login
A034676
Sum of squares of unitary divisors of n.
10
1, 5, 10, 17, 26, 50, 50, 65, 82, 130, 122, 170, 170, 250, 260, 257, 290, 410, 362, 442, 500, 610, 530, 650, 626, 850, 730, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1394, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2132, 2650, 2210, 2570, 2402, 3130
OFFSET
1,2
COMMENTS
Also sum of unitary divisors of n^2. - Vladeta Jovovic, Nov 13 2001
If b(n,k)=sum of k-th powers of unitary divisors of n then b(n,k) is multiplicative with b(p^e,k)=p^(k*e)+1. - Vladeta Jovovic, Nov 13 2001
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor Function.
Wikipedia, Unitary divisor.
FORMULA
Multiplicative with a(p^e)=p^(2*e)+1.
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2*s-2). - R. J. Mathar, Mar 04 2011
Sum_{k=1..n} a(k) ~ 30 * Zeta(3) * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = 1.5594563610641446770272272038182777336348840179730233519185104374159616326... - Vaclav Kotesovec, Sep 20 2020
MAPLE
A034676 := proc(n)
a :=1 ;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
a := a*(p^(2*e)+1) ;
end do:
a ;
end proc:
seq(A034676(n), n=1..40) ; # R. J. Mathar, Jul 12 2024
MATHEMATICA
f[n_] := Block[{d = Divisors@ n}, Plus @@ (Select[d, GCD[#, n/#] == 1 &]^2)]; Array[f, 50] (* Robert G. Wilson v, Mar 04 2011 *)
f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
PROG
(PARI) A034676_vec(len)={
a000012=direuler(p=2, len, 1/(1-X)) ;
a000290=direuler(p=2, len, 1/(1-p^2*X)) ;
a000290x=direuler(p=2, len, 1-p^2*X^2) ;
dirmul(dirmul(a000012, a000290), a000290x)
}
A034676_vec(70) ; /* via D.g.f., R. J. Mathar, Mar 05 2011 */
(Haskell)
a034676 = sum . map (^ 2) . a077610_row
-- Reinhard Zumkeller, Feb 12 2012
CROSSREFS
KEYWORD
nonn,mult
STATUS
approved