login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061037
Numerator of 1/4 - 1/n^2.
72
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675
OFFSET
2,2
COMMENTS
From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011
Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011
REFERENCES
J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.
LINKS
J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg.
Wikipedia, Balmer series.
FORMULA
G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.
a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005
a(n+2) = A060819(n) * A060819(n+4).
a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011
a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]
a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=3} 1/a(n) = 11/6. - Amiram Eldar, Aug 12 2022
MATHEMATICA
f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]
f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)
a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)
Numerator[1/4-1/Range[2, 60]^2] (* Harvey P. Dale, Aug 18 2011 *)
PROG
(PARI) a(n) = { numerator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
(Magma) [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011
(Haskell)
import Data.Ratio ((%), numerator)
a061037 n = numerator (1%4 - 1%n^2) -- Reinhard Zumkeller, Dec 17 2011
CROSSREFS
Cf. A061038 (denominators), A061035-A061050, A126252, A028347.
Sequence in context: A248256 A369039 A049457 * A070262 A372289 A171621
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, May 26 2001
STATUS
approved