login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028254
Engel expansion of sqrt(2).
7
1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626, 495957494386, 2450869042061, 2629541150529, 4088114099885
OFFSET
1,2
COMMENTS
For a number x (here sqrt(2)), define a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1) = x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)a(n) - 1.
LINKS
Benoît Rittaud, La porte d’harmonie, Images des Mathématiques, CNRS, 2009 (in French).
Naoki Sato, Home page (broken link)
Eric Weisstein's World of Mathematics, Engel Expansion
Eric Weisstein's World of Mathematics, Pythagoras's Constant
EXAMPLE
sqrt(2) = 1.4142135623730950488...
1 + 1/3 = 4/3 = 1.3333333333333333333...; sqrt(2) - 4/3 = 0.080880229...
1 + 1/3 + 1/15 = 7/5 = 1.4; sqrt(2) - 7/5 = 0.014213562373...
1 + 1/3 + 1/15 + 1/75 = 106/75 = 1.4133333333333333...; sqrt(2) - 106/75 = 0.000880229...
MATHEMATICA
expandEngel[A_, n_] := Join[Array[1 &, Floor[A]], First @ Transpose @ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; expandEngel[N[2^(1/2), 7!], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)
CROSSREFS
Cf. A002193 (decimal expansion), A006784 (for definition of Engel expansion), A028257 (Engel expansion of sqrt(3)).
Sequence in context: A349204 A028265 A084041 * A318351 A137780 A079372
KEYWORD
nonn
AUTHOR
Naoki Sato (naoki(AT)math.toronto.edu)
EXTENSIONS
More terms from Simon Plouffe, Jan 05 2002
STATUS
approved