Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice
Carregando...
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Editora
ELSEVIER
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autores
SILVA, Camille C. C. da
SERNA, Julian D. C.
HONORATO-SAMPAIO, Kinulpe
BLOISE, Antonio C.
CASSINA, Laura
YOSHINAGA, Marcos Y.
CHAVES-FILHO, Adriano B.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, v.1868, n.6, article ID 166371, 17p, 2022
Resumo
Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-proteincoupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACC beta, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid beta-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.
Palavras-chave
Autosomal dominant polycystic kidney disease, Polycystin-1 cleavage at GPS, Cardiac dysfunction, Metabolic rewiring, Mitochondria, Lipid derangement
Referências
- Alam A, 2013, CURR HYPERTENS REV, V9, P27, DOI 10.2174/1573402111309010005
- Altamirano F, 2019, CIRCULATION, V140, P921, DOI 10.1161/CIRCULATIONAHA.118.034731
- Anversa P, 1998, BASIC RES CARDIOL, V93, P8
- Aranguiz P., 1867, Biochim. Biophys. Acta Mol. Basis Dis., DOI 10.1016
- Atwood DJ, 2020, CELL SIGNAL, V74, DOI 10.1016/j.cellsig.2020.109730
- Balbo BE, 2016, KIDNEY INT, V90, P580, DOI 10.1016/j.kint.2016.04.028
- Barua M, 2009, J AM SOC NEPHROL, V20, P1833, DOI 10.1681/ASN.2009020162
- Bertero E, 2018, CIRC-HEART FAIL, V11, DOI 10.1161/CIRCHEARTFAILURE.118.005642
- Bertero E, 2018, NAT REV CARDIOL, V15, P457, DOI 10.1038/s41569-018-0044-6
- BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
- Brown DA, 2017, NAT REV CARDIOL, V14, P238, DOI 10.1038/nrcardio.2016.203
- Brunelle JK, 2009, J CELL SCI, V122, P437, DOI 10.1242/jcs.031682
- Campos JC, 2017, AUTOPHAGY, V13, P1304, DOI 10.1080/15548627.2017.1325062
- Cassina L, 2020, FASEB J, V34, P6493, DOI 10.1096/fj.201901739RR
- Chapin HC, 2010, MOL BIOL CELL, V21, P4338, DOI 10.1091/mbc.E10-05-0407
- Chapman AB, 1997, J AM SOC NEPHROL, V8, P1292
- Chaves AB, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48059-7
- Chebib FT, 2017, KIDNEY INT REP, V2, P913, DOI 10.1016/j.ekir.2017.05.014
- Chebib FT, 2016, AM J KIDNEY DIS, V67, P792, DOI 10.1053/j.ajkd.2015.07.037
- Chiaravalli M, 2016, J AM SOC NEPHROL, V27, P1958, DOI 10.1681/ASN.2015030231
- Chong J, 2019, METABOLITES, V9, DOI 10.3390/metabo9030057
- Collins LV, 2004, J LEUKOCYTE BIOL, V75, P995, DOI 10.1189/jlb.0703328
- D'Souza K, 2016, BBA-MOL CELL BIOL L, V1861, P1513, DOI 10.1016/j.bbalip.2016.02.016
- Dad T, 2018, KIDNEY INT REP, V3, P619, DOI 10.1016/j.ekir.2017.12.011
- Di Mise A, 2018, FRONT MOL BIOSCI, V5, DOI 10.3389/fmolb.2018.00077
- Drake KJ, 2012, EXP BIOL MED, V237, P1369, DOI 10.1258/ebm.2012.012025
- FICK GM, 1995, J AM SOC NEPHROL, V5, P2048
- Fukushima A, 2015, CURR PHARM DESIGN, V21, P3654, DOI 10.2174/1381612821666150710150445
- Gnaiger E., 2020, BIOENERG COMMUN, V2020, P1, DOI [10.26124/bec:2020-0001.v1, DOI 10.26124/BEC:2020-0001.V1]
- Hajarnis S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14395
- Hayakawa K, 2003, CIRCULATION, V108, P104, DOI 10.1161/01.CIR.0000074225.62168.68
- Horvath SE, 2013, PROG LIPID RES, V52, P590, DOI 10.1016/j.plipres.2013.07.002
- HUGHES J, 1995, NAT GENET, V10, P151, DOI 10.1038/ng0695-151
- Ishimoto Y, 2017, MOL CELL BIOL, V37, DOI 10.1128/MCB.00337-17
- Iyer SS, 2013, IMMUNITY, V39, P311, DOI 10.1016/j.immuni.2013.08.001
- Jayapalan S, 2000, J NUTR, V130, P2356, DOI 10.1093/jn/130.9.2356
- Kakimoto PA, 2021, REDOX BIOL, V45, DOI 10.1016/j.redox.2021.102026
- Kim H, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6482
- Klawitter J, 2014, J LIPID RES, V55, P1139, DOI 10.1194/jlr.P042176
- Kubli DA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130707
- Kuo IY, 2019, SCI SIGNAL, V12, DOI 10.1126/scisignal.aat7397
- Kurbegovic A, 2014, MOL CELL BIOL, V34, P3341, DOI 10.1128/MCB.00687-14
- Lakhia R, 2018, AM J PHYSIOL-RENAL, V314, pF122, DOI 10.1152/ajprenal.00352.2017
- Lampert MA, 2019, AUTOPHAGY, V15, P1182, DOI 10.1080/15548627.2019.1580095
- Lee Y, 2011, AM J PHYSIOL-HEART C, V301, pH1924, DOI 10.1152/ajpheart.00368.2011
- Li E., 2020, Cell, V11, P661, DOI 10.1007/s13238-020-00713-x
- Lin CC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-20856-6
- Litvinukova M, 2020, NATURE, V588, P466, DOI 10.1038/s41586-020-2797-4
- Mazelin L, 2016, J MOL CELL CARDIOL, V97, P213, DOI 10.1016/j.yjmcc.2016.04.011
- Menezes LF, 2016, EBIOMEDICINE, V5, P183, DOI 10.1016/j.ebiom.2016.01.027
- Natoli TA, 2020, CELL SIGNAL, V69, DOI 10.1016/j.cellsig.2020.109526
- Nowak KL, 2020, CLIN J AM SOC NEPHRO, V15, P577, DOI 10.2215/CJN.13291019
- Oatley P, 2012, BIOCHEMISTRY-US, V51, P2879, DOI 10.1021/bi300134b
- Oflaz H, 2005, KIDNEY INT, V68, P2244, DOI 10.1111/j.1523-1755.2005.00682.x
- Paavola J, 2013, J MOL CELL CARDIOL, V58, P199, DOI 10.1016/j.yjmcc.2013.01.015
- Padovano V, 2020, CELL SIGNAL, V72, DOI 10.1016/j.cellsig.2020.109634
- Padovano V, 2017, MOL BIOL CELL, V28, P261, DOI 10.1091/mbc.E16-08-0597
- Palojoki E, 2001, AM J PHYSIOL-HEART C, V280, pH2726, DOI 10.1152/ajpheart.2001.280.6.H2726
- Papanicolaou KN, 2012, AM J PHYSIOL-HEART C, V302, pH167, DOI 10.1152/ajpheart.00833.2011
- Park M, 2013, BASIC RES CARDIOL, V108, DOI 10.1007/s00395-012-0324-y
- Park M, 2009, AM J PHYSIOL-HEART C, V297, pH785, DOI 10.1152/ajpheart.00310.2009
- Pedrozo Z., Circulation
- Pei Y, 2010, ADV CHRONIC KIDNEY D, V17, P140, DOI 10.1053/j.ackd.2009.12.001
- Pellegrino MA, 2008, AM J CARDIOL, V101, p49E, DOI 10.1016/j.amjcard.2008.03.001
- Pereyra AS, 2021, J LIPID RES, V62, DOI 10.1016/j.jlr.2021.100069
- Perrone RD, 2001, AM J KIDNEY DIS, V38, P777, DOI 10.1053/ajkd.2001.27720
- Podrini C, 2018, COMMUN BIOL, V1, DOI 10.1038/s42003-018-0200-x
- Priolo C, 2013, NAT MED, V19, P407, DOI 10.1038/nm.3140
- Qian F, 2002, P NATL ACAD SCI USA, V99, P16981, DOI 10.1073/pnas.252484899
- Reddy S, 2013, AM J PHYSIOL-HEART C, V304, pH1314, DOI 10.1152/ajpheart.00776.2012
- Riwanto M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146654
- Rowe I, 2013, NAT MED, V19, P488, DOI 10.1038/nm.3092
- Rueden CT, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1934-z
- Sancak Y, 2008, SCIENCE, V320, P1496, DOI 10.1126/science.1157535
- Sancak Y, 2010, CELL, V141, P290, DOI 10.1016/j.cell.2010.02.024
- Schulze PC, 2016, CIRC RES, V118, P1736, DOI 10.1161/CIRCRESAHA.116.306842
- Seabright AP, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.608474
- SHIAO YJ, 1995, J BIOL CHEM, V270, P11190, DOI 10.1074/jbc.270.19.11190
- Taegtmeyer H, 2010, ANN NY ACAD SCI, V1188, P191, DOI 10.1111/j.1749-6632.2009.05100.x
- Taetrneyer H, 2008, AM J CARDIOL, V101, p3E, DOI 10.1016/j.amjcard.2008.02.064
- Tahara EB, 2009, FREE RADICAL BIO MED, V46, P1283, DOI 10.1016/j.freeradbiomed.2009.02.008
- Torres JA, 2019, CELL METAB, V30, P1007, DOI 10.1016/j.cmet.2019.09.012
- Trudel M, 2016, CELLS-BASEL, V5, DOI 10.3390/cells5010003
- van den Berg RA, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-142
- Vance JE, 2008, J LIPID RES, V49, P1377, DOI 10.1194/jlr.R700020-JLR200
- Vercesi AE, 2018, FREE RADICAL BIO MED, V129, P1, DOI 10.1016/j.freeradbiomed.2018.08.034
- Villalobos E, 2019, CIRCULATION, V139, P2342, DOI 10.1161/CIRCULATIONAHA.117.028752
- Wajner M, 2016, BIOSCIENCE REP, V36, DOI 10.1042/BSR20150240
- Warner G, 2016, J AM SOC NEPHROL, V27, P1437, DOI 10.1681/ASN.2015020132
- Wei W, 2007, J BIOL CHEM, V282, P21729, DOI 10.1074/jbc.M703218200
- Wodarczyk C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007137
- Yu S., Proc. Natl. Acad. Sci. U. S. A.
- Zhang J, 2021, REDOX BIOL, V46, DOI 10.1016/j.redox.2021.102114
- Zhang Q, 2010, SHOCK, V34, P55, DOI 10.1097/SHK.0b013e3181cd8c08
- Zhang TM, 2016, J BIOL CHEM, V291, P21616, DOI 10.1074/jbc.M116.733410