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ABSTRACT

How do listeners integrate temporally distributed phonemic information into coherent
representations of syilables and words? During fluent speech perception, variations in the
durations of speech sounds and silent pauses can produce different perceived groupings.
For example, increasing the silence interval between the words “gray chip” may resuit
in the percept “great chip”, whereas increasing the duration of fricative noise in “chip”
may alter the perceps to “great ship” (Repp ef al., 1978). The ARTWORD neural model
guantitatively simmulates such context-sensitive speech data. In ARTWORD, sequential
activation and storage of phonemic items i working memory provides hottom-up input
to unitized representations, or list chunks, that group together sequences of items of vari-
able length. The list chunks compete with each other as they dynamically integrate this
bottom-up information. The winning groupings feed back to provide top-down support
to their phonemic items. Feedback establishes a resonance which temporarily boosts the
activation levels of selected itemns and chunks, therehy creating an emergent conscious per-
cept. Because the resonance evolves more slowly than working memory activation, 1 can
be influenced by information presented after relatively long intervening silence interval-
g. The same phonemic input can hereby yield different groupings depending on its arrival
time. Proeesses of resonant transter and competitive teaming help determine which group-
ings win the competition. Habituating levels of neurotransmitter along the pathways that
sustain the resonant feedback lead to a resonant collapse that permits the formation of
subsequent resonances. '

Key words : speech perception, word recognition, consciousness, adaptive resonance, con-

text effects, consonant perception, neural network, silence duration, working memory, cat-
egorization, clustering.



1. Introduction

How do listeners integrate individual speech sounds, which arrive at the ear ag distribut-
ed and overlapping acoustic patterns, into coherent percepts of words? Several decades of
quantitative research in psycholinguistics (Cutler, Dahan, & van Donselaar, 1997; Lisker,
1985; Repp, 1982; Repp & Liberman, 1987), cognitive neuroscience { Margolin, 1991; Miller,
Delaney, & Tallal, 1995; Rauschecker, 1998), and statistical pattern recognition { Lippiman-
n, 1989; Jelinek, 1976, 1995; Nakatani & Hirschberg, 1994) have yielded important partial
answers, but this question continues to provide fertile ground for new investigation. For
example, two decades ago Repp, Liberman, Eccardt, and Pesetsky (1978) used a recorvding
of the sentence “Did anyone sce the gray ship?” to show that increasing the silence inter-
val between the words “gray ship” can cause listeners to perceive them as “gray chip”, or
at longer silence intervals as “great chip”. PFurther, increasing the duration of the initial
fricative noise of the word “chip” can induce a switch in the perception of “gray chip” to
“great ship”, thus changing the percept of the first word by altering the beginning of the
sccond word. The processes by which newly arriving phonemic information, such as the
initial fricative noise in “chip”, can modulate the online perception of earlier occurring
speech such as the stop consonant /t/ in “great”, even across word boundaries, remain
largely unexplainec.

In this paper, we develop a dynamical model of neural processes, called ARTWORD,
that is capable of integrating temporally distributed phonemic items into unitized syllabic
representations of phonemic item sequences, or lists. The model elucidates how informa-
tion occurring after a given speech event can alter the dynamics of competition between
previously activated unitized representations and therveby alter the percept of an earlier
word, as in the data of Repp et al. (1978). In order to deal with words of variable length,
the model introduces unitized list representations that can selectively respond to words of
a particular length, vet also be subliminally primed hy shorter words. The model posits
an ongoing dynamic competition between unitized list representations biased to favor the
longest word mterpretation that is consistent with the available bhottom-up evidence, Top-
down feedback to phonemic item representations creates a slowly developing resonance
between item and list levels, which is sustained by the feedback. As new phonemic infor-
mation arrives, the bottonm-up evidence may shift to favor a new, larger list representation
as support for the currently most active, smaller representation weakens due to transmit-
ter habituation within the active feedback pathways. This combination of dynamic events
can create a resonant {rensfer from one list representation to another, during which the
resonance between phonemic item and list levels is sustained, and results in a seanless
integration of phonemic information into a single unitized percept. The model is used to
quantitatively simulate the data of Repp et al. (1978). The model hereby further devel-
ops processes that have elsewhere heen used to explain other speech and language data
(Boardman, Grossherg, Myers, & Colen, 1999; Cohen & Grossherg, 1986, 1987; Colen,
Grossherg, & Stork, 1988; Grossberg, 19806; Grossherg & Stone, 1986; Grossherg, Board-
mai, & Cohen, 1997) to explain data about interword integration. The main innovation of
the ARTWORD model is to show how list chunks that represent words of variable length
can be sgelectively activated, can compete effectively with related list chunks of different
length, can deliver the correct levels of top-down feedback to their working memory items,



and can then receive the correet amounts of bottom-up feedback from these items, thereby
generating resonances whose properties explain challenging specch data.

2. Neural Dynamics of Phonemic Integration

The brain processes that group sounds into coherent speech units exhibit an exquisite
sensitivity to the temporal distribution of spectral energy in the speech stream. For exam-
ple, the speech literature has revealed a number of context effects whereby later-occurring
information influences an earlier perceptual grouping decision. These so-called backward
effects directly constrain theories of how the perceptual units of language spontaneously
form under variable-rate speaking conditions. In particular, they show that the time scale
of conscious speech 18 not equal to the time scale of bottom-up processing,.

Striking examples of backwards effects come from phonemic restoration experiments
(Bashford, Riener, & Warren, 1992; Repp, 1992; Samuel, 1987, 1991; Warren, 1970; Warren
& Obusek, 1971; Warren & Sherman, 1974; Warren & Warren, 1970; Wazren, Hainsworth,
Brubaker, Bashford, & Healy, 1997). When a phoneme, such as /¢/ m “legislature” is
excised from a word and replaced by silence (“legi-lature”), subjects readily localize the
silent gap. But if the silence is replaced with broadband noise, such as a cough, subjects
not only fail to localize the missing phoneme, they report hearing all phonemes as present.
Moreover, the context of the word and carrier sentence determines the identity of the
restored phoneme. If the /s/ in “jump on the sandwagon” is spliced out and replaced by
noise, subjects will report hearing “bandwagon”, despite the absence of the usual acoustic
cues for the voiced stop consonant /1/.

Even more striking is the fact that “the resolving context may be delayed for two or
three, or even more words following the ambiguous word fragment” (Warren & Sherman,
1974, p. 156}, In the phrase “[noisejecl is on the -7, where the resolving context is

given by the last word (“axle™, “shoe”, “orange” or “table”), listeners “experience the ap-
propriate phonemic restoration [“wheel”, “heel”, “peel”, or “meal”], apparently by storing
thie incomplete information until the necessary context 1s supphied so that the required
phoneme can be synthesized” (Warren & Warren, 1970, p. 32). Thus, despite the fac-
i that we do not perceive “orange” as occurring before “peel”, we appear to delay the
formation of the “peel” percept mntil after the word “orange” arrives. In this example,
the later oceurring top-down effect of meaning influences the phonemic structure which
is consciously perceived ag coming earlier in time. These data ilustrate that the brain
mechanisms that generate speech percepts can integrate contextual information across a
relatively broad temporal window and still maintain a natural ordering of the inguistically
significant acoustic signals that reach our ecars.

Just as the semantic context of a phrase can shape the perception of noise into a partic-
ular phonemic segment, the acoustic confext of segmental durations in a syllable can shape
the perception of that syllable’s component phonemes. Broadly speaking, speech is char-
acterized by four types of acoustic segments (Anderson & Port, 1994): sustained cuerpy
concentrated in narrow frequency bands called formants, the transitions linking formants
to other acoustic segments, higher frequency spectrally shaped noise, and silent gaps ag-
sociated with stop and affricate consonants. Context effects occur when the perception of
one phoneme is altered by changing the acoustic characteristics of nearhy sound segments.
Trading reletions, by contrast, occur when a phonemic percept can remain unchanged by
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Figure 1: Perceptual bonndaries derived from responses (redvawn from Repp ef ol {1978),
Figure 4, p. 630.

simultaneousty changing more than one acoustic features of the signal; these features are
sald to “trade against each other” (Repp, 1982). The data of Repp ef el. (1978) illustrate
hoth context effects and trading relations oceurring across sytlable bouwndaries. These ef-
fects, moreover, are distinctively “backwards”, in that much later seginental features, like
the duration of “sh” (/f/) in “ship” can alter the perception of earlier phonemes like the
“67 (/t/) in “great”.

The main findings from the Repp ef ol (1978) experiments ave illustrated in Figure
1. This figure shows how the duration of silence hetween the words “gray ship” (i.e., the
abscissa silence duration) and the duration of the fricative noise segment /f/ in “ship”
(1.c., the ordinate noise duretion) jointly influence whether listeners perceive “gray ship”,
“oray chip”, “great ship”, or “great chip”. The original utterance “gray ship” Hes in region
1, with no silence between the “ay” and “sh”, and a fricative noise of approximately 122
msec. However, when listeners were exposed to the word “gray”, followed by a silent
imterval and then “ship”. they would assimilate the silence and the noise in “sh” into cues
for the presence of a stop consonant, perceiving “gray” as “great”. Given a noise duration
of 160 msec, the “t7 sound was reliably perceived at the longest silent intervals fested,
100 msec (see regions 2 and 4 in Figure 1). Thus, the assimilation of these cues took
place over a relatively long time span and grouped the “t7 with the preceding word “gray™
without filling the intervening silence with the later oceurring “sh” sound. In this range,
the perceptual representation of “great” joins the sustained formants of “ay” (/ei/) in
“oray” with the later occurring cues for “¢” (/t/). Moreover, it does so across the duration
of silence instead of linking the “t7 sound to the temporally contiguous “chip” signals.

Regions 3 and 4 in Figure 1 illustrate that the second word which listeners perceived
san also depend on the silence and noise durations. Simply by shortening the duration of
the fricative noise in “ship”, Repp et «l. could induce a switch in the percept from “gray



ship” {region 1) or “great ship” (region 2) to “gray chip” (region 3). The transition from
region 2 to region 3 is particularly interesting. For a given silence duration, shortening the
noise duration caused the perceived stop consonant /t/ to leave the first syliable fgrei/,
and latch onto the fricative /[/ to form the affvicate consonant /tf/ (“ch™). Remarkably,
without changing the amount of silence separating the words, a variation in the initial
segment of the second word can alter perception of the first word. The boundary hetween
regions 2 and 3 reveals, moreover, a trading relation hetween silence and noise durations.
At longer silence durations, longer noise durations are required in order to cue a switch
from “gray chip” to “great ship”. Finally, in region 4, a “stoplike” consonant is perceived
in both words — the “t” in “great” as well as the “ch” in “ship”. The transition between
regions 3 and 4 (“gray chip” to “great chip”) shows the paradoxical effect that increasing
the separation of “chip” from “gray™ can change the “gray” percept into “great”.

Several questions about the brain’s underlying perceptual mechanisms need to be an-
swered to develop a unified explanation of these and related data. How and why does
the brain generate its perceptual representations in such a way that coherent groupings
like “gray” and “chip” can influence each other across sucl: long time spans? How do the
representations emerge in such a way that a future sound like “t7 can leap over a preceding
interval of silence without filling that interval with the “t” sound. Moreover, how does the
brain generate these context-sensitive perceptual nnits without altering the ovder in which
the groupings arve perceived?

To answer these questions, Grossherg and colleagues have postulated a hierarchy of
processing levels that are linked together by bi-directional pathways, as shown in Figure 2
(Cohen & Grossherg, 1986, 1987; Grossberg, 1978a, 1986). Higher levels in the hierarchy
consist of neural populations responsive to successively more compressed representations
of activity over the lower levels. These pathways contain adaptive synaptic weights that
permit the activations of neurons within each level to differentially influence the activities
of newrons in other levels. In other words, the adaptive pathways act as adaplive filters
that enable each population to sclectively respond to particular activity patterns across
adjoining levels.

At the lowest levels in the hierarchy, peripheral auditory neurons send signals to higher-
level neurons that encode iconte sensory features. A pattern of activation across these
feature detectors, within a small time interval, activates a compressed tiem vepresentasion.
For example, He et al. (1997} have recently described single-cell tuning to noise bursts of
either short or long duration in cat auditory cortex. Such cells could encode, for example,
the distinction between “ch”-like sounds with brief fricative bursts and “sh”-like sounds
with longer duration fricative noise. In the perception of speech and language, sequences
of item representations are temporarily stored in a working memory as a temporal suc-
cession of sounds occurs. The working memory transforms a sequence of sounds into an
evolving spatial pattern of activation that represents the items and the temporal order in
which they occurred {Bradski, Carpenter, & Grossherg, 1994; Grossherg, 1978a, 1978h).
Network dynamics within the working memory can store the serial position of items in
a sequence using a gradient of activity across the working memory item representations.
In the present simulations, parameters were set in the working memory so that a recency
gradient emerged; that g, the most active item representations correspond to the most
recent events. As later network processes alter the activisy levels in the working memory,
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they preserve relative activities across items, and thus serial order information. Other tem-
poral gradients could be generated, depending on network parameters, notably primacy
gradients in which the least active item activities correspond to the least recent events, or
howed gradients in which item activities are largest at the beginning and end of a list; sec
Bradski et al. (1994) for examples.

The activity patterns across the item-and-order working memories, in turn, activate
list chunks, which are unitized, context-sensitive representations of a particular temporal
sequence of items. These list chunks may represent, for example, phonemes, syliables,
or words. Because each pattern across the working memory represents both items and
their order of activation, the list chunks encode particular list sequences.  Active list
chunks feed back to the item working memories to support the neural activations there
via reciprocal connections. At the same time, top-down feedback suppresses items in the
working memories that are not represented by the active list chunks via a nonspecific
inhibitory gain contrel pathway. These interactions between the chunking network and
the working memory - namely, non-specific top-down inhibition combined with specific
top-down: confirmation of expected items -— can naturally begin to explain aspects of
some speech perceptual phenomena. For example, in phonemic restoration experiments,
broadband noise may be perceived as different phonemes depending on the context. These
percepts may be atiributed to a process by which active list chunks use their earned top-
down expectations to select the noise components that are consistent with the expected
formants and suppress those that are not (Grossberg, 1995, 1999d). Future information
can influence this selection process because list chunk feedback is delayed in time relative
to the bottom-up arrival of signals.

When a phonemic sequence present in the working memory excites, and receives con-
firmatory top-down feedback from, a list chunk or chunks, the positive feedback loop that
ig hereby created enhances activity in both felds through a process known as resonance.
The model proposes that when listeners perceive fluent speech, a wave of resonant activity
plays across the working memory, binding the phonemic items into larger language units
and raising them into the lstener’s conscious perception (Grossberg, 1978a, 1986).

The specification of resonant dynamics within a speech perception neural network must
solve a key probleny: The mulfiple time scales that are used to activate and group phonemic
items need to be coordinated to form a unified speech perceps. In particular, the processing
of acoustic information prior to its storage iz the working memory unfolds on a very vapid
time scale — consonants, for example, are typically uttered in tens of milliseconds. As
items become rapidly activated by theiwr partially compressed auditory codes, they ave
stored 1n a working memory that preserves them on a slower time scale, even as they
activate lst chunks. The chunks also become active on a slower time scale, since their
bottom-up evidence is only completely available once all the items in their list have been
presented. Word durations are typically hundreds of milliseconds, and many words cannot
be reliably perceived unfil well after their acoustie offsets (Bard, Shillcock, & Altmann,
1989; Grosjean, 1985). In addition to the response times of list chunks and items in working
memory, the interections between the chunks and items create an emergent resonance time
scale that reacts quickly enough to keep up with the incoming speech stream, but slowly
enough to allow contextual information to affect it, as in phonemic restoration and Repp et
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ol. (1978) data. The context-sensitive resonance time scale is proposed to be the primary
coordinating factor. According to this hypothesis, speech is perceived only when both
phonemic items and their chunks are co-active in a resonant loop, and hence the rate of
conscious speech is equal to the time scale of the resonance hetween multiple processing
levels. The variously timed factors that determine the rate of resonance, and hence the rate
of conscious speech perception, may themselves not be available to introspection., Only
together do these finely timed processes generate a wave of resonant activity corresponding
to the conscious stream of speech percepts.

Under the assumption that the conscious speech code is a resonant wave, the dynamics
governing the propagation of the wave also delimit the temporal window in which items,
activated by bottom-up inputs, can be bound together into a larger conscious percept.
A large body of data in the speech literafure hias examined the temporal constraints on
the perception of phonemes and words in specific contexts. One major eflect concerns
the fusion, doubling, or breaking of a set of consonants. Repp (1980) studied the silence
durations that allow different consonants in VC-CV pairg to be perceived as two consonants
rather than one. In particular, he investigated when /Ib/-/ga/ and /Ib/-/ha/ ave perceived
as fIga/ and /Iba/, respectively. Repp’s data revealed that a silent interval approximately
150 msec longer was required to perceive two occurrences of the same consonant (e.g.,
the geminate consonant pair in /Ih/-/ba/) than to perceive two different consonants (e.g.,
the cluster consonant pair in /Ib/-/ga/). Grossherg et . {1997) have modeled how the
perceptual distinetion between the cluster and geminate stop consonants can be explained
by the dynamices of speech resonance. In brief, if the representation of /g/ hecomes active
while the representation of /bfis active, then /g/ beglus to actively inhibit /b/ while
initiating its own resonance. In contrast, if the second occurrence of /b/ arrives while the
first is alveady resonating, then it can extend the ongoing resonance and thereby prolongs
the fused percept /Tha/. The first /1/ resonance must selif-terminate (by a process called
habituative collapse that is later explained) before a second /b/ resonance can be initiated
ancl perceived.

These simulations illustrated how resonance hetween working memory items and chunks
can contextually reorganize temporally variable presentations of inputs into perceptually
fused or separated percepts, depending on the phonetie context. In addition, while the
Grossherg ef el (1997) model simulations do not incorporate learning of these interac-
tions, the model developed therein helongs to a hroader theory called Adaptive Resonance
Theory, or ART, which describes how learning occurs within the pathways that mediate
these interactions and thereby builds the list respresentations that are capable of temporal-
ly deforming items into larger word groupings (Carpenter & Grossherg, 1991; Grossberg,
1999h; Grossbherg & Stone, 1986).

Other speech data suggest that the rate at which resonances develop is sensitive to
more global aspects of the incoming speech. For example, Bashford et el (1988) found
gpeech-rate effects in the perceived continuty of fluent speech. When a spoken passage
was interrupted by silence or noise, the mean duration of the interruption necessary to bhe
detected varied with the rate at which the passage was presented. For a noise interruption,
the detection threshold was very close to the average word duration in the passage. This
resuit held for each of three speech rates tested. Thus, an estimate of the mean rate of the
incoming speech appears to modulate the rate at which resonance unfolds.



These considerations converge on two prominent issues in the modeling of phonemic
integration. The first issue concerns how to design the working memory so that it stores
sequences of items with a representation that is (approximately) independent of speaking
rate. Such a working memory representation helps to explain how variations in segmental
durations corresponding to different speech rates can determine the perceptual distinction
between the stop consonant /b/ and the glide /w/: If the vowel /a/ in the syllable /ba/
is shortened sufliciently, then the syllable may be perceived as /wa/, despite identical
speciral energy in the initial formant frequency transitions. The particular hackwards effect
whereby vowel duration determines whether listeners perceive /ba/ or /wa/ is an example
of duratronal contrast. Durational contrasts occur when a segment of given duration seems
longer in the context of a short segment than in the context of a long segment. This
perceptual effect is consistent with the existence of a rate-based scaling mechanism that
malntains relefive activation levels in the working memory over variable speech rates.
Durational contrasts occur in other phonemic contexts as well, as when the perception of
the affricate /tf/ in /tfa/ can “switch” to the fricative /[/, when the following vowel /a/
is shortened {Kluender & Walsh, 1988). These durational contrast phenomena illustrate
how changing the relative duration of the working memory inputs (for example, how /h/
is processed relative to a short or long fa/) can change the hypotheses selected by the
grouping network (/ha/ or fwa/).

Recently, Boardman ef ol. (1999) developed a working memory model, called PHONET,
that was used to quantitatively simulate how the /Dha/-/wa/ distinction depends on the
subsequent vowel duration. The model begins to provide a more sensitive account of how
speech preprocessing influences how working memory items are defined and interact. Such
preprocessing, can for examnple, alter the fusion intervals in experiments such as those of
Repp (1980).

In particular, PHONET proposes that speech is separated into transient (e.g., for-
mant transitions in consonants) and sustained (e.g., vowel) components, and that separate
working memories are activated that arve sensitive to these transient and sustained portions
of the speech stream. The model also proposes how interactions between these working
memories can store rate-invariant representations of phonemic items. In the model, as
different formant transitions excite different transient working memory cells, network in-
teractions enable this working memory to estimate the input rate. Outpuf signals from
the transient working memory act to modulate, or control the gain of, the processing rate
m the sustained working memory. In other words, when the system determines that nitial
transitions are arriving morve rapidly, it sets the vowel processing channel to a correspond-
mgly higher integration rate. The transient-to-sustained gain control tends to preserve the
relofine activities across hoth working memories as speech rate changes. The stored ac-
tivities provide a basis for rate-invariant perception. The PHONET model quantitatively
deseribes how phonetic category houndaries can shift as a function of speech rate (Millex
& Liberman, 1979; Miller, 1981). The need for rate-invariant representations, however,
does not preclude the existence of other working memories that are sensitive to rhythmic
information, and other forms of prosodic information in general. In the model developed
below, the working memory stores temporal order information in a rate-invariant way, but
prosodic interplay needs to be an important component of any larger model {(Cutler et al.,
1997; Grosshberg, 1986; Mannes, 1993; Pitt & Samuel, 1990).



The second issue concerns how to design the list grouping network that resonates
with the working memory. This network must be able to pick out the best hypothesis
congistent with the available bottom-up data. In some instances, even small list chunks
may be selected and may command their own resonances, while at other times these small
chunks are supplanted through time by larger chunks as new botton-up data streams in.
For example, consider the perception of the word “great”. The initial formant transitions
specifying the /gr/ cluster and the following diphthong /ei/ jointly represent the word
“gray”, and so a list chunk GRAY may become active prior to the arrival of the word-final
/t/. However, even within the /grei/ sequence, the list chunk RAY has evidence from all
its constituent phonemes because both the /r/ and /ei/ codes are active i the working
memory. In fact, when the stop consonant /t/ arrives in the working memory, at least five
list chunks that are themselves words - ATE, RAY, GRAY, RATE, and GREAT — can
be assumed to be i active competition to establish a resonance with the phonemic codes
i working memory. The design of the chunking network ensures that the largest chunk
receiving activity from all of its phonemic inputs will win this competition. Due to the
competition, or masking, between these multiple-scale chunks, such a network has been
called a masking ficld {Colien & Grossherg, 1986; Grossherg, 1978a, 1986). In order for a
masking field to work correetly, its list chunks must exhibit [ist selectivity; that is, until all
items supporting a given chunk receive bottom-up activation, that chunk can not become
active enough to engage in a resonant feedback loop. I the example above, if the /t/ were
not to arrive in the working memory within a suitable temporal window, then despite the
masking field’s biasg towards larger chunks, chunk GRAY would win the competition over
chunk GREAT and would resonate with its items in the working memory.

Masking fields were introduced to solve a problem that is called the femporel chunking
problem (Cohen & Grossberg, 1986; Grossherg, 1978a, 1984, 1986). This is the problem
of unitizing an internal representasion for an unfamiliar list of familiaz speech units; e.g.,
a novel word composed of familiar phonemes or syllables. In order to even know what the
novel list g, all of 1ts individual items must first be presented. Thus, before the entire list
is fully presented, all of its sublists will also be presented. What mechanisms prevent the
familiarity of these smaller units from forcing the liss always to be processed as a sequence
of individual units, rather than eventually as a new familiar unitized whole? How does a
not-yet-established word representation overcome the salience of well-established phoneme
or syllable representations?

A masking field does this by giving the chunks that represent longer lists a prewired
competisive advantage over those that represent shorter sublists. The intuitive idea is tha,
other things being equal, the longest lists are better predictors of subsequent events than
are shorter sublists that comprise the longer list, because the longer list embodies a more
unique temporal context. As a result, the o priort advantage of longer, but unfamiliar,
lists enables them to compete effectively for activation with shorter, but familiar, sublists,
thereby suggesting a solution of the temporal chunking problemn.

It has elsewhere been shown how such a masking field can develop from simple de-
velopmental growth laws (Cohen & Grossherg, 1986). It has also been shown how it can
naturally explain key data about list coding, such as the Magic Number Seven Plus or
Minus Two (Grossherg, 1978a, 1986; Miller, 1056). Properties of the masking field also
anticipated data about such properties as the word length effect (Samuel, van Santen, &
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Johnston, 1982, 1983), which shows that a letter can be progressively better recognized
when 1t 18 embedded i longer words of lengths from 1 to 4. This property follows from
the greater weight given to longer list chunks, together with the effect of these list chunks
on their working memory items via top-down feedback; see Grossherg (1986) for further
discussion.

Until the present time, all masking field simulasions have been done using only hottom-
up inputs from a working memory in order to demonstrate how longer list chunks can
inhibit shorvter list chunks without a loss of selectivity, how longer list chunks can he
primed by bottom-up evidence from their sublists, and how the distribution of activity
across the masking field can become more focused as more hottom-up evidence hecomes
available (Cohen & Grossberg, 1986, 1987). The present article takes the major step of
showing how a multiple-scale masking field can be incorporated into a feedback loop with a
working memory, with both bottom-up and top-down interactions operating continuously
through time, and how the ensuing resonant dynanics of this feedback loop ean he used to
gquantitatively simulate challenging data about phonemic grouping data in human speech
perception, notably data about context-sensitive backward effects in time.

Thus, in the ARTWORD model developed below, phonemic representations dynani-
ically emerge through working memory and masking field feedback interactions so as to
support the perception of different combinations of the words “gray”, “great”, “ship”,
and “chip” according to the scgmental durations of silence and fricative noise. The serial
position information in these representations emerges from several interactive properties.
First, there are the different position-sensitive activity levels of items stored in working
memory. Second, there arve different relative sizes of the hottom-up and top-down weights
in the pathways between the working memory items and the list chunks, When the working
memory activities are filtered by the hottom-up weights, those list chunks arve activated
most whose weights best match the activity pattern across the working memory. After
competition selects a subset of winning chunks, the order information represented by thein
determines the percept that arises through resonance.

The degree to which two chunks in the masking field compete with each other depends
on how much they share inputs from phonemic items. Chunks like GRAY and CHIP
are not in strong competition with each other, hecause the two chunks have 1o common
mput from phonemie item codes in the working memory. Both chunks, however, compete
with the GREAT chunk, because of shared item codes. In particular, GREAT and GRAY
both receive input from the /g/, /r/, and /jei/ items, while GREAT and CHIP are both
sensitive to the initial noise present in the items /t/ and /tf/). Likewise, the chunks
encoding GREAT and SHIP both inhibit the CHIP chunk, but do not strongly inhibit
each other. In general, the greater the overlap of item input between two chunks, the
greater the strength of the inhibitory interaction hetween those chunks. Previous work
has shown that the rules governing the competition hetween masking field chunks can self-
organize during development using activity-dependent self-similar cell growth laws (Cohen
& Grossherg, 1986, 1987). Although the present model considers how only a single list
chunk level works, one can imagine that a hierarchy of such levels exists in which higher
levels can code larger language contexts, as well as smaller groupings that can propagate
across levels.

In the ARTPHONE model (Grossherg et el., 1997), the PHONET model (Boardman
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et al., 1999}, and the ARTWORD model developed below, quantitative simulations of
isolated data sets arve provided to illustrate how general principles of network processing
can explain particular context effects and trading relations. The speech literature is replete
with data on other context effects, in which the temporal properties of specific segment
types, play important roles in their perception. Neither previous models nor ARTWORD
have heen developed to the point where all of these details have been incorporated into
the network dynamics. These models have only begun to address the role of contextual
temporal factors in speech perception, using simplified inputs in their simulations. While
a completely realistic level of quantitative specificity remains & goal for future work, the
previous and current ART models all contribute to the gradual elucidation of the dynamical
processes that are involved in speech perception. [n particular, ARTWORD is perhaps the
first real-time model of speech perception that simulates speech context effects using a
chunking network which generates retroactive re-segmentations of phonetic inputs that
can leap backwards in time over the silent interval that separates two words.

3. ARTWORD: Adaptive resonance in word perception

The processes by which anditory signals activate phonemic item: codes in the working
memory, excite chunks in the masking field, and close a resonant feedback loop have been
described within the framework of adaptive resonaence theory, ov ART {Grossherg, 19764,
19760, 1980). ART principies and mechanisms have been used to explain data about visual
development, perception, learning, and object recognition {Carpenter & Grossberg, 1991;
Chey, Grossberg, & Mingolla, 1997; Grossberg, 1994, 1999b; Grossherg & Merrill, 1996;
Grossherg & Williamson, 1998, 1999; Grunewald & Grossherg, 1998). Within the domains
of audition, speech pervception, and language, ART models have been developed to explain
data on auditory streaming (Grossherg, 1999¢), word recogunition and recall (Grossherg
& Stone, 1986), manncr distinctions in consonant pereeption (Boardman et ol., 1999),
and consonant integration and segregation in VC-CV syllables (Grossberg et ol 1997).
These models embody several key ART design principles, including storage of temporal
pattern information via the phonemic representation in working memories, automatic gain
control to maintain rate invariance, and top-down matching to confirm expected hottom-
up activation. In the present article, a model called ARTWORD applies these principles
to the integration of multiple phonemic items into larger perceptual units by incorporating
a multiple-scale masking field into a word recognition model.

The ARTWORD model is shown schematically in Figure 3. Both the working memory
and list chunk levels in Figures 2 and 3 can represent phonetic features, phoneimes, syllables,
and words, albeit in different ways. The phonetic cortex helps to determine which type
of representation emerges. While it is still an open issue among psycholinguists whether
phonemes are extracted prior to word identification, numerous data indicate that the
nervous system performs an analysis of incoming speech into relatively primitive neural
responses before resynthesizing them into a unitized percept. Exactly what the features,
and the corresponding levels, represent remains an arca of active research. In ARTWORD,
these features correspond to standard units of psycholinguistic analysis of English. Tn
general, the psycholingustic data relevant to a given language will determine what units
are present in each model level.
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In ARTWORD, bottom-up processing of the acoustic signal, transduced through a
learned acoustic-phonetic mapping, produces activation of item representations in the
working memory (Fig. 4A). As each subsequent phonemic item is activated by curren-
t bottom-up input, competition within the working memory forces previously activated
items to become less active, thereby forming a recency gradient wherein the most recent
items are most active (Fig. 4B). Similar conclusions can be drawn if parameters are cho-
sen to yield a primacy gradient in working memory, These short-term memory dynamics
within the working memory network have been elaborated in the STORE working memory
models; c.g., Bradski et al. (1994}

Ag the items exceed a critical threshold level of activation in the working memory, they
excite masking field chunks that are tuned to prescribed activation patterns across the
working memory items. Only those list chunks that receive input from all their item codes
will reach supraliminal activity (Fig. 4C). As cach list chunk receives its full complement
of hottow-up activation, it crosses a positive feedback threshold and begins to support the
items that excited it. Additionally, 1t sends inhibitory signals to the other list chunks in
the masking fiekd. Other things being equal, the list chunks that receive input from the
fargest array of items in the working memory (up to some maximal list length) have the
strongest masking parameters, so they send the strongest inhibitory signals to the other
chunks. In this way, the chunk with the most bottom-up support begins to hold sway
within the masking field, and is able to suppress the competing list chunks and establish
resonance with its working memory items (Fig. 4C). The resonance between the masking
field and working memory is characterized by high activity levels among the items and the
chunk(s} they select, and by suppressed activity among the other chunks and items. The
chunk-item positive feedback signals are transmitted in both directions via the adaptive
filters linking the two neural fields. For the duration of the resonance, both the resonating
chunk and its items attain higher levels of activasion than would be attained in a non-
resonant state. This “resonant boost™ of activation is proposed to represent the pereept
that emerges when the bottom-up input interacts with top-down expectations.

For a sequence of resonant events to oceur during fluent speech perception, the positive
feedback loop of any one resonance cannot continue indefinitely. Instead, the network ig
reset into a non-resonant state, so that the next resonance can be initiated. Two ART
control structures govern reset of network activities. The first, known as mismatch re-
set, ocours when new phonemic information arrvives whicli is sufficiently different from the
currently active working memory pattern to warrant an arousal burst that rapidly resets
activity i the masking field (Carpenter & Grossberg, 1991; Grossherg et al., 1997; Gross-
herg & Stone, 1986). The currently active items in the working memory reflect the most
active hypothesis in the chunking network that is consistent with the top-down feedback
from the resonating chunk. The bottom-up input is compared with these items within the
model’s orienting system, whose cells are sensitive to mismatches between bottom-up and
top-down information. If the mismatch is great enough to exceed a wigilence threshold,
then a nonspecific arousal burst is emitted from the orienting system and quickly drives
chunk activity in the masking field to zero and shuts down its top-down feedback. The
working memory activity pattern can then select a different chunk with which to establish
a NEew Iesonance.
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Figure 4: ARTWORD perception cyele: (A) Bottom-up activation. Acoustic inputs ave
processed and stored as phonetic items in working memory. (B) Chunk competition. A
sequence of phonetic items forms a recency gradient in working memory., The list chunks
which are activated by these items compete with each other in the masking field. (C)
Item-list chunk resonance. The winning chunk crosses the resonance threshold, and enters
a positive feedback cycle, exciting itself and its phonetic items in the working memory.
(D} Chunk reset duc to habituative collapse. As neurotransmitter levels habituate, the
signals hetween levels fall below the resonance threshold, and the positive feedback cycle
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The second reset mechanism, called habituative collapse (Grossberg et al., 1997), pro-
vides a means for resonances to self-terminate in the absence of externally stimulated reset
signals (Fig. 4D). This occurs when the synaptic neurotransmitters that convey excitatory
activity between the working memory and the masking field habituate. The transmitter-
s replenish at a slower rate than they are inactivated when signaling occurs along their
synaptic pathways, so sustained activity between items and chunks results in an eventual
depression of available transmitters and a consequent cessation of resonance (Grossherg,
1986). ART models have used properties of Lhabituation, or depression, to explain & va-
riety of perceptual phenomena, ranging from visual persistence and afterimages (Irancis
& Grossberg, 1996; Francis, Grossherg, & Mingolla, 1994; Grossherg, 1976a) to phonemic
integration and segregation (Grossherg ef ol., 1997).

Complex dynamics can arise within the competitive envirommnent of the masking field
hefore the network settles into a stable resonant state, as illustrated in Figure 5. In
particular, variations in the amount of bottom-up evidence for particular items in the
working memory can shift the balance within the masking field competition. Consider, for
example, a masking field that is tuned to expect the three chunks, WX, XY, and YZ, where
the chunks WX and YZ both strongly inhibit the chunk XY because of the shared items X
and Y, but WX and YZ do not actively inhibit each other {Fig. 5A). If the hottom-up input
supports the activation of the items W and X, followed by Y and Z, then all masking field
chunks receive partial evidence from the active items in the working memory., The chunk
XY, though, receives combined inhibition from the other two chunks, while the other two
chhunks are inhibited only by chunk XY, Such a seenario supports the competitive teaming
of the two chunks WX and Y7 against the single chunk XY, The teamed chunks, then, win
the competition and establish the sequence WX and Y7 of resonances with the working
memory. If the inputs to the working memory were, instead, W followed by a sustained
or doubled X, followed by Y, then under suitable temporal conditions, the network could
generate a sequence of WX and XY resonances. In this example the possibility of a WXY
resonance is precluded because no such chunk is assumed to exist in the masking field.
Competitive teaming ilustrates how differences in such input parameters as duration can
result in different perceived groupings.

In addition to competitive teaming, a phenomenon of resonent transfer can occur when
an additional input is added, after a suitable delay, to an already presented list of items.
By this means, a resonance with the initial list can occur during the delay, but can be
seamlessly replaced by a larger grouping as the temporal context unfolds. For example,
consider a masking ficld containing the chunks XY and XYZ, and assume that items X
and Y are presented sequentially, stored i working memory, and initiate a resonance with
chunk XY (Figs. 53-C). Suppose that an additional item, Z, is then presented as the XY
resonance is winding down due to habituative collapse (Iig. 3D). The resonating chunk
XY ig then temporarily at a disadvantage in any ensuing masking field competition. Since
there 1s a chunk XYZ present in the network, 14 has already been primed by the previously
supported X and Y items and can thus initiate an XYZ vesonance shortly after item 7 is
presented. During resonant transfer from chunk XY to chunk XYZ, the resonance shifts
from the smaller chunk to the larger chunk. There is only a narrow temporal window under
which such a transfer can occur. For example, if the final item occurs too late, the prior
items will have fallen to lower activation levels, rendering them incapable of supporting a
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(C) (D)

Figure 5: Grouping consequences of competitive teaming (A) and resonant transfer (B)-
{D). I (A), each chunk receives complete support from its items, but chunk XY gets twice
as much inhibition from competing chunks as do WX and YZ. Thus XY will not resonate,
despite its Iarge bottom-up input. In (B)-(D), items x and y initiate resonance with chunk
XY (B-C}, but when item » arrives as the chunk XY resonance weakens, chunk XY7Z huilds
on its partial activation by x and ¥ to form an XY7Z resonance (D).



17

larger list resonance. The “final” item would then be treated by the system as a single
item, or the initial item of a later list.

The two dynamic processes of resonant transfer and competitive teaming show how
a masking field can go beyond the single-item grouping simulations in Grossberg ef aol.
(1997) to explain multiple-item grouping data, such as the data of Repp et ol (1978). The
ART processes described above are defined mathematically and illustrated with computer
simulations helow. Before presenting the model, we first describe in detail the relevant
perceptual data of Repp et al. (1978) and others.

4. Identification and grouping of stop and affricate consonants into words

‘To perceive speech, listeners must integrate acoustic information on multipie levels
and time scales (Repp, 1988). The coarticulation of consonants and vowels during speech
produces an overlapped, interwoven arrangeiment of sounds that is perceived as a tempo-
ral succession of phonemes {e.g., Liberman, Cooper, Shankweiler and Studdert-Kennedy,
1967}, Which phonemes are perceived depends crucially on the surrounding context, in-
cluding the duration of silence, or the leck of acoustic energy, in ongoing speech. The
clagsical study of Bastian, Eimas, and Liberman (1961} established in tape-splicing ox-
periments that if a short interval of silence ig spliced between the /s/ and /lit/ portion
of the word “slit”, listeners perceive the result as the word “split”. The silent interval
artificially inserted into the signal is suflicient to cue the perception of the voiceless stop
consonant /p/. The experiments of Bastian et ol. {1961) thus showed that the absence
of acoustic energy can gencrate the perceived presence of a speech sound. These silence
cued stop consonants, and the acoustic parameters that contribute to their perception,
have since been the subject of detailed study, in the /s/-/1/, “say”“stay”, “sa”-“spa”,
and other contexts (Bailey & Summerfield, 1980; Dorman, Raphael, & Liberman, 1979;
Fiteh, Hawles, Erickson, & Liberman, 1980; Repp, 1984, 1985; Sunumerfield, Bailey, Seton,
& Dorman, 1981).

The principal explanation given for listeners’ perception of silence-cued stop consonants
stems from a proposed speech-specific mode of perception that makes reference to tacit
knowledge of the articulatory gestures which produce stop consonants. Explanations at the
level of purely psychoacoustic interactions have also heen considered, but several studies
seemed to argue against these. For example, with training, listeners can selectively attend
to broadband noise in noise-silence- /laet/ stimuli and therehy avoid perceiving a stop (/p/
or /b/) (Repp, 1985). Also, listeners failed to perceive a stop in analogs of /sei/-/stei/
constructed from broadband noise (analogous to /s/} and sine wave tones {analogous to
the formants of fei/) when instructed to perceive them as “now-speech” stimuli (Best,
Morrongiello, & Robson, 1981). The explanation in terms of articulatory knowledge relies
on the fact that, in natural speech, stop consonants arc those which by definition are
produced by a temporary closure of the vocal tract and hence give rise to a brief pause in
acoustic energy of the speech signal. Affricate consonants, or “stop-initiated fricatives”,
such as “ch” (/t[/), and “dg” as in judge, likewise begin with & brief closure of the vocal
tract (Hardeastle, Gibbon, & Scobbie, 1995; Stevens, 1993). Thus, the formant transitions
into and out of vowels surrounding stop and affricate consonants are always present in
the context of a brief silence. A speaker will thus be familiar with silence intervals that
oceur i these speech contexts. As Repp (1988, p. 251) put it, “a listener’s long-term
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representation of the acoustic pattern corresponding to a stop consonant thus includes the
spectro-temporal properties of the signals preceding and following the closure as well as
the closure itself... The silence thus is not really ‘actively’ integrated with the surrounding
signal portions; rather, the integration has already taken place during past perceptual
learning and is embodiced in the perceiver’s long-term knowledge of speech patterns to
which the input is referred during perception.” The ARTWORD model developed below
shows how previously learned differential responses to input stimuli preceded by silence
may combine with the temporal displacement effect of the silent interval itself to produce
trading relations hetween silence and the acoustic characteristics (e.g., segment durations)
of the following phoneme.

Subsequent experiments have determined a complex relationship between the relative
duration of the silence interval and its surrounding context. As noted by Repp (1988,
p. 250), relative silence duration is a cue for voicing, manner, and place of stop conso-
nant articulation. For example, Bailey and Summerfield (1980) found that after inserting
silent gaps of various duration in /s8/-vowel stimuli, listeners perceived /s/-stop-vowel. On
average, 20-30 msec of silence were sufficient to induce perception of a stop consonant.
Which stop consonant listeners perceived depended crucially on the duration of the silent
interval. For example, for a given stimulus geries, a 60 msec closure might give a high
probability /ska/ percept while an 90 msee closure might give a high probability /spa/
percept). Similarly, Repp (1984} reported that silence closure duration in an /s-1/ context
way a primary cue for stop place, with shorter gaps perceived as “t” and longer ones as
“p”. The silence durations that can cue stop perception vary according to many acoustic
properties of the signal, but, for example, in the /s-1/ context typically range from “60
ms to 300 ms, with the pealk occurring at 100-150 ms of silence” (Repp, 1985, p. 802).
Relative silence duration interacts with other acoustic cues including spectra and duration
of [s/, presence of a release burst and formant transitions after the silence, and duration
of the following voiced segmeni. Together, these spectral features and their temporal av-
rangement all contribute to perception of the stop in a context-specific manner {Repp,
1985). The ARTWORD model suggests how, even when each itemn in a sequence receives
identical bottom-up input, variations in the duration of the silent inferval by itself can
play a key role in determining how the competition between chunks is resolved, and how
the subsequent resonance — and the perceived grouping it determines -~ unfolds.

Motivated by knowledge that silence can cue the perception of stop-consonant manner
within a syllable, Repp ef ol. (1978) went on to show that the percaived stop or affricate
an cross word boundaries. As described earlier, they presented listeners with versions of
the sentence “Did anyone see the gray ship?” that varied both the duration of the fricative
noise /f/ in the beginning of “ship” and the duration of the silent interval between the
words “gray” and “ship”. Depending on the lengths of the two intervals, listeners reported
perceiving “gray ship”, “great ship”, “gray chip”, or “great chip”. The introduction of a
sufficiently long silent gap brought about the perception of a “stop-like” sound - either the
stop /t/, the affricate /tf/, or both. Depending on how the different cues varied, though,
that stop-like sound could attach to a different word. Strictly temporal manipulations in
the acoustic signal could shift the halance of perceptual evidence one way or another.

To create the test stimuli, Repp et al. (1978) inserted silcnce intervals of duration from
0 to 100 msec in 10 msec steps before the word “ship”. The duration of the fricative noise
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in the word “ship” (originally 122 msec) was varied by excising or duplicating a 20 msee
interval from its center. This procedure left the onset {up to the first 62 msec) and offset
of the fricative noise unaltered. Four noise durations {62, 102, 142, and 182 msec) were
generated, giving a total of 44 test stimuli (11 silence durations x 4 noise durations). The
stimuli were recorded in 5 different randomizations with 2 sec intervals between sentences,
and presented to each of 10 subjects twice, so that each subject gave 10 responses to
each stimulus. Repp et el. (1978) reported the averaged responses across the 10 subjects;
individual variahility for these data were not reported.

Figure 6 shows the results of the Repp et al. {1978) experiment. For each of the
four noise durations (ND), the four alternative response probabilities are plotted as a
function of silence duration. Figure 6 reveals significant patterns in the subjects’ respons-
es. First, a minimum silence duration of approximately 20 msec was necessary for any
response containing a stoplike percept {/t/ or /tf/) to be reported consistently. For si-
lence durations above this, either one or two stops were reported nearly 100% of the time,
with the probability of two stops (“great chip”) increasing wish hoth increasing silence
duration and decreasing noise duration. At the longest silence durations, the dominang
response preference is seen to become less probable at all four noise durations, but this is
particularly noticeable at the 102 msec noise duration. At this noise duration, the most
probable response over the mid-range (60-80 msec) of silence durations, “gray chip”, is
roughly equiprobable with two different responses at lower and higher silence durations:
“great ship” between 20 and 50 msec, and “great chip” between 80 and 100 msec. Oune
of these two secondary alternatives accounted for at least 20% of the responses at every
silence duration above 20 msec. The uncertainty, or compatibility of multiple respons-
es, at the 102 msec noise duration suggests the conjoint activation of multiple percepts.
(An alternative explanation, which cannot be ruled out from the reported results, is that
a single percept was reliably determined by each individual, hut variability across indi-
viduals created the reported psychometric functions. However, the existence of mulsiple
responses reported with high probability in this region indicates uncertainty, whether due
to individual variation, the inherent activation of multiple competing percepts, or hoth.)
Figare 7 parcels out the single word, or marginal, response probabilities for “gray” and
“chip” obtained for each word by summing across the two relevant response alternatives
(c.g., P(GRAY) = P(GRAY SHIP) + P(GRAY CHIP)). The uncertainty at shorter noise
durations (62-102 msec) 1s reflected in Figure 7 at the nearly 50% probability of a “gray”
response, indicating the approximately equal likelihoods of grouping the stop consonant
pereept /t/ with /grei/ to yield “great”, with /[Ip/ to vield “chip”, or with both words
to vield “great chip” responses. These results reveal trading relations between silence and
noise durations, such that for certain ranges, an increase in silence duration that would
normally cause a perceptual switch can be offset by a corresponding increase in noise
duration.

Dorman et al. (1979) further probed the affvicate/fricative contrasi observed in the
Repp et al. (1978} data by inserting silent intervals hetween the words “say”™ and “shop”
i the utterance “please say shop”, thereby generating the perception of “please say chop”.
As in the Repp ef ol (1978) experiments, silence was a sufficient cue for the manner
distinction between the fricative /f/ and the affricate /tf/. Dorman et ol {1979, p.
1526) found that a silent closure of 70 msec resulted in a 78% “chop” response rate.
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Notably, this effect disappeared if the “please say”™ and “shop” portions of the stimuli were
uttered by different speakers (a male and a female): no amount of silence between the
two utterances caused subjects to perceive “shop” as “chop”. This suggests that listeners
use their sensitivity to the vocal tract that produced the utterance to determine whether
silence is perceived as a closure in an ongoing speech stream - thus providing acoustic
evidence for the production of a stop or affricate - or as an ecological change in source
which generates a separate perceived auditory stream (e.g., Bregman, 1990; Govindarajan,
srossberg, Wyse, & Colwen, 1994). Dorman et ol. {1979) also showed that the chop-shop
houndary shifts systematically with variations in the duration of the fricative noise and
the rise-time of its amplitude envelope. By lLalving the noise duration (from 320 msec to
160 msee), the chop-shop boundary shifted from 75 msec of silence to 55 msec of silence.
The shorter noise, more characteristic of an affricate, required less preceding silence to
be perceived as an affricate. Similarly, making the noise onset more abrupt by removing
30 msec of the initial /f/ rise time (originaily 35 msec long), Dorman et al. (1979) were
able to shift the chop-shop boundary to silence durations approximately 20 msec shorter.
These data indicate the interaction of expected acoustic cues to signal a phonetic contrast
(c.g., noise duration and rise time) with local variations in the presentation rate caused by
silennce. Ag in the Repp ef el (1978} data and in the ARTWORD model presented helow,
a change in the silence duration differentially alters the percept depending on the acoustic
context in which it occurs.

In the Repp et ol. (1978) experiments, the perceptual system must decide hotly what
phonemes have occurved (e.g., /t/, /f/. /tf/). and where they go; that is, to what larger
units they should he hound. This 1s a special case of the problew: of detecting syllable and
word boundaries, or junctures. Early studies of juncture perception focused on the local
acoustic cues normally available to aid listencers in such decisions (Christie, 1974; Nakatani
& Dukes, 1977). Closure durafion often functions as a primary cue. For example, in
the phirases “lighthouse keeper” and “light housekeeper”, the relative durations of silence
between “light” and “house”, and “house”™ and “keeper” determine the resulting percept
(Wickelgren, 1976). Many other acoustic cues associated with the phonemes immediately
preceding and following the junciure also, in general, confribute to the percept. TFor
example, aspiration of syllable-initial voiceless stops { “a--sta” vs, “as--ta”), the presence
of formant transitions before or after the closure, and allophonic variation can all function
as cues to juncture {Christie, 1974; Darwin, 1976; Mattys, 1997).

Nakatani and Dukes (1977} fested perception of juncture by constructing hybrids from
phrases like “play taught™ and “plate ought™. The transitions to and from the juneture
consonant were spliced ont and replaced in the different oviginal phrases in various orders,
producing four possible pereepts for cach phrase {e.g., play ought, play taught, plate ought,
and plate taught). They found that ounly the immediate neighhorhood of the juncture
consonant contained juncture cues, and that “the strongest cues for juncture perception
occurred at the beginning of the word” (Nakatani & Dukes, 1977, p. 719).

Samuel et al. (1984) used a selective adaptation paradigm to probe whether an inter-
vocalic stop (e.g., /b/ in Jaba/) was perceived as helonging to the first or second syliable.
Constructing a stimuli series that varied from /aba/ to fada/, they presented adaptors
to shift the /b/-/d/ category boundary. Ounly CV syllables (“ha” and “da”), and not VC
syllables (“ad”, “ab™), were effective adaptors. Further selective adaptation experiments
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with VCCV stimuli indicated that the perceptual system treats an intervocalic stop “more
like a syllable-initial stop than a svllable-final one”, although “it is not really perceptually
the same as either kind” {Samuel et ol., 1984, p. 1661). The findings of Samucl ¢t «l.
(1984) and Nakatani and Dukes (1977) both point to the importance of the syllable-initial
segment in providing juncture cues. The model developed below to explain the Repp et
al. (1978) data demonstrates how altering a “syllable-initial seginent,” or, more properly,
the segment immediately following the closure, can shift the competitive balance between
units, resulting in a difference of perceived juncture.

More recent studies of juncture perception have analyzed the role of prosodic informa-
tion, and in particular lexical stress, as a primary cue for juncture perception (sce, e.g.,
reviews by Mattys (1997) and Cutler, Dalan, and van Donselaar (1997)). Analyses of
Jarge vocabulary databases by Cutler and colleagues (Cutler & Carter, 1987; Cutler &
Norris, 1988; Cutler, 1990; McQueen, Cutler, Briscoe, & Norris, 1995) have shown that
the large majority of content words in English (roughly 90% when frequency of occurrence
is accounted for) begin witl: stressed syllables. This suggests a “metrical segmentation
strategy”, in which listeners attempt to begin a new grouping of speech units with each
occurrence of a stressed syllable, backtracking as necessary to correct ervors generated by
this strategy {Cutler & Norrig, 1988; Cutler, 1990). Mattys (1997) reviewed several fea-
tures of stressed syllables, including physical salience, phonemic stability, and perceptual
distinctiveness, which support the idea of syllable stress as a key factor in generating word
segrmentations. The vole of other prosodic factors, and in particular speech rate (see e.g.,
Pickett, Bunnell, and Revoile, 1995}, as a cue to syllabification have recently come to hear
on computational models of speech recognition (Price & Ostendort, 1996; Price, Ostendorf,
Shattuck-Hufnagel, & Fong, 19913,

Together, these speech data support the view that both the perception of phonetic
contrasts and the perceived phonemic groupings that result from these contrasts depend
critically on the time scale and persistence of item activation in the phonemic working
memory. As competition evolves hetween chunks, the changing neural activity patterns
stored across the working memory provide different degrees of evidence to the chunks.
The cmergent resonant tine scales which determine the perceived groupings, then, must
be commensurate witl how the input to phonemic item codes is traded against silent
intervals, changes in specch rate, and lexical stress that modulate the dynamic processing
windows within which the chunk-item resonances develop.

5. Sensitivity to Informational and Durational Phonetic Evidence

Variations in the durations of intersyllable silence and sylable-initial noise impact
network behavior in two distinet ways: either by directly altering the strengsh of the
put to the working memory, or, indirectly, by arriving at different times during the
network processing cycle. These two routes by which segment durations can alter network
responses may be considered in terms of what Mattys (1997) has recently described as
“informational” and “durational” factors in speech perception. While the influence of
coarticulatory siearing of phonetic information in speech is significant, the speech stream
is predominantly sequential. But, “despite the intrinsic correlation hetween fime and the
speech information that it brings to the listener, these two variables have an independent
impact on lexical processing” (Mattys, 1997, p. 311, italics added). Thus, for example,
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a silent interval spliced between “gray” and “ship” not only begins to provide evidence
to the listener of a stoplike sound hetween the vocalic /ei/ and the fricative noise, it also
allows the listener more time to process the /grei/ input before the next phoneme arrvives,
andd hence the internal representation of the GRAY chunk may reach greater levels of
activation by the time the noise does arrive. We describe below the distinetion hetween
these two factors in the ARTWORD model: the informational, defined by the local, low-
level transduction of the acoustic stimulus into phonemic inputs, and the durational, whick
affects processing dynamics globally.

The response of phonemic item codes in the working memory is determined through
prior learning which has adapted the long-term memory weights along the pathways be-
tween lower auditory processing levels and the phonemic item working memory, These
pathways encode phonemic item sensitivity to neural activity patterns defining particular
external acoustic events, or an acoustic-phonetic mapping {Pisom & Luce, 1987). This
learned acoustic-plonetic mapping represents the combined influence of peripheral au-
ditory neural processing, like short-term adaptation within individual nerve fibers {e.g.,
Delgutte, 1980) and low-level integrative processes across networks of neurons responsive
to specific acoustic patterns (e.g., Boardman et ol., 1999). Synaptic adaptation along the
pathways reflects the statistical distribution of repeated exposure to speech sounds. In the
present article, all learned tuning of synaptic pathways hetween the input and item levels,
and between the item and chunk levels, will be assumed to have stahbilized during prior
developmental stages.

The tuning of synaptic weights on the pathways feeding into the phonemic working
memory derives from the long-term average of the spectro-temporal characteristics of the
phonemes which listeners hiear. Because of the multiplicity of acoustic cues which specify
phonetic contrasts, and thelr intricate dependence on context, it is likely that multiple
phonemic codes representing different cue-combinations exist. For example, Hedrick (1997)
lists frication duration, formant transitions, frication spectrin, and relative amplitude
between frication and vocalie signals as components influencing the perceived place of
fricative consonants. Input to the plionemic working menzory in ARTWORD was chosen
to roughly correspond o the same relative durational trends reported in the literature.
Howell and Rosen {(1983) measured tokens of /f/ and /tf/ and found, for word-initial
seginents in running speech, mean rise-time durations of 123 and 37 msee vespectively: the
duration of the noise from end of the rise-time on was the same (48 msee) for both, yvielding
net durations of 171 and 85 msec for / [/ and /tf/, respectively, Crystal and House (1988h)
reported the high {requency of stop consonants occurring without a plosive release hurss,
or “hold oniy” stops. For example, at the end of a word followed immediately by another
word (L.e., in the word-final, nonprepausal position) only 36% of the occurrences of [t/
in their data (N = 3063) were complete, consisting of both a closure and a burst. The
mean duration for all complete voiceless stops in their data was 92 msee, while the hold
only voiceless stops, had a mean duration of 56 msec. However, in detailed studies of a 14
speaker corpus of speech, Crystal and House (1988a, 1988D) have highlighted the variability
of speech segment durations, noting that even after separating tokens according to several
phonetic dimensions, the distributions of segmental durations overlap considerably. In
ARTWORD, the compressed item code for the fricative consonant /[/ responds more
vigorously to a longer fricative noise interval than the item code for the affricate consonant



Jtf/, all other things being equal. Likewise, the response of the item code for the stop
/t/ shows a greater response when a silent interval precedes the noise which activates this
item code.

There is some evidence that these distinctions can be encoded in the average discharge
rates of auditory neurons, both peripherally and centrally. For example, based on his
studies of peripheral responses to speech-like stimuli, Delgutte {1982) proposed & model
by which short-term adaptation can account for the trading relation between silence du-
ration and frication rise time in the affricate/fricative contrast in /atfa/-/afa/ sthmuli.
The model consisted of & bandpass filter, envelope detector, sigmoidal nonlinearity, and
short-term adaptation element. The model output in response to synthetic /afa/-/at[a/
stimuli shows that decreases in rise time or increases in silence duration -~ both cues for
“acha” - produced similar increages in the discharge rate of neurons tuned to the approx-
imate frequency of frication. Delgutte and Kiang (1984, p. 896) similarly provided data
suggesting that “the central processor should be able to distinguish between various voice-
legs fricatives even if limited to information carried in the average discharge rates of the
most gensitive auditory-nerve fibers.”” Thus even simple, peripheral auditory processing
cann begin to explain trading relations between preceding silence and rise-time duration
like those described by Dorman ef ol (1979).

The case that the responses of single auditory neurons can encode complex informa-
tion integrated over relatively long temporal intervals was recently strengthened by the
discovery of cells selectively tuned to souud duration within cat auditory cortex (He ef ol.,
1997), extending previous reports of duration tuning in the frog and bat at the brainstem
level (e.g., Casseday, Erlich, and Covey, 1994). He et el (1997} described neurons in
the dorsal zone of auditory cortex with complex response profiles, including multi-peaked
tuning curves and long latency responses (= 30 msee, 85% between 30 and 120 wsec) to
noise hursts. Of special interest with regard to speech-like stimuli were reports of neurons
whose discharge rates showed monotonically increasing, decreasing, or unimodally peaked
profiles as a function of the duration of noise bursts that vary between 20 and 500 msec.
For example, long-duration-selective neurons, many of which required minhual stimulus
durations to exhibit any response, either showed increasing discharge rates with stimulus
duration (nonduration threshold neurons), or a saturaiing response which did not increase
with further increases in stimulus duration (duration threshold neurons). Short-duration-
sclective neurons, by contrast, showed a maximal response to brief (e.g., 50 msec) noise
hursts, and decreasing responses as stimulus duration was increased. These data rase the
possibility that, for example, neurons responsive to /t [/ -like stimuli will first increase and
then decrease their discharge rates when presented with the long fricative noise in a typical
/[ / stimulus. Likewise, neurons responsive to / [/ -like stimuli may show greater latencies
and gradually increasing discharge rates over the duration of a fricative stimulus. ART-
WORD adopts a similar scheme, assigning complementary input durations to /tf/ and
/ [/ item codes, with /tf/ input durations decreasing as fricative nose duration increases.

Apart from the “informational” phonetic evidence transduced to the working memory
based on the statistics of prior speech exposure and the lower-level auditory processing, the
segmental durations of silence and noise can influence network behavior “durationally”, by
arviving at different times and altering ongoing dynamic competitions. Because item and
chuunk activations grow and decay in real time, a pause or lengthening of any input seg-
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ment, or any intervening silence interval, will alter the relative pattern in working memory
which may in turn unbalance a developing competition hetween chunks in the grouping
network. Recent evidence of Faulkner, Rosen, Darling, and Huckvale (1995) points to the
possibility of such dynamic interactions in the /tf/-/[/ contrast in the /afa/ context.
Rosen, Darling, Faulkner and Huckvale (1993) and Faulkner ef al. (1995) constructed
factorial combinations of syllable-initial (/tfa/, /fa/) and intervocalic {/atfa/, /afa/)
stinnill by varying frication duration (120-220 msec), rise time (0-100 msec), and, for the
intervocalic stimuli, silence duration (0-80 msec). The averaged responses of nine subjects
were analyzed. Contrary to the previous data reviewed above showing a shorter rise time
as a positive cue for affricate perception, Faulkner ef ¢l (1995) found that at short silence
durations (0 and 20 msce), longer rise times actually produced more affricate respons-
es. Only in the syllable-initial stimuli did the proportion of affricate responses decrease
with increasing rise times. These data thus cannot be explained solely on the basis of
the Delgutte (1982} peripheral auditory model. Faulkner et ol (1993) point out that it is
unclear how other models that do not permit the statistical interaction of acoustic features
{e.g., the fuzzy logical model of Massaro, 1987)) can satisfactorily accouns for the observed
interactions. While models based on acoustic features and auditory processing go part of
the way to explaining these data, Faulkner ef «f. {1995) argue, further explanation by way
of a top-down or cognitive interaction is needed. In ARTWORD, durations of segimental
excitations in the item field directly shift the competitive balance in the grouping network.
When a word chunk does emerge as the winner, it feeds back to the item ficld, hoosting
plhionemes over a perceptual threshold. By delaying the formation of the perceptual code
until the top-down feedback supplies later-occurring information, ARTWORD provides a
quantitative realization of the type of hypothesis sugeested by Faulkner ¢f al. (1995).

Together, the activation of the phonemic item codes and the competitive grouping pro-
cesses provide explanations of the percepts reported in the Repp et ol. (1978) data. While
Figure 1 provides a good indication of how the perceptual regions depend on silence and
noise, the actual response probabilities bely a complexity not appavent in this vepresen-
tation. Figure 8 shows this complexity, and in particular the uncertainty associated with
these rvegions, i greater detail. Because the responses were sampled at only four noise
durations, the derivation of any representation of the perceptual space must interpolate to
estimase the category boundaries. For example, Repp et el (1978) derived the boundaries
of Figure 1 using the probit method (which effectively performs an inverse cumulative
Gausslan transform and interpolases by linear regression) to estimate the combination of
silenice and noise durations at which each of two alternative responses were equally likely.
That is, each boundary in Figare 1 was computed hetween only two alternatives, However,
hecause of the sparsity of noise durations and the fact that “great chip” responses were
comparatively rare, this method appears to overestimate the size of the “great chip” region.
As Repp et al. (1978, p.631) note, “There was no obvious dependency of this houndary
on noise duration; the uppermost data point, which may suggest such a dependency, was
based on only a few observations, since at this noise duration (142 msec) GREAT SHIDP
responges predominated.”

In Figure 8, two alternative representations of the perceptual boundaries are presented.
To derive the bhoundary curves in both panels, the response probabilities were interpolated
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with a cubic polynomial and the contours of 50% probability for each percept were deter-
mined. In Figure 8A, the category boundaries are derived from the two-word responses
in Figure 6 and are plotted in thick lnes, with the corresponding 60% and 40% bound-
aries I thinner lines, This figure makes it evident that, for silence durations greater than
20 migec, at noise durations between 100 and 120 msec, the large perceptual uncertainty
{discussed above) exists. The “great chip” percept is only the most probable response
at the longest silence durations and at noise durations bhelow 120 msec. However, either
“preat” or “chip” is always perceived provided the silence exceeds about 20 msee. This
is made evident in Figure 8B, which shows the single word {gray-great and chip-ship}
boundaries derived from the data in Figure 7. This representation conveniently partitions
the entire perceptual space and shows the dominant first and second word responses at
each combination of silence and noise. In order to avoid postulating a higher-level deci-
sion mechanism for probabilistically combining single chunk activations, we cliose to fit
the ARTWORD model to the single word responses of Figure 7. Note, however, that
this does not imply, either i the data or the model predictions, that these single word
response probabilities are independent of each other. Indeed, a chi-squared test for sta-
tistical independence of the first and second word responses (i.e., a test of the hypothesis
P(GRAY SHIP) = P(GRAY)P(SHIP), etc.) rcjects at high significance levels; likewise,
in ARTWORD the generation of all chunk aetivations are crucially interdependent. The
perceptual boundaries are emergent properties of network interactions and, as such, merely
reflect one representation of the nnderlying dynamic generation of resonant events.

Because the ARTWORD model generates the pereeptual codes dynamically from the
gystem interactions hetween bottom-up driven working memory responses and top-down
grouping processes, the behavior of these perceptual codes cannot he simply attributed fo
a single parametric source such as the presence or absence of an acoustic feature. However,
considerations of the network responses to inputs presented with different combinations
of silence and noise can provide insight into the transitions between perceptual regions in
Figure 1 Tor example, the percept of “gray ship” in region 1 can be pranazily attributed
in ARTWORD to the strength of the phonemic item responses to the input at brief silence
durations. In particular, because silence is an important cue for the pereeption of stops and
affricates, neither the /t/ or /t]/ items receive strong excitatory input when the fricative
noise immediately follows the voealic /ei/ segment. With increasing silence, the /t/ and
Juf/ items are excited for longer durations, and with increasing durations of fricative
noise, the /t/ item receives greater excitation. Thus the transitions out of region 1 can
be expected on the basis of these phonemic responses: the unitized representations most
likely to resonate with working memory will bhe naturally selected based primarily on the
match between the acoustic signal and the learned phonemic representagions.

The transition between regions 2 and 3, however, requires an explanation based on
the grouping operation involved: the acoustic signal in both cases contains sufficient cues
for the perception of a stoplike sound. The only difference is where the stop is grouped.
The model explains this transition by describing a competitive grouping operation that
dynamically emerges at a slow enough rate to allow the first competition (GRAY wvs.
GREAT) to he influenced by the later-occurring noise and the second competition which
it engenders (GREAT vs. CHIP ), When evidence for the /tf/ item is strong, at lower noise
durations, the GRAY and CHIP chunks can both win their competitions with the GREAT
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chiunk by virtue of their competitive teaming. At longer noise durations, the /f/ item
receives proportionally more excitation, so the CHIP vs. SHIP competition weakens the
CHIP chunk’s activation. This, in turn, permits the GREAT chunk fo attain greater levels
of activation and win its competition with the GRAY chunk. In this way, the activation
level of the SHIP chunk can indivectly help determine whether the GRAY chunk resonates
with its items, despite the fact that the SHIP and GRAY chunks do not receive input
from any shared phonemic items. ARTWORD also suggests why, at increasing silence
durations, the boundary between regions 2 and 3 is slanted upwards, so that more noise
1s required to perceive “great” than “gray” when the silent interval between /grei/ and
the noise is increased. As the GRAY chunk attains greater activations during the longer
silent ingerval, the GREAT chunk is correspondingly inhibited, so greater /t/ activation is
required to initiate a resonant transfer from GRAY to GREAT.

The GREAT chunk can also resonate if the /t/ input arrives late enough so that
the GRAY chunk hag begun to weaken due to the habituation of its transmitters. The
transition between region 2 and region 4 (GRAY CHIP to GREAT CHIP) indicates that at
sufficiently long silence durations, the resonance between GRAY and its items is susceptible
to a transfer. Thus, in region 2, GREAT is inhibited by the proximal future activation
of CHIP. In region 4, the stop manner cues associated with /t/ are distal due to the
long silence duration. The GRAY chunl initially wing its competition with the GREAT
chunk as in region 2. However, the /t/ item then becomes active and, as GRAY completes
its natural resonance cycle, all items for GREAT arve present, so GREAT enters its own
resonant cycle, completing the transfer of /grei/ item inforimation forward in time to adjoin
the /t/ information.

6. Simulations of Resonant Transfer and Competitive Teaming

Computer simuiations of the ARTWORD model were performed to illusirate aspects of
multiple item grouping and resonant dynamics. Appendices A and B describe the network
equations and paraneters, respectively, that were fixed for all simulations included in
the present article. Simulations were performed by second order Runge-Kutta numerical
integration with an adaptive step size (MATLAB 5.2).

6.1 Bottom-up activetion of list nodes

The first group of simnulations demonstrates the bottom-up effect of item activation
on chunk activities in the absence of top-down feedback. Figure 9 shows the response
of two chunks in the grouping network, GRAY and GREAT, to the presentation of the
single item /g/. Both chunks show brief bursts of activity, but do not receive sufficient
input to sustain their climbs. The GRAY chunk responds more strongly than the GREAT
chunk to the single item /g/ for two reasons. The first is due to the normalization of input
to chunks, via conservation of synaptic sites: larger chunks, like GREAT, receive input
from more neurons in the working memory and therefore eacl input contributes relatively
less excitation. A second reason results from gynaptic learning as a result of long-term
exposure to specific patterns. The GREAT chunk has been tuned through competitive
learning to expect a four-item pattern (/g/, /r/, /ei/, and /t/}, while the GRAY chunk
expects only a three-item pattern (/g/, /r/, and /fei/). Because of the passive decay and
lateral inhibition that occurs within working memory, when longer lists are fully storved, the
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activity of the items that are stored early mn the list are smaller than those of shorter lists.
Thus, the synaptic weights between the /g/ item and the GREAT chunk have been tuned
to expect smaller values than the weights between /g/ and the GRAY chunk. Figure 9B
shows the differential activity between the two chunks, which quantifies their competitive
halance. GRAY’s advantage over GREAT is maximal just as the input to the /p/ item
ends. Once the /g/ item beging to decay, both chunks imunediately begin to decay. The
GRAY chunk decays faster, and thus progressively loses its competitive advantage until its
activation falls below that of the GREAT chunk at approximaiely 260 msec. (The more
rapid decay of the GRAY chunk is due to its weaker self-excitatory feedback via term
& fu)z, in Equation {A2) of Appendix A, since for a chunk j coding a list of N items, ¢;
is proportional to N.)

Figure 10 shows how these effects extend to multiple items, again in the absence of
top-down feedback. The inputs /g/, /r/, and [fel/ are presented as a sequence of pulses
of constant magnitude and duration of 62 msec, so that the total duration of the se-
quence is 188 msec, which is the duration of the word “gray” m the Repp et el (1978)
experiments. As the working memory integrates the sequence of inputs, the differential
activation between the GRAY and GREAT chunks increases, due to the input normal-
ization and synaptic weights described above, As shown in Figure 1083, GRAY is able to
maintain a competitive advantage over GREAT for a longer duration, nearly 300 msec,
than with the single item input. The plot of transmitier activation (A, middie) shows
that with all three items active, the GRAY chunk begins to consume trace amounts of
its synaptic transmitter. Because chunks can self-exeite more easily than they can send
top-down feedback to their items, chunks can begin to consume their neurotransmitters
prior to establishing a resonance with the working memory; see Equations {A2)-{A3) and
accompanying text in Appendix A, The GRAY chunk shows a much stronger response to
the input sequence than to a single inpuf, since its entive complement of supporting items
are active. However, without top-down feedback to support the working memory iteins,
neither chunk ig able to establish a full-fiedged resonance.

6.2 Multiple stem grouping end masking sensitivity
When top-down feedback is incorporated into network dynamics (via term (37, 70 250)

in Equation (Al) of Appendix A), the GRAY chunk selectively enhances its active items
in working memory and generates a resonant event. Figure 11A shows that the initial
response of the networls 18 identical to that of the open loop simulation in Figure 10, How-
ever, once the GRAY chunk exceeds its top-down threshold v, (¢. 200 msece), both item
and chunk trajectories undergo a resonant boost and begin to climb. The resonant event
unfolds gradually over the next 100-200 msecs. Ttems and chunks reach their maximal
activations approximately 100 msec after the offset of the /ei/ input. That the GRAY
chunk is fully resonating while the GREAT chunk remains in a subliminal state of activa-
tion can be observed from the tracing of transmitter activation in the middle panel. The
sharp downwards inflection in the GRAY transmitter, which occeurs at approximately 225
msec, indicates the onset of the positive feedback cycle. As the cycle continues, the GRAY
chunk consumes transmitter more vapidly than it can be replenished until chunk activity
peaks and beging to decay in a habituative collapse. As chunks and items passively decay,
GRAY’s transmitter slowly hegins to replenish.
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Figure 11B shows that when a /t/ input of comparable strength follows the /grei/
sequence inmunediately, it is able to push the GREAT chunk activation over its resonant
threshold. The GRAY chunk begins its resonance while the /t/ item is being presented,
at the same time as in Figure 11A. But once the /t/ item crosses its bottom-up threshold
vy it delivers a sustained excitation to the GREAT chunk of sufficient magnitude for
the GREAT chunk to overcome GRAY’s advantage and dominate the resonance. The
resonance of GREAT is reflected in the single pealk, at around 260 msec, of the working
memory activation frajectories,

Figure 11A also shows that while the GREAT chunk cannot engage in resonance with-
out the hottom-up input /t/, it does benefit from GRAY’s top-down support of the /g/,
Jr/, and fei/ items. Thus GREAT receives a subliminal boost from GRAY’s resonance,
priming the network to generate a grouping of the /t/ with the preceding items should
it be presented. Such dynamics illustrate a critical aspect of masking sensitivity in the
grouping network. Because the grouping network contains a bias towards longer lists by
giving their chunks stronger masking parameters, the network design also needs to avoid a
cascade of resonances wherein a smaller chunk, by supporting its own itemns, inadvertently
pushes its competitor into a supraliminal state, and so on until the largest list present
resonates with all of its items. Thus, the masking field implements larger chunk potency
without a loss of chunk selectivity. In the present simulations, the larger chunk GREAT
has a higher top-down feedback threshold (yvonppar = 0.14 > vonpay = 0.12) - that is,
needs more evidence to fire - so that even with the greater activation GREAT experiences
during GRAY’s resonance, GREAT remaing below threshold. The subliminal priming of
GREAT during GRAY’s resonance also prepares the network for a transfer of resonant
events between the two chunks in the event that /t/ does oceur.

6.3 Resonant transfer

The third group of simulations, illustrated in Figures 12 and 13, shows how the grouping
of an additional item with preceding items depends crucially on the temporal window
during which it is activated. As a consequence of the competitive dynamics within the
working memory, two input pulses with identical magnitude and duration will not be
treated identically by the network if they arrive at different times in the processing cycle.
Figures 12A and 12B show how a slight delay in the presentation of the /t/ nput after
the /g/, /r/, [el/ sequence, relative to its presentation in Figure 11, can actually facilitate
the resonance of the GREAT chunk over the GRAY chunk. This behavior mimics that of
the Repp et ol (1978) data, which shows the apparently paradoxical effect at short noise
durations that listeners are more likely to perceive “great” than “gray” when a longer
silent interval separates the end of the vocalic segment /ei/ and the word initial fricative
noise. In Figure 124, the /t/ input arrives after a silent interval of 60 msec. During
that interval, the GRAY chunk has initiated its resonant cycle with the /g/, /v/, and /fei/
items as evidenced by the depletion of the GRAY transmitter. The activation of the /t/
item in this instance is a case of “too little, too soon”: because the /t/ item integrates to
its maximal activity just as the activation of the GRAY chunk peaks, GRAY is strongly
inhibiting GREAT and, as a consequence of this inhibition, the /t/ item effectively passes
undetected by GREAT.

A small additional delay i the presentation of the /t/ item can exert a profound effect



on which chunk resonates, as shown in Figure 12B. By providing evidence which arrives
to support the GREAT chunk affer the GRAY chunk’s activation has peaked, the /t/
item determines a qualitative change in how the competition in the grouping network
unfolds. At this longer silence duration, GREAT can win its competition with GRAY
through a resonant transfer. Because the end of the silent interval coincides with GRAY’s
habituative collapse, the network is primed to integrate the bottom-up activation of the /t/
item with the items that have been supported by GRAY's resonance. Thus, at relatively
long silence durations, GREAT may win by piggy-backing on the previously supported
[/, [r/, and fei/ items, and inhibiting the GRAY chunk whose neurotransmitters have
become depressed, The process of resonant transfer thus explains why after being presented
with the word “gray”, followed by a silent interval of 100 msec in the Repp et al. {1978)
experiments, the subsequent noise may be perceived as belonging to the word “great”: the
GRAY chunk has transferred its supported items to the GREAT chunk, by virtue of its
habituative collapse. The transter can he seen in Figure 12B in the trajectories of she
chunks and their transmtter activation levels, which indicate that both chunks are able
to resonate in a feedback cyele with theilr working memory items. The trajectories of the
working memory items themselves (bottom panel, Fig. 12B) do not, however, reveal that
two discrete resonant events have occurred. The network predicts that a lstener under
tliese conditions would not percetve the word “gray” followed by the word “great”. Instead,
from the perspective of the working memory, a single resonant event Las developed, with
thie silence hetween /ei/ and /t/ enabling the coherent integration of the items into a single
list.

The time window over which a subliminally activated chunk can integrate a subsequent
item into a resonant event 1 Hmited. Thus, while the GREAT chunk can henefit from a
delayed presentation of the /t/ input by competing with a weaker GRAY chunk, if the delay
is too large, then the GRIEAT chunk itself will be too weak to achieve resonance. Figures
12C and 12D show that as the silent interval is extended from 70 msec {C) to 75 msec
(D), the network undergoes a shift from GREAT’s resonance back o GRAYs resonance.
As in the simulations of Figures 12A and 12B, the significant determinant of the resonant
grouping is the time at which the /t/ item becomes active relative to the developing
competition between the GRAY and GREAT chunks. In the current simulations, the
strength of the /t/ inpus and the gain T' on the network integration rate are such that an
80 msee silent interval between activation of the Jel/ and /t/ items exceeds the window
over which the GREAT chunk can group its chunks. Changes to many network parameters,
either individually or jointly, can aflect the precise duration of this integrative window.
For example, a slower integration rate I' will permit GREAT to resonate if longer delay
intervenes. In the Repp et ¢l (1978) experiments, the GREAT chunk integrates over silent
intervals in excess of 100 msec.

Figure 13 illustrates how resonant transter depends on the relative timing and strength
of the input 1tems, and in particular how the silence duration can trade against the duration
of the /t/ input to generate equivalent “great” percepis for different combinations of silence
and noise. It shows the integrated GREAT chunk activation as the durations of /t/ input
activation varies from 32-52 msec as a function of the duration of the intervening silence
interval. Lighter shacles represent less GREAT chunk activation, indicating that GRAY
resonates with its items and a resonant transfer fails to occur; darker shades reveal that
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GRAY transfers its resonance to GREAT when the /t/ input is sufficiently strong. The
diagonal curves dividing the lght and dark regions show that as the silence duration
increases, greater /t/ input is needed to excite the GREAT chunk above its feedback
threshold and thereby facilitate a resonant transfer. Figure 13 thus illustrates how resonant
fransfer partially explains the trading relation between “gray chip” and “great ship” (cf.
regions 2 and 3 in Figure 1), As noted by Repp et ol (1978, p. 631), the boundary
function between these regions “shows a clear rise ab intermediate silence durations (40-
80 msec): GREAT SHIP responses were more frequent at short silence durations and
GRAY CHIP responses were more frequent at longer silence durations.” That is, for a
fixed duration of fricative noise, a longer silence interval produces a greater likelihood
of perceiving “gray” instead of “great”. This occurs in Figure 13 because, through the
acoustic-phonetic relations specified in Equation (AGY, a longer fricative noise interval
will deliver longer excitation to the /t/ phonemic item code, and thus generate a higher
probability “great” percept. In a larger network, the competitive roles of the subsequent
chunks CHIP and SHIP also function to alter the dynamics and the shape of the houndary
between GRAY and GREAT resonances, as shown below.

The total GRAY chunk activation (not shown) behaves as the inverse of Figure 13; that
is, when GREAT resonates, GRAY achieves less total activation due to the competitive
inhibition from the GREAT chunk. The depression in total activation occurs despite the
fact that the GRAY chunk reaches the same maximal activation (cf. Figures 12A and
128}, whether or not GREAT resonates. This suggests that total chunk activation over
a specified time interval reflects the relative contrast hetween grouping patterns more
robustly than shuply the maximal chunk activation.

Figure 13 also demonstrates a noniinear interaction hetween silence interval and input
strength such that total chunk activation can actually reach greater values at longer silence
intervals. In particular, the darkest shades, or greatest GRIEAT chunk activations, occur
at silent intervals of 80-90 msee when the /t/ duration is just long enough to clicit a
resonant transfer. This preference for /t/ inputs which are “strong enough, but not too
strong”, provided they are of sufficient duration to drive their items above the bottom-up
threshold v, results from lateral inhibition in the working memory. When a given input
1s presented for a longer stimulus interval, its item inhibits the previously activated items
more. The net reselt is to drive total item activity to a lower state, resuiting in weaker
support for the resonating chunk and a smaller total chunk activation. Thus a weaker
input presented following a longer silence interval can, paradoxically, clicit a greater total
chunk activation than a stronger input presented after a shorter silence interval; see, for
example, coordinates (80,40) vs. {70,50) in Figure 13.

6.4 Competitive {teamang

The preceding simulations illustrate that complex network dynamics can arise with only
two chunks in the multiple item grouping network. The next group of simulations, shown
in Figures 14A-14D, describe how the inclusion of additional chunks, encoding partially
overlapping lists of items, adds a further dimension of complexity to the competition that
develops in the grouping network. In these simulations, the grouping network consists of
three chunks: GRAY, GREAT, and CHIP. Figure 14 shows that when the onset of the
Jtf/ input coincides with the /t/ input, following the /g/, /v/, /ei/ sequence, the duration
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/t/ Duration (msec)

65 70 75 80 85 90 95 100
Silence Duration (msec)

Figure 13: Trading relation between duration of the /t/ input and of the silence interval
between /grei/ and /t/. Shading represents total GCREAT chunk activation, with darker
shades indicating greater activation (GREAT resonance).
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of the /tf/ input relative to the /t/ duration determines whether or not GREAT will
resonate. Because of shared sensitivity to high frequency spectral energy contained in the
noise of the stop and affricate consonants “t” and “ch?”, the GREAT and CHIP chunks
compete with each other directly. Thus, if the CHIP chunk becomes sufficiently active, as
i Figure 148, it can prevent the GREAT chunk from resonating. Even though the CHIP
chunk receives no input from the /17 or /p/ items in the simulations of Figures 14A and
148, the subliminal activation of the CHIP chunk by a /tf/ input 70 msec in duration
inhibits the GREAT chunk sufficiently to prevent it from reaching its resonant threshold.
A briefer /tf/ input of 60 msec duration (A), by contrast, can produce a small activation
of the CHIP chunk without interfering in the ability of the GREAT chunk to resonate.
Figure 14B thus illustrates the network principle of competitive teaming by which one
chunk’s resonance is prevented by conjoint activation of multipie competitors.

The consequences of competitive teaming arve further llustrated in Figures 14C and
14D, which are identical to the simulations of Figures 14A and 14B except that the /1/ and
/p/ items are presented following the /tf/ iten:. In Figure 14C (/tf/ duration=60 msec),
the network first wndergoes a resonant transfer from GRAY to GREAT, as the /t/ and
/tf/ items become active following the presentation of the /g/, /r/, /ei/ sequence. As in
Figure 12, this resonant transfer results in a single gronping event in the working memory
indicated by the resonant boost at approximaiely 350 msec. However, the subsequent
presentation of the /I/ and /p/ are able to bhuild on the residual activity of the /tf/ item
in the working memory and elicit a CHIP resonance. The CHIP resonance defines a second
distinct resonant event in the working memory that corresponds to the activation boost at
approximately 520 msec. Because the /4f/ item remains weakly active during GREAT’s
resonance, both GREAT and CHIP can resonate in sequence with their working memory
items. By creating two distinet resonances under these conditions, the network illustrates
how a single noise interval, exciting both /t/ and /tf/ item codes in working memory,
can be grouped both backwards in thue with GREAT and forwards in time with CHIP,
as in the “great chip” percepts of the Repp et ol {1978) experiments. Figure 14D, by
contrast, shows that a relatively stronger /tf/ input oceurring after an identical preceding
silent interval will result in the seguential resonances of GRAY and CHIP, resulting in the
“oray chip” percept that occeurs in the Repp ef el data at intermediate silence durations
and brief noise durations. The conditions which favor the formation of the “gray chip”
percept, then, include /tf/ item activation strong relative to /t/ item activation, and the
subscquent. competitive teaming of the CHIP and GRAY chunks to inhibit the GREAT
chunlk.

7. Simulations of the Repp et al. (1988) Data

The siimulations above illustrate the key dynamic processes that allow the ARTWORD
model to successtully shmulate the percepiual data of the Repp et ol experiment. Multiple-
item grouping with resonant feedback, resonant transfer across silence mtervals, and the
competitive teaming of overlapping chunks, together define system dynamics that describe
the perceived phonemic groupings as a function of infer-word silence and syllable-initial
fricative noise.

7.1 Method
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To simulate the Repp et ¢l. {1978) data, the ARTWORD network described above was
constructed with 8 phonemic item codes in the working memory {/g/, /v/, /eif, /t/, /4]/,
/17, /1/, and /p/) and 4 chunks in the grouping network (GRAY, GREAT, CHIP, and
SHIP). All network parameters were set to fixed values {see Appendix B). Input pulses of
fixed magnitude were presented to the working memory, and item, chunk, and transmitter
activities were integrated. All items had fixed durations of 62 msec, except /t/, /tf/, and
/ [/, whose durations depended on the durations of the silence and fricative noise intervals.
The durations of these items were determined as described in Equations (A6) to (A8) in
Appendix A. As in the Repp et of. (1978) experiment, silence duration varied from 0 to
100 msec 1 10 msee steps andd noise duration varied from 62 to 182 msec in 40 msec steps,
producing 44 combinations of silence and noise durations. For each of the 44 combinations,
the corresponding input schedule was determined and presented to generate all network
trajectories for items (w;), list chunks (w;), tem-to-list chunk transmitters (24, ), and list
chunk-to-item transmisters (z;,). Dynamical equations for all of these variables are given
in Appendix A.

7.2 Mapping network activations to response probebilities

Once network activations were determined, chunk activations were integrated and
mapped to single word response probabilities, in accord with the four alternative forced
choice task of the Repp et ol (1978) subjects. Chunk activities were defined as the inte-
grated activity from list onset to 200 msec after list offset, a window which encompassed
the resonant responses of all chunks, To determine the probability of a “gray” response,
a decision variabic Deopay was formed from the activation of the GRAY chunk relative
to the combined activation of the GRAY and GREAT chunks (Luce, 1959), and likewise
Dearip was constructed from the integrated activation of the CHIP chunk relative to the
combined activation of the CHIP and SHIP chunks. In the following fowr equations, we
denote the temporal limits of integration by writing “/x/ on” to indicate the onset of the
first phoneme of a given chunk and “/x/ off 4 2007 to indicate the time point 200 msec
after the offset of the last phoneme of a given chunk, where /x/ is the first or last phoneme.
Letting w; he the activity of list chunk j (see Appendix A for its equation), we define

Jei/ off 4200

Ucnay = /g / on ‘l.f.-(.;'n.m"(f:)diy (1)
v Jt/ off + 200 -
Uanipar = 1/ on weanpar(thdt, (2)
Jp/ off 4+ 200 N
Ucnip = / o uc )i, (3)
] fon

and

//p/ off ++ 200

Uerprp =
SHIT ) [ jom

wsirp{t)dt, (4)



from which we further define

Ucray |
Denay — — (5)
! Uanay + Ugriar '
and
. Ucrrp .
Denp = : (6)

Ucnip + Uspp

To map the decision variables to response probhabilities, each was linearly rescaled and
perturbed by Gaussian noise of fixed mean and nnit variance (Green & Swets, 1974). That
ig, letting @ represent a cumulative normal distribution with zero mean and unit variance,
the final response probabilities were computed as

P(GRAY) = 01+ 6:%(03Dgnay + 04) (7)

and

PCHIP) = 05+ 6;8(0;Dcppp + bg). (8)

By construction, the complementary probabilitics are P(GREAT) = 1 — P(GRAY)
and P(SHIP) =1 - P(CHIP). The free parameters §; were chosen to maximize the log
likelihood of the predicted values with respect to the data. Thus 8 free parameters were
chosen to fit the mtegrated network responses to the 88 data points (44 “gray” response
probabilities and 44 “chip” response probabilities). Maximization was performed with
the Nelder-Mead siiplex search, run for 500 iterations {(Press, Flannery, Teukolsky, &
Vetterling, 1988).

7.8 Swmulation resulls

The computer simulations summarized in Figure 15 show that ARTWORD closely
approximates the perceptual data averaged over 10 subjects in the Repp ef ol (1978) ex-
periments. All of the major trends shown in the reported psychometric data ave replicated
by ARTWORD. The ARTWORD model globally accounts for 91% of the variance of the
single word response probabilities. The probability of cither a “gray”™ response or a “chip”
response decreases with longer noise intervals, Figure 158 shows that “chip” responses
increase monctonically with increasing silence infervals. Figure 10A shows, as in the data,
that the likelihood of a “gray” response mcreases with increasing silence, for longer noise
intervals (102-182 msec). Under these conditions, the pgychometric functions for “gray”
are non-monotonic. In ARTWORD, at the longer silence durations, the CHIP chunk can
more effectively inhibit the GREAT chunk, and so, via competitive teaming, the GRAY
chunk attains a relatively greater proportion of the total activation. Thus, when the de-
c¢ision variable is added to Gaussian noise, it is more likely to yield a “gray” response at
longer silence durations.

Figure 16 shows the category boundaries derived from the response probabilities plotted
in Figure 15. Asg described above, to derive the boundaries the prohability surface defined
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by the curves in Figure 16 was interpolated with a cubic polynomial in 1 msec steps on
a grid spanning silence durations between 0 and 100 msee and noise durations betweexn
62 and 182 msec. For each word pair (gray/great, and chip/ship), the contour of 50%
probability was determined and plotted. Figures 17A-D show the category boundaries
derived from the data and the model predictions in more detail. Figures 17A-D also
include the 60% and 40% probability contours, which give a measure of the uncertainty
associated with the perceptual boundaries between the response regions. The data and
model show similar certainty regions, or confidence intervals, for the different parametric
combinations of silence and noise.

In Figures 17A-B, the 40%-60% GREAT response region is extremely tight for noise
durations greater than 120 msec, indicating a steeply sloped decision function. As silence
duration increases above 30 msec, the perceptual contours hroaden, indicating psycho-
metric functions with shaliower slopes, or greater uncertainty. In hoth the ARTWORD
predictions and the reported data, the contours show a tendency to flare outwards at the
greatest silence durations tested, showing that the decision between “gray chip” and “great
chip” 1s uncertain. While the ARTWORD 50% boundary exits to the right (i.e. towards
longer silence durations), the boundary interpolated from the Repp et ol. (1978) data exits
downwards (i.e., towards shorter noise durations). Observing the 40% GREAT decision
contours, however, shows that both the model and data show a similar increase in “great”
responses at low noise durations at the longest silence durations. The deviation of the
ARTWORD model’s predicted 50% boundary at the longest silence durations appears to
be due to the shallower slope of the gray-great decision functions at longer noise durations;
that is, the ARTWORD model assigns too high a probability to a GRAY resonance in this
region.

As noted above, the model boundaries result from systemwide interactions and can be
altered by varying parameters. The model boundary m Figure 178 could, for example, be
driven downwards in by an input representation that allocated less input to the /t/ item
at these longest silence durations. However, without more data to inform the quantitative
nature of the acoustic-phonetic mapping between inputs and phonemic iteimn activations,
precise determinations of the input representation achieved by the auditory system at the
level of the working memory must be deferred. Quantitative exploration of the perceptual
space by varying network parameters such as integration rate and chunk thresholds, how-
ever, does sugpest further perceptual experiments to determine which network processes
account for the variations hetween the ARTWORD bhoundaries and the boundaries derived
from the data.

Figures 17C-D show that, as in the data, the predicted “chip-ship” decision bound-
ary becomes less steep at mereasing silence durations. Both the predicted and actual
boundaries are through the same parametric region of silence and noise durations. The
reported data generates upwards swerves in both the “gray-great” houndary (60-70 msec
silence durations) and the “chip-ship” boundary (30 msec and 80 msce silence durations)
which are not apparent in the ARTWORD boundaries. However, without knowledge of
the individual responses in the Repp et ol (1978) data, it is difficult to assign function-
ally meaningful interpretation to these swerves. In particular, it 18 unclear whether these
deviations result from systematic competition between co-active lexical representations or
merely reflect differing decision thresholds across subjects.
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8. Relation of ARTWORD to models of lexical segmentation

ARTWORD was developed primarily to show that the dynamics of resonance can
account for the cognitive processes underlying the perceptual integration of phonemic m-
formation during conscious speech perception. As a cognitive model of speech perception,
ARTWORD bears interesting relationships to several models in the related domain of lex-
ical segmentation. Models of lexical segmentation, driven primarily by psycholinguistic
research and by computational analyses of word embeddings in large vocabulary corpora,
have converged on strategies that, like ARTWORD, permit the gradual activation of candi-
date groupings which best match the arriving input strean (see reviews in, e.g., Alfmann,
1990; Pigoni and Luce, 1987; and Miller and Eimas, 1995). Three models in particular
- Cohort (Marslen-Wilson, 1987), TRACE (Elman & McClelland, 1986}, and Shortlist
(Norris, 1994} — are interesting in light of the similarity of some of the functional pro-
cesses they propose. Like TRACE and Cohort, the ARTWORD model explaing lexical
segmentation on the hasis of bottom-up and top-down information flow, and, like all three
models, ARTWORD uses some form of competition among candidates. The ARTWORD
model shares the quantitative specificity of TRACE and Shortlist while incorporating a
number of conceptually attractive features not present in these models, including percep-
tual resonance, category collapse, and a real-time processing framework that allows it to
capture the complex perceptual effects caused by variation of segmental durations in the
Repp et al. (2978) data.

The Shortlist model has some similarities to processes used in ART networks, although
it omits the key ART process of top-down information flow. Shortlist uses “hottom-up
migmateh information to penalise mismatching candidate words very strongly” (MceQQueen
et al., 1995, p. 325). This strategy resembles the mismatch reset that oceurs in ART
networks when bottom-up input to the working memory differs substantially from the
expected pattern being read out through long-term memaory traces from the active lexical
hiypotheses in the masking field. Like TRACE, but unlike Coliort, the Shortlist model uses
lateral inhibition between active word candidates to decide the competition between them.
Cohort, instead, postulates that the activity levels of the candidates do not influence each
other, but rather thas a higher-level decision mechanism determines the outcome of the
competition hetween them. Despite the difficulty of testing between these hypotheses,
MceQueen et el (1995) present statistics on lexical embedding and experimental results
arguing for the competition between active candidates. In particular, any other decision
mechanism muss show a number of sensitivities simply accounted for by alateral inhibitory
mechanism; for example, “that the activation of each candidate is sensitive to the impact
which that candidate has on the interprefation of hoth that part and other parts of the
utterance”, and an ability “to weigh up each candidate with respect not just to that
candidate’s {it to the part of the nput with which it is aligned, but also with respect to how
that candidate fits with other candidates, spanning other parts of the input” (McQueen et
al., 1995, p. 327} Because the competition in ARTWORD is based on the lateral inhibitory
connections between unitized representations which continuously integrate the available
bottom-up phonemic input, the ARTWORD model shows exactly these sensitivities.

All of these models have provided informative accounts of aspects of lexical segmenta-
tion. However, 1t is difficult to see how these other models would explain grouping data
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like those of Repp et ol (1978). One principle limitation of these models is the absence of
a natural reset mechanism which would allow simultaneous competitions to influence se-
quentially activated and reset word representations. It is also unclear how silence intervals
function in the above theories and whether they could contribute evidence for particular
groupings of phonemic items by delaying subsequent activations. For example, in TRACE,
a hand-coded silence feature inhibits active word representations, and thus silence acts as
a fixed, wordlike competitor. In ARTWORD, by contrast, silence 1s perceived when a tem-
poral break occurs in the rate of resonance. It is an emergent property, not a fixed network
feature. The property of resonant transfer can create a fusion event between list chunks
only when a delayed item arrives as the firet resonance weakens due to reset. Resonant
transfer thus requires both ART reset mechanisms and a real-time treatment of silence.
In twrn, the ARTWORD model can naturally generate trading relations between acous-
tic cues, including silence, that are problematic for models like TRACE. Other problems
faced by the TRACE, MERGE, Shortlist, Interactive Activation, Fuzzy Logic Model of
Pereeption, and related models are discussed in Grossherg (1999a) and Grossherg ef al.
(1997).

0. Discussion: Resonant dynamics and silence in speech perception

The present article has deseribed the ARTWORD neural network model of perceptual
integration in speech perception, which quantitatively extends earlier ART-based speech
models to allow multiple-item grouping of phonemes into word level representations (Gross-
berg, 1978, 1986; Cohen & Grossherg, 1986; Grossherg et al., 1997). The ARTWORD
maodel posits that the grouping process involves hottom-up activation of word chunks which
feed back and support their phonemic items. The top-down support of phonemic items,
in turn, leads to the dynamic emergence of a resonant event. As inputs stream into the
working memory, shifting the evidence for competing chunks, the resonant wave spreads
to different phonemes, thereby creating a shifting attentional focus. Categorization and
grouping of phonemic inputs is shown to depend hoth explicitly on phonemic activation
strength and implicitly on the durations, or local rates, of input presentation. In particu-
lar, silence intervals can play a crucial vole in the transfer of perceptual resonance between
actively competing candidates.

The ARTWORD model processes of item integration, chunk competition, and reso-
nanece also ilustrate how later-occurring information can influence the formation of earlier
perceps.  Again, the duration of silence in the speech stream determines key aspects
of these backwards effects.  For example, at longer silence durations, ARTWORD re-
mains able to generate “great” groupings because the habituative collapse of the GRAY
chunk leads to segmentation of the fricative noise “sh” that supports resonances with hoth
GREAT and CHIP. Analyses of the problems posed by lexical segmentation are beginning
to recognize how segmental durations in the speech stream can have profound effects on
processing and necessitate the kind of limited temporal integration windows that emerge
from resonant dynamics (sce, c.g., Newman & Sawusch, 1996). As Mastys noted, “the
fiterature...suggests that segmentation problems dictate how lexical processing unfolds in
time. Sequential processing, which for a long time was considered a natural and universal
prineiple, can no longer be viewed as the only mechanism during speech processing...both
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proactive and retroactive mechanisms seem to he necessary to parse the input successtully”
(Mattys, 1997, p. 324).

The resonant dynamics of the ARTWORD system highlight the significance of time
itself as a dimension i grouping and generating perceived segmentations. The role of
silence and noise durations, as distinet from their influence on phonemic item responses, in
determining the perceived identity of phonemiec and lexical units demonstrates the impor-
tance of ongoing temporal integration to the perceptual speech code. While the acoustic
cues carried by spectral features are themselves dependent on the temporal aspects of the
speech stream, speech research recoguizes the importance of the temporal dimension of
information. Rosen (1992, pp. 74-75) described how temporal envelope information, or
“fuctuations in overall amplitude at rates between about 2 and 50 Hz”, contribute strongly
to perception of mamner (e.g., /f/ vs. /tf/ rise-thues), tempo, rhythm, stress, and syl-
labification or juncture. Despite the fact that segmental durations have always oceupied a
prominent role in acoustic and phonetic investigations of vowel and congonant perception
(Bastian ¢t al., 1961; Repp et al., 1978; Dorman et «l., 1979), psycholinguistic studies of
word recognition have only recently begun to take into account time itsclf as a significant
processing dimension (Mattys, 1997).

Many lines of evidence support the view of top-down interactions illustrated in the
ARTWORD model wherehy higher-level representations (e.g., phrases and words) guide
phonemic processing. These interactions are conceptually consistent with both the phone-
mic restoration data reviewed above and data from the lexical identification shift, which
shows that phonemic perception along a stimulus continuum (e.g., /g/-/k/) presented in
word-nonword context {e.g., /gift/-/kift/) is biased towards the word (Ganong, 1980; M-
cQueen, 1991; Gordon, Eberhards, & Rueckl, 1993). Attention has also been shown to
modulate the processing of phonemic cues. Gordon et el (1993} showed that distrac-
tor tasks differentially affect subjects’ perceptions of phonemic distinetions. For example,
formant pastern and vowel duration Lelp distinguish the vowels /i/ (in “beat”) and /1/
(i “Dhit”). Attentional demands decrease the relative importance of formant pattern and
increase the relative inportance of duration. Such top-down grouping effects also occur in
the visual processing of lexical items; e.g., in the word length effect: letters are perceived
more reacdily when they arve embedded in longer words, up to a certain length (Samuel
et al., 1982, 1983), which was predicted by ART (Grossberg, 1978a). Available data thus
make it clear that top-down interactions in the form of attention, semantic and syntactic
context, and lexical and phonemic status, all play a role in shaping acoustic information
such as segment durations, formant transitions, and speech-rate estimates into perceived
linguistic units.

The ARTWORD model elaborated herein provides a further illustration of how reso-
nant dynamics can explain diverse anditory perceptual events, mcluding aunditory stream
formation (Govindarajan et o, 1994; Grossherg, 1999¢) consonantal geminate-cluster dis-
tinctions {Grossherg et al., 1997), and other qualitative aspects of speech perception (Co-
hen ef al., 1988). The further development of these ART models of resonant interactions
can proceed along several fronts. Within the domains of audition and speech perception,
a prospect for future research concerns the integration of lower-level pitch perception (Co-
hen, Grossberg, & Wyse, 1995) and phoneme processing networks (Boardman et al., 1999;
Cohen & Grossherg, 1997) with higher-level speech and streaming networks. More general-
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ly, the ubiquity of resonant events, and in particular their dynamic sensitivity to temporal
variations in input, suggests that they reflect universal principles of adaptive sensory pro-
cessing. As reviewed by Grossberg (1995, 1999d), a growing body of evidence suggests that
the ART mechanisms which underly the dynamic formation of resonant events in speech
are also common in other attentive brain systems. As specific ART-based networks are de-
veloped to explain even more data, the existence of shared dynamic processing mechanisims
can further clarify and integrate our understanding of hrain function,

APPENDIX

A. ARTWORD Model Equations

ARTWORD is defined mathematically by differential equations which indicate how
item and chunk activities change in time. These network equations extend those developed
in Grossherg ¢t ol. {1997) to include chunks sensitive to multiple items, using the principles
of the masking field architecture of Cohen and Grossherg (1986, 1987). Below, Greek letters
denote fixed parameters, and I, w;, and u; denote the activation levels of the th input
and working memory item, and jth list chunk, respectively. Likewise, z5,, and z;, denote
the quantity of transmitter activated by the 7th item in the working memory and the jth
chunk, respectively.

Iem Working Memory
Working memory activation is described by a membrane, or thm ting, network equation

(Grossherg, 1973). The activity w; of the ith item coded in working memory changes
according to the equation

Wﬂiﬂ = T - e ) I+ 7]}.{(?05} L ’1,'“,! Zia | Ty L ao U)Z“" A L Wi ! (Al.)
ol e hi

where the symbol 7« ¢ denotes the relation ©j is connected to i7; ie., the existence
of an excitatory synaptic pathway between item ¢ in the working memory and chunk j
in the grouping network. Parameter ', common to both the working memory and the
Hst chunking network, defines the global processing rate at which neurons in the network
integrate their mputs. In general, I' tracks the mean rate of incoming speech so that
processing can adjust for variations i segmental durations that occur at different speaking
rates {Grossherg ef ol 1997). In the present article, ARTWORD simulates the Repp et
al. {1978) data presented at a single speaking rate, so it suffices to fix I' to a constant
value for all simulations.

By Equation (A1), working memory activity increases to a maximum of 1 via excitatory
inputs that are shunted by term (1-w;). Shunting the excitatory inputs ensures that
network activity remains bounded below 1. For a given item i, two sources of excitation
exist: the bottom-up input I; and the summed activity of all chunks j connected to item ¢
by positive weights ;. The activity u; of the jth chunk must exceed a positive threshold 4,
before it can begin to send excitatory top-down signals u] = max (u; ~ v, 0) to working
memory items, The signals emitted by each chunk are thon multiplied, or gated, by the
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supply of neurotransmitter z;, currently available to that chunk. The net top-down signal
is scaled by the global parameter n which indicates the influence of top-down feedback on
all working memory item activations relative to bottom-up input I. Top-down input is
also gated by the Heaviside function of item activity, H(w;) defined to he zero when w; = 0
and to be 1 when w; > 0. This gating ensures that top-down feedback does not activate
a particular item ¢ until after that item is first excited by bottom-up input I;. Thus, it
performs a matching process that prevents the top-down expectations themselves from
activating their own items in the absence of external mput. Some partial activation from
hottom-up input, however weak, is necessary for top-down feedback to begin to support
phonemic item codes.

Three sources of inhibitory input act to counter the excitation of each working memory
item. Each item decays passively at rate o, and actively due to both non-specific top-
down inhibition and on-center, off-surround competition within the working memory. The
top-down inhibition via the term £ 5, ug serves as an automatic gain control to attenuate
or suppress unexpected features in the working memory as chunks in the grouping net-
work become active, and to balance the excitatory support which expected items receive
from their active chunks. The on-center, off-surround competition via the term #37..; wy
keeps the total activity i the working memory normalized by attenuating old items as
new ones become active. This competition also produces a natural recency gradient of
temporal order information, so that, other things being equal, a more recently presented
mput will command a higher item activation — and thus a greater proportion of the total
activity forming the {[spatial]] pattern across working memory - than would a less recently
presented input., The three imhibitory inputs to each item arve shunted by the term —auy,
keeping item activity bounded to be greater than or equal to zero.

List Chunking Network

Fach list node, or c¢huik, in the grouping network is connected via top-down synaptic
pathways to the sane items i the working memory that excite it in a hottom-up fashion.
The top-down weights 7j; are identical to the corresponding bottom-up weights ;. Like
items in the working memory, chunks in the grouping network obey shunting menibrane
equations whose integration rate is modulated by parameter I For list node j in the
grouping network, activity w; changes according to the equation

du; J/ R N . e . _
u’] =1 [(1 - u;) o Yol z b O s | g {8+ vigelw) ||, (A2)
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where the sigmoidal signal functions f and ¢ act to contrast-enhance the excitatory and
inhibitory chunk interactions, respectively, and arve defined by

2 .2

£ &

fla) = eI and  g{a) = o, (A3)

0.152 2%

As in the working memory, both excitatory and inhibitory inputs to list nodes are
shunted via the terms (1 — u;} and —uy, respectively, thereby keeping list node activity
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bounded bhetween zero and one. List nodes are excited by their working memory items
w;, 1 < 7, when item activity exceeds a threshold 4y, Thresholded activity w) = max(w;
Yiw, 0) 18 multiplied by synaptic weights 7;; and further gated by the neurotransmitier
available to each item, 2, before exciting list nodes via term ;f— i 707 Zh. The item
activations that excite a list node are normalized by the number of items that form synaptic
connections with that node; that is, by the number of items encoded by the List. Term
p/o;. where ¢; is proportional to the number of items encoded by list chunk j, affects
this normalization, or conservation of synaptic sites. Normalizing by list length helps to
prevent chunks from becoming active above their positive feedback thresholds +;, before
all of their constituent items have heen activated in the working memory.

Eacl: list node also sends self-excitatory input ¢; f(u; }z;, via the sigmoidal signal func-
tion, f(w). This positive feedback is scaled to be larger for chunks encoding longer lists,
via the term ¢;. Scaling self-excitatory feedback in proportion to list length gives larger
chunks a competitive advantage when all of their items are active in: the working memory
by allowing them to overcome the greater activations of chunks coding for sublists of their
items. Self-excitatory feedback is also gated by a chunk’s available fransmitter supply zj,.
Such gating ensures that resetting of chunk activasion by habituative collapse is possible.

Inhibitory input to each chunk comes from only two sources: pasgsive decay and com-
petition from other chunks. Chunk passive decay is determined by parameter 6, chosen
to be smaller than item passive decay o so that chunk activity lags the item activity it
is integrating (Grossherg ef al., 1997). The nhibition Y, ¥rg(ws) from other chunks is
scaled by the feedback function ¢ defined in Equation (A3), and by the inhibitory synap-
tic coeflicients o, defining the competitive strength between two chunks & and j. The
Y coetlicients are set to zero for two chunks that code for mutually exclusive lists, and
grow with increasing overlap between chuunks. Cohen and Grossherg (1986) defined the
strength of the inhibitory interaction from chunk £ to chunk j in proportion to the product
||| B YT 1), where [ and 7] denote the lengths of the Hsts coded by chunks & and ;.
Such a rule specilies that chunks coding for longer lists have stronger masking paraimesers
(via [I]), that inhibition grows proportionally to list overlap {via [K'N /). and that all
chunks maintain weale long-range inhibitory interactions (via the term 1). In the present
article, the 4y, were selected based on chunk size and overlap, but varied as necessary
because, unlike in the network developed by Cohen and Grossherg (1986), the masking
field did not contain all possible chunks coding the itens in the working memory.

By Equation (A3), inhibitory feedbacl 34 thi;g(us) between chunks hecomes active

carlier than chunk self-excitatory feedback £ 37, 70tz becanse of the smaller term
oy 2uiei T,

0.15% in the definition of g{2) than term 0.75% in f(x). This predominantly inkibitory inter-
action within the grouping network helps to prevent chunks from entering seif-sustaining
positive feedback loops when they are presented with an insufficient input.

Trapsmatter Dynamics

Equations (A1) and (A2) show that all specific signals between the working memory
ad grouping network, as well as excitatory feedback within the grouping network, ave
gated by their respective levels of available transmitter. Transmitters for items and lsts
nodes obey laws of an identical form, introduced by Grossherg (1969):
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Similar laws have recently been reported in visual and somatosensory cortex (Abbott,
Varela, Sen, & Nelson, 1997; Markram & Tsodvks, 1996}, In Equations (A4d) and (A5),
transmitters accumulate at constant rate ¢ until they attain a maximal level of 1 via
the shunting term (1 — z). When no signals are consuming the transmitter supply, so
that wh = 0, or v = 0, then the transmitter accumulates until it equilibrates at a
valne of 1. When suprathreshold signals w® or w™ ave sent along the pathways, then
transmitier habituates to lower equilibrium values as determined by the strength of the
signals and by the parameters A and g, which specify linear and quadratic rates of activity-
dependent transmitter inactivation, respectively {Gaudiano & Grossherg, 1991, Grossherg
et al., 1997).

Input to working memory

ARTWORD incorporates fixed acoustic-phonetic pathways, assumed to liave been
learned during a prior stage of self-organization, into the activation of working memo-
vy items. Thus phonemic item responses will be sironger to sounds that better match
the bottom-up pattern extracted by lower levels of transient and sustained auditory signal
processing, as in Boardman et ¢l. (1999). For example, a shorter fricative noise interval
will provide greater input to the /tf/ item in working memory than to the /J/ item, be-
ause in natural speech the voiceless affricate consonant has a shorter duration than the
voiceless fricative (Howell & Rosen, 1983). Greater input can, in general, take the form of
activation at a greater amplitude or activasion for a longer duration. In the simulations,
input to the je/, /r/, jei/, /1), and /p/ items were fixed as pulses of equal amplitude
and duration for all combinations of silence and noise durations. Input to the stop /i/,
affricate /tf/, and fricative / [/ items consisted of fixed amplitude pulses whose durations
depended on the segmental durations of silence and noise. In particular, the duration of
the /t/ item was chosen to increase wmonotonically with the interval of preceding silence
and the duration of noise, such that its duration ranged fromn 10 msec (at silence durations
< 10 msec) to 41 m%("(' (maximal /t/ input, at silence duration=100 msce, noise dura-
tion=182 msec). The /tf/ input duration increased monotonicaily with silence duration
but deercased exponentially with increasing fricative noise duration, while the /f/ input
behaved in a complementary faghion. Unless otherwise noted, the durations of the /t/,
Jt1/, and /f/ input pulses reflecting the acoustic-phonetic map are given by the following
CUALI0NS:

Duration of /t/ = 10 + 0.025(N D — 523/ SD+, (A6)
N .
Duration of /1f/ = 1270 08ND in (S D, ~-—~Pm;wi§); (AT

and
Duration of /J/ = ND — Duration of /tf/, (A8}
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where ND = duration of the fricative noise, S0 = duration of the preceding silence
interval, and SDV = max(SD — 10, 0).

B. Parameters Used in ARTWORD Simulations

This section describes the parameters used to generate the simulations depicted in
Sections 6 and 7. Greek letiers refer to parameters in Eqns. (Al)-(A5). In the following,
phonemic item codes are indexed by ¢ = 1, ..., 8, denoting respectively items /g/, /r/, [ei/,
St e 1 E L /T and /p/. Chunk codes are indexed by 7 = 1, ..., 4, denoting respectively
chunks GRAY, GREAT, CHIP, and SHIP. All weights given below are item-to-chunk
weights 75, since the reciprocal weights are equal; ie., 7; = 75 Thus, for example, in
describing the weights 75, the value 71y denotes the weight between the fivst item (/g/) and
the second chunk (GREAT). In describing the inhibitory cocfficients between chunks, ¢,
the first subscript & denotes the source of the inkibitory signal and the second subscript
7 denotes the target. Thus, sy denotes the inhibitory influence of chunk 3 (CHIP) on
chunk 2 (GREAT). Unless otherwise noted, 1y = |K|[({KX N J]), where [K| and |J| denote
the lengths of the lists coded by chunks & and 7. Each normalization coefficient ¢, was
set equal to the number of inputs encoded by chunk j; e, ¢; = |{m; : 7; > 0}]. For all
simulations, the following parameters were fixed: T' = 0.7, a =003, s =01, = 1; p =
TG 6 = 0.02; A = 0.10; g0 = 3.0; v = 0.12,V2. In Section 6, ¢ = 0.01 and in Section 7, ¢
= (.05,

Section 6.1, Tigures 9 and 10: The masking field contains two chunks, w, = GRAY, wy
= CHIP. Top-down thresholds were set to vy, = 0.12, ~g, = 0.14. Top-down feedback scale
parameter i in Equation (Al) was set to 0. Weights between items and chunks were as
follows: 7yy == 0.1333; 791 = 0.2333; 791 = 0.4334; 715 = 0.1000; 799 = 0.1500; 735 = 0.2500;
752 = 1.2000. All other weights 7, = 0. Inhibitory coeflicients were thy o = 0y = 12. For
Figure 9, the /g/ item was activated from ¢ = 0 to ¢ = 62. For Figure 10, the items /g/.
Jr/, and feif were activated sequentially for 62 msec each, beginning at ¢ = 0.

Section 6.2, Figure 11: All parameters were chosen as above, except the top-down
feedback parameter 3 in Equation (Al) was set to 3. In Figure 11A, item activation was
as in Figure 10, In Figure 113, item activation was as in Figure 11A with the additional
activation of the /t/ item following the offset of the /ei/ item, for a duration of 62 msec.

Section 6.3, Figures 12 and 13: All parameters were chosen as above, except for the
input presentation. For Figure 12, the duration of the /t/ item activation was 34 msec.
The items fg/, v/, and Jei/, were activated sequentially for 62 msec eacl, heginning at
t = 0 msec. The /t/ item was activated after a silence duration of 60, 65, 70, and 75 msec,
in A, B, C, and D, respectively.

For Figure 13, the silence duration between /ei/ offset and /t/ onset varied from 50
msee to 100 msec in steps of 5 msec. The duration of the /t/ item activation varied from
32 msee to 52 msec i steps of 2 msec. For each combination of silence duration and /t/
duration, the entire network was ntegrated and total activasion of the GREAT chunk
was comaputed. To produce Figure 13, a two-dimensional grid with 1 msec¢ steps in each
dimension hetween 50-100 and 32-52 msecs was created and the GREAT chunk activation



54

was interpolated over this grid using a cubic polynomial. Figure 13 is a contour map of
the resulting values, with darker shades representing greater GREAT chunk activation.

Section 6.4, Figure 14: Chunk inhibitory coefficients were iy = 12,93 = 3,13 = 4.
Pop-down threshold 4z, = 0.12. Weights between items and chunks 1 and 2 were as above,
with the exception that 74y = 1.6. The weights between items and chunk 3 (CHIP) are as
follows: 753 = 0.35; 753 = 0.01; 773 = 0.20; 793 = 0.25. All other parameters were chosen
as above.

Section 7, Figures 15-17: Top-down thresholds were set to vy, = 0.18, all 7. Weights
between items and chunks 1-3 were as above, except that 7z = 0.02 and 743 = 0.02. The
weights hetween items and chunk 4 (SHIP) arve as follows: 754 = 0.02; 764 = 0.33; 74 =
0.20; 7z4 = 0.25. Chunk inhibitory coeflicients were iy = 1,thay = 15,403y = 9,103 = 9.
Silence durations and item activation durations for items 5, 6, and 7 were as specified in
Equations (A6)-{A8). Input amplitudes were 0.18 (items 5, 6, 7, and 8), 0.36 (item 4)
and 0.12 (items 1, 2, and 3). All other parameters were chosen as ahove.

¥
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