
Date updated: April 6, 2022

Withdrawn NIST Technical Series Publication

Warning Notice

The attached publication has been withdrawn (archived), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Withdrawn Publication

Series/Number NIST Special Publication 800-40 Rev. 3
Title Guide to Enterprise Patch Management Technologies
Publication Date(s) July 2013
Withdrawal Date April 6, 2022
Withdrawal Note SP 800-40 Rev. 3 is superseded in its entirety by the publication of SP 800-40

Rev. 4.

Superseding Publication(s) (if applicable)

The attached publication has been superseded by the following publication(s):

Series/Number NIST Special Publication 800-40 Rev. 4
Title Guide to Enterprise Patch Management Planning: Preventive Maintenance for

Technology
Author(s) Murugiah Souppaya; Karen Scarfone
Publication Date(s) April 2022
URL/DOI https://doi.org/10.6028/NIST.SP.800-40r4

Additional Information (if applicable)

Contact Computer Security Division (Information Technology Laboratory)
Latest revision of the
attached publication

Related Information https://csrc.nist.gov/publications/detail/sp/800-40/rev-4/final
Withdrawal
Announcement Link

https://doi.org/10.6028/NIST.SP.800-40r4
https://csrc.nist.gov/publications/detail/sp/800-40/rev-4/final

NIST Special Publication 800-40
Revision 3

 Guide to Enterprise Patch
Management Technologies

Murugiah Souppaya
Karen Scarfone

C O M P U T E R S E C U R I T Y

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.800-40r3

NIST Special Publication 800-40
Revision 3

Guide to Enterprise Patch
Management Technologies

Murugiah Souppaya

Computer Security Division
Information Technology Laboratory

Karen Scarfone

Scarfone Cybersecurity
Clifton, VA

July 2013

U.S. Department of Commerce

Penny Pritzker, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.800-40r3

 ii

Authority

This publication has been developed by NIST to further its statutory responsibilities under the Federal
Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for
developing information security standards and guidelines, including minimum requirements for Federal
information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate Federal officials exercising policy authority over such
systems. This guideline is consistent with the requirements of the Office of Management and Budget
(OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-
130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130,
Appendix III, Security of Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of
Commerce, Director of the OMB, or any other Federal official. This publication may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.
Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-40 Revision 3
Natl. Inst. Stand. Technol. Spec. Publ. 800-40 Rev. 3, 26 pages (July 2013)

http://dx.doi.org/10.6028/NIST.SP.800-40r3
CODEN: NSPUE2

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.

karenw
Typewritten Text

 iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analyses to advance the development and productive use of
information technology. ITL’s responsibilities include the development of management, administrative,
technical, and physical standards and guidelines for the cost-effective security and privacy of other than
national security-related information in Federal information systems. The Special Publication 800-series
reports on ITL’s research, guidelines, and outreach efforts in information system security, and its
collaborative activities with industry, government, and academic organizations.

Abstract

Patch management is the process for identifying, acquiring, installing, and verifying patches for products
and systems. Patches correct security and functionality problems in software and firmware. There are
several challenges that complicate patch management. If organizations do not overcome these challenges,
they will be unable to patch systems effectively and efficiently, leading to easily preventable
compromises. This publication is designed to assist organizations in understanding the basics of
enterprise patch management technologies. It explains the importance of patch management and examines
the challenges inherent in performing patch management. This publication also provides an overview of
enterprise patch management technologies and briefly discusses metrics for measuring the technologies’
effectiveness and for comparing the relative importance of patches.

Keywords

information security; patch management; remediation; software patches; vulnerability management

 iv

Acknowledgments

The authors, Murugiah Souppaya of the National Institute of Standards and Technology (NIST) and
Karen Scarfone of Scarfone Cybersecurity, wish to thank their colleagues who reviewed drafts of this
document and contributed to its technical content, particularly Peter Mell of NIST.

Acknowledgments, Version 2

The authors, Peter Mell of NIST, Tiffany Bergeron of The MITRE Corporation, and David Henning of
Hughes Network Systems, LLC, wish to express their thanks to Rob Pate of the United States Computer
Emergency Readiness Team (US-CERT) for providing support for this publication. In addition, the
authors would like to thank Miles Tracy of the U.S. Federal Reserve System, who co-authored the
original version of the publication and provided significant input for this version, and Tanyette Miller of
Booz Allen Hamilton, who put together the patching resources found in the appendices. The authors
would also like to express their thanks to Timothy Grance of NIST, Manuel Costa and Todd Wittbold of
The MITRE Corporation, Matthew Baum of the Corporation for National and Community Service, and
Karen Kent of Booz Allen Hamilton for their insightful reviews, and to representatives from Department
of Health and Human Services, Department of State, Environmental Protection Agency, Federal Reserve
Board, and PatchAdvisor for their particularly valuable comments and suggestions.

Trademark Information

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the
United States and other countries.

All other names are registered trademarks or trademarks of their respective companies.

 v

Table of Contents
Executive Summary ...vi
1. Introduction .. 1

1.1 Document Purpose and Scope .. 1
1.2 Audience ... 1
1.3 Document Structure .. 1

2. The Importance of Patch Management ... 2

3. The Challenges of Patch Management ... 3

3.1 Timing, Prioritization, and Testing.. 3
3.2 Patch Management Configuration ... 4
3.3 Alternative Host Architectures ... 5
3.4 Other Challenges .. 6

3.4.1 Software Inventory Management ... 6
3.4.2 Resource Overload ... 6
3.4.3 Installation Side Effects ... 6
3.4.4 Patch Implementation Verification ... 6
3.4.5 Application Whitelisting ... 7

4. Enterprise Patch Management Technologies... 8

4.1 Components and Architecture ... 8
4.1.1 Agent-Based ... 8
4.1.2 Agentless Scanning .. 8
4.1.3 Passive Network Monitoring .. 9
4.1.4 Comparison of Techniques ... 9

4.2 Security Capabilities .. 9
4.2.1 Inventory Management Capabilities ...10
4.2.2 Patch Management Capabilities ...10
4.2.3 Other Capabilities ...10

4.3 Management Capabilities .. 10
4.3.1 Technology Security ...10
4.3.2 Phased Deployment ...11
4.3.3 Usability and Availability ...11

5. Metrics ...12

List of Appendices
Appendix A— Security Content Automation Protocol (SCAP) Tutorial14

Appendix B— Summary of Recommendations ..16

Appendix C— Acronyms and Abbreviations ..18

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 vi

Executive Summary

Patch management is the process for identifying, acquiring, installing, and verifying patches for products
and systems. Patches correct security and functionality problems in software and firmware. From a
security perspective, patches are most often of interest because they are mitigating software flaw
vulnerabilities; applying patches to eliminate these vulnerabilities significantly reduces the opportunities
for exploitation. Patches serve other purposes than just fixing software flaws; they can also add new
features to software and firmware, including security capabilities.

There are several challenges that complicate patch management. Organizations that do not overcome
these challenges will be unable to patch systems effectively and efficiently, leading to compromises that
were easily preventable. Organizations that can minimize the time they spend dealing with patching can
use those resources for addressing other security concerns. Already many organizations have largely
operationalized their patch management, making it more of a core IT function than a part of security.
However, it is still important for all organizations to carefully consider patch management in the context
of security because patch management is so important to achieving and maintaining sound security.

This publication is designed to assist organizations in understanding the basics of enterprise patch
management technologies. It explains the importance of patch management and examines the challenges
inherent in performing patch management. The publication also provides an overview of enterprise patch
management technologies and briefly discusses metrics for measuring the technologies’ effectiveness and
for comparing the relative importance of patches.

Organizations should implement the following recommendations to improve the effectiveness and
efficiency of their enterprise patch management technologies.

Organizations should deploy enterprise patch management tools using a phased approach.

This approach allows process and user communication issues to be addressed with a small group before
deploying the patch application universally. Most organizations deploy patch management tools first to
standardized desktop systems and single-platform server farms of similarly configured servers. Once this
has been accomplished, organizations should address the more difficult issue of integrating multiplatform
environments, nonstandard desktop systems, legacy computers, and computers with unusual
configurations. Manual methods may need to be used for operating systems and applications not
supported by automated patching tools, as well as some computers with unusual configurations.

Organizations should reduce the risks associated with enterprise patch management tools through
the application of standard security techniques that should be used when deploying any enterprise-
wide application.

Deploying enterprise patch management tools within an enterprise can create additional security risks for
an organization; however, a much greater risk is faced by organizations that do not effectively patch their
systems. Such tools usually increase security far more than they decrease security, especially when the
tools contain built-in security measures to protect against security risks and threats. Risk associated with
these tools include patches being altered, credentials being misused, vulnerabilities in the tools being
exploited, and entities monitoring tool communications to identify vulnerabilities. Examples of possible
countermeasures to these risks include keeping the patching solution components tightly secured and up-
to-date, encrypting network communications, verifying the integrity of patches before installing them, and
testing patches before deployment.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 vii

Organizations should balance their security needs with their needs for usability and availability.

For example, installing a patch may “break” other applications; this can best be addressed by testing
patches before deployment. Another example is that forcing application restarts, operating system
reboots, and other host state changes is disruptive and could cause loss of data or services. Again,
organizations need to balance the need to get patches applied with the need to support operations. A final
example, particularly important for mobile devices, is the acquisition of updates over low-bandwidth or
metered connections; it may be technically or financially infeasible to download large patches over such
connections. Organizations should make provisions for ensuring that their enterprise patching solution
works for mobile hosts and other hosts used on low-bandwidth or metered networks.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 1

1. Introduction

1.1 Document Purpose and Scope

This publication is designed to assist organizations in understanding the basics of enterprise patch
management technologies. This publication is based on the assumption that the organization has a mature
patch management capability and is focused on increasing its automation level. Organizations that are
seeking more basic guidance on establishing patch management programs or have legacy needs that
cannot be met with current enterprise patch management technologies should, in addition to reading this
publication, also consult the previous complementary version, NIST SP 800-40 Version 2, Creating a
Patch and Vulnerability Management Program.1

1.2 Audience

This document has been created for security managers, engineers, administrators, and others who are
responsible for acquiring, testing, prioritizing, implementing, and verifying security patches. Auditors and
others who need to assess the security of systems may also find this publication useful.

1.3 Document Structure

This document is organized into the following sections and appendices:

• Section 2 explains the importance of patch management.

• Section 3 examines the challenges inherent in performing patch management.

• Section 4 provides an overview of enterprise patch management technologies.

• Section 5 briefly discusses possible metrics for measuring the effectiveness of patch management
technologies and for comparing the relative importance of patches.

• Appendix A provides a tutorial on the Security Content Automation Protocol (SCAP) and its role
in enterprise patch management.

• Appendix B provides a summary of the main recommendations made throughout the publication.

• Appendix C defines selected acronyms and other abbreviations for the document.

1 http://csrc.nist.gov/publications/nistpubs/800-40-Ver2/SP800-40v2.pdf

http://csrc.nist.gov/publications/nistpubs/800-40-Ver2/SP800-40v2.pdf

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 2

2. The Importance of Patch Management

Patch management is the process for identifying, acquiring, installing, and verifying patches for products
and systems. Patches correct security and functionality problems in software and firmware. From a
security perspective, patches are most often of interest because they are mitigating software flaw
vulnerabilities; applying patches to eliminate these vulnerabilities significantly reduces the opportunities
for exploitation. Also, patches are usually the most effective way to mitigate software flaw vulnerabilities,
and are often the only fully effective solution. Sometimes there are alternatives to patches, such as
temporary workarounds involving software or security control reconfiguration, but these workarounds
often negatively impact functionality.

Patches serve other purposes than just fixing software flaws; they can also add new features to software
and firmware, including security capabilities. New features can also be added through upgrades, which
bring software or firmware to a newer version in a much broader change than just applying a patch.
Upgrades may also fix security and functionality problems in previous versions of software and firmware.
Also, vendors often stop supporting older versions of their products, which includes no longer releasing
patches to address new vulnerabilities, thus making older unsupported versions less secure over time.
Upgrades are then necessary to get such products to a supported version that is patched and that has
ongoing support for patching newly discovered vulnerabilities.

As Section 3 explains, there are several challenges that complicate patch management. Organizations that
do not overcome these challenges will be unable to patch systems effectively and efficiently, leading to
compromises that are easily preventable. Organizations that can minimize the time they spend dealing
with patching can use those resources for addressing other security concerns. Already many organizations
have largely operationalized their patch management, making it more of a core IT function than a part of
security. However, it is still important for all organizations to carefully consider patch management in the
context of security because patch management is so important to achieving and maintaining sound
security.

Patch management is required by various security compliance frameworks, mandates, and other policies.
For example, NIST Special Publication (SP) 800-532 requires the SI-2, Flaw Remediation security
control, which includes installing security-relevant software and firmware patches, testing patches before
installing them, and incorporating patches into the organization’s configuration management processes.
Another example is the Payment Card Industry (PCI) Data Security Standard (DSS)3, which requires that
the latest patches be installed and sets a maximum timeframe for installing the most critical patches.

2 http://csrc.nist.gov/publications/PubsSPs.html#800-53-rev4
3 https://www.pcisecuritystandards.org/security_standards/

http://csrc.nist.gov/publications/PubsSPs.html#800-53-rev4
https://www.pcisecuritystandards.org/security_standards/

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 3

3. The Challenges of Patch Management

This section briefly examines the challenges inherent in performing patch management. These are the
challenges that the patch management technologies discussed in Section 4 are trying to solve.

3.1 Timing, Prioritization, and Testing

Timing, prioritization, and testing are intertwined issues for enterprise patch management. Ideally, an
organization would deploy every new patch immediately to minimize the time that systems are vulnerable
to the associated software flaws. However, in reality this is simply not possible because organizations
have limited resources, which makes it necessary to prioritize which patches should be installed before
other patches. Further complicating this is the significant risk of installing patches without first testing
them, which could cause serious operational disruptions, potentially even more damaging than the
corresponding security impact of not pushing the patches out. Unfortunately, testing patches consumes
even more of an organization’s limited resources and makes patch prioritization even more important. For
patch management, timing, prioritization, and testing are often in conflict.

Product vendors have responded to this conflict by improving the quality of their patches and bundling
patches for their products. Instead of releasing dozens of patches one at a time over a period of three
months, necessitating testing and patch deployment every few days, a vendor might release their patches
in a single bundle once a quarter. This allows an organization to perform testing once and roll out patches
once, which is far more efficient than testing and rolling out all the patches separately. It also reduces the
need to prioritize patches—the organization just needs to prioritize the bundle instead of separately
prioritizing each patch it contains. Vendors who bundle patches tend to release them monthly or quarterly,
except for cases when an unpatched vulnerability is actively being exploited, in which case they usually
issue the appropriate patch immediately instead of delaying it for the next bundle.

There is a downside to patch bundling; it lengthens the time from when a vulnerability is discovered to
the time a patch for it becomes publicly available. If an attacker discovers the same vulnerability before
the patch is released, the attacker may have a longer window of opportunity to exploit the vulnerability
because of the intentional delay in releasing the patch. However, there are two mitigating factors here.
One is that if exploitation is known to be occurring, the vendor is likely to release the patch immediately.
The other factor is that patches may be installed more quickly if they are bundled than if they are all
released separately. So operationally, bundling patches may effectively shrink the window of opportunity
for vulnerabilities in some environments.

There are even more issues to consider with timing. The release of a patch may provide attackers with the
information that they need to exploit the corresponding vulnerability (e.g., reverse engineer the
vulnerability from the patch), meaning that a newly released patch might need to be applied immediately
to avoid compromises. However, if a vulnerability is not being exploited yet, organizations should
carefully weigh the security risks of not patching with the operational risks of patching without first
performing thorough testing. In some operational environments, such as virtual hosts with snapshot
capabilities enabled, it may be preferable to patch without testing as long as the organization is fully
prepared to roll back the patches if they cause usability or functionality problems.

Another fundamental issue with timing is that to make a patch take effect, it may be necessary to force the
implementation of changes; this can require restarting a patched application or service, rebooting the

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 4

operating system4, or making other changes to the state of the host. Ultimately what matters is not when
the patch was installed, but when the patch actually takes effect. In some cases it may make more sense to
mitigate a vulnerability through an alternative method, at least until patches are fully deployed and
operational. An example is changing configuration settings for vulnerable software to temporarily block
vulnerable application functionality. Each mitigation option has different implications for the security,
functionality, and operations of the vulnerable host, so it is not a trivial matter to select one option over
others. Also, if configuration settings are changed, this necessitates preserving the old setting values and
restoring them at the appropriate time. Another problem with changing configuration settings is that they
often require a state change to the host to take effect, such as restarting an application. Implementing
configuration changes may be as disruptive to the operations of a host as installing a patch.

Prioritizing which patches to apply and when to apply them is closely related to timing, but there are other
considerations as well. It can depend on the relative importance of the vulnerable systems (for example,
servers versus clients) and the relative severity of each vulnerability (e.g., vulnerability severity metrics
such as the Common Vulnerability Scoring System [CVSS]). Another consideration is dependencies that
patches may have on each other; installing one patch may require installing other patches first, and in
some cases require restarting an application or rebooting a host multiple times to make the patches take
effect sequentially.

In summary, organizations should carefully consider the relevant issues related to timing, prioritization,
and testing when planning and executing their enterprise patch management processes.

3.2 Patch Management Configuration

Another major challenge in enterprise patch management is that there are usually multiple mechanisms
for applying patches. For example:

• A piece of software may be able to automatically update itself.

• A centralized OS management tool may be able to initiate patching.

• Third-party patch management applications may be able to initiate patching.

• Network access control, health check technologies, and similar technologies may be able to
initiate patching.

• A user may be able to manually direct software to update itself.

• A user may be able to manually install a patch or a new version of the software.

Having multiple ways of applying patches can cause conflicts. Multiple methods might each try to patch
the same software, which is particularly problematic when the organization doesn’t want certain patches
applied because of issues with those patches, testing delays, etc. Multiple methods can also cause patches
to be delayed or missed because each tool or administrator may assume another one is already taking care
of a particular patch. Organizations should identify all the ways in which patches could be applied and act
to resolve any conflicts among patch application methods.

4 This can be problematic when the host requires authentication before booting, such as the use of full disk encryption (FDE)

software. Organizations using FDE software or other technologies that require authentication before booting should
carefully consider the impact that these technologies may have on patch installation.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 5

A related problem with patch management configuration is that users may override or circumvent patch
management processes. If users are able to make changes to their hosts’ software, such as altering settings
(e.g., enabling direct updates, disabling patch management software), installing old versions of software,
and uninstalling patches, they can undermine the integrity of the patch management process. To address
these problems, organizations should ensure that users cannot disable or otherwise negatively affect
enterprise patch management technologies, and organizations should perform continuous monitoring of
enterprise patch management technologies to identify any issues that occur.

3.3 Alternative Host Architectures

Enterprise patch management is relatively straightforward when all of the hosts are fully managed and
running typical applications and operating systems on a regular platform. When alternative host
architectures are employed, patch management can be considerably more challenging. Examples of these
architectures include the following:

• Unmanaged hosts. As discussed in Section 3.2, it can be much more difficult to control patching
when hosts are not centrally managed (i.e., users manage their own hosts).

• Out-of-office hosts (e.g., telework laptops). Hosts on other networks are not protected by the
enterprise’s network security controls (firewalls, network intrusion detection systems,
vulnerability scanners, etc.)

• Non-standard IT components (e.g., appliances). On such hosts, it’s often not possible to patch
individual applications independently. Rather, the organization must wait for the component
vendor to release updated software. This wait time may be significantly longer than that used by
the primary application vendors, resulting in significant vulnerability windows.

• Mobile devices. Smartphones, tablets, and other mobile devices (excluding laptops) typically run
mobile operating systems, and patching for these devices is fundamentally different. It is often
necessary to connect the mobile device to a desktop or laptop and to acquire and download
updates through that desktop or laptop. Some mobile devices can directly download updates, but
this can be problematic because of bandwidth considerations (such as taking a long time to
download large updates and paying data charges for the downloads). Another option for keeping
mobile devices updated is the use of enterprise mobile device management software. Enterprise
mobile device management software is used to manage mobile devices, even personally owned
devices not controlled by the organization. It can install, update, and remove applications, and it
can restrict enterprise access if the phone’s operating system and mobile device management
software are not up to date. See Section 3 of SP 800-124 Revision 1, Guidelines for Managing
and Securing Mobile Devices in the Enterprise, for more information.

• Operating system virtualization. Patches need to be maintained for every OS image and
snapshot used for full virtualization. Patching capabilities are often built into virtualized
environments, such as the ability to patch offline images and quarantine dormant virtual machine
instances. See NIST SP 800-125, Guide to Security for Full Virtualization Technologies, for
additional information—specifically, Section 3.3 discusses virtual machine image and snapshot
management.

• Firmware. Firmware updates, such as updating the system BIOS, generally require special
privileges and involve different procedures than other types of updates. See NIST SP 800-147,
BIOS Protection Guidelines, for additional information on BIOS updates.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 6

Organizations should carefully consider all alternative host architectures in use for the enterprise when
designing enterprise patch management policies and solutions.

3.4 Other Challenges

This section briefly discusses other challenges not covered earlier in this section. Also, see NIST SP 800-
40 Version 2, Creating a Patch and Vulnerability Management Program for additional challenges not
mentioned in this publication.5

3.4.1 Software Inventory Management

Enterprise patch management is dependent on having a current and complete inventory of the patchable
software (applications and operating systems) installed on each host. This inventory should include not
only which software is currently installed on each host, but also what version of each piece of software is
installed. Without this information, the correct patches cannot be identified, acquired, and installed. This
inventory information is also necessary for identifying older versions of installed software so that they
can be brought up to date. A major benefit of updating older versions is that it reduces the number of
software versions that need to be patched and have their patches tested.

3.4.2 Resource Overload

Enterprise patch management can cause resources to become overloaded. For example, many hosts might
start downloading the same large patch (or bundle of patches) at the same time. This could consume
excessive network bandwidth or, if the patches are coming from an organization patch server, overwhelm
the resources of that server. Organizations should ensure that their enterprise patch management can
avoid resource overload situations, such as by sizing the solution to meet expected volumes of requests,
and staggering the delivery of patches so that the enterprise patch management system does not try to
transfer patches to too many hosts at the same time.

3.4.3 Installation Side Effects

Installing a patch may cause side effects to occur. A common example is the installation inadvertently
altering existing security configuration settings or adding new settings. This may create a new security
problem in the process of fixing the original vulnerability via patching. Organizations should be capable
of detecting side effects, such as changes to security configuration settings, caused by patch installation.

3.4.4 Patch Implementation Verification

As discussed in Section 3.1, an installed patch might not take effect until the affected software is restarted
or other state changes are made. It can be surprisingly difficult to examine a host and determine whether
or not a particular patch has taken effect. This is further complicated when there is no indication for a
patch when it would take effect (reboot required/not required, etc.) One option is to attempt to exploit the
vulnerability, but this is generally only feasible if an exploit already exists, and there are substantial risks
with attempting exploitation, even under highly controlled conditions. Organizations should use other
methods of confirming installation, such as a vulnerability scanner that is independent from the patch
management system.

5 http://csrc.nist.gov/publications/nistpubs/800-40-Ver2/SP800-40v2.pdf

http://csrc.nist.gov/publications/nistpubs/800-40-Ver2/SP800-40v2.pdf

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 7

3.4.5 Application Whitelisting

Application whitelisting technologies can conflict with patch management technologies because the
application whitelisting technologies function based on known characteristics of executables and other
application components, which may be changed by patching. If the vendor is providing the whitelist
information, the vendor will have to acquire the patch, record its files’ characteristics, and send the
corresponding information to customers. If the organization is building its own whitelist information, it
will have to acquire each patch, record its files’ characteristics, and update its whitelists with the new
information. Either method may cause problematic delays for organizations that apply patches quickly,
especially automatically; patched software may be seen as unknown software and thus prohibited from
running.

To avoid these problems with updates, most application whitelisting technologies offer maintenance
options. For example, many technologies allow the administrator to select certain services (e.g., patch
management software) to be trusted updaters. This means that any files that they add to or modify on a
host are automatically added to the whitelist. Similar options are available for designating trusted
publishers (i.e., software vendors), users (such as system administrators), sources (such as trusted network
paths), and other trusted entities that may update whitelists. Organizations using application whitelisting
technologies should ensure that they are configured to avoid problems with updates.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 8

4. Enterprise Patch Management Technologies

This section explores the core concepts of enterprise patch management technologies. It discusses their
composition, focuses on the security and management capabilities that they provide, and gives
recommendations for their use.

4.1 Components and Architecture

Enterprise patch management technologies are similar architecturally to other enterprise security
solutions: one or more centralized servers that provide management and reporting, and one or more
consoles.6 What distinguishes enterprise patch management technologies from each other architecturally
are the techniques they use to identify missing patches. The three techniques are agent-based, agentless
scanning, and passive network monitoring. Many products support only one of these techniques, while
other products support more than one. All the techniques are explained in more detail below.
Organizations should carefully consider the advantages and disadvantages of each technique when
selecting enterprise patch management technologies.

4.1.1 Agent-Based

An agent-based patch management technology requires an agent to be running on each host to be
patched7, with one or more servers that manage the patching process and coordinate with the agents. Each
agent is responsible for determining what vulnerable software is installed on the host, communicating
with the patch management servers, determining what new patches are available for the host, installing
those patches, and executing any state changes needed to make the patches take effect (e.g., application
restart, OS reboot). Each agent runs with administrator privileges so it can perform these actions. The
patch management server is responsible for providing the agents with information on vulnerable software
and available patches, including where patches can be acquired from and what state changes are needed.

Compared to agentless scanning and passive network monitoring, agent-based patch management
technologies are strongly preferred for hosts that are not on the local network all the time, such as
telecommuter laptops and smartphones.

There are a few limitations to agent-based patch management technologies. Hosts that don’t permit direct
administrator access to the operating system, such as many appliances, generally cannot run agents. Also,
agents may not be available for all of the organization’s platforms, either for technical reasons or
operational reasons (such as control systems, medical devices, and other specialized systems).

4.1.2 Agentless Scanning

An agentless scanning patch management technology has one or more servers that perform network
scanning of each host to be patched and determine what patches each host needs. Generally agentless
scanning requires the servers to have administrative privileges on each host, so that they can return more
accurate scanning results and so they have the ability to install patches and implement state changes on
the hosts (application restarts, OS reboots, etc.)

The main advantage of agentless scanning is that it doesn’t require the installation and execution of an
agent on each host.

6 Enterprise patch management technologies can also be offered as a managed service.
7 Agent-based patch management technology is built into some operating systems.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 9

One of the primary limitations of agentless scanning is that it omits hosts not on the local network, such
as telecommuter laptops and mobile devices. Also, network security controls (e.g., host-based firewalls)
and network technologies (e.g., network address translation) may inadvertently block scanning or
otherwise negatively affect scanning results. Agentless scanning may also negatively impact operations
by consuming excessive amounts of bandwidth. Finally, agentless scanning may not support all of the
organization’s platforms.

4.1.3 Passive Network Monitoring

Passive network monitoring technologies for patch management monitor local network traffic to identify
applications (and in some cases, operating systems) that are in need of patching.

These technologies can be effective at identifying hosts that are not being maintained by other patch
management solutions (agent-based, agentless scanning). They do not require any privileges on the hosts
to be monitored, so they can be used to monitor the patch status of hosts that the organization does not
control (unmanaged systems, visitor systems, contractor systems, etc.)

The primary disadvantage of passive network monitoring is that it only works with software where you
can identify the version based on its network traffic (assumed to be unencrypted). Also, of course, it only
works with hosts on the local network.

4.1.4 Comparison of Techniques

Table 4-1 summarizes the major characteristics of the three techniques.

Table 4-1: Comparison of Techniques

Characteristic Agent-Based Agentless
Scanning

Passive Network
Monitoring

Admin privileges needed on hosts? Yes Yes No
Supports unmanaged hosts? No No Yes
Supports remote hosts? Yes No No
Supports appliances? No No Yes
Bandwidth needed for scanning? Minimal Moderate to

excessive
None

Potential range of applications detected? Comprehensive Comprehensive Only those that
generate
unencrypted network
traffic

4.2 Security Capabilities

This section describes common security capabilities provided by patch management technologies, divided
into three categories: inventory management, patch management, and other. In many products these
capabilities are provided by using the Security Content Automation Protocol (SCAP). SCAP is designed
to organize, express, and measure security-related information in standardized ways. See Appendix A for
more information on SCAP and its role in patch management.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 10

4.2.1 Inventory Management Capabilities

Patch management technologies typically have capabilities for identifying which software and versions of
software are installed on each host, or alternately, just identifying vulnerable versions of software that are
installed. In addition, some products have features for installing new versions of software, installing or
uninstalling software features, and uninstalling software.

4.2.2 Patch Management Capabilities

Patch management technologies obviously provide a range of patch management capabilities. Common
features include identifying which patches are needed, bundling and sequencing patches for distribution,
allowing administrators to select which patches may or may not be deployed, and installing patches and
verifying installation. Many patch management technologies also allow patches to be stored centrally
(within the organization) or downloaded as needed from external sources.

4.2.3 Other Capabilities

Many host-based products that have patch management capabilities also provide a variety of other
security capabilities, such as antivirus software, configuration management, and vulnerability scanning.
Further discussion of these capabilities is outside the scope of this document.

4.3 Management Capabilities

Once a patch management technology has been selected, its administrators should design a solution
architecture, perform testing, deploy and secure the solution, and maintain its operations and security.
This section highlights issues of particular interest with administration—implementation, operation, and
maintenance—of patch management technologies, and provides recommendations for performing them
effectively and efficiently.

4.3.1 Technology Security

Deploying enterprise patch management tools within an enterprise can create additional security risks for
an organization; however, a much greater risk is faced by organizations that do not effectively patch their
systems. Such tools usually increase security far more than they decrease security, especially when the
tools contain built-in security measures to protect against security risks and threats. The following are
some risks with using these tools:

 A patch may have been altered (inadvertently or intentionally).

 Credentials may be misused.

 Vulnerabilities in the solution components (including agents) may be exploited.

 An entity could monitor tool communications to identify vulnerabilities (particularly when the
host is on an external network).

Organizations should reduce these risks through the application of standard security techniques that
should be used when deploying any enterprise-wide application. Examples of countermeasures include
the following:

 Keep the patching solution components tightly secured (including patching them).

 Encrypt network communications.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 11

 Verify integrity of patches before installing them (e.g., using checksums).

 Test patches before deployment (to identify corruption).

4.3.2 Phased Deployment

Organizations should deploy enterprise patch management tools using a phased approach. This allows
process and user communication issues to be addressed with a small group before deploying the patch
application universally. Most organizations deploy patch management tools first to standardized desktop
systems and single-platform server farms of similarly configured servers. Once this has been
accomplished, organizations should address the more difficult issue of integrating multiplatform
environments, nonstandard desktop systems, legacy computers, and computers with unusual
configurations. Manual methods may need to be used for operating systems and applications not
supported by automated patching tools, as well as some computers with unusual configurations; examples
include embedded systems, industrial control systems, medical devices, and experimental systems. For
such computers, there should be a written and implemented procedure for the manual patching process.

4.3.3 Usability and Availability

Organizations should balance their security needs with their needs for usability and availability. For
example, installing a patch may “break” other applications; this can best be addressed by testing patches
before deployment. Another example is that forcing application restarts, OS reboots, and other host state
changes is disruptive and could cause loss of data or services. Again, organizations need to balance the
need to get patches applied with the need to support operations. A final example, particularly important
for mobile devices, is the acquisition of updates over low-bandwidth or metered connections; it may be
technically or financially infeasible to download large patches over such connections. Organizations
should make provisions for ensuring that their enterprise patching solution works for mobile hosts and
other hosts used on low-bandwidth or metered networks.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 12

5. Metrics

As explained in Section 3.3 of NIST SP 800-55 Revision 1, Performance Measurement Guide for
Information Security there are three types of measures:

• “Implementation measures are used to demonstrate progress in implementing security programs,
specific security controls, and associated policies and procedures….

• Effectiveness/efficiency measures are used to monitor if program-level processes and system-
level security controls are implemented correctly, operating as intended, and meeting the desired
outcome….

• Impact measures are used to articulate the impact of information security on an organization’s
mission….”

Regarding these types of measures, “less mature information security programs need to develop their
goals and objectives before being able to implement effective measurement. More mature programs use
implementation measures to evaluate performance, while the most mature programs use
effectiveness/efficiency and business impact measures to determine the effect of their information
security processes and procedures.” Accordingly, organizations should implement and use appropriate
measures for their enterprise patch management technologies and processes.

Examples of possible implementation measures include:

• What percentage of the organization’s desktops and laptops are being covered by the enterprise
patch management technologies?

• What percentage of the organization’s servers have their applications automatically inventoried
by the enterprise patch management technologies?

Examples of possible effectiveness/efficiency measures include:

• How often are hosts checked for missing updates?

• How often are asset inventories for host applications updated?

• What is the minimum/average/maximum time to apply patches to X% of hosts?

• What percentage of the organization’s desktops and laptops are patched within X days of patch
release? Y days? Z days? (where X, Y, and Z are different values, such as 10, 20, and 30)

• On average, what percentage of hosts are fully patched at any given time? Percentage of high
impact hosts? Moderate impact? Low impact?

• What percentage of patches are applied fully automatically, versus partially automatically, versus
manually?

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 13

Examples of possible impact measures include:

• What cost savings has the organization achieved through its patch management processes?

• What percentage of the agency’s information system budget is devoted to patch management?

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 14

Appendix A—Security Content Automation Protocol (SCAP) Tutorial

This appendix provides an overview of the Security Content Automation Protocol (SCAP) as it relates to
enterprise patch management technologies. The appendix is based on material from NIST SP 800-117
Revision 1, Guide to Adopting and Using the Security Content Automation Protocol (SCAP) Version 1.2,
which is the current revision as of this writing. Please see the current revision of NIST SP 800-117 for
additional information on SCAP.

SCAP (pronounced ess-cap), as expressed in NIST Special Publication (SP) 800-126, is “a suite of
specifications that standardize the format and nomenclature by which software flaw and security
configuration information is communicated, both to machines and humans.” SCAP is designed to
organize, express, and measure security-related information in standardized ways, as well as related
reference data, such as identifiers for software flaws and security configuration issues. SCAP can be used
to maintain the security of enterprise systems, such as automatically verifying the installation of patches,
checking system security configuration settings, and examining systems for signs of compromise.

Table A-1 lists the component specifications for the SCAP version 1.2 protocol. The components are
grouped by type:

 Languages. The SCAP languages provide standard vocabularies and conventions for expressing
security policy, technical check mechanisms, and assessment results.

 Reporting formats. The SCAP reporting formats provide the necessary constructs to express
collected information in standardized formats.

 Enumerations. Each SCAP enumeration defines a standard nomenclature (naming format) and an
official dictionary or list of items expressed using that nomenclature.

 Measurement and scoring systems. In SCAP this refers to evaluating specific characteristics of a
security weakness (for example, software vulnerabilities and security configuration issues) and, based
on those characteristics, generating a score that reflects their relative severity.

 Integrity protection. An SCAP integrity protection specification helps to preserve the integrity of
SCAP content and results.

Table A-1. SCAP Version 1.2 Component Specifications

SCAP Component Description
Languages
Extensible Configuration Checklist
Description Format (XCCDF) 1.2

A language for authoring security checklists/benchmarks and for
reporting results of evaluating them

Open Vulnerability and Assessment
Language (OVAL) 5.10

A language for representing system configuration information,
assessing machine state, and reporting assessment results

Open Checklist Interactive Language
(OCIL) 2.0

A language for representing assessment content that collects
information from people or from existing data stores made by other
data collection efforts

Reporting Formats
Asset Reporting Format (ARF) 1.2 A format for expressing the exchange of information about assets

and the relationships between assets and reports
Asset Identification A format for uniquely identifying assets based on known identifiers

and/or known information about the assets

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 15

SCAP Component Description
Enumerations
Common Platform Enumeration (CPE) 2.3 A nomenclature and dictionary of hardware, operating systems, and

applications, plus an applicability language for constructing complex
logical groupings of CPE names

Common Configuration Enumeration
(CCE) 5

A nomenclature and dictionary of software security configurations

Common Vulnerabilities and Exposures
(CVE)

A nomenclature and dictionary of security-related software flaws

Measurement and Scoring Systems
Common Vulnerability Scoring System
(CVSS) 2.0

A system for measuring the relative severity of software flaw
vulnerabilities

Common Configuration Scoring System
(CCSS) 1.0

A system for measuring the relative severity of system security
configuration issues

Integrity Protection
Trust Model for Security Automation Data
(TMSAD) 1.0

A specification for using digital signatures in a common trust model
applied to other security automation specifications

Each of the SCAP components offers unique functions and can be used independently, but greater
benefits can be achieved by using the components together. For example, the ability to have XCCDF
documents that use CCE, CPE, and CVE identifiers with OVAL definitions to express rules and
relationships for technical checks and that use OCIL questionnaires to express management and
operational checks comprises the building blocks for SCAP-expressed checklists.8 In other words, SCAP-
expressed checklists use a standardized language (XCCDF) to express what checks should be performed
(OVAL, OCIL), which platforms are being discussed (CPE), and which security settings (CCE) and
software flaw vulnerabilities (CVE) should be addressed.

Both comprehensive SCAP-expressed checklists, such as a checklist to secure an operating system, and
more specialized SCAP-expressed checklists are valuable. A specialized checklist can be used to check
particular characteristics of systems to identify potential security problems. A common example is using
an SCAP checklist to confirm the installation of patches and identify which patches are missing. SCAP-
formatted data for patch checking can be made publicly available by software vendors for their products;
organizations can download this data and use it through their SCAP-capable tools.9

8 SCAP-expressed checklists are further defined in Table 4-1 of NIST SP 800-70 Revision 1.
9 Patch information can be downloaded from the MITRE OVAL Repository at http://oval.mitre.org/repository/.

http://oval.mitre.org/repository/

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 16

Appendix B—Summary of Recommendations

This appendix provides a summary of the main recommendations made throughout the publication.

Section 3

Section 3.1: If a vulnerability is not being exploited yet, organizations should carefully weigh the security
risks of not patching with the operational risks of patching without performing thorough testing first.

Section 3.1: Organizations should carefully consider the relevant issues related to timing, prioritization,
and testing when planning and executing their enterprise patch management processes.

Section 3.2: Organizations should identify all the ways in which patches could be applied and act to
resolve any conflicts among patch application methods.

Section 3.2: Organizations should ensure that users cannot disable or otherwise negatively affect
enterprise patch management technologies, and organizations should perform continuous monitoring of
enterprise patch management technologies to identify any issues that occur.

Section 3.3: Organizations should carefully consider all alternative host architectures in use for the
enterprise when designing enterprise patch management policies and solutions.

Section 3.4.1: The inventory of the patchable software (applications and operating systems) installed on
each host should include not only which software is currently installed on each host, but also what version
of each piece of software is installed.

Section 3.4.2: Organizations should ensure that their enterprise patch management can avoid resource
overload situations.

Section 3.4.3: Organizations should be capable of detecting side effects, such as changes to security
configuration settings, caused by patch installation.

Section 3.4.4: Organizations should use other methods of confirming installation, such as a vulnerability
scanner that is independent from the patch management system.

Section 3.4.5: Organizations using application whitelisting technologies should ensure that they are
configured to avoid problems with updates.

Section 4

Section 4.1: Organizations should carefully consider the advantages and disadvantages of each technique
for identifying missing patches (e.g., agent-based, agentless scanning, passive network monitoring) when
selecting enterprise patch management technologies.

Section 4.3: A patch management technology’s administrators should design a solution architecture,
perform testing, deploy and secure the solution, and maintain its operations and security.

Section 4.3.1: Organizations should reduce the risks of using enterprise patch management tools through
the application of standard security techniques that should be used when deploying any enterprise-wide
application.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 17

Section 4.3.2: Organizations should deploy enterprise patch management tools using a phased approach.

Section 4.3.3: Organizations should balance their security needs with their needs for usability and
availability.

Section 5

Section 5: Organizations should implement and use appropriate measures for their enterprise patch
management technologies and processes.

GUIDE TO ENTERPRISE PATCH MANAGEMENT TECHNOLOGIES

 18

Appendix C—Acronyms and Abbreviations

Selected acronyms and abbreviations used in the guide are defined below.

ARF Asset Reporting Format
CCE Common Configuration Enumeration
CCSS Common Configuration Scoring System
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
FISMA Federal Information Security Management Act
IT Information Technology
ITL Information Technology Laboratory
NIST National Institute of Standards and Technology
OCIL Open Checklist Interactive Language
OMB Office of Management and Budget
OVAL Open Vulnerability and Assessment Language
SCAP Security Content Automation Protocol
SP Special Publication
TMSAD Trust Model for Security Automation Data
XCCDF Extensible Configuration Checklist Description Format

	Executive Summary
	1. Introduction
	1.1 Document Purpose and Scope
	1.2 Audience
	1.3 Document Structure

	2. The Importance of Patch Management
	3. The Challenges of Patch Management
	3.1 Timing, Prioritization, and Testing
	3.2 Patch Management Configuration
	3.3 Alternative Host Architectures
	3.4 Other Challenges
	3.4.1 Software Inventory Management
	3.4.2 Resource Overload
	3.4.3 Installation Side Effects
	3.4.4 Patch Implementation Verification
	3.4.5 Application Whitelisting

	4. Enterprise Patch Management Technologies
	4.1 Components and Architecture
	4.1.1 Agent-Based
	4.1.2 Agentless Scanning
	4.1.3 Passive Network Monitoring
	4.1.4 Comparison of Techniques

	4.2 Security Capabilities
	4.2.1 Inventory Management Capabilities
	4.2.2 Patch Management Capabilities
	4.2.3 Other Capabilities

	4.3 Management Capabilities
	4.3.1 Technology Security
	4.3.2 Phased Deployment
	4.3.3 Usability and Availability

	5. Metrics
	Appendix A— Security Content Automation Protocol (SCAP) Tutorial
	Appendix B— Summary of Recommendations
	Appendix C— Acronyms and Abbreviations

