DeepLog
considered an event abnormal if such event is not with top-д prob-
abilities to appear next. Our work does not employ this relaxed
prediction criteria and focuses on the accurate prediction of the
upcoming security event (out of 4,495 possible events) for a given
system.

9 CONCLUSIONS
This paper presented Tiresias, a system for the prediction of secu-
rity events. We evaluated it using an extensive dataset of alarms
from an intrusion prevention system from a major security firm
product. Tiresias reaches a high precision for such a complex prob-
lem, showing stable results even when the model is trained months
before the application to a test set.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their feedback and
our shepherd Zhou Li for his help in improving our paper. Enrico
Mariconti was supported by the EPSRC under grant 1490017.

REFERENCES
[1] Leyla Bilge, Yufei Han, and Matteo Dell’Amico. 2017. RiskTeller: Predicting the

Risk of Cyber Incidents. In ACM CCS.
[2] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and

Jenifer C. Lai. 1992. Class-based N-gram Models of Natural Language. Comput.
Linguist. 18, 4 (1992).

[3] Ping Chen, Lieven Desmet, and Christophe Huygens. 2014. A study on ad-
vanced persistent threats. In IFIP International Conference on Communications
and Multimedia Security.

[4] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural
Nets Can Learn Function Type Signatures From Binaries. In USENIX Security
Symposium.

[5] Marco Cova, Christopher Kruegel, and Giovanni Vigna. 2010. Detection and anal-
ysis of drive-by-download attacks and malicious JavaScript code. In International
Conference on World Wide Web.

[6] Brown Farinholt, Mohammad Rezaeirad, Paul Pearce, Hitesh Dharmdasani,
Haikuo Yin, Stevens Le Blond, Damon McCoy, and Kirill Levchenko. 2017. To
catch a ratter: Monitoring the behavior of amateur darkcomet rat operators in
the wild. In IEEE Symposium on Security and Privacy.

[7] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. Bothunter: Detecting malware infection through ids-driven dialog
correlation.. In USENIX Security Symposium.

[8] Michiel Hermans and Benjamin Schrauwen. 2013. Training and analysing deep
recurrent neural networks. In NIPS.

[9] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and David Wagner. 2017.
Detecting Credential Spearphishing in Enterprise Settings. In USENIX Security
Symposium.

[10] Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. 2017. Learning to
Remember Rare Events. In ICLR.

[11] Kamvar Kamvar, Sepandar Sepandar, Klein Klein, Dan Dan, Manning Manning,
and Christopher Christopher. 2003. Spectral learning. In IJCAI.

[12] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA).

[13] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-
Aware Neural Language Models.. In AAAI.

[14] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. 2017.
PayBreak: defense against cryptographic ransomware. In ACM Asia Conference
on Computer and Communications Security (ASIACCS).

[15] Christopher Kruegel and Giovanni Vigna. 2003. Anomaly detection of web-based
attacks. In ACM Conference on Computer and Communications Security (CCS).

[16] Junseok Kwon and Kyoung Mu Lee. 2012. A unified framework for event sum-
marization and rare event detection. In CVPR.

[17] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua, Prateek
Saxena, and Engin Kirda. 2014. A Look at Targeted Attacks Through the Lense
of an NGO.. In USENIX Security Symposium.

[18] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir, Michael
Bailey, and Mingyan Liu. 2015. Cloudy with a Chance of Breach: Forecasting
Cyber Security Incidents.. In USENIX Security Symposium.

[19] Yang Liu, Jing Zhang, Armin Sarabi, Mingyan Liu, Manish Karir, and Michael
Bailey. 2015. Predicting cyber security incidents using feature-based characteri-
zation of network-level malicious activities. In ACM International Workshop on
Security and Privacy Analytics.

[20] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. Mamadroid: Detecting android
malware by building markov chains of behavioral models. In Network and Dis-
tributed Systems Security Symposium (NDSS).

[21] WilliamMelicher, Blase Ur, SeanM Segreti, Saranga Komanduri, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. 2016. Fast, Lean, and Accurate: Modeling
Password Guessability Using Neural Networks.. In USENIX Security Symposium.

[22] Guineng Zheng Min Du, Feifei Li and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In ACM
Conference on Computer and Communication Security (CCS).

[23] James R Norris. 1998. Markov chains. Number 2. Cambridge university press.
[24] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil

Thomas. 2015. Malware classification with recurrent networks. In IEEE ICASSP.
[25] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege

Escalation.. In USENIX Security Symposium.
[26] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, Nagendra

Modadugu, et al. 2007. The Ghost in the Browser: Analysis ofWeb-basedMalware.
HotBots.

[27] Kamil Rocki. 2016. Recurrent memory array structures. arXiv preprint
arXiv:1607.03085 (2016).

[28] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. 2015. Vulnerability Disclo-
sure in the Age of Social Media: Exploiting Twitter for Predicting Real-World
Exploits.. In USENIX Security Symposium. 1041–1056.

[29] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks.. In USENIX Security Symposium.

[30] Kyle Soska and Nicolas Christin. 2014. Automatically Detecting Vulnerable
Websites Before They Turn Malicious.. In USENIX Security Symposium. 625–640.

[31] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-
lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. 2009. Your
botnet is my botnet: analysis of a botnet takeover. InACMConference on Computer
and Communications Security.

[32] Gianluca Stringhini, Yun Shen, Yufei Han, and Xiangliang Zhang. 2017. Marmite:
Spreading Malicious File Reputation Through Download Graphs. In Annual
Computer Security Applications Conference (ACSAC).

[33] Gianluca Stringhini and Olivier Thonnard. 2015. That ain’t you: Blocking
spearphishing through behavioral modelling. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[34] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. 1999. Detecting
intrusions using system calls: Alternative data models. In IEEE Symposium on
Security and Privacy.

[35] Gary M Weiss and Haym Hirsh. 1998. Learning to Predict Rare Events in Event
Sequences.. In KDD.

[36] Jianxin Wu, James M Rehg, and Matthew D Mullin. 2004. Learning a rare event
detection cascade by direct feature selection. In NIPS.

[37] Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Rus-
lan R Salakhutdinov, and Yoshua Bengio. 2016. Architectural complexitymeasures
of recurrent neural networks. In NIPS.

