
12. The universal enveloping algebra of a Lie algebra

12.1. The definition of the universal enveloping algebra. Let V
be a vector space over a field k. Recall that the tensor algebra of V
is the Z-graded associative algebra TV := ⊕n≥0V

⊗n (with deg(V ⊗n) =
n), with multiplication given by a · b = a⊗ b for a ∈ V ⊗m and b ∈ V ⊗n.
If {xi} is a basis of V then TV is just the free algebra with generators
xi (i.e., without any relations). Its basis consists of various words in
the letters xi.

Let g be a Lie algebra over k.

Definition 12.1. The universal enveloping algebra of g, denoted
U(g), is the quotient of Tg by the ideal I generated by the elements
xy − yx− [x, y], x, y ∈ g.

Recall that any associative algebra A is also a Lie algebra with op-
eration [a, b] := ab− ba. The following proposition follows immediately
from the definition of U(g).

Proposition 12.2. (i) Let J ⊂ Tg be an ideal, and ρ : g → Tg/J
the natural linear map. Then ρ is a homomorphism of Lie algebras
if and only if J ⊃ I, so that Tg/J is a quotient of Tg/I = U(g).
In other words, U(g) is the largest quotient of Tg for which ρ is a
homomorphism of Lie algebras.

(ii) (universal property of U(g)) Let A be any associative algebra
over k. Then the map

Homassociative(U(g), A)→ HomLie(g, A)

given by φ 7→ φ ◦ ρ is a bijection.

Part (ii) of this proposition implies that any Lie algebra map
ψ : g → A can be uniquely extended to an associative algebra map
φ : U(g)→ A so that ψ = φ ◦ ρ. This is the universal property of U(g)
which justifies the term “universal enveloping algebra”.

In particular, it follows that a representation of g on a vector space V
is the same thing as an algebra map U(g)→ End(V ) (i.e., a represen-
tation of U(g) on V ). Thus, to understand the representation theory
of g, it is helpful to understand the structure of U(g); for example,
every central element C ∈ U(g) gives rise to a morphism of represen-
tations V → V (note that this has already come in handy in studying
representations of sl2).

In terms of the basis {xi} of g, we can write the bracket as

[xi, xj] =
∑
k

ckijxk,
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where ckij ∈ k are the structure constants. Then the algebra U(g)
can be described as the quotient of the free algebra k〈{xi}〉 by the
relations

xixj − xjxi =
∑
k

ckijxk.

Example 12.3. 1. If g is abelian (i.e., ckij = 0) then U(g) = Sg =
k[{xi}] is the symmetric algebra of g, Sg = ⊕n≥0S

ng, which in terms
of the basis is the polynomial algebra in xi.

2. U(sl2(k)) is generated by e, f, h with defining relations

he− eh = 2e, hf − fh = −2f, ef − fe = h.

Recall that g acts on Tg by derivations via the adjoint action. More-
over, using the Jacobi identity, we have

adz(xy − yx− [x, y]) = [z, x]y + x[z, y]− [z, y]x− y[z, x]− [z, [x, y]] =

([z, x]y − y[z, x]− [[z, x], y]) + (x[z, y]− [z, y]x− [x, [z, y]]).

Thus adz(I) ⊂ I, and hence the action of g on Tg descends to its action
on U(g) by derivations (also called the adjoint action). It is easy to see
that these derivations are in fact inner:

adz(a) = za− az
for a ∈ U(g) (although this is not so for Tg). Indeed, it suffices to note
that this holds for a ∈ g by the definition of U(g).

Thus we get

Proposition 12.4. The center Z(U(g)) of U(g) coincides with the
subalgebra of invariants U(g)adg.

Example 12.5. The Casimir operator C = 2fe+ h2

2
+h which we used

to study representations of g = sl2 is in fact a central element of U(g).

12.2. Graded and filtered algebras. Recall that a Z≥0-filtered al-
gebra is an algebra A equipped with a filtration

0 = F−1A ⊂ F0A ⊂ F1A ⊂ ... ⊂ FnA ⊂ ...

such that 1 ∈ F0A, ∪n≥0FnA = A and FiA·FjA ⊂ Fi+jA. In particular,
if A is generated by {xα} then a filtration on A can be obtained by
declaring xα to be of degree 1; i.e., FnA = (F1A)n is the span of all
words in xα of degree ≤ n.

If A = ⊕i≥0Ai is Z≥0-graded then we can define a filtration on A
by setting FnA := ⊕ni=0Ai; however, not any filtered algebra is ob-
tained in this way, and having a filtration is a weaker condition than
having a grading. Still, if A is a filtered algebra, we can define its as-
sociated graded algebra gr(A) := ⊕n≥0grn(A) (also denoted grA),
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where grn(A) := FnA/Fn−1A. The multiplication in gr(A) is given by
the “leading terms” of multiplication in A: for a ∈ gri(A), b ∈ grj(A),

pick their representatives ã ∈ FiA, b̃ ∈ FjA and let ab be the projection

of ãb̃ to gri+j(A).

Proposition 12.6. If gr(A) is a domain (has no zero divisors) then
so is A.

Exercise 12.7. Prove Proposition 12.6.

Example 12.8. Let g be a Lie algebra over k. Define a filtration11 on
U(g) by setting deg(g) = 1. Thus FnU(g) is the image of⊕ni=0g

⊗i ⊂ Tg.
Note that since

xy − yx = [x, y], x ∈ g,

we have [FiU(g), FjU(g)] ⊂ Fi+j−1U(g). Thus, grU(g) is commutative;
in other words, we have a surjective algebra morphism

φ : Sg→ grU(g).

12.3. The coproduct of U(g). For a vector space g define the algebra
homomorphism ∆ : Tg → Tg ⊗ Tg given for x ∈ g ⊂ Tg by ∆(x) =
x⊗ 1 + 1⊗x (it exists and is unique since Tg is freely generated by g).

Lemma 12.9. If g is a Lie algebra then the kernel I of the map Tg→
U(g) satisfies the property ∆(I) ⊂ I ⊗ Tg + Tg⊗ I ⊂ Tg⊗ Tg. Thus
∆ descends to an algebra homomorphism U(g)→ U(g)⊗ U(g).

Proof. For x, y ∈ g and a = a(x, y) := xy− yx− [x, y] we have ∆(a) =
a ⊗ 1 + 1 ⊗ a. The lemma follows since the ideal I is generated by
elements of the form a(x, y). �

The homomorphism ∆ is called the coproduct (of Tg or U(g)).

Example 12.10. Let g = V be abelian (a vector space). Then U(g) =
SV , which for dimV < ∞ can be viewed as the algebra of polyno-
mial functions on V ∗. Similarly, SV ⊗ SV is the algebra of polyno-
mial functions on V ∗ × V ∗. In terms of this identification, we have
∆(f)(x, y) = f(x+ y).

11The grading on Tg does not descend to U(g), in general, since the relation
xy− yx = [x, y] is not homogeneous: the right hand side has degree 1 while the left
hand side has degree 2. So U(g) is not graded but is only filtered.
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12.4. Differential operators on manifolds and Lie groups. We
have seen in Subsection 5.2 that a vector field on a manifold X is
the same thing as a derivation of the algebra O(U) for every open set
U ⊂ X compatible with restriction maps O(U)→ O(V ) for V ⊂ U ; in
particular, on every U we have [v,mf ] = mv(f) where f ∈ O(U) and
mf : O(U) → O(U) is the operator of multiplication by f ∈ O(U).
Thus if also g ∈ O(U) then [[v,mf ],mg] = 0. Conversely, if A is an
endomorphism of the space O(U) for every open U ⊂ X compatible
with restriction maps and [[A,mf ],mg] = 0 for any f, g ∈ O(U) then
A = v + mh for a unique vector field v and regular function h on
X (check this!). This gives rise to the following generalization of the
notion of a vector field.

Definition 12.11. (Grothendieck) A differential operator of order
≤ N on X is an endomorphism of the space O(U) for every open set
U ⊂ X compatible with restriction maps O(U) → O(V ) for V ⊂ U
such that for any f0, ..., fN ∈ O(U) one has

[...[[A, f0], f1], ..., fN ] = 0.

It is easy to show that the latter condition is equivalent to the clas-
sical condition for a differential operator of order ≤ N : in local coor-
dinates (xi) on a chart U ⊂ X the operator A looks like

A =
N∑
k=0

∑
i1≤...≤ik

Fi1,...,ik
∂k

∂xi1 ...∂xik
,

where Fi1,...,ik ∈ O(U) (check this!). The space of such operators is
denoted by DN(X). Thus we have a nested sequence of spaces

O(X) = D0(X) ⊂ D1(X) ⊂ ... ⊂ DN(X) ⊂ ...

The nested union ∪N≥0DN(X) is a filtered associative algebra called
the algebra of differential operators on X and denoted by D(X).

Now suppose that a Lie group G with Lie algebra g acts on X. Then
we have a homomorphism of Lie algebras g → Vect(X), which can
be viewed as a Lie algebra homomorphism g → D(X). Thus by the
universal property of the universal enveloping algebra, we obtain an
associative algebra homomorphism ξ : U(g) → D(X). Moreover, this
homomorphism preserves filtrations.

For example, if X = G and G acts by right translations, then the cor-
responding map g→ Vect(G) identifies g with the Lie algebra VectL(G)
of left-invariant vector fields on G. Thus the map ξ : U(g) → D(G)
lands in the subalgebra DL(G) of left-invariant differential operators
on G.
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Exercise 12.12. Show that the map ξ : U(g) → DL(G) is a filtered
algebra isomorphism.
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