login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025302
Numbers that are the sum of 2 distinct nonzero squares in exactly 1 way.
4
5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 68, 73, 74, 80, 82, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 136, 137, 146, 148, 149, 153, 157, 160, 164, 169, 173, 178, 180, 181, 193, 194, 197, 200, 202, 208, 212, 218, 225, 226, 229
OFFSET
1,1
COMMENTS
From Fermat's two squares theorem, every prime of the form 4k + 1 is a term (A002144). - Bernard Schott, Apr 15 2022
FORMULA
A025441(a(n)) = 1. - Reinhard Zumkeller, Dec 20 2013
MATHEMATICA
nn = 229; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 1]] (* T. D. Noe, Apr 07 2011 *)
a[1] = 5; a[ n_] := a[n] = Module[ {s = a[n - 1], t = True, j}, While[ t, s++; Do[ If[ i^2 + (j = Floor[Sqrt[s - i^2]])^2 == s && i < j, t = False; Break], {i, Sqrt[s/2]}]]; s]; (* Michael Somos, Jan 20 2019 *)
PROG
(Haskell)
a025302 n = a025302_list !! (n-1)
a025302_list = [x | x <- [1..], a025441 x == 1]
(Python)
from collections import Counter
from itertools import combinations
def aupto(lim):
s = filter(lambda x: x <= lim, (i*i for i in range(1, int(lim**.5)+2)))
s2 = filter(lambda x: x <= lim, (sum(c) for c in combinations(s, 2)))
s2counts = Counter(s2)
return sorted(k for k in s2counts if k <= lim and s2counts[k] == 1)
print(aupto(229)) # Michael S. Branicky, May 10 2021
CROSSREFS
Cf. A002144 (subsequence), A009000, A009003, A024507, A025441, A004431.
Cf. Subsequence of A001983; A004435.
Sequence in context: A230486 A024507 A004431 * A268379 A221265 A055096
KEYWORD
nonn
STATUS
approved