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Abstract—With the ever increase of complexity and expense of 

industrial systems, there is less tolerance for performance 

degradation, productivity decrease and safety hazards, which 

greatly stimulates to detect and identify any kinds of potential 

abnormalities and faults as early as possible, and implement real-

time fault-tolerant operation for minimizing performance 

degradation and avoiding dangerous situations. During the last 

four decades, fruitful results were reported about fault diagnosis 

and fault-tolerant control methods and their applications in a 

variety of engineering systems. The three-part survey paper aims 

to give a comprehensive review for real-time fault diagnosis and 

fault tolerant control with particular attention on the results 

reported in the last decade. In the first-part review, fault 

diagnosis approaches and their applications are reviewed 

comprehensively from model-based and signal-based 

perspectives, respectively. 

 
Index Terms—Analytical redundancy, model-based fault 

diagnosis, signal-based fault diagnosis, real-time monitoring, 

fault tolerance 

 

I. INTRODUCTION 

S is known, many engineering systems, such as aero 

engines, vehicle dynamics, chemical processes, 

manufacturing systems, power network, electric machines, 

wind energy conversion systems, and industrial electronic 

equipment and so forth, are safety-critical systems. There is an 

ever increasing demand on reliability and safety of industrial 

systems subjected to potential process abnormalities  and 

component faults. As a result, it is paramount to detect and 
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identify any kinds of potential abnormalities and faults as 

early as possible, and implement fault-tolerant operation for 

minimizing performance degradation and avoiding dangerous 

situations.  

A fault is defined as an unpermitted deviation of at least one 

characteristic property or parameter of the system from the 

acceptable/usual/standard condition [1]. Examples of such 

malfunctions are the blocking of an actuator, the loss of a 

sensor (e.g., a sensor gets stuck at a particular value or has a 

variation in the sensor scalar factor), or the disconnection of a 

system component. Therefore, the faults are often classified as 

actuator faults, sensor faults and plant faults (or called 

component faults or parameter faults), which either interrupt 

the control action from the controller on the plant, or produce 

substantial measurement errors, or directly change the 

dynamic input/output properties of the system, leading to 

system performance degradation, and even the damage and 

collapse of the whole system. In order to improve the 

reliability of a system concerned, fault diagnosis is usually 

employed to monitor, locate and identify the faults by using 

the concept of redundancy, either hardware redundancy or 

software redundancy (or called analytical redundancy). The 

basic idea of the hardware redundancy is to use identical 

components with the same input signal so that the duplicated 

output signals can be compared leading to diagnostic decision 

by a variety of methods such as limit checking, and majority 

voting etc. The hardware redundancy is reliable, but expensive 

and increasing weights and occupying more space. It is 

necessary for key components to equip with the redundant 

duplicate, but would not be applicable if the hardware 

redundancy is applied to the whole system due to the cost or 

the difficulty for physical installing when the space and/or 

weight are strictly constrained. With the mature of modern 

control theory, the analytical redundancy technique has 

become the main stream of the fault diagnosis research since 

the 1980s, whose schematic diagram can be depicted by Fig.1. 

For a controlled system subjected to actuator fault 𝑓𝑎, 
process/component fault 𝑓𝑐, and sensor fault 𝑓𝑠, the input 𝑢 and 

output 𝑦 are used to construct a fault diagnosis algorithm, 

which is employed to check the consistency of the feature 

information of the real-time process carried by the input and 

output data against the pre-knowledge on a healthy system, 

and a diagnostic decision is then made by using diagnostic 
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logics. Compared with hardware redundancy methods, 

analytical redundancy diagnostic methods are more cost 

effective, but more challenging due to environmental noises, 

inevitable modelling error, and the complexity of the system 

dynamics and control structure.  

 
Fig. 1. Analytical redundancy based fault diagnosis 

 

Fault diagnosis includes three tasks, that is, fault detection, 

fault isolation and fault identification. Fault detection is the 

most basic task of the fault diagnosis, which is used to check 

whether there is malfunction or fault in the system and 

determine the time when the fault occurs. Furthermore, fault 

isolation is to determine the location of the faulty component, 

and fault identification is to determine the type, shape and size 

of the fault. Clearly, the locations of the faulty components 

and their severe degrees of the malfunctions described by the 

types, shapes and sizes of the faults are vital for the system to 

take fault-tolerant responses timely and appropriately to 

remove the adverse effects from the faulty parts to the system 

normal operation. 

 
Fig. 2. Schematic diagram of fault tolerant control 

  

The schematic of fault-tolerant control is depicted by Fig. 2, 

which is shown that fault tolerant control is integrated with 

fault diagnosis in essence. Real-time fault diagnosis can detect 

whether the system is faulty, and tell where the fault occurs 

and how severe the malfunction is. Based on the valuable 

information, the supervision system can thus take appropriate 

fault-tolerant actions such as off-setting the faulty signals by 

actuator/sensor signal compensation, tuning or reconfiguring 

the controller, and even replacing faulty components by 

redundant duplicates, so that the adverse effects from faults 

are accommodated or removed.  

During the last four decades, fruitful results have been 

reported on fault diagnosis methods, fault-tolerant control 

techniques and their applications in various industrial 

processes and systems. A number of survey papers were 

written, for instance [2-38], which are depicted by Table 1, 

categorized in terms of years and methods/applications.  

TABLE 1 

SURVEY PAPERS FOR FAULT DIAGNOSIS AND FAULT 

TOLERANCE 

 
Specifically, in 1976, Willsky presented the key concepts of 

analytical redundancy for model-based fault detection and 

diagnosis in the early survey paper [2]. More comprehensive 

model-based fault diagnosis methods such as parity space 

approaches, observer-based methods and parameter estimation 

techniques are reviewed by [3-9]. A three-part survey paper 

[10-12] on fault diagnosis was presented in 2003, respectively 

from the viewpoint of quantitative mode-based methods, 

qualitative model-based methods and process history based 

methods. In [13], a structured and comprehensive overview of 

the research on anomaly detection is provided, which is 

referred to the problem of finding patterns in data that do not 

conform to expected behavior, and has an extensive use in a 

wide variety of applications such as intrusion detection for 

cyber-security, military surveillance for enemy activities, as 

well as fault detection in safety critical systems. In [14-16], 

comprehensive fault diagnostic methods were reviewed 

respectively from the data-driven perspective. In [17], a short 

review on fault detection in sensor networks was provided. 

With respect to fault diagnosis methods for various 

processes/systems applications, a couple of survey papers 

were addressed for mining equipment [18], electric motors 

[19-21], building systems (such as heating, ventilating, air-

conditioning and refrigeration) [22, 23], machinery system 

[24, 25], and swarm systems (consisting of multiple intelligent 

interconnected nodes and possessing swarm capability) [26], 

respectively.  

For fault-tolerant control, an early review paper was 

presented by [27] in 1991, which introduced the basic 

concepts of fault-tolerant control and analyzed the 

applicability of artificial intelligence (e.g., neural network and 

expert systems) to fault-tolerant control systems. In 1997, an 

overview of fault-tolerant control was given from the system 
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development view [28]. In the same year, a comprehensive 

review was contributed by [29], which presented the key 

issues of the fault-tolerant control systems and outlined the 

state of the art in this field. Reconfigurable fault-tolerant 

control systems are reviewed extensively respectively by [30-

32]. Some results on fault-tolerant control for nonlinear 

systems were reviewed by [33]. Along with fault diagnosis, 

brief reviews on data-driven fault-tolerant control and model-

based fault-tolerant reconfiguration were presented by [34, 35] 

respectively. From the viewpoint of industrial applications, 

fault tolerance techniques were reviewed for electric drive 

systems [36] and power electronics systems [37, 38], 

respectively.   

The three-part survey paper aims to give a comprehensive 

overview for real-time fault diagnosis and fault tolerant 

control with particular attention on the results reported in the 

last decade. Generally, fault diagnosis methods can be 

categorized into model-based methods, signal-based methods, 

knowledge-based methods, hybrid methods (the combination 

methods of at least two methods) and active fault diagnosis 

methods. In the first-part survey paper, fault diagnosis 

techniques will be reviewed from the model-based and signal-

based perspectives, and the knowledge-based, hybrid, and 

active fault diagnosis techniques will be reviewed in the 

second-part survey paper. The first-part and second-part 

survey papers aim to review the existing fault diagnosis 

methods and applications within a framework by using the up-

to-date references. 

The rest of this paper is organized as follows. Following the 

introduction session, model-based fault diagnosis techniques 

are reviewed in Section II. Signal-based fault diagnosis is 

reviewed in Section III. The paper is ended by Section IV with 

conclusions.     

II. MODEL-BASED FAULT DIAGNOSIS METHODS  

Model-based fault diagnosis was originated by Beard [39] 

in 1971 in order to replace hardware redundancy by analytical 

redundancy, and comprehensive results were documented in 

some well-written books (i.e., see [40, 41]). In model-based 

methods, the models of the industrial processes or practical 

systems are required to be available, which can be obtained by 

using either physical principles or systems identification 

techniques. Based on the model, fault diagnosis algorithms are 

developed to monitor the consistency between the measured 

outputs of the practical systems and the model predicted 

outputs. In this section, model-based fault diagnosis methods 

are reviewed following the four categories: deterministic fault 

diagnosis methods, stochastic fault diagnosis methods, fault 

diagnosis for discrete-events and hybrid systems, and fault 

diagnosis for networked and distributed systems, which are 

classified in terms of types of the models used.  

A. Deterministic fault diagnosis methods 

Observer plays a key role in model-based fault diagnosis for 

monitored systems/processes characterized by deterministic 

models. The schematic diagram of the observer-based fault 

diagnosis is depicted by Fig. 3, which includes fault detection, 

fault isolation and fault identification (or called fault 

reconstruction or fault estimation). 

 
Fig. 3. Scheme of model-based fault diagnosis 

 

For simplicity, the model of the process in Figure 3 is 

assumed to be linearized state-space model, which is described 

by the following: 

{

𝑥(𝑘 + 1) = (𝐴 + ∆𝐴)𝑥(𝑘) + (𝐵 + ∆𝐵)𝑢(𝑘) + 𝐵𝑑𝑑(𝑘)

                      +𝐵𝑎𝑓𝑎(𝑘) + 𝐵𝑐𝑓𝑐(𝑘)

𝑦(𝑘) = (𝐶 + ∆𝐶)𝑥(𝑘) + 𝐷𝑠𝑓𝑠(𝑘) + 𝐷𝜔𝜔(𝑘)

  (1) 

where 𝑥(𝑘) ∈ 𝑅𝑛 , 𝑢(𝑘) ∈ 𝑅𝑚, 𝑦(𝑘) ∈ 𝑅𝑝, 𝑓𝑎(𝑘) ∈ 𝑅𝑙𝑎 , 

𝑓𝑐(𝑘) ∈ 𝑅𝑙𝑐 , 𝑓𝑠(𝑘) ∈ 𝑅𝑙𝑠 ,  𝑑(𝑘) ∈ 𝑅𝑙𝑑 , and 𝜔(𝑘) ∈ 𝑅𝜔 are the 

system state, control input, measured output, unexpected 

actuator fault, component/parameter fault, sensor fault, 

process disturbance and measurement noises,  respectively. 

𝐴, 𝐵, 𝐶, 𝐵𝑑 , 𝐵𝑎 , 𝐵𝑐 , 𝐷𝑠 and 𝐷𝜔 are known parameter matrices, 

and Δ𝐴, Δ𝐵 and Δ𝐶 are unknown modelling parameter errors. 

An observer-based fault detection filter is given in the 

following form: 

{

�̂�(𝑘 + 1) = 𝐴�̂�(𝑘) + 𝐵𝑣(𝑘) + 𝐾𝑟(𝑘)

𝑟(𝑘) = 𝑦(𝑘) − �̂�(𝑘)

�̂�(𝑘) = 𝐶�̂�(𝑘)
                (2) 

where �̂�(k) and �̂�(k) are the estimates of the state and output, 

respectively; 𝑟(𝑘) is the residual signal and 𝐾 is the observer 

gain to be designed. Let 𝑒(𝑘) = 𝑥(𝑘) − �̂�(𝑘), the frequency-

domain residual signal can be described by 

𝑟(𝑧) = 𝐺𝑑(𝑧)�̅�(𝑧) + 𝐺𝑓̅(𝑧)𝑓(̅𝑧)                      (3) 

where  

𝐺�̅�(𝑧) = 𝐶(𝑧𝐼 − 𝐴 + 𝐾𝐶)−1�̅��̅� + �̅��̅� 

𝐺𝑓̅(𝑧) = 𝐶(𝑧𝐼 − 𝐴 + 𝐾𝐶)−1�̅�𝑓̅ + �̅�𝑓̅ 

�̅��̅� = (Δ𝐴 − 𝐾Δ𝐶 Δ𝐵 𝐵𝑑 −𝐾𝐷𝜔) 
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�̅�𝑓̅ = (𝐵𝑎 𝐵𝑐 −𝐾𝐷𝑠) 

�̅��̅� = (Δ𝐶 0 0 𝐷𝜔) 

�̅�𝑓̅ = (0 0 𝐷𝑠) 

�̅�(𝑧) = (𝑥𝑇(𝑧) 𝑣𝑇(𝑧) 𝑑𝑇(𝑧) 𝜔𝑇(𝑧))𝑇  

𝑓(̅𝑧) = (𝑓𝑎
𝑇(𝑧) 𝑓𝑐

𝑇(𝑧) 𝑓𝑠
𝑇(𝑧))𝑇. 

It is indicated from (3) that the residual signal is subjected 

to both fault signals and disturbance signals (including 

modelling errors, process disturbances and measurement 

noises). In order that the residual signal is sensitive to faults, 

but robustness against disturbances, the observer gain can be 

designed by solving an optimization problem over a specific 

frequency range: 

minimize(‖𝐺�̅�(𝑧)‖ ‖𝐺𝑓̅(𝑧)‖⁄ )                           (4) 

In order to solve (4), the parametric eigenstructure 

assignment approach for fault diagnosis was initialized by [42] 

and further revisited in [43], in which the observer gain 𝐾 is 

formulated as the function of the eigenvalues and 

eigenvectors, therefore seeking an optimal 𝐾 is transformed to 

the problem of finding optimal eigenvalues and eigenvectors. 

Recently, eigenstructure assignment based fault diagnosis 

approaches have been applied to vehicles [44], gas turbine 

engines [45], spacecraft [46] and wind turbine systems [47]. 

Alternatively, the multi-object optimization problem described 

by (4) can be reformulated by linear matrix inequality (LMI), 

which has been a popular method for fault diagnosis research 

and applications owing to its wide applicability to a variety of 

dynamic systems. Recent development of  the LMI-based fault 

diagnosis can be found for various systems such as Lipschitz 

nonlinear systems [48], TS fuzzy nonlinear systems [49, 50], 

time-delay systems [51], switching systems [52], and 

application to structure damage detection [53], and shaft crack 

detection [54] etc. 

A bank of observer-based residuals is generally required in 

order to realize fault isolation. A nature idea is to make a 

single residual is sensitive to the fault concerned but 

robustness against other faults, disturbances and modelling 

errors, which is called structure residual fault isolation [4]. 

Alternative fault isolation logic is to make each residual signal 

sensitive to all but one fault, and robustness against modelling 

errors and disturbances, which is called generalized residual 

fault isolation [5]. Recent results on robust fault isolation are 

developed for nonlinear systems [55,56], and various 

applications such as for aircraft engine [57], robotic 

manipulators [58], and lithium-ion batteries [59]. The 

unknown input observer, proposed by [60], is another fault 

isolation tool by decoupling input disturbance, modelling 

errors and other faults in the corresponding residuals. 

Recently, the unknown input observer based fault isolation 

techniques are extended to nonlinear systems [61, 62] and 

applied to aircraft systems [63], inductor motors [64] and 

waste water treatment plant [65]. 

Fault identification (or called fault reconstruction/fault 

estimation) is to determine the type, size and shape of the fault 

concerned, which is vital information for fault tolerant 

operation. Advanced observer techniques such as proportional 

and integral (PI) observers [66, 67], proportional multiple-

integral (PMI) observers [68-70], adaptive observer [71-73], 

sliding mode observers [74, 75], and descriptor observers [76, 

77] are usually utilized for fault estimation/reconstruction.  

The essence of the advanced observers is to construct an 

augmented system by introducing the concerned fault as an 

additional state and the extended state vector is thereafter 

estimated, leading to the estimates of the concerned fault 

signal together with original system states. Therefore, the 

advanced observers are also called simultaneous state and 

fault observers. The above advanced observer techniques are 

in an advantage position either for reconstructing slow-varying 

additive faults (PI, and PMI observers), slow-varying 

parameter faults (adaptive observers), actuator faults with 

sinusoidal waveforms (sliding mode observers), and high-

frequency sensor faults (descriptor system approaches). 

Actually the above observer techniques may be integrated or 

combined in order to solve engineering-oriented problems. For 

instance in [78], integral observer, sliding observers and 

adaptive observers are combined to reconstruct sensor faults 

for satellite control systems. In [79], PI observer and 

descriptor observer techniques are integrated to estimate 

parameter faults for an aero engine system.  

Another well-known model-based fault diagnosis is parity 

relation approach, which was developed in the early of 1980s 

[80, 81]. The parity relation approach is to generate residuals 

(parity vector) which is employed to check the consistency 

between the model and process outputs. The parity relation 

approach can be applied to either time-domain state-space 

model or frequency-domain input-output model, which is well 

revisited by the books [40,41,82].  Recently, the parity relation 

method is extended for fault diagnosis for more complex 

models such as TS fuzzy nonlinear systems [83] and fuzzy 

tree models [84], and applied to various industrial systems 

such as aircraft control surface actuators [85] and 

electromechanical brake systems [86]. 

Stable factorization approach is frequency-domain fault 

diagnosis method, which was initiated in 1987 by [87] and 

further extended by [88] in 1990. The basic idea is to generate 

a residual, based on the stable coprime factorization of the 

transfer function matrix of the monitored system, which is 

made sensitive to the fault, but robustness against disturbances 

by selecting an optimal weighting factor. Recent 

developments of stable factorization approach can be found in 

[89] for nonlinear systems, and [90, 91] for applications in 

auto-balancing two-wheeled cart and thermal process, 

respectively.  

It is worthy to point out that the parity relation method and 

stable factional approach both have some kind of connections 

with observers. For instance, the parity relation approach is 

equivalent to the use of a dead-beat observer, and the coprime 

factorization realization includes the design of observer gain 

(together with state-feedback gain). 

B. Stochastic Fault diagnosis methods 

In parallel with the development of the fault diagnosis for 

deterministic systems, stochastic approaches were also 

developed for fault diagnosis in the early 1970s. A general 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 

fault detection and diagnosis procedure was first proposed in 

[92] by using residuals (or innovations) generated by Kalman 

filters with similar structure to observers, where the faults 

were diagnosed by statistic testing on whiteness, mean and 

covariance of the residuals. A variety of statistical tools, such 

as generalized likelihoods [93], χ2 testing [94], cumulative 

sum algorithms [95] and multiple hypothesis test [96], were 

further developed for testing Kalman-filter based residuals in 

order to check the likelihood that a particular fault occurs. 

Further researches have led to a couple of modified Kalman 

filter techniques for fault diagnosis, such as extended Kalman 

filters, unscented Kalman filters, adaptive Kalman filters, and 

augmented state Kalman filters. Unlike the conventional 

Kalman filters, the extended Kalman filter (EKF) can be used 

to diagnose the faults in a nonlinear industrial process [97].  

The unscented Kalman filter (UKF), depending on a more 

accurate stochastic approximation, i.e., unscented transform, 

can better capture the true mean and covariance leading to 

better diagnosis performance [98, 99]. Adaptive Kalman filters 

can be employed to tune process noise covariance matrix, or 

measurement noise covariance matrix in order to obtain 

satisfactory fault diagnosis [100,101].  The augmented state 

Kalman filters can be utilized to simultaneously estimate 

system states and fault signals [102]. Recent application 

examples of Kalman filter-based fault diagnosis can be found 

in [103-105] respectively for combustion engines, electronic 

systems under mechanical shock, and permanent-magnet 

synchronous motors. 

Another important stochastic fault diagnosis method is 

parameter estimation on the basis of system identification 

techniques (e.g., least-square error and its derived methods), 

which was initialized by [106]. In this approach, the faults are 

assumed to be reflected in system parameters, and only the 

model structure is needed to be known. The basic idea of the 

detection method is to identify the parameters of the actual 

process on-line which are compared with the reference 

parameters obtained initially under healthy conditions.  The 

parameter estimation based fault diagnosis methods are very 

straightforward if the model parameters have an explicit 

mapping with the physical coefficients. This method was well 

reviewed in the early survey papers [3,9] and book [107].  

Recent development of this approach can be found in [108-

110]. 

Motivated by combustion processes, paper making systems 

and chemical processes, the monitored system outputs can be 

described by probability density functions. For this class of 

stochastic systems, fault diagnosis was first addressed by 

[111], where the probability density function outputs are 

approximated by using B-spline expansion techniques, and 

random noises/errors can be non-Gaussian. In order to 

improve robustness against measurement noises, modelling 

errors and process disturbances, an integration of descriptor 

estimator and parametric eigenstructure assignment was 

utilized to detect faults in [112]. Recent development of fault 

diagnosis for nonlinear systems can be found in [113]. In 

addition, fault diagnosis methods were also developed for 

other classes of stochastic systems such as stochastic 

processes with Brownian motions [114, 115] and Markovian 

jumps [116].   

C. Fault diagnosis for discrete-events and hybrid systems 

In industrial processes, the signals of some dynamic 

systems switch from one value to another rather than changing 

their values continuously. This kind of systems is called 

discrete-event systems. Fault diagnosis of discrete-event 

systems was initialized by [117] in 1990s, and the underlying 

theory of fault diagnosis for discrete-event systems was 

proposed. The basic event-driven fault diagnosis problem is to 

perform model-based inferring at run-time to determine 

whether a given unobservable fault event has occurred or not 

in the past by using sequences of observable events [118]. 

According to the model used, the fault diagnosis methods for 

discrete-event system can be roughly classified into automata 

based fault method and Petri net based method. In order to 

overcome the complexity of the task, the automata-based fault 

diagnosis method has evolved into decentralized method 

[119], symbolic method [120] and the combination of 

decentralized and symbolic methods [121].  On the other hand, 

Petri net has intrinsically distributed nature where the notions 

of state and action are local, which has been an asset to reduce 

the computational complexity of solving fault diagnosis 

problems [122]. Nevertheless, improved results were 

developed for avoiding complexity by either applying integer 

linear programming to Petri nets [123] or using partially 

observed Petri nets [124]. Recently, event-based approaches 

were applied to fault isolations for continuous dynamic 

processes where a high-level discrete-event system fault 

diagnoser was employed to improve the robustness of the fault 

diagnosis against large environment disturbances [125] or 

isolate abrupt parameter faults [126].  

Some complex industrial systems are both driven by time-

based continuous dynamics and event-driven discrete 

dynamics, which are called hybrid systems, emerging from 

complex mechatronic systems, manufacturing systems, 

complex chemical processes, aerospace engineering systems, 

automotive engine control and embedded control systems.  

Monitoring and fault diagnosis for hybrid systems entails 

challenges due to the fact that the continuous dynamics and 

discrete event changes are mutually dependent and interacted. 

Hybrid automata are the most common models to represent 

hybrid systems, which can be utilized to design fault diagnosis 

algorithms to detect and isolate faults [127, 128].  Bond graph 

has become a powerful model to be used for fault diagnosis 

due to its capability of modelling complex systems in a unified 

way, and the ease for obtaining analytical redundancy relation 

from the causalities on the graph. Recent results on Bond 

graph based fault diagnosis and their applications for hybrid 

systems can be found in [129-132].  

D. Fault diagnosis for networked and distributed systems 

The rapid developments in network technologies have much 

stimulated the real-time control and monitoring via 

communication channels, that is called networked control and 
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monitoring, which have valuable advantages such as cost 

effectiveness, less weight and power requirements, easier for 

installation and maintenance as well as resources sharing 

[133]. It is noted that the introduction of limited-capacity 

network cables or wireless sensors into control and monitoring 

loops has unavoidably brought some unanticipated problems 

such as random communication delays, data dropout, and 

scheduling confusion, which make the network based 

monitoring and fault diagnosis more challenging compared 

with conventional point-to-point control and monitoring 

systems. Therefore, in the network based fault diagnosis, the 

residual or fault estimation error should be not only robust 

against modelling errors, process disturbance, and 

measurement noises, but also robust against transmission 

delays, data dropouts, and incomplete measurements caused 

by the limit capacity of communication channels [134]. 

Recently, a variety of fault diagnosis techniques have been 

developed for various networked systems. For instance, fault 

detection filters were developed in [135] for systems subjected 

to communication delays and missing data, where the network 

status is assumed to vary in a Markovian fashion. In [136], 

least-square filters and Kalman filters were integrated for fault 

detection, isolation and estimation for network sensing 

systems. In [137], a networked based fault diagnosis technique 

was addressed for nonlinear systems, which was assessed by 

an experimental test system with the use of IEEE 802.15.4 

wireless sensor networks. In addition, it is also of interest to 

detect the anomaly of a communication network itself, which 

may affect the performance of network control systems. In 

order to monitor the guaranteed quality of service (QoS) of the 

router and the whole topology, sliding mode observer 

techniques were employed in [138, 139] for anomaly detection 

in the transmission control protocol (TCP). Very recently, 

model-based detection and monitoring approaches were 

addressed in [140, 141] for monitoring potential intermittent 

connections or faulty nodes for controller area networks 

(CANs).  

Complex industrial systems can be modelled as an 

interconnection of subsystems, and each subsystem has a 

decision marker (intelligent agent) which might have access to 

local measurements, subsystem models, local 

estimators/controllers, and constrained communication 

channels between the agent and its neighbors [142]. This kind 

of decentralized or distributed structure has become the main 

stream in complex industrial processes owing to its less use of 

network resources, cost effectiveness and convenience for 

expansion. On the other hand, real-time monitoring and fault 

diagnosis for distributed systems is much challenging due to 

the constrained information redundancy and limited 

communication capacity. A general idea of the distributed 

fault diagnosis is to design local estimators or fault detection 

filters by intelligent agents according to the local sensing and 

computing resources, and a consensus strategy is utilized to 

ensure the whole detection or estimation performance of all 

the agents in the network. Recent developments on distributed 

fault detection [143] and distributed fault estimation [144] are 

developed respectively by using adaptive thresholds and 

sliding modes techniques to improve the robustness against 

noises and modelling errors.  Moreover, applications on 

unmanned airships [145] and power networks [146] are 

reported as well.  

III. SIGNAL-BASED FAULT DIAGNOSIS METHODS  

Signal-based methods utilize measured signals rather than 

explicit input-output models for fault diagnosis. The faults in 

the process are reflected in the measured signals, whose 

features are extracted and a diagnostic decision is then made 

based on the symptom analysis and prior knowledge on the 

symptoms of the healthy systems. Signal based fault diagnosis 

methods have a widely application in real-time monitoring and 

diagnosis for induction motors, power converters and 

mechanical components in a system. A schematic diagram of 

signal-based fault diagnosis is depicted by Fig. 4.   

 
Fig. 4. Scheme of signal-based fault diagnosis 

 

The feature signals to be extracted for symptom (or pattern) 

analysis can be either time-domain (e.g., mean, trends, 

standard deviation, phases, slope, and magnitudes such as 

peak and root mean square) or frequency-domain (e.g., 

spectrum). Therefore signal-based fault diagnosis methods can 

be thus classified into time-domain signal based approach, 

frequency-domain signal based approach and time-frequency 

signal based method.  

A. Time-domain signal based methods 

For a continuous dynamical process to be monitored, it is 

natural to extract time-domain features for fault diagnosis. For 

instance in [147],  by analyzing the changes of the measured 

root-mean-square current characteristics between healthy 

conditions and the situations under single/dual transistor short 

circuit or open circuit, a fault diagnosis method was developed 

for power converters of switched reluctance motors.   In [148], 

the absolute value of the derivative of the Park’s vector phase 

angle was used as a fault indicator, which was employed for 

diagnosing multiple open-circuit faults in two converters of 

permanent magnet synchronous generators (PMSG) drives for 

wind turbine applications. By observing the slope of the 

induction current over time, a fault diagnosis method was 

addressed in [149] for open and short circuits switch fault 

diagnosis in non-isolated DC-DC converters, and the field 

programmable gate array (FPGA) digital target was then used 

for real-time experimental implementation. In [150], by using 

the measured motor phase currents and their corresponding 
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reference signals, a real-time algorithm was developed for 

detecting and locating multiple power switch open circuit 

faults in inverted-fed AC motor drives. In [151], it was shown 

that, under balanced supply voltage, the phase angle, the 

magnitude of the negative and zero-sequence currents can be 

considered as reliable indicators of stator faults in the 

induction motors. In [152], a statistical method for the 

detection of sensor abrupt faults in aircraft control systems 

was presented, where the covariance of the sensing signals 

was used for feature extraction. Recently, a time-domain 

signal-based diagnostic algorithm was developed in [153] for 

monitoring of gear faults, by combining fast dynamic time 

warping (Fast DTW) as well as correlated kurtosis (CK) 

techniques. The fast DTW algorithm was employed to extract 

the periodic impulse excitations caused from the faulty gear 

tooth, and the extracted signal was then resampled for 

subsequent diagnostic analysis using the CK technique. 

Taking advantages of the periodicity of the geared faults, the 

CK algorithm can identify the position of the local gear fault 

in the gearbox.  

Different from the approaches for fault detection and 

diagnosis using features of the measured signal in one-

dimension domain, a two-dimension signal-based method was 

proposed in [154], where the vibration signal was translated 

into an image (two dimensions), and the local features were 

then extracted from the image using scale invariant feature 

transform (SIFT) for fault detection and isolation under a 

pattern classification framework. Very recently, a two-

dimension approach was reported in [155] for fault diagnosis 

of induction motors, where time-domain vibration signals 

acquired from the operating motor were firstly converted into 

two-dimension gray-scale images, and the discriminating 

texture features were then extracted from these images 

utilizing local binary patterns (LBP) technique. The extracted 

texture features were finally used for fault diagnosis with the 

aid of a classifier. It is noted that, when converting signals into 

images, the added noise acts as illumination variation. As both 

the SIFT technique and the LBP operator have illumination 

invariance capability to some extent, the proposed fault 

diagnosis methods in [154, 155] have robustness even in a 

high level of background noises. 

B. Frequency-domain signal based methods 

Frequency-domain signal based method is to detect changes 

or faults by using spectrum analysis tool such as discrete 

Fourier transformation (DFT). One of the most powerful 

frequency-domain methods for diagnosing motor faults is 

motor-current signature analysis (MCSA), which utilizes the 

spectral analysis of the stator current to sense rotor faults 

associated with broken rotor bars and mechanical balance. 

Without requiring access to the motor, the MCSA approach 

has received much attention, which was well reviewed in [19, 

20]. Recent development of current based spectrum signature 

analysis for fault diagnosis can be found in [156, 157].  

Vibration signal analysis is a common method for condition 

monitoring and diagnosis for mechanical equipment such as 

gear box, as machine sound indicates a lot about working 

condition of the machine. In [158], an acoustic fault detection 

method was addressed for gear box on the basis of the 

improved frequency domain blind de-convolution flow. 

Recently in [159], Fourier spectrum and the demodulated 

spectra of amplitude envelope were employed to detect and 

locate multiple gear faults in planetary gearboxes. 

C. Time-Frequency signal based methods 

For machines under an unloaded condition, or unbalanced 

supply voltages, varying load, or load torque oscillations, the 

measured signals are generally transient and dynamic under 

the concerned time section. Therefore, analysis of the 

stationary quantities in some cases finds difficult to monitor or 

detect faults via either a pure time-domain or frequency-

domain method. Due to the time-varying frequency spectrum 

of the transient signals, suitable time-frequency decomposition 

tools are needed for real-time monitoring and fault diagnosis. 

Time-frequency analysis can identify the signal frequency 

components, and reveal their time variant features, which has 

been an effective tool for monitoring and fault diagnosis by 

extracting feature information contained in non-stationary 

signals [25]. 

 Various time-frequency analysis methods have been proposed 

and applied to machinery fault diagnosis. Among the time-

frequency methods, short-time Fourier transform (STFT), 

wavelet transforms (WT), Hilbert-Huang transform (HHT), 

and Wigner-Ville distribution (WVD) are most common used 

approaches. For instance, STFT method allows determining 

signal frequency contents of local sections as the signal 

changes in time, which has been widely applied to detect both 

stator and rotor faults in inductor motors [160].   However, the 

STFT method suffers the high computational cost if it is 

required to obtain a good resolution. As a linear 

decomposition, WT based method can provide a good 

resolution in time for high-frequency components of a signal 

and a good resolution in frequency for low-frequency 

components, which  has demonstrated the effectiveness for 

tracking fault frequency components under non-stationary 

conditions [161]. In [162], the STFT and discrete WT were 

integrated to do early diagnosis and prognosis of the 

abnormalities in the monitored industrial systems. It is noticed 

that STFT and WT may suffer some uncertain limitations. For 

instance, the selection of a suitable window size in STFT is 

required, but it is generally not a known priori. The type of the 

basic wavelet function in WT has a direct effect on the 

effectiveness in identifying transient elements hidden within a 

dynamic signal. However, on the basis of the instantaneous 

frequencies resulting from the intrinsic-mode functions of the 

signal being analyzed, HHT method is not constrained by the 

uncertain limitations with respect to the time and frequency 

resolutions suffered by some time-frequency techniques (e.g., 

STFT and WT), which has shown quite interesting 

performance in terms of fault severity evaluation [163]. WVD 

method features a relatively low computational cost and high 

resolution, as the entire signal is utilized to obtain the energy 

at each time-frequency bin, which has been successfully 

applied to the fault diagnosis along with current analysis [164] 

or vibration analysis [165].  A significant defect of the 
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conventional WVD method is the appearance of the cross 

terms in the distribution of artifacts, which hinders the 

application of WVD methods. Very recently, via combining 

advanced notch FIR filters and the conventional WVD 

method, an improved WVD based fault diagnosis algorithm 

was proposed in [166], which can effectively minimize the 

cross terms and provide seamless high-resolution time-

frequency diagrams enabling the diagnosis of rotor 

asymmetries and eccentricities in induction machines directly 

connected to the grid even in the worst cases.  In [167], a self-

adaptive WVD method, based on local mean decomposition, 

was addressed, which can evidently remove the cross-terms of 

WVD to improve the performance of the defect diagnosis. 

IV. CONCLUSION 

In the first-part survey paper, fault diagnosis techniques and 

their applications have been comprehensively reviewed from 

model-based and signal-based perspectives, respectively. 

Specifically, model-based fault diagnosis is reviewed 

following the categories of fault diagnosis approaches for 

deterministic systems, stochastic fault diagnosis methods, 

discrete-event and hybrid system diagnosis approaches, and 

networked and distributed system diagnosis techniques, 

respectively. Meanwhile, signal-based fault diagnosis is 

surveyed following the classifications of time-domain, 

frequency-domain, and time-frequency-domain approaches, 

respectively. The overview on knowledge-based fault 

diagnosis, hybrid and active fault diagnosis is to be carried out 

in the second-part review paper, which will complete the 

whole overview on the fault diagnosis techniques and their 

applications.  

 

REFERENCES 

[1] D. Schrick, ``Remarks on terminology in the field of supervision, fault 

detection and diagnosis,’’ Proc. IFAC Symp. Fault Detection, 
Supervision Safety for Techn. Process, pp.959-964, Hull, UK, Aug. 

1997. 

[2] A. Willsky, ``A survey of design methods for failure detection in 
dynamic systems,’’ Automatica, vol.12, no.6, pp.601-611, Nov. 1976. 

[3] R. Isermann, ``Process fault detection based on modelling and 

estimation methods: A survey,’’ Automatica, vol.20, no.4, pp.387-304, 
Jul. 1984. 

[4] J. Gertler, ``Survey of model-based failure detection and isolation in 

complex plants,’’ IEEE Contr. Syst. Mag., vol.8, no.6, pp.3-11, Dec. 
1988. 

[5] P. Frank, ``Fault diagnosis in dynamic systems using analytical and 

knowledge-based redundancy-A survey and some new results,’’ 
Automatica, vol.26, no.3, pp.459-474, May 1990. 

[6] E. Garcia, and P. Frank, ``Deterministic nonlinear observer-based 

approaches to fault diagnosis: A survey,’’ Contr. Eng. Practice, vol.5, 
no.5, pp.663-670, May 1997. 

[7] R. Isermann, ``Trends in the application of model-based fault detection 

and diagnosis of technical processes,’’ Contr. Eng. Practice, vol.5, no.5, 
pp.709-719, May 1997. 

[8] P. Frank, and X. Ding, “Survey for robust residual generation and 

evaluation methods in observer-based fault detection systems,” J. Proc. 
Contr., vol.7, no.6, pp. 403-424, Dec. 1997.  

[9] R. Isermann, ``Model-based fault-detection and diagnosis – status and 

applications,’’ Annu. Rev. Contr., vol.29, no.1, pp.71–85, Jan. 2005. 
[10] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri, ``A 

review of process fault detection and diagnosis part I: quantitative 

model-based methods,’’ Comput. Chem. Eng., vol.27, no.3, pp. 293-311, 

Mar. 2003. 

[11] V. Venkatasubramanian, R. Rengaswamy, and S. Kavuri, ``A review of 

process fault detection and diagnosis part II: qualitative models and 

search strategies,’’ Comput. Chem. Eng., vol.27, no.3, pp. 313-326, Mar. 

2003. 
[12]  V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K.Yin ``A 

review of process fault detection and diagnosis part III: process history 

based methods,’’ Comput. Chem. Eng., vol.27, no.3, pp. 313-326, Mar. 
2003. 

[13] V. Chandola, A. Banerjee, and V. Kumar, ``Anomaly detection: A 

survey,’’ ACM Comput. Survey., vol.41, no.3, pp.1-58, Jul. 2009. 
[14] C. Angeli, and A. Chatzinkolaou, ``On-line fault detection techniques 

for technical systems: A survey,’’ Int. J. Comput. Sci. Appli, vol.1, no.1, 

pp.12-30, 2004. 
[15] X. Dai, and Z. Gao, ``From model, signal to knowledge: a data-driven 

perspective of fault detection and diagnosis,’’ IEEE Trans. Ind. Inf., vol. 

9, no.4, pp.2226-2238, Nov. 2013. 
[16] S. Yin, S. Ding, X. Xie, and H. Luo, ``A review on basic data-driven 

approaches for industrial process monitoring,’’ IEEE Trans. Ind. 

Electron., vol.61, no.11, pp.6418-6428, Nov. 2014. 
[17] H. Dong, Z. Wang, S. Ding, and H. Gao, ``A survey on distributed 

filtering and fault detection for sensor networks,’’ Math. Problem Eng., 

Article ID 858624, 7 pages, 2014. 
[18] J. Jr, and L. Holloway, ``An overview of fault monitoring and diagnosis 

in mining equipment,’’ IEEE Trans. Ind. Appl, vol.30, no.5, pp.1326-

1332, Oct. 1994. 
[19] M. Benbouzid, ``A review of induction motor signature analysis as a 

medium for faults detection,’’ IEEE Trans. Ind. Electron., vol.47, no.5, 

pp.984-993, Oct. 2000. 
[20] S. Nandi, H. Toliyat, and X. Li, ``Condition monitoring and fault 

diagnosis of electric motors-A review,’’ vol.20, no.4, IEEE Trans. 

Energy Conv., vol.20, no.4, pp.719-725, Dec. 2005. 
[21] S. Mortazavizadeh, and M. Mousavi, ``A review on condition 

monitoring and diagnostic techniques of rotating electric machines,’’ 

Physical Sci. Int. J., vol.4, no.3, pp.310-338, May 2014. 
[22] S. Katipamula, and M. Brambley, ``Methods for fault detection, 

diagnostics and prognostics for building systems-A review, part I,’’ 

HVAC & R Research, vol.11, no.1, pp.3-25, Jan. 2005. 
[23] S. Katipamula, and M. Brambley, ``Methods for fault detection, 

diagnostics and prognostics for building systems-A review, part II,’’ 

HVAC & R Research, vol.11, no.2, pp.169-187, Apr. 2005. 
[24] A. Widodo, and B. Yang, ``Support vector machine in machine 

condition monitoring and fault diagnosis,’’ Mech. Syst. Sig. Proc., 

vol.21, no.6, pp.2560-2574, Aug. 2007. 
[25] Z. Feng, M. Liang, and F. Chu, ``Recent advances in time–frequency 

analysis methods for machinery fault diagnosis: A review with 

application examples,’’ Mech. Syst. Sig. Proc., vol.38, no.1, pp.165-205, 
Jul. 2013. 

[26] L. Qin, X. He, and D. Zhou, ``A survey of fault diagnosis for swarm 
systems,’’ Syst. Sci. Contr. Eng.:  vol.2, no.1, pp.13-23, Jan. 2014.  

[27] R. Stengel, ``Intelligent failure-tolerant control,’’ IEEE Contr. Sys. 

Mag., vol.11, no.4, pp.14-23, Jun. 1991. 
[28] M. Blanke, R. Izadi-Zamanabadi, S. Bogh, and C. Lunau, ``Fault-

tolerant control systems-A holistic view,’’ Contr. Eng. Practice, vol.5, 

no.5, pp.693-702, May 1997. 
[29] R Patton, ``Fault-tolerant control systems: The 1997 situation,’’ Proc. 

IFAC Symp. Fault Detection, Supervision Safety for Techn. Process, 

pp.1033-1054, Hull, UK, Aug. 1997. 

[30] J. Jiang, ``Fault-tolerant control systems—An introductory overview,’’ 

Acta Automatica Sinica, vol.31, no.1, pp.161-174, Jan. 2005. 

[31] J. Lunze, and J. Richter, ``Reconfigurable fault-tolerant control: A 
tutorial introduction,’’ Eur. J. Contr., vol.14, no.5, pp.359-386, 2008. 

[32] Y. Zhang, and J. Jiang, ``Bibliographical review and reconfigurable 

fault-tolerant control systems,’’ Annu. Rev. Contr., vol.32, no.2, pp.229-
252, Dec. 2008. 

[33] M. Benosman, ``A survey of some recent results on nonlinear fault 

tolerant control,’’ Math. Problem Eng., Article ID 586169, 25 pages, 2010. 
[34] H. Wang, T. Chai, J. Ding, and B. Martin, ``Data driven fault diagnosis 

and fault tolerant control: some advances and possible new directions,’’ 

Acta Automatica Sinica, vol.35, no.6, pp.739-747, Jun. 2009. 
[35] I. Hwang, S. Kim, Y. Kim, and C. Seah, ``A survey of fault detection, 

isolation, and reconfiguration methods,’’ IEEE Trans. Contr. Syst. Tech., 

vol.18, no.3, pp.636-653, May 2010. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
[36] D. Campos-Delgado, D. Espinoza-Trejo, and E. Palacios, ``Fault-

tolerant control in variable speed drives: A survey,’’ IET Elec. Power 

Appl., vol.2, no.2, pp.121-134, Apr. 2008. 

[37] Y. Song, and B. Wang, ``Survey of reliability of power electronic 

systems,’’ IEEE Trans. Power Elec., volo.28, no.1, pp.591-604, Jan. 

2013. 
[38] B. Mirafzal, ``Survey of fault-tolerance techniques for three-phase 

voltage source inverters,’’ IEEE Trans. Ind. Electron., vol.61, no.10, 

pp.5192-5202, Oct. 2014. 
[39] R. Beard, Failure Accommodation in Linear System Through Self 

Reorganization. PhD Dissertation, USA: MIT, 1971.  

[40] J. Chen, and R. Patton, Robust Model-Based Fault Diagnosis for 
Dynamic Systems. Boston, MA, USA: Kluwer Academic, 1999. 

[41] S. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, 

Algorithms, and Tools. Berlin, Germany: Springer, 2008.  
[42] R. Patton, S. Willcox, and S. Winter, ``A parameter insensitive 

techniques for aircraft sensor fault analysis,’’ J. Guid. Contr. Dynam.,  

 vol.10, no.3, pp.359-367, Jul. 1987. 
[43] R. Patton, and J. Chen, ``On eigenstructure assignment for robust fault 

diagnosis,’’ Int. J. Ada. Contr. Sig. Proc., vol.10, no.14, pp.1193-1208, 

Dec. 2000. 
[44] L. Xu, and H. Tseng, ``Robust model-based fault detection for a roll 

stability control system,’’ IEEE Trans. Contr. Syst. Tech., vol.15, no.3, 

pp.519-528, May 2007. 
[45] X. Dai, Z. Gao, T. Breikin, and H. Wang, ``Disturbance attenuation in 

fault detection of gas turbine engines: a discrete robust observer 

design,’’ IEEE Trans. Syst. Man Cybert., Part C, vol.39, no.2, pp.234-
239, Mar. 2009. 

[46] R. Fonod, D. Henry, C. Charbonnel,  and E. Bornschlegl, `` Robust 

thruster fault diagnosis : application to the rendezvous phase of the mars 
sample return mission,’’ Proc. 2nd CEAS Specialist Con. Guid., Navi. 

Contr., pp.1496-1510, Delft, Apr. 2013. 

[47] Y. Zhu, and Z. Gao, ``Robust observer-based fault detection via 
evolutionary optimization with applications to wind turbine systems,’’ 

Proc. IEEE 9th Conf. Ind. Electron. Appl., pp.1627-1632, Hangzhou, 

Jun. 2014 
[48] A. Pertew, H. Marquez, and Q. Zhao, ``LMI-based sensor fault 

diagnosis for nonlinear Lipschitz systems’’ Automatica, vol.43, no.8, 

pp.1464-1469, Aug. 2007. 
[49] D. Zhang, H. Wang, B. Lu, and Z. Wang, ``LMI-based fault detection 

fuzzy observer design with multiple performance constraints for a class 

of non-linear systems: comparative study,’’ Int. J. Innovative Comput. 
Inf. Contr., vol.8, no.1, pp.633-645, Jan. 2012. 

[50] S. Aouaouda, M. Chadli, V. Cocquempot, and M. Khadir, ``Multi-

objective   H −  H⁄  ∞   fault detection observer design for Takagi–Sugeno 
fuzzy systems with unmeasurable premise variables: descriptor 
approach,’’ Int. J. Ada. Signal Proc., vol.27, no.12, pp.1031-1042, Dec. 

2013. 

[51] H. Karimi, M. Zapateiro, and N. Luo, ``A linear matrix inequality 
approach to robust fault detection filter design of linear systems with 

mixed time-varying delays and nonlinear perturbations,’’ J. Franklin 

Inst., vol.347, no.6, pp.957-973, Aug. 2010. 
[52] D. Wang, P. Shi, and W. Wang, ``Robust fault detection for continuous-

time switched delay systems: an linear matrix inequality approach,’’ IET 

Contr. Theory Appl., vol.4, no.1, pp.100-108, Jan. 2010. 

[53] B. Chen, and S. Nagarajaiah, ``𝐻−/𝐻∞ structural damage detection filter 
design using an iterative linear matrix inequality approach,’’ Smart 

Mater. Struct., vol.17, no.3, pp.1-9, Apr. 2008. 

[54] Z. Kulesza, J. Sawicki, and A. Gyekenyesi, ``Robust fault detection 

filter using linear matrix inequalities’ approach for shaft crack 

diagnosis,’’ J. Vibration Contr., vol.19, no.9, pp.1421-1440, Jul. 2013. 

[55] X. Zhang, M. Polycarpou, and T. Parisini, ``Fault diagnosis of a class of 
nonlinear systems with Lipschitz nonlinearities using adaptive 

estimation,’’ Automatica, vol.46, no.2, pp.290-299, Feb. 2010. 

[56] M. Du, and P. Mhaskar, ``Isolation and handling of sensor faults in 
nonlinear systems,’’ Automatica, vol.50, no.4, pp.1066-1074, Apr. 2014. 

[57] X. Zhang, L. Tang, and J. Decastro, ``Robust fault diagnosis of aircraft 

engines: A noninear adaptive estimation-based approach,’’ IEEE Trans. 
Contr. Syst. Tech., vol.21, no.3, pp.861-868, May 2013. 

[58] F. Caccavale, A. Marino, G. Muscio, and F. Pierri, ``Discrete-time 

framework for fault diagnosis in robotic manipulators,’’ IEEE Trans. 
Contr. Syst. Tech., vol.21, no.5, pp.1858-1873, Sep. 2013. 

[59] W. Chen, W. T. Chen, M. Saif, M. Li, and H. Wu, ``Simultaneous fault 

isolation and estimation of lithium-ion batteries via synthesized design 

of Luenberger and learning observers,’’ IEEE Trans. Contr. Syst. Tech., 

vol.22, no.1, pp.290-298, Jan. 2014. 

[60] J. Chen, and H. Zhang, ``Robust fault detection of faulty actuators via 

unknown input observers,’’ Int. J. Syst. Sci., vol.22, no.10, pp.1829-

1839-105, Oct. 1991. 

[61] W. Chen, and M. Saif, ``Fuzzy nonlinear unknown input observer design 
with fault diagnosis applications,’’ J. Vibration Contr., vol.16, no.3, 

pp.377-401, Mar. 2010. 

[62] J. Zarei, and E. Shokri, ``Robust sensor fault detection based on 
nonlinear unknown input observer,’’ Measurement, vol.48, no.2, pp.355-

367, Feb. 2014. 

[63] D. Wang, and K. Lum, ``Adaptive unknown input observer approach for 
aircraft actuator fault detection and isolation,’’ Int. J. Ada. Contr. Sig. 

Proc., vol.21, no.1, pp.31-48, Mar. 2007. 

[64] K. Gaeid, and H. Ping, ``Induction motor fault detection and isolation 
through unknown input observer,’’ Sci. Res. Essays, vol.5, no.20, 

pp.3152-3159, Oct. 2010. 

[65] S. Methnani1, F. Lafont, J. Gauthier, T. Damak, and A. Toumi, 
``Actuator and sensor fault detection, isolation and identification in 

nonlinear dynamical systems, with an application to a waste water 

treatment plant,’’ J. Comput. Eng. Inf., vol.1, no.4, pp.112-125, Oct. 
2013. 

[66] Z. Gao, ``Discrete-time proportional and integral observer and observer-

based controller for systems with both unknown input and output 
disturbances,’’ Opt. Contr. App. Meth., vol.29, no.3, pp. 171-189, May 

2008. 

[67] K. Zhang, B. Jiang, V. Cocquempot, and H. Zhang, ``A framework of 
robust fault estimation observer design for continuous-time/discrete-time 

systems,’’ Opt. Contr. App. Meth., vol.34, no.4, pp. 442-457, Aug. 2013. 

[68] Z. Gao, and D. Ho, ``Proportional multiple-integral observer design for 
descriptor systems with measurement output disturbances,’’ IEE Pro. 

Contr. Theory App., vol.151, no.3, pp.279-288, May 2004. 

[69] D. Koenig, ``Unknown input proportional multiple-integral observer 
design for linear descriptor systems: application to state and fault 

estimation,’’ IEEE Trans. Automat. Contr., vol.50, no.2, pp.212-217, 

Feb. 2005. 
[70] Z. Gao, S. Ding, and Y. Ma, ``Robust fault estimation approach and its 

application in vehicle lateral dynamic systems,’’ Opt. Contr. App. Meth., 

vol.28, no.3, pp. 143-156, May 2007. 
[71] Q. Zhang, and G. Besancon, ``An adaptive observer for sensor fault 

estimation in a class of uniformly observable non-linear systems,’’ Int. J. 

Mod. Indent. Contr., vol.4, No.1, pp.37-43, Jan. 2008. 
[72] K. Zhang, B. Jiang, and V. Cocquempot, ``Adaptive observer-based fast 

fault estimation,’’ Int. J. Contr. Automat. Syst., vol. 6, no. 3, pp. 320-

326, Jun. 2008. 
[73] M. Gholizadeh, and F. Salmasi, ``Estimation of state of charge, unkown 

nonlinearities, and state of health of a lithium-ion battery based on a 

comprehensive unobservable model,’’ IEEE Trans. Ind. Electron., 
vol.61, no.3, pp.1335-1344, Mar. 2014. 

[74] H. Alwi, and C. Edwards, ``Robust fault reconstruction for linear 
parameter varying systems using sliding mode observers,’’ Int. J.  

Robust Nonlin. Contr., vol.24, no.14, pp.1947-1968, Sep., 2014. 

[75] X. Han, F. Emilia, and S. Sarah, ``Sampled-data sliding mode observer 
for robust fault reconstruction: A time-delay approach,’’ J. Franklin 

Inst., vol.351, no.4, pp. 2125-2142, Jun. 2014.   

[76] Z. Gao, and H. Wang, ``Descriptor observer approaches for 
multivariable systems with measurement noises and application in fault 

detection and diagnosis,’’ Syst. Contr. Lett., vol.55, no.4, pp.304-313, 

Apr. 2006. 

[77] Z. Gao, X. Shi, and S. Ding, ``Fuzzy state/disturbance observer design 

for T–S fuzzy systems with application to sensor fault estimation,’’ 

IEEE Trans. Syst. Man Cyber., part B, vol.38, no.3, pp.875-880, Jun. 
2008. 

[78] J. Zhang, A. Swain, and S. Nguang, ``Robust sensor fault estimation 

scheme for satellite attitude control systems,’’ J. Franklin Inst., vol. 350, 
no.9, pp.2581-2604, Nov. 2013. 

[79] Z. Gao, X. Dai, T. Breikin, and H. Wang, ``Novel parameter 

identification by using a high-gain observer with application to a gas 
turbine engine,’’ IEEE Trans. Ind. Inf., vol.4, no.4, pp.271-279, Nov. 

2008. 

[80] L. Mironovski, ``Functional diagnosis of linear dynamic systems,’’ 
Auto. Remo. Contr., vol.40, no.8, pp.1198-1205, Aug. 1980. 

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&cstart=20&citation_for_view=n8nkt-0AAAAJ:7PzlFSSx8tAC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&cstart=20&citation_for_view=n8nkt-0AAAAJ:7PzlFSSx8tAC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&cstart=20&citation_for_view=n8nkt-0AAAAJ:7PzlFSSx8tAC
http://www.sciencedirect.com/science/article/pii/S0005109807001409
http://www.sciencedirect.com/science/article/pii/S0005109807001409
http://jvc.sagepub.com/search?author1=Zbigniew+Kulesza&sortspec=date&submit=Submit
http://jvc.sagepub.com/search?author1=Jerzy+T+Sawicki&sortspec=date&submit=Submit
http://jvc.sagepub.com/search?author1=Andrew+L+Gyekenyesi&sortspec=date&submit=Submit
http://www.sciencedirect.com/science/article/pii/S0263224113005587
http://www.sciencedirect.com/science/article/pii/S0263224113005587
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:8k81kl-MbHgC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:8k81kl-MbHgC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:8k81kl-MbHgC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:WF5omc3nYNoC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:WF5omc3nYNoC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:ULOm3_A8WrAC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:ULOm3_A8WrAC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:_FxGoFyzp5QC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:_FxGoFyzp5QC


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
[81] E. Chow, and A. Willsky, ``Analytical redundancy and the design of 

robust detection systems,’’ IEEE Trans. Automat. Contr., vol.29, no.7, 

pp.603-614, 1984. 

[82] J. Gertler, Fault Detection and Diagnosis in Engineering Systems. New 

York: Marcel Dekker, 1998. 

[83] S. Nguang, P. Zhang, and S. Ding, ``Parity relation based fault 
estimation for nonlinear systems: an LMI approach,’’ Int. J. Automat. 

Compute., vol.4, no.2, pp.164-168, Apr. 2007. 

[84] Z. Zhang, J. Hu, and H. Hu, ``Parity space approach to fault detection 
based on fuzzy tree model,’’ Int. J. Adv. Comput. Tech.,vol.5, no.2, 

pp.657-665, Jan. 2013.  

[85] H. Odendaal, and T. Jones, ``Actuator fault detection and isolation: An 
optimized parity space approach,’’ Contr. Eng. Prac., vol.26, no.5, 

pp.222-232, May 2014. 

[86]  W. Huang, and K. Huh, ``Fault detection and estimation for 
electromechanical brake systems using parity space approach,’’ J. Dyn. 

Sys., Meas., Contr., vol.137, no.1, Aug. 2014. 

[87] N. Viswanadham, J. Taylor, and E. Luce, ``A frequency-domain 
approach to failure detection and isolation with application to GE-21 

turbine engine control systems,’’ Contr:-Theory and Adv. Tech., vol. 3, 

no.1, pp. 45-72, Mar. 1987. 
[88] X. Ding, and P. Frank, ``Fault detection via factorization approach,’’ 

Syst. Contr. Lett., vol.14, no.5, pp.431-436, Jun. 1990.  

[89] M. Abid, A. Khan, W. Chen, and S. Ding, Optimal residual evaluation 
for nonlinear systems using post filter and threshold,’’ Int. J. Contr., 

vol.84, no.3, pp.526-539, Mar. 2011.  

[90] J. Hu, and M. Tsai, ``Design of robust stabilization and fault diagnosis 
for an auto-balancing two-wheeled cart,’’ Adva. Robotics, vol.22, no.2, 

pp.319-338, Mar. 2008. 

[91] M. Deng, I. Akira, and E. Kazunori, ``Fault detection system design for 
actuator of a thermal process using operator based approach,’’ Acta 

Automat. Sinica, vol.36, no.4, pp.580-585, Apr. 2010. 

[92] R. Mehra, and J. Peschon, ``An innovation approach to fault detection 
and diagnosis in dynamic systems,’’ Automatica, vol.7, no.5, pp.637-

640, Sep. 1971. 

[93] A. Willsky, and H. Jones, ``A generalized likelihood ratio approach to 
the detection and estimation of jumps in linear systems,’’ IEEE Trans. 

Automat. Contr., vol.21, no.1, pp.108-121, Feb. 1976. 

[94] R. Da, and C. Lin, ``Sensitivity analysis algorithm for the state chi-
square test,’’ J. Guid. Contr. Dynam., vol.19, no.1, pp.219-222, Jan. 

1996. 

[95] I. Nikiforov, V. Varavva, and V. Kireichikov, ``Application of statistical 
fault-detection algorithms to navigation system monitoring,’’ 

Automatica, vol.29, no.5, pp. 1275-1290, Sep. 1993.  

[96] S. Bogh, ``Multiple hypothesis-testing approach to FDI for the industrial 
actuator benchmark,’’ Contr. Eng. Practice, vol.3, no.12, pp.1763-1768, 

Dec. 1995. 

[97] R. Li, and J. Olson, ``Fault detection and diagnosis in a closed-loop 
nonlinear distillation process: application of extended Kalman filters,’’ 

Ind. Eng. Chem. Res., vol.30, no.5, pp 898–908, May 1991. 
[98] H. Liu, D. Liu, C. Lu, and X. Wang, ``Fault diagnosis of hydraulic servo 

system using the unscented Kalman filter,’’ Asian J. Contr., vol.16, 

no.6, pp.1713-1725, Nov. 2014. 
[99] M. Laila, N. Naveen, and K. Vishakh, ``Comparison of estimation 

capabilities of extended and unscented Kalman Filter in an RLV,’’ Int. J.  

Adv. Res. in Elec. Electron. Instrument. Eng., vol. 2, no.7, pp.3480-
3488, Jul. 2013. 

[100] C. Hajiyev, H. Soken, ``Robust adaptive Kalman filter for estimation of 

UAV dynamics in the presence of sensor/actuator faults,’’ Aerospace 

Sci. Tech., vol.28, no.1, pp.376–383, Jul. 2013. 

[101] A. Izadian, ``Self-tuning fault diagnosis of MEMS,’’ Mechatronics, 

vol.23, no.8, pp.1094-1099, Dec. 2013. 
[102] F. Hmida, K. Khemiri, J. Ragot, and M. Goss, ``Three-stage Kalman 

filter for state and fault estimation of linear stochastic systems with 

unknown inputs,’’ J. Franklin Inst., vol.349, no.7,  pp.2369–2388, 2012, 
Sep. 2012. 

[103] S. Helm, M. Kozek, and S. Jakubek, ``Combustion torque estimation 

and misfire detection for calibration of combustion engines by 
parametric Kalman filtering,’’ IEEE Trans. Ind. Electron., vol.59, no.12, 

pp.4326-4337, Nov. 2012. 

[104] P. Lall, R. Lowe, and K, Goebel, ``Prognostics health management of 
electronic systems under mechanical shock and vibration using Kalman 

filter models and metrics,’’ IEEE Trans. Ind. Electron., vol.59, no.11, 

pp.4301-4314, Nov. 2012. 

[105] G. Foo, X. Zhang, and D. Vilathgamuwa, ``A sensor fault detection and 

isolation method in interior permanent-magnet synchronous motor 

drives based on an extended Kalman filter,’’ IEEE Trans. Ind. Electron., 
vol.60, no.8, pp.3485-3495, Aug. 2013. 

[106] C. Bakiotis, J. Raymond, and A. Pault, ``Parameter and discriminant 

analysis for jet engine mechanical state diagnosis,’’ Proc. Conf. 
Decision Contr., pp.648-650, Fort Lauderdale, Dec. 1979. 

[107] S.  Simani, C. Fantuzzi, R. Patton, Model-based Fault Diagnosis in 

Dynamic Systems Using Identification Techniques. Berlin, Germany: 
Springer, 2002.  

[108] R. Doraiswami, C. Diduch, and J. Tang, ``A new diagnostic for 

identifying parametric faults,’’ IEEE Trans. Contr. Syst. Tech., vol.18, 
no.3, pp.533-544, May 2010. 

[109] M. Dohler, and L. Mevel, ``Subspace-based fault detection robust to 

changes in the noise covariances,’’ Automatica, vol.49, no.9, pp.2734-
2743, Sep. 2013. 

[110] A. Akhenak, E. Duviella, L. Bakoa, and S. Lecoeuchea, ``Online fault 

diagnosis using recursive subspace identification: application to a dam-
gallery open channel system,’’ Contr. Eng. Practice, vol.21, no.6, 

pp.797-806, Jun. 2013. 

[111] H. Wang, H., and W. Lin, ``Applying observer based FDI techniques to 
detect faults in dynamic and bounded stochastic distributions,’’ Int. J. 

Control, vol.73, no.15, pp. 1424–1436, Aug. 2000. 

[112] Z. Gao, H. Wang, and T. Chai, ``A robust fault detection filtering for 
stochastic distribution systems via descriptor estimator and parametric 

gain design,’’ IET Contr. Theory Appli., vol.1, no.5, pp.1286-1293, Jan, 

2007.  
[113] S. Cao, Y. Yi, and L. Guo, ``Anti-disturbance fault diagnosis for non-

Gaussian stochastic distribution systems with multiple disturbances,’’ 

Neurocomput., vol.136, no.20, pp.315–320, Jul. 2014. 
[114] L. Wu, and D. Ho, ``Fuzzy filter design for Itô stochastic systems with 

application to sensor fault detection,’’ IEEE Trans. Fuzzy Syst., vol.17, 

no.1, pp.233-242, Feb. 2009. 
[115] M. Liu, X. Cao, and P. Shi, ``Fault estimation and tolerant control for 

fuzzy stochastic systems,’’ IEEE Trans. Fuzzy Syst., vol.21, no.2, 

pp.221-229, Apr. 2012. 
[116] H. Dong, Z. Wang, and H. Gao, ``Fault detection for Markovian jump 

systems with sensor saturations and randomly varying nonlinearities,’’ 

IEEE Trans. Circuits Syst. I, vol.59, no.10, pp.2354-2362, Oct. 2012. 
[117] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. 

Teneketzis, ``Diagnosability of discrete-event systems,’’ IEEE Trans. 

Automat. Contr., vol.40, no.9, pp.1555-1575, Sep. 1995. 
[118] L. Carvalho, M. Moreira, J. Basilio, and S. Lafortune, ``Robust 

diagnosis of discrete-event systems against permanent loss of 

observations,’’ Automatica, vol.49, no.1, pp.223-231, Jan. 2013. 
[119] Y. Pencole, and M. Cordier, ``A formal framework for the decentralized 

diagnosis of large scale discrete event systems and its application to 

telecommunication network,’’ Artif. Intell., vol.164, no.2, pp.121-170, 
May 2005. 

[120] A. Shumann, Y. Pencole, and S. Thiebaux, ``A spectrum of symbolic 
on-line diagnosis approaches,’’ Proc. 19th National Conf. Artif. Intell., 

pp.335-340, 2007. 

[121] A. Grastien, and A. Anbulagan, ``Diagnosis of discrete event systems 
using satisfiability algorithms: a theoretical and empirical study,’’ IEEE 

Trans. Automat. Contr., vol.58, no.12, pp.3070-3083, Dec. 2013. 

[122] M. Cabasino, A. Giua, and C. Seatzu, ``Fault detection for discrete event 
systems using Petri nets with unobservable transitions,’’ Automatica, 

vol.46, no.9, pp.1531-1539, Sep. 2010. 

[123] M. Dotoli, M. Fanti, A. Mangini, and W. Ukovich, ``On-line fault 

detection in discrete event systems by Petri nets and integer linear 

programming,’’ Automatica, vol.45, no.11, pp.2665-2672, Nov. 2009.  

[124] D. Lefebvre, ``On-line fault diagnosis with partially observed Petri 
nets,’’ IEEE Trans. Automat. Contr., vol.59, no.7, pp.1919-1924, Jul. 

2014. 

[125] N. Meskin, K. Khorasani, and C. Rabbath, ``A hybrid fault detection and 
isolation strategy for a network of unmanned vehicles in presence of 

large environmental disturbances,’’ IEEE Trans. Contr. Syst. Tech., 

vol.18, no.6, pp.1422-1429, Nov. 2010. 
[126] M. Daigle, X. Koutsoukos, and G. Biswas, ``A qualitative event-based 

approach to continuous systems diagnosis,’’ IEEE Trans. Contr. Syst. 

Tech., vol.17, no.4, pp.780-793, Jul. 2009. 
[127] F. Zhao, K. Koutsoukos, H.  Haussecker, J. Reich, and P. Cheung, 

``Monitoring and fault diagnosis of hybrid systems,’’ IEEE Trans. Syst. 

Man Cybern., vol.35, no.6, pp.1225-1240, Dec. 2005. 

http://www.sciencedirect.com/science/article/pii/S0967066114000434
http://www.sciencedirect.com/science/article/pii/S0967066114000434
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312
http://www.sciencedirect.com/science/article/pii/S0967066113000312#aff2
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:RGFaLdJalmkC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:RGFaLdJalmkC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=n8nkt-0AAAAJ&citation_for_view=n8nkt-0AAAAJ:RGFaLdJalmkC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=2mHyb9gAAAAJ&citation_for_view=2mHyb9gAAAAJ:qjMakFHDy7sC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=2mHyb9gAAAAJ&citation_for_view=2mHyb9gAAAAJ:qjMakFHDy7sC
http://www.ncbi.nlm.nih.gov/pubmed?term=Zhao%20F%5BAuthor%5D&cauthor=true&cauthor_uid=16366248
http://www.ncbi.nlm.nih.gov/pubmed?term=Koutsoukos%20X%5BAuthor%5D&cauthor=true&cauthor_uid=16366248
http://www.ncbi.nlm.nih.gov/pubmed?term=Haussecker%20H%5BAuthor%5D&cauthor=true&cauthor_uid=16366248
http://www.ncbi.nlm.nih.gov/pubmed?term=Reich%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16366248
http://www.ncbi.nlm.nih.gov/pubmed?term=Cheung%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16366248


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
[128] J. Guo, D. Ji, S. Du, S. Zeng, and B. Sun, ``Fault diagnosis of hybrid 

systems using particle filter based hybrid estimation algorithm,’’ 

Chemical Eng. Tran., vol.33, no.1, pp.145-150, Sep. 2013. 

[129] S. Arogeti, D. Wang, C. Low, and M. Yu, ``Fault detection isolation and 

estimation in a vehicle steering system,’’ IEEE Trans. Ind. Electron., 

vol.59, no.12, pp.4810-4820, Dec. 2012. 
[130] M. Yu, and D. Wang, ``Model-based health monitoring for a vehicle 

steering system with multiple faults of unknown types,’’ IEEE Trans. 

Ind. Electron., vol.61, no.7, pp.3574-3586, Jul. 2014. 
[131] P. Levy, S. Arogeti, and D. Wang, ``An integrated approach to model 

tracking and diagnosis of hybrid systems,’’ IEEE Trans. Ind. Electron, 

vol.61, no.4, pp.1024-1040, Apr. 2014. 
[132] M. Yu, D. Wang, and M. Luo, ``Model-based prognosis for hybrid 

systems with mode-dependent degradation behaviors,’’ IEEE Trans. Ind. 

Electron, vol.61, no.1, pp.546-554, Jan. 2014. 
[133] G. Walsh, H. Ye, and L. Bushnell, ``Stability analysis of networked 

control systems,’’ IEEE Trans. Contr. Syst. Tech., vol.10, no.3, pp.438-

446, May 2002. 
[134] D. Zhou, X. He, Z. Wang, G. Liu, and Y. Ji, ``Leakage fault diagnosis 

for an internet-based three-tank system: an experimental study,’’ IEEE 

Trans. Contr. Syst. Tech., vol.20, no.4, pp.857-870, Jul. 2012. 
[135] X. He, Z. Wang, and D. Zhou, ``Robust fault detection for networked 

systems with communication delay and data missing,’’ Automatica, 

vol.45, no.11, pp.2634-2639, Nov. 2009. 
[136] X. He, Z. Wang, Y. Liu, and D. Zhou, ``Least-square fault detection and 

diagnosis for networked sensing systems using a direct state estimation 

approach,’’ IEEE Trans. Ind. Inf., vol.9, no.3, pp.1670-1679, Aug. 2013. 
[137] S. Alavi, and M. Saif, ``Fault detection in nonlinear stable systems over 

lossy networks,’’ IEEE Trans. Contr. Syst. Tech., vol.21, no.6, pp.2129-

2142, Nov. 2013. 
[138] S. Rahme, Y. Labit, F. Gouaisbaut, and T. Floquet, ``Second order 

sliding mode observer for anomaly detection in TCP networks: from 

theory to practice,’’ Proc. Conf. Decis. Contr., pp.5120-5125, Atlanta, 
USA, Dec. 2010.  

[139] S. Rahme, Y. Labit, F. Gouaisbaut, and T. Floquet, ``Sliding modes for 

anomaly observation in TCP networks: from theory to practice,’’ IEEE 
Trans. Contr. Syst. Tech., vol.21, no.3, pp.1031-1038, May. 2013. 

[140] Y. Lei, Y. Yuan, and J. Zhao, ``Model-based detection and monitoring 

of the intermittent connections for CAN networks,’’ IEEE Trans. Ind. 
Electron., vol.61, no.6, pp.2912-2921, Jun. 2014. 

[141] S. Kelkar, and R. Kamal, ``Adaptive fault diagnosis algorithm for 

controller area network,’’ IEEE Trans. Ind. Electron, vol.61, no.10, 
pp.5527-5537, Oct. 2014. 

[142] S. Stankovic, M. Stankovic, and D. Stipanovic, ``Consensus based 

overlapping decentralized estimation with missing observation and 
communication faults,’’ Automatica, vol.45, no.6, pp.1397-1406, Jun. 

2009. 

[143] C. Keliris, M. Polycarpou, and T. Parisini, ``A distributed fault detection 
filtering approach for a class of interconnected continuous-time 

nonlinear systems,’’ IEEE Trans. Automat. Contr., vol.58, no.8, 
pp.2032-2047, Aug. 2013. 

[144] P.Menon, and C. Edwards, ``Robust fault estimation using relative 

information in linear multi-agent networks,’’ IEEE Trans. Automat. 
Contr., vol.59, no.2, pp.477-482, Feb. 2014. 

[145] N. Lechvin, and C. Rabbath, ``Decentralized detection of a class of non-

abrupt faults with application to formations of unmanned airships,’’ 
IEEE Trans. Contr. Syst. Tech., vol.17, no.2, pp.484-493, Mar. 2009. 

[146]  A. El-Zonkoly, ``Fault diagnosis in distribution networks with 

distributed generation,’’ Electric Power Syst. Res., vol.81, no.7, 

pp.1482-1490, Jul. 2011. 

[147] H. Chen, and S. Lu, ``Fault diagnosis digital method for power 

transistors in power converters of switched reluctance motors,’’ IEEE 
Trans. Ind. Electron., vol.60, no.2, pp.749-763, Feb. 2013. 

[148] N. Freire, J. Estima, and A. Cardoso, ``Open-circuit fault diagnosis in 

PMSG drives for wind turbine applications,’’ IEEE Trans. Ind. 
Electron., vol.60, no.9, pp.3957-3967, Sep. 2013. 

[149] M. Shahbazi, E. Jamshidpour, P. Poure, S. Saadate, and M. Zolghadri, 

``Open and short-circuit switch fault diagnosis for noisolated DC-DC 
converters using field programmable gate array,’’ IEEE Trans. Ind. 

Electron., vol.60, no.9, pp.4136-4145, Sep. 2013. 

[150] J. Estima, and A. Cardoso, ``A new algorithm for real-time multiple 
open-circuit fault diagnosis in voltage-fed PWM motor drives by the 

reference current errors,’’ IEEE Trans. Ind. Electron., vol.60, no.8, 

pp.3496-3505, Aug. 2013. 

[151] M. Bouzid, and G. Champenois, ``New expression of symmetrical 

components of the inductor motor under stator faults,’’ IEEE Trans. Ind. 

Electron., vol.60, no.9, pp.4093-4102, Sep. 2013. 

[152] P. Samara, G. Fouskitakis, J. Sakellariou, and S. Fassois, ``A statistical 

method for the detection of sensor abrupt faults in aircraft control 

systems,’’ IEEE Trans. Contr. Syst. Tech., vol.16, no.4, pp.789-798, Jul. 
2008. 

[153] L. Hong, and J. Dhupia, ``A time domain approach to diagnose gearbox 

fault based on measured vibration signals,’’ J. Sound Variation, vol.333, 
no.7, pp.2164-2180, Mar. 2014.  

[154] V. Do, and U. Chong, ``Signal model-based fault detection and 

diagnosis for induction motors using features of vibration signal in two-
dimension domain,’’ J. Mechan. Eng., vol.57, no.9, pp.655-666, Sep. 

2011.  

[155] M. Shahriar, T. Ahsan, and U. Chong, ``Fault diagnosis of induction 
motors utilizing local binary pattern-based texture analysis,’’ EURASIP 

J. Image Video Proc., vol.2013, no.1, 11 pages, May 2013. 

[156] G. Joksimovic, J. Riger, T. Wolbank, N. Peric, and M. Vasak, ``Stator-
current spectrum signature of healthy cage rotor induction machines,’’ 

IEEE Trans. Ind. Electron., vol.60, no.9, pp. 4025-4033, Sep. 2013. 

[157] X. Gong, and W. Qiao, ``Bearing fault diagnosis for direct-drive wind 
turbines via current-demodulated signals,’’ IEEE Trans. Ind. Electron., 

vol.60, no.8, pp.3419-3428, Aug. 2013. 

[158] N. Pan, X. Wu, Y. Chi, X. Liu, and C. Liu, ``Combined failure 
acoustical diagnosis based on improved frequency domain blind 

deconvolution,’’ J. Phy.: Conf. Series,  vol.364, no.1, pp.1-7, Jan. 2012. 

[159] Z. Feng, and M. Zuo, ``Fault diagnosis of planetary gearboxes via 
torsional vibration signal analysis,’’ Mech. Syst. Proc., vol.36, no.2, 

pp.401-421, Apr. 2013. 

[160] S. Nandi, T. Ilamparithi, S. Lee, and D. Hyun, ``Detection of 
eccentricity faults in induction machines based on nameplate 

parameters,’’ IEEE Trans. Ind. Electron., vol.58, no.5, pp.1673-1683, 

May 2011. 
[161] Y. Gritli, L. Zarri, C. Rossi, F. Filippetti, G. Capolino, and D. Casdei, 

``Advanced diagnosis of electrical faults in wound-rotor induction 

machines,’’ IEEE Trans. Ind. Electron., vol.60, no.9, pp.4012-4024, 
Sep. 2013. 

[162] E. Cabal-Yepez, A. Garcia-Ramirez, R. Romero-Troncoso, A. Garcia-

Perez, and R. Osornio-Rios, ``Reconfigurable monitoring system for 
time-frequency analysis on industrial equipment through STFT and 

DWT,’’ IEEE Trans. Ind. Inf., vol.9, no.2, pp.760-771, May 2013. 

[163] R. Yan, and R. Gao, ``Hilbert-Huang transform-based vibration signal 
analysis for machine health monitoring,’’ IEEE Trans. Instrum. Meas., 

vol.55, no.6, pp.2320-2329, Dec. 2006. 

[164] R. Burnett, J. Watson, and S. Elder, ``The application of modern singal 
processing techniques for use in rotor fault detection and location within 

three-phase induction motors,’’ Signal Processing, vol.49, no.1, pp.57-

70, Feb. 1996. 
[165] B. Tang, W. Liu, and T. Song, ``Wind turbine fault diagnosis based on 

Morlet wavelet transformation and Wigner-Ville distribution,’’ 
Renewable Ener. Vol.35, no.12, pp.2862-2866, Dec. 2010. 

[166] V. Climente-Alarcon, J. Antonino-Daviu, M. Riera-Guasp, and M. 

Vlcek, ``Induction motor diagnosis by advanced notch FIR filters and 
the Wigner-Ville distribution,’’ IEEE Trans. Ind. Electron., vol.61, no.8, 

pp.4217-4227, Aug. 2014. 

[167] L. Xiang, and X. Yan, ``A self-adaptive time-frequency analysis method 
based on local mean decomposition and its application in defect 

diagnosis,’’ J. Vibrat. Contr., Jun. 2014. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Labit,%20Y..QT.&searchWithin=p_Author_Ids:37322101100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gouaisbaut,%20F..QT.&searchWithin=p_Author_Ids:37299734300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Floquet,%20T..QT.&searchWithin=p_Author_Ids:37299307900&newsearch=true
http://www.sciencedirect.com/science/journal/03787796
http://www.sciencedirect.com/science/journal/08883270
http://www.sciencedirect.com/science/journal/09601481


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Zhiwei Gao (SM’08) received the B.Eng. 

degree in electric engineering and automation 

and M.Eng. and Ph.D. degrees in systems 

engineering from Tianjin University, Tianjin, 

China, in 1987, 1993, and 1996, respectively. 

From 1987 to 1990, he was with Tianjin 

Electric Drive and Design Institute as an 

Assistant Engineer. From 1996 to 1998, he was with the Department 

of Mathematics, Nankai University, as a Postdoctoral Researcher. In 

1998, he joined the School of Electric Engineering and Automation 

and received a professorship in control science and engineering in 

2001. Before joining the Faculty of Engineering and Environment at 

the University of Northumbria in 2011, he held lecturing and research 

positions with the City University of Hong Kong, University of 

Manchester Institute of Science and Technology, University of 

Duisburg-Essen, University of Manchester, University of Leicester, 

University of Liverpool, and Newcastle University. His research 

interests include data-driven modelling, estimation and filtering, fault 

diagnosis, fault-tolerant control, intelligent optimisation, large-scale 

systems, singular systems, distribution estimation and control, 

renewable energy systems, power electronics and electrical vehicles, 

bioinformatics and healthcare systems.  

Dr. Gao is presently the associate editor of the IEEE 

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE 

TRANSACTIONS ON INDUSTRIAL INFORMATICS, and IEEE 

TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.   

 

 

 

 

Carlo Cecati (M’90-SM’03-F’06) is a 

Professor of industrial electronics and drives 

and the coordinator of the Ph.D. course on 

renewable energy and sustainable building at 

DISIM-University of L’Aquila, L’Aquila, 

Italy.  He is also Chief International Academic 

Adviser at Harbin Institute of Technology, 

Harbin, China. His research and technical 

interests cover several aspects of power 

electronics, distributed generation, and smart grids. In these areas he 

has published more than 130 journal and conference papers. Since 

nineties, he has been an active member of IEEE-IES; currently he is a 

Senior AdCom Member and the Editor in Chief of the IEEE 

TRANSACTIONS ON INDUSTRIAL ELECTRONICS. Prof. Cecati has been 

a co-recipient of the 2012 and of the 2013 Best Paper Awards from 

the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS and of the 

2012 Best Paper Award from the IEEE INDUSTRIAL ELECTRONICS 

MAGAZINE. 

 
 

Steven X. Ding received the Ph.D. degree in 

electrical engineering from the Gerhard-Mercator 

University of Duisburg, Germany, in 1992. From 

1992 to 1994, he was an R&D Engineer at 

Rheinmetall GmbH. From 1995 to 2001, he was a 

Professor of control engineering at the University 

of Applied Science Lausitz in Senftenberg, 

Germany, and served as Vice President of this 

university during 1998–2000. Since 2001, he has 

been a Professor of control engineering and the head of the Institute for 

Automatic Control and Complex Systems (AKS) at the University of 

Duisburg-Essen, Germany. His research interests are model-based and 

data-driven fault diagnosis, fault-tolerant systems and their application 

in industry with a focus on automotive systems, mechatronic and 

chemical processes. 

 

 

 
 

 


