Pan-cancer analysis reveals that CTC1-STN1-TEN1 (CST) complex may have a key position in oncology

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2022
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
CANCER GENETICS, v.262, p.80-90, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Telomere dysfunction is one of the hallmarks of cancer, which puts telomere-associated genes in a prominent position in oncology. The CTC1-STN1-TEN1 (CST) complex is vital for telomere maintenance and participates in several steps of DNA metabolism, such as repair and replication, essential functions for malignant cells. Despite this, little is known about these genes in cancer biology. Here, using bioinformatics tools, we performed a study in 33 cancer types and over 10,0 0 0 TCGA samples analyzing the role of the CST complex in cancer. We obtained the somatic landscape and gene expression patterns of each of the subunits of the complex studied. Furthermore, we show that CST is important for genetic stability and nucleic acid metabolism in cancer. We identify possible interactors, transcription factors, and microRNAs associated with CST and two drugs that may disrupt their pathways. In addition, we show that CST gene expression is associated with cancer survival and recurrence in several tumor types. Finally, we show negative and positive correlations between immune checkpoint genes and CST in different types of cancer. With this work, we corroborate the importance of these genes in cancer biology and open perspectives for their use in other works in the field.
Palavras-chave
Pan-cancer, Cancer survival, Genetic stability, Nucleic acid metabolism, Bioinformatics
Referências
  1. Acunzo Mario, 2015, Adv Biol Regul, V57, P1, DOI 10.1016/j.jbior.2014.09.013
  2. Amir M, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9020359
  3. Ayers M, 2017, J CLIN INVEST, V127, P2930, DOI 10.1172/JCI91190
  4. Barazas M, 2018, CELL REP, V23, P2107, DOI 10.1016/j.celrep.2018.04.046
  5. Bardou P, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-293
  6. BENNETT LL, 1955, CANCER RES, V15, P485
  7. Bernal A, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010294
  8. Bhattacharjee A, 2017, NUCLEIC ACIDS RES, V45, P12311, DOI 10.1093/nar/gkx878
  9. Calvo O, 2019, NUCLEIC ACIDS RES, V47, P6250, DOI 10.1093/nar/gkz279
  10. Cantisani C, 2019, DERMATOL THER, V32, DOI 10.1111/dth.13043
  11. Cerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095
  12. Chastain M, 2016, CELL REP, V16, P1300, DOI 10.1016/j.celrep.2016.06.077
  13. Chen M, 2020, DIGEST DIS SCI, V65, P2442, DOI 10.1007/s10620-019-05916-9
  14. Cui XT, 2020, GENOMICS, V112, P3958, DOI 10.1016/j.ygeno.2020.06.044
  15. De Lange T, 2005, COLD SH Q B, V70, P197, DOI 10.1101/sqb.2005.70.032
  16. Donate LE, 2011, PHILOS T R SOC B, V366, P76, DOI 10.1098/rstb.2010.0291
  17. dos Santos GA, 2021, MOL BIOL RES COMMUN, V10, P121, DOI 10.22099/mbrc.2021.40106.1607
  18. dos Santos GA, 2021, MED HYPOTHESES, V150, DOI 10.1016/j.mehy.2021.110566
  19. Fang X, 2019, EXP CELL RES, V376, P39, DOI 10.1016/j.yexcr.2019.01.013
  20. Farazi PA, 2003, CANCER RES, V63, P5021
  21. Feng XY, 2017, NUCLEIC ACIDS RES, V45, P4281, DOI 10.1093/nar/gkx125
  22. Frankel T, 2017, ADV EXP MED BIOL, V1036, P51, DOI 10.1007/978-3-319-67577-0_4
  23. Gao JJ, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2004088
  24. Han P, 2019, INT J CLIN ONCOL, V24, P1042, DOI 10.1007/s10147-019-01442-w
  25. Huang CH, 2017, EXP CELL RES, V355, P95, DOI 10.1016/j.yexcr.2017.03.058
  26. Huang C, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/8824519
  27. Hutter C, 2018, CELL, V173, P283, DOI 10.1016/j.cell.2018.03.042
  28. Montero JJ, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12534
  29. Jourquin J, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S8-S20
  30. Li TW, 2020, NUCLEIC ACIDS RES, V48, pW509, DOI 10.1093/nar/gkaa407
  31. Liang Z, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0664-1
  32. Liao YX, 2019, NUCLEIC ACIDS RES, V47, pW199, DOI 10.1093/nar/gkz401
  33. Liu FY, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0698-4
  34. Liu JN, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.02048
  35. Liu SB, 2019, COMB CHEM HIGH T SCR, V22, P379, DOI 10.2174/1386207322666190704095602
  36. Liu Y, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.649328
  37. Lu WS, 2013, EXP CELL RES, V319, P133, DOI 10.1016/j.yexcr.2012.09.005
  38. Luo YM, 2014, INT J MOL MED, V33, P1484, DOI 10.3892/ijmm.2014.1721
  39. Luo ZH, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa441
  40. Lyu XX, 2021, DNA REPAIR, V102, DOI 10.1016/j.dnarep.2021.103104
  41. Madaan K, 2012, EXPERT REV ANTICANC, V12, P19, DOI [10.1586/ERA.11.175, 10.1586/era.11.175]
  42. Miller ET, 2020, BMC CANCER, V20, DOI 10.1186/s12885-020-06817-1
  43. Miyake Y, 2009, MOL CELL, V36, P193, DOI 10.1016/j.molcel.2009.08.009
  44. Morais M, 2020, CANCER MANAG RES, V12, P1669, DOI 10.2147/CMAR.S211225
  45. Nersisyan L, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.662464
  46. Patel Trupti Nv, 2015, Asian Pac J Cancer Prev, V16, P3085
  47. Phelan CM, 2017, NAT GENET, V49, P680, DOI 10.1038/ng.3826
  48. Qin S, 2019, MOL CANCER, V18, DOI 10.1186/s12943-019-1091-2
  49. Racioppi M, 2019, EUR UROL ONCOL, V2, P576, DOI 10.1016/j.euo.2018.08.032
  50. Rice C, 2016, COMPUT STRUCT BIOTEC, V14, P161, DOI 10.1016/j.csbj.2016.04.002
  51. Ru YB, 2014, NUCLEIC ACIDS RES, V42, DOI 10.1093/nar/gku631
  52. Rupaimoole R, 2017, NAT REV DRUG DISCOV, V16, P203, DOI 10.1038/nrd.2016.246
  53. Stewart JA, 2018, FRONT BIOSCI-LANDMRK, V23, P1564, DOI 10.2741/4661
  54. Symonds P, 2004, COCHRANE DB SYST REV
  55. Szklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI 10.1093/nar/gky1131
  56. Tang ZF, 2019, NUCLEIC ACIDS RES, V47, pW556, DOI 10.1093/nar/gkz430
  57. Tomczak Katarzyna, 2015, Contemp Oncol (Pozn), V19, pA68, DOI 10.5114/wo.2014.47136
  58. van Dam S, 2018, BRIEF BIOINFORM, V19, P575, DOI 10.1093/bib/bbw139
  59. van Dam S, 2015, NUCLEIC ACIDS RES, V43, pD1124, DOI 10.1093/nar/gku1042
  60. Wang F, 2014, CELL CYCLE, V13, P3488, DOI 10.4161/15384101.2014.964100
  61. Wang Y, 2018, NUCLEIC ACIDS RES, V46, P3981, DOI 10.1093/nar/gky114
  62. Wu CW, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22147374
  63. Zhang MM, 2019, NUCLEIC ACIDS RES, V47, P5243, DOI 10.1093/nar/gkz264
  64. Zhu TY, 2015, BIOMED PHARMACOTHER, V75, P123, DOI 10.1016/j.biopha.2015.07.023