login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093112
a(n) = (2^n-1)^2 - 2.
7
-1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, 4190207, 16769023, 67092479, 268402687, 1073676287, 4294836223, 17179607039, 68718952447, 274876858367, 1099509530623, 4398042316799, 17592177655807, 70368727400447, 281474943156223, 1125899839733759
OFFSET
1,2
COMMENTS
Cletus Emmanuel calls these "Carol numbers".
LINKS
Amelia Carolina Sparavigna, Binary Operators of the Groupoids of  OEIS A093112 and A093069 Numbers(Carol and Kynea Numbers), Department of Applied Science and Technology, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
a(n) = (2^n-1)^2 - 2.
From Colin Barker, Jul 07 2014: (Start)
a(n) = 6*a(n-1) - 7*a(n-2) - 6*a(n-3) + 8*a(n-4).
G.f.: x*(16*x^2-14*x+1) / ((x-1)*(2*x-1)*(4*x-1)). (End)
E.g.f.: 2 - exp(x) - 2*exp(2*x) + exp(4*x). - Stefano Spezia, Dec 09 2019
MAPLE
seq((Stirling2(n+1, 2))^2-2, n=1..23); # Zerinvary Lajos, Dec 20 2006
MATHEMATICA
lst={}; Do[p=(2^n-1)^2-2; AppendTo[lst, p], {n, 66}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
Rest@ CoefficientList[Series[x (16 x^2 - 14 x + 1)/((x - 1) (2 x - 1) (4 x - 1)), {x, 0, 25}], x] (* Michael De Vlieger, Dec 09 2019 *)
PROG
(PARI) Vec(x*(16*x^2-14*x+1)/((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jul 07 2014
(PARI) a(n) = (2^n-1)^2-2 \\ Charles R Greathouse IV, Sep 10 2015
(Python)
def A093112(n): return (2**n-1)**2-2 # Chai Wah Wu, Feb 18 2022
CROSSREFS
Cf. A000225.
Sequence in context: A201437 A202509 A009202 * A091516 A064385 A269520
KEYWORD
sign,easy
AUTHOR
Eric W. Weisstein, Mar 20 2004
EXTENSIONS
More terms from Colin Barker, Jul 07 2014
STATUS
approved