Ein hyperbolsk funksjon er funksjonane sinh (sinus hyperbolicus), cosh (cosinus hyperbolicus), tanh (tangens hyperbolicus), coth (cotangens hyperbolicus), sech (secans hyperbolicus) og csch (cosecans hyperbolicus).
Her er e grunntalet i det naturlege logaritmesystemet .
Dei hyperbolske funksjonane har eigenskapar som er analoge med dei trigonometriske funksjonane . På same måte som
sin
x
{\displaystyle \sin x}
og
cos
x
{\displaystyle \cos x}
kan nyttast til å parametrisere ein sirkel , kan dei hyperbolske funksjonane
sinh
x
{\displaystyle \sinh x}
og
cosh
x
{\displaystyle \cosh x}
parametrisere ein hyperbel .
sinh , cosh og tanh
csch , sech og coth
Dei hyperbolske funksjonane er :
sinh
x
=
e
x
−
e
−
x
2
=
e
2
x
−
1
2
e
x
{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}}
cosh
x
=
e
x
+
e
−
x
2
=
e
2
x
+
1
2
e
x
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}}
tanh
x
=
sinh
x
cosh
x
=
e
x
−
e
−
x
e
x
+
e
−
x
=
e
2
x
−
1
e
2
x
+
1
{\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}}
coth
x
=
cosh
x
sinh
x
=
e
x
+
e
−
x
e
x
−
e
−
x
=
e
2
x
+
1
e
2
x
−
1
{\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}}
sech
x
=
(
cosh
x
)
−
1
=
2
e
x
+
e
−
x
=
2
e
x
e
2
x
+
1
{\displaystyle \operatorname {sech} \,x=\left(\cosh x\right)^{-1}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}}
csch
x
=
(
sinh
x
)
−
1
=
2
e
x
−
e
−
x
=
2
e
x
e
2
x
−
1
{\displaystyle \operatorname {csch} \,x=\left(\sinh x\right)^{-1}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}}
Hyperbolske funksjonane kan introduserast via imaginære sirkelvinklar :
sinh
x
=
−
i
sin
i
x
{\displaystyle \sinh x=-{\rm {i}}\sin {\rm {i}}x\!}
cosh
x
=
cos
i
x
{\displaystyle \cosh x=\cos {\rm {i}}x\!}
tanh
x
=
−
i
tan
i
x
{\displaystyle \tanh x=-{\rm {i}}\tan {\rm {i}}x\!}
coth
x
=
i
cot
i
x
{\displaystyle \coth x={\rm {i}}\cot {\rm {i}}x\!}
sech
x
=
sec
i
x
{\displaystyle \operatorname {sech} \,x=\sec {{\rm {i}}x}\!}
csch
x
=
i
csc
i
x
{\displaystyle \operatorname {csch} \,x={\rm {i}}\,\csc \,{\rm {i}}x\!}
der i er den imaginære eininga definert som i 2 = −1.
Dei komplekse formene i definisjonane over kjem frå Eulerformelen .
sinh
(
−
x
)
=
−
sinh
x
{\displaystyle \sinh(-x)=-\sinh x\,\!}
cosh
(
−
x
)
=
cosh
x
{\displaystyle \cosh(-x)=\cosh x\,\!}
Dermed:
tanh
(
−
x
)
=
−
tanh
x
{\displaystyle \tanh(-x)=-\tanh x\,\!}
coth
(
−
x
)
=
−
coth
x
{\displaystyle \coth(-x)=-\coth x\,\!}
sech
(
−
x
)
=
sech
x
{\displaystyle \operatorname {sech} (-x)=\operatorname {sech} \,x\,\!}
csch
(
−
x
)
=
−
csch
x
{\displaystyle \operatorname {csch} (-x)=-\operatorname {csch} \,x\,\!}
Ein kan sjå at cosh x og sech x er jamne funksjonar , medan dei andre er odde funksjonar .
arsech
x
=
arcosh
1
x
{\displaystyle \operatorname {arsech} \,x=\operatorname {arcosh} {\frac {1}{x}}}
arcsch
x
=
arsinh
1
x
{\displaystyle \operatorname {arcsch} \,x=\operatorname {arsinh} {\frac {1}{x}}}
arcoth
x
=
artanh
1
x
{\displaystyle \operatorname {arcoth} \,x=\operatorname {artanh} {\frac {1}{x}}}
Hyperbolsk sinus og cosinus tilfredsstiller identiteten
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh ^{2}x-\sinh ^{2}x=1\,}
som liknar den pythagoreiske trigonometriske identiteten . Ein har òg
tanh
2
x
=
1
−
sech
2
x
{\displaystyle \tanh ^{2}x=1-\operatorname {sech} ^{2}x}
coth
2
x
=
1
+
csch
2
x
{\displaystyle \coth ^{2}x=1+\operatorname {csch} ^{2}x}
for dei andre funksjonane.
Den hyperbolske tangensen er løysinga til det ikkje-lineære grenseverdiproblemet [ 1] :
1
2
f
″
=
f
3
−
f
;
f
(
0
)
=
f
′
(
∞
)
=
0
{\displaystyle {\frac {1}{2}}f''=f^{3}-f\qquad ;\qquad f(0)=f'(\infty )=0}
Det kan visast at arealet under kurva til cosh x alltid er like bogelengda:[ 2]
areal
=
∫
a
b
cosh
x
d
x
=
∫
a
b
1
+
(
d
d
x
cosh
x
)
2
d
x
=
bogelengd
.
{\displaystyle {\text{areal}}=\int _{a}^{b}{\cosh {x}}\ dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh {x}\right)^{2}}}\ dx={\text{bogelengd}}.}
arsinh
x
=
ln
(
x
+
x
2
+
1
)
{\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right)}
arcosh
x
=
ln
(
x
+
x
2
−
1
)
;
x
≥
1
{\displaystyle \operatorname {arcosh} \,x=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1}
artanh
x
=
1
2
ln
1
+
x
1
−
x
;
|
x
|
<
1
{\displaystyle \operatorname {artanh} \,x={\tfrac {1}{2}}\ln {\frac {1+x}{1-x}};\left|x\right|<1}
arcoth
x
=
1
2
ln
x
+
1
x
−
1
;
|
x
|
>
1
{\displaystyle \operatorname {arcoth} \,x={\tfrac {1}{2}}\ln {\frac {x+1}{x-1}};\left|x\right|>1}
arsech
x
=
ln
1
+
1
−
x
2
x
;
0
<
x
≤
1
{\displaystyle \operatorname {arsech} \,x=\ln {\frac {1+{\sqrt {1-x^{2}}}}{x}};0<x\leq 1}
arcsch
x
=
ln
(
1
x
+
1
+
x
2
|
x
|
)
{\displaystyle \operatorname {arcsch} \,x=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right)}
d
d
x
sinh
x
=
cosh
x
{\displaystyle {\frac {d}{dx}}\sinh x=\cosh x\,}
d
d
x
cosh
x
=
sinh
x
{\displaystyle {\frac {d}{dx}}\cosh x=\sinh x\,}
d
d
x
tanh
x
=
1
−
tanh
2
x
=
sech
2
x
=
1
/
cosh
2
x
{\displaystyle {\frac {d}{dx}}\tanh x=1-\tanh ^{2}x={\hbox{sech}}^{2}x=1/\cosh ^{2}x\,}
d
d
x
coth
x
=
1
−
coth
2
x
=
−
csch
2
x
=
−
1
/
sinh
2
x
{\displaystyle {\frac {d}{dx}}\coth x=1-\coth ^{2}x=-{\hbox{csch}}^{2}x=-1/\sinh ^{2}x\,}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {\frac {d}{dx}}\ {\hbox{csch}}\,x=-\coth x\ {\hbox{csch}}\,x\,}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {\frac {d}{dx}}\ {\hbox{sech}}\,x=-\tanh x\ {\hbox{sech}}\,x\,}
d
d
x
arsinh
x
=
1
x
2
+
1
{\displaystyle {\frac {d}{dx}}\,\operatorname {arsinh} \,x={\frac {1}{\sqrt {x^{2}+1}}}}
d
d
x
arcosh
x
=
1
x
2
−
1
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcosh} \,x={\frac {1}{\sqrt {x^{2}-1}}}}
d
d
x
artanh
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {artanh} \,x={\frac {1}{1-x^{2}}}}
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcsch} \,x=-{\frac {1}{\left|x\right|{\sqrt {1+x^{2}}}}}}
d
d
x
arsech
x
=
−
1
x
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arsech} \,x=-{\frac {1}{x{\sqrt {1-x^{2}}}}}}
d
d
x
arcoth
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\,\operatorname {arcoth} \,x={\frac {1}{1-x^{2}}}}
∫
sinh
a
x
d
x
=
a
−
1
cosh
a
x
+
C
{\displaystyle \int \sinh ax\,dx=a^{-1}\cosh ax+C}
∫
cosh
a
x
d
x
=
a
−
1
sinh
a
x
+
C
{\displaystyle \int \cosh ax\,dx=a^{-1}\sinh ax+C}
∫
tanh
a
x
d
x
=
a
−
1
ln
(
cosh
a
x
)
+
C
{\displaystyle \int \tanh ax\,dx=a^{-1}\ln(\cosh ax)+C}
∫
coth
a
x
d
x
=
a
−
1
ln
(
sinh
a
x
)
+
C
{\displaystyle \int \coth ax\,dx=a^{-1}\ln(\sinh ax)+C}
∫
d
u
a
2
+
u
2
=
sinh
−
1
(
u
a
)
+
C
{\displaystyle \int {\frac {du}{\sqrt {a^{2}+u^{2}}}}=\sinh ^{-1}\left({\frac {u}{a}}\right)+C}
∫
d
u
u
2
−
a
2
=
cosh
−
1
(
u
a
)
+
C
{\displaystyle \int {\frac {du}{\sqrt {u^{2}-a^{2}}}}=\cosh ^{-1}\left({\frac {u}{a}}\right)+C}
∫
d
u
a
2
−
u
2
=
a
−
1
tanh
−
1
(
u
a
)
+
C
;
u
2
<
a
2
{\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\tanh ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}<a^{2}}
∫
d
u
a
2
−
u
2
=
a
−
1
coth
−
1
(
u
a
)
+
C
;
u
2
>
a
2
{\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\coth ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}>a^{2}}
∫
d
u
u
a
2
−
u
2
=
−
a
−
1
sech
−
1
(
u
a
)
+
C
{\displaystyle \int {\frac {du}{u{\sqrt {a^{2}-u^{2}}}}}=-a^{-1}\operatorname {sech} ^{-1}\left({\frac {u}{a}}\right)+C}
∫
d
u
u
a
2
+
u
2
=
−
a
−
1
csch
−
1
|
u
a
|
+
C
{\displaystyle \int {\frac {du}{u{\sqrt {a^{2}+u^{2}}}}}=-a^{-1}\operatorname {csch} ^{-1}\left|{\frac {u}{a}}\right|+C}
Where C is the constant of integration .
Det er mogeleg å uttrykke funksjonane over som Taylorrekkje :
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}
Funksjonen sinh x har ei Taylorrekkje med berre odde eksponentar for x . Dermed er han ein oddefunksjon , som er −sinh x = sinh(−x ), og sinh 0 = 0.
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}
Funksjonen cosh x har ei Taylorrekkje med berre jamne eksponentar for x . Derfor er han ein jamn funksjon , altså symmetrisk med omsyn til y -aksen. Summen av sinh- og cosh-rekkjene er ei uendeleg rekkje av eksponentialfunksjonen .
tanh
x
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
|
x
|
<
π
2
{\displaystyle \tanh x=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}
coth
x
=
x
−
1
+
x
3
−
x
3
45
+
2
x
5
945
+
⋯
=
x
−
1
+
∑
n
=
1
∞
2
2
n
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle \coth x=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =x^{-1}+\sum _{n=1}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi }
(Laurentrekkje )
sech
x
=
1
−
x
2
2
+
5
x
4
24
−
61
x
6
720
+
⋯
=
∑
n
=
0
∞
E
2
n
x
2
n
(
2
n
)
!
,
|
x
|
<
π
2
{\displaystyle \operatorname {sech} \,x=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}
csch
x
=
x
−
1
−
x
6
+
7
x
3
360
−
31
x
5
15120
+
⋯
=
x
−
1
+
∑
n
=
1
∞
2
(
1
−
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle \operatorname {csch} \,x=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =x^{-1}+\sum _{n=1}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi }
(Laurentrekkje )
der
B
n
{\displaystyle B_{n}\,}
er det n -te Bernoullitalet
E
n
{\displaystyle E_{n}\,}
er det n -te Eulertalet