login
A014080
Factorions: equal to the sum of the factorials of their digits in base 10 (cf. A061602).
28
1, 2, 145, 40585
OFFSET
1,2
COMMENTS
Poole (1971) showed that there are no further terms. - N. J. A. Sloane, Mar 17 2019
Base 6 also has four factorions, as does base 15. - Alonso del Arte, Oct 20 2012
This is row 10 of the table A193163. - M. F. Hasler, Nov 25 2015
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 145, p. 50, Ellipses, Paris 2008.
P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see pp. 68, 305.
Joe Roberts, "The Lure of the Integers", page 35.
D. Wells, Curious and interesting numbers, Penguin Books, p. 125.
LINKS
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
G. D. Poole, Integers and the sum of the factorials of their digits, Math. Mag., 44 (1971), 278-279, [JSTOR].
H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
Eric Weisstein's World of Mathematics, Factorion
FORMULA
If n has digits (d1,d2,...,dk) base 10, then n is on this list if and only if n = d1! + d2! + ... + dk!.
EXAMPLE
1! + 4! + 5! = 1 + 24 + 120 = 145, so 145 is in the sequence.
MATHEMATICA
Select[Range[50000], Plus @@ (IntegerDigits[ # ]!) == # &] (* Alonso del Arte, Jan 14 2008 *)
PROG
(J) (#~ (= +/@:!@:("."0)@":"0)) i.1e5 NB. Stephen Makdisi, May 14 2016
(Python)
from itertools import count, islice
def A014080_gen(): # generator of terms
return (n for n in count(1) if sum((1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880)[int(d)] for d in str(n)) == n)
A014080_list = list(islice(A014080_gen(), 4)) # Chai Wah Wu, Feb 18 2022
CROSSREFS
KEYWORD
nonn,fini,full,base
STATUS
approved