Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Editora
ELSEVIER
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autores
SILVA, Camille C. C. da
SERNA, Julian D. C.
HONORATO-SAMPAIO, Kinulpe
BLOISE, Antonio C.
CASSINA, Laura
YOSHINAGA, Marcos Y.
CHAVES-FILHO, Adriano B.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, v.1868, n.6, article ID 166371, 17p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-proteincoupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACC beta, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid beta-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.
Palavras-chave
Autosomal dominant polycystic kidney disease, Polycystin-1 cleavage at GPS, Cardiac dysfunction, Metabolic rewiring, Mitochondria, Lipid derangement
Referências
  1. Alam A, 2013, CURR HYPERTENS REV, V9, P27, DOI 10.2174/1573402111309010005
  2. Altamirano F, 2019, CIRCULATION, V140, P921, DOI 10.1161/CIRCULATIONAHA.118.034731
  3. Anversa P, 1998, BASIC RES CARDIOL, V93, P8
  4. Aranguiz P., 1867, Biochim. Biophys. Acta Mol. Basis Dis., DOI 10.1016
  5. Atwood DJ, 2020, CELL SIGNAL, V74, DOI 10.1016/j.cellsig.2020.109730
  6. Balbo BE, 2016, KIDNEY INT, V90, P580, DOI 10.1016/j.kint.2016.04.028
  7. Barua M, 2009, J AM SOC NEPHROL, V20, P1833, DOI 10.1681/ASN.2009020162
  8. Bertero E, 2018, CIRC-HEART FAIL, V11, DOI 10.1161/CIRCHEARTFAILURE.118.005642
  9. Bertero E, 2018, NAT REV CARDIOL, V15, P457, DOI 10.1038/s41569-018-0044-6
  10. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  11. Brown DA, 2017, NAT REV CARDIOL, V14, P238, DOI 10.1038/nrcardio.2016.203
  12. Brunelle JK, 2009, J CELL SCI, V122, P437, DOI 10.1242/jcs.031682
  13. Campos JC, 2017, AUTOPHAGY, V13, P1304, DOI 10.1080/15548627.2017.1325062
  14. Cassina L, 2020, FASEB J, V34, P6493, DOI 10.1096/fj.201901739RR
  15. Chapin HC, 2010, MOL BIOL CELL, V21, P4338, DOI 10.1091/mbc.E10-05-0407
  16. Chapman AB, 1997, J AM SOC NEPHROL, V8, P1292
  17. Chaves AB, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48059-7
  18. Chebib FT, 2017, KIDNEY INT REP, V2, P913, DOI 10.1016/j.ekir.2017.05.014
  19. Chebib FT, 2016, AM J KIDNEY DIS, V67, P792, DOI 10.1053/j.ajkd.2015.07.037
  20. Chiaravalli M, 2016, J AM SOC NEPHROL, V27, P1958, DOI 10.1681/ASN.2015030231
  21. Chong J, 2019, METABOLITES, V9, DOI 10.3390/metabo9030057
  22. Collins LV, 2004, J LEUKOCYTE BIOL, V75, P995, DOI 10.1189/jlb.0703328
  23. D'Souza K, 2016, BBA-MOL CELL BIOL L, V1861, P1513, DOI 10.1016/j.bbalip.2016.02.016
  24. Dad T, 2018, KIDNEY INT REP, V3, P619, DOI 10.1016/j.ekir.2017.12.011
  25. Di Mise A, 2018, FRONT MOL BIOSCI, V5, DOI 10.3389/fmolb.2018.00077
  26. Drake KJ, 2012, EXP BIOL MED, V237, P1369, DOI 10.1258/ebm.2012.012025
  27. FICK GM, 1995, J AM SOC NEPHROL, V5, P2048
  28. Fukushima A, 2015, CURR PHARM DESIGN, V21, P3654, DOI 10.2174/1381612821666150710150445
  29. Gnaiger E., 2020, BIOENERG COMMUN, V2020, P1, DOI [10.26124/bec:2020-0001.v1, DOI 10.26124/BEC:2020-0001.V1]
  30. Hajarnis S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14395
  31. Hayakawa K, 2003, CIRCULATION, V108, P104, DOI 10.1161/01.CIR.0000074225.62168.68
  32. Horvath SE, 2013, PROG LIPID RES, V52, P590, DOI 10.1016/j.plipres.2013.07.002
  33. HUGHES J, 1995, NAT GENET, V10, P151, DOI 10.1038/ng0695-151
  34. Ishimoto Y, 2017, MOL CELL BIOL, V37, DOI 10.1128/MCB.00337-17
  35. Iyer SS, 2013, IMMUNITY, V39, P311, DOI 10.1016/j.immuni.2013.08.001
  36. Jayapalan S, 2000, J NUTR, V130, P2356, DOI 10.1093/jn/130.9.2356
  37. Kakimoto PA, 2021, REDOX BIOL, V45, DOI 10.1016/j.redox.2021.102026
  38. Kim H, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6482
  39. Klawitter J, 2014, J LIPID RES, V55, P1139, DOI 10.1194/jlr.P042176
  40. Kubli DA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130707
  41. Kuo IY, 2019, SCI SIGNAL, V12, DOI 10.1126/scisignal.aat7397
  42. Kurbegovic A, 2014, MOL CELL BIOL, V34, P3341, DOI 10.1128/MCB.00687-14
  43. Lakhia R, 2018, AM J PHYSIOL-RENAL, V314, pF122, DOI 10.1152/ajprenal.00352.2017
  44. Lampert MA, 2019, AUTOPHAGY, V15, P1182, DOI 10.1080/15548627.2019.1580095
  45. Lee Y, 2011, AM J PHYSIOL-HEART C, V301, pH1924, DOI 10.1152/ajpheart.00368.2011
  46. Li E., 2020, Cell, V11, P661, DOI 10.1007/s13238-020-00713-x
  47. Lin CC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20856-6
  48. Litvinukova M, 2020, NATURE, V588, P466, DOI 10.1038/s41586-020-2797-4
  49. Mazelin L, 2016, J MOL CELL CARDIOL, V97, P213, DOI 10.1016/j.yjmcc.2016.04.011
  50. Menezes LF, 2016, EBIOMEDICINE, V5, P183, DOI 10.1016/j.ebiom.2016.01.027
  51. Natoli TA, 2020, CELL SIGNAL, V69, DOI 10.1016/j.cellsig.2020.109526
  52. Nowak KL, 2020, CLIN J AM SOC NEPHRO, V15, P577, DOI 10.2215/CJN.13291019
  53. Oatley P, 2012, BIOCHEMISTRY-US, V51, P2879, DOI 10.1021/bi300134b
  54. Oflaz H, 2005, KIDNEY INT, V68, P2244, DOI 10.1111/j.1523-1755.2005.00682.x
  55. Paavola J, 2013, J MOL CELL CARDIOL, V58, P199, DOI 10.1016/j.yjmcc.2013.01.015
  56. Padovano V, 2020, CELL SIGNAL, V72, DOI 10.1016/j.cellsig.2020.109634
  57. Padovano V, 2017, MOL BIOL CELL, V28, P261, DOI 10.1091/mbc.E16-08-0597
  58. Palojoki E, 2001, AM J PHYSIOL-HEART C, V280, pH2726, DOI 10.1152/ajpheart.2001.280.6.H2726
  59. Papanicolaou KN, 2012, AM J PHYSIOL-HEART C, V302, pH167, DOI 10.1152/ajpheart.00833.2011
  60. Park M, 2013, BASIC RES CARDIOL, V108, DOI 10.1007/s00395-012-0324-y
  61. Park M, 2009, AM J PHYSIOL-HEART C, V297, pH785, DOI 10.1152/ajpheart.00310.2009
  62. Pedrozo Z., Circulation
  63. Pei Y, 2010, ADV CHRONIC KIDNEY D, V17, P140, DOI 10.1053/j.ackd.2009.12.001
  64. Pellegrino MA, 2008, AM J CARDIOL, V101, p49E, DOI 10.1016/j.amjcard.2008.03.001
  65. Pereyra AS, 2021, J LIPID RES, V62, DOI 10.1016/j.jlr.2021.100069
  66. Perrone RD, 2001, AM J KIDNEY DIS, V38, P777, DOI 10.1053/ajkd.2001.27720
  67. Podrini C, 2018, COMMUN BIOL, V1, DOI 10.1038/s42003-018-0200-x
  68. Priolo C, 2013, NAT MED, V19, P407, DOI 10.1038/nm.3140
  69. Qian F, 2002, P NATL ACAD SCI USA, V99, P16981, DOI 10.1073/pnas.252484899
  70. Reddy S, 2013, AM J PHYSIOL-HEART C, V304, pH1314, DOI 10.1152/ajpheart.00776.2012
  71. Riwanto M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146654
  72. Rowe I, 2013, NAT MED, V19, P488, DOI 10.1038/nm.3092
  73. Rueden CT, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1934-z
  74. Sancak Y, 2008, SCIENCE, V320, P1496, DOI 10.1126/science.1157535
  75. Sancak Y, 2010, CELL, V141, P290, DOI 10.1016/j.cell.2010.02.024
  76. Schulze PC, 2016, CIRC RES, V118, P1736, DOI 10.1161/CIRCRESAHA.116.306842
  77. Seabright AP, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.608474
  78. SHIAO YJ, 1995, J BIOL CHEM, V270, P11190, DOI 10.1074/jbc.270.19.11190
  79. Taegtmeyer H, 2010, ANN NY ACAD SCI, V1188, P191, DOI 10.1111/j.1749-6632.2009.05100.x
  80. Taetrneyer H, 2008, AM J CARDIOL, V101, p3E, DOI 10.1016/j.amjcard.2008.02.064
  81. Tahara EB, 2009, FREE RADICAL BIO MED, V46, P1283, DOI 10.1016/j.freeradbiomed.2009.02.008
  82. Torres JA, 2019, CELL METAB, V30, P1007, DOI 10.1016/j.cmet.2019.09.012
  83. Trudel M, 2016, CELLS-BASEL, V5, DOI 10.3390/cells5010003
  84. van den Berg RA, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-142
  85. Vance JE, 2008, J LIPID RES, V49, P1377, DOI 10.1194/jlr.R700020-JLR200
  86. Vercesi AE, 2018, FREE RADICAL BIO MED, V129, P1, DOI 10.1016/j.freeradbiomed.2018.08.034
  87. Villalobos E, 2019, CIRCULATION, V139, P2342, DOI 10.1161/CIRCULATIONAHA.117.028752
  88. Wajner M, 2016, BIOSCIENCE REP, V36, DOI 10.1042/BSR20150240
  89. Warner G, 2016, J AM SOC NEPHROL, V27, P1437, DOI 10.1681/ASN.2015020132
  90. Wei W, 2007, J BIOL CHEM, V282, P21729, DOI 10.1074/jbc.M703218200
  91. Wodarczyk C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007137
  92. Yu S., Proc. Natl. Acad. Sci. U. S. A.
  93. Zhang J, 2021, REDOX BIOL, V46, DOI 10.1016/j.redox.2021.102114
  94. Zhang Q, 2010, SHOCK, V34, P55, DOI 10.1097/SHK.0b013e3181cd8c08
  95. Zhang TM, 2016, J BIOL CHEM, V291, P21616, DOI 10.1074/jbc.M116.733410