login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064001
Odd abundant numbers not divisible by 5.
6
81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071
OFFSET
1,1
COMMENTS
Or, odd abundant numbers that do not end in 5.
All terms below 2000000 are divisible by 21 (so by 3). Moreover, except for a few, most are divisible by 231. - Labos Elemer, Sep 15 2005
An odd abundant number (see A005231) not divisible by 3 nor 5 must have at least 15 distinct prime factors (e.g., 61#/5#*7^2*11*13*17, where # is primorial) and be >= 67#/5#*77 = A047802(3) ~ 2.0*10^25. -- The smallest non-primitive abundant number (cf. A006038) in this sequence is 7*a(1) = 567567 = a(14). - M. F. Hasler, Jul 27 2016
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 169 (Rev. ed. 1997).
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
Carlos Rivera, Puzzle 329. Odd abundant numbers not divided by 2 or 3, The Prime Puzzles and Problems Connection.
Jay L. Schiffman, Odd Abundant Numbers, Mathematical Spectrum, Volume 37, Number 2 (January 2005), pp 73-75.
MATHEMATICA
Select[ Range[ 1, 10^6, 2 ], DivisorSigma[ 1, # ] - 2# > 0 && Mod[ #, 5 ] != 0 & ]
ta={{0}}; Do[g=n; s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&!Equal[Mod[n, 2], 0]&& !Equal[Mod[n, 5], 0], Print[n]; ta=Append[ta, n]], {n, 1, 2000000}] ta=Delete[ta, 1] (* Labos Elemer, Sep 15 2005 *)
PROG
(PARI) { n=0; forstep (m=1, 10^9, 2, if (m%5 && sigma(m) > 2*m, write("b064001.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 05 2009
CROSSREFS
Sequence in context: A069304 A157664 A218106 * A252625 A233994 A237942
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Sep 17 2001
EXTENSIONS
More terms from Robert G. Wilson v, Sep 28 2001
Further terms from Labos Elemer, Sep 15 2005
Entry revised by N. J. A. Sloane, Mar 28 2006
STATUS
approved