Tooth damage in carnivores can reflect shifts in both diet and feeding habits, and in large carni... more Tooth damage in carnivores can reflect shifts in both diet and feeding habits, and in large carnivores, it is associated with increased bone consumption. Variation in tooth condition in Icelandic arctic foxes, a mesocarnivore, was recorded from 854 individual foxes spanning 29 years. We hypothesized that annual climatic variations, which can influence food abundance and accessibility, will influence tooth condition by causing dietary shifts toward less edible prey. We examined tooth condition in relation to four climatic predictors: mean annual winter temperature, indices of both the El Niño anomaly and North Atlantic subpolar gyre (SPG), and the number of rain‐on‐snow days (ROS). We found unequivocal evidence for a strong effect of annual climate on tooth condition. Teeth of Icelandic foxes were in better condition when winter temperatures were higher, when the SPG was more positive, and when the number of ROS was low. We also found a substantial subregional effect with foxes from northeastern Iceland having lower tooth damage than those from two western sites. Contradicting our original hypothesis that foxes from northeastern Iceland, where foxes are known to scavenge on large mammal remains (e.g., sheep and horses), would show the highest tooth damage, we suggest that western coastal sites exhibited greater tooth damage because cold winter temperatures lowered the availability of seabirds, causing a shift in diet toward abrasive marine subsidies (e.g., bivalves) and frozen beach wrack. Our study shows that monitoring tooth breakage and wear can be a useful tool for evaluating the impact of climate on carnivore populations and that climate change may influence the condition and fitness of carnivores in complex and potentially conflicting ways.
Zenodo (CERN European Organization for Nuclear Research), Nov 30, 2018
Life history theory predicts individuals should breed as soon as they are able to reproduce, but ... more Life history theory predicts individuals should breed as soon as they are able to reproduce, but many long-lived birds delay breeding. In the Accipitriformes, delayed breeding is the norm, and age when breeding begins is influenced by competing selective pressures. In most Accipitriformes, reproductive roles of males and females differ; males do most of the foraging and females tend eggs and young. Thus, sexual differences in age at first breeding might be expected, but these differences, possible causes, and implications for individual fitness have received little study. We investigated sexual differences in age at first breeding in a marked population of Cooper's Hawks (Accipiter cooperii) from 2011 through 2018 in central New Mexico, USA. We predicted: (1) a lower mean age at first breeding for females than males because male provisioning ability is thought to improve with experience, and (2) that expected individual fitness of early-breeding males would be lower than for early-breeding females. Consistent with our predictions, we found that 79% more females than males bred in their first year (HY), and expected individual fitness of HY-breeding females was 21% greater than for HY-breeding males. HY males that attempted to breed settled on nesting territories with exceptionally high prey abundance, nevertheless they experienced 37% lower second-year survival than males that delayed breeding. Females competed for mates based on male age. HY females that paired with relatively older males had 33% higher second-year survival and 16% higher expected individual fitness than HY females that paired initially with relatively younger males. The observed annual rate of growth (λ) of our study population was 1.08, midway between λ predicted by male (1.02) and female (1.19) demographic models. Delayed breeding by males thus had important ramifications for λ, highlighting the need to consider sexual differences in age at first breeding in demographic models.
The phylogeography of the American black bear (Ursus americanus) is characterized by isolation in... more The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the genetic structure of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used linear mixed‐effects models to quantify the relationship between landscape resistance and genetic distance among individuals, which indicated that both isolation by resistance and geographic distance govern gene flow. Gene flow was highest among subpopulations occupying large tracts of contiguous habitat, was reduced among subpopulations in the Madrean Sky Island Archipelago, where montane habitat exists within a lowland matrix of arid lands, and was essentially nonexistent between two isolated subpopulations. We found significant asymmetric gene flow supporting the hypothesis that bears expanded northward from a Pleistocene refugium located in the American Southwest and northern Mexico and that major highways were not yet affecting gene flow. The potential vulnerability of the species to climate change, transportation infrastructure, and the US–Mexico border wall highlights conservation challenges and opportunities for binational collaboration.
The island fox (Urocyon littoralis) is endemic to the California Channel Islands, a continental a... more The island fox (Urocyon littoralis) is endemic to the California Channel Islands, a continental archipelago located off the coast of the southwestern United States. A descendent of the mainland gray fox (U. cinereo argenteus), it is hypothesized that island foxes first colonized the three northern Channel Islands (Santa Cruz, Santa Rosa, and San Miguel) by chance. Native Americans then transported foxes from these islands to three southern Channel Islands (Santa Catalina, San Clemente, and San Nicolas). Each island's fox population is currently recognized as a distinct subspecies, and both the hypothesized colonization scheme and the current taxonomic classification are supported by morphological and genetic evidence. This chapter discusses the evolution, ecology, and conservation of the island fox.
With the accelerating pace of global change, it is imperative that we obtain rapid inventories of... more With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14‐week period (17 August–24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian’s eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera ...
The phylogeography of the American black bear (Ursus americanus) is characterized by isolation in... more The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the phylogeography of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used li...
Life-history theory predicts individuals should breed as soon as they are able to reproduce, but ... more Life-history theory predicts individuals should breed as soon as they are able to reproduce, but many long-lived birds delay breeding. In the Accipitriformes, delayed breeding is the norm, and age when breeding begins is influenced by competing selective pressures. In most Accipitriformes, the reproductive roles of males and females differ; males do most of the foraging and females tend eggs and young. Thus, sexual differences in age at first breeding might be expected, but these differences, possible causes, and implications for individual fitness have received little study. We investigated sexual differences in age at first breeding in a marked population of Cooper’s Hawks (Accipiter cooperii) from 2011 through 2018 in central New Mexico, USA. We hypothesized that males required more experience to pair and breed successfully than females, and we predicted: (1) a lower mean age at first breeding for females than males, and (2) that expected individual fitness of early-breeding male...
Increasing urbanization and use of urban areas by synanthropic wildlife has increased human and d... more Increasing urbanization and use of urban areas by synanthropic wildlife has increased human and domestic animal exposure to zoonotic diseases and exacerbated epizootics within wildlife populations. Consequently, there is a need to improve wildlife disease surveillance programs to rapidly detect outbreaks and refine inferences regarding spatiotemporal disease dynamics. Multistate occupancy models can address potential shortcomings in surveillance programs by accounting for imperfect detection and the misclassification of disease states. We used these models to explore the relationship between urbanization, slope, and the spatial distribution of sarcoptic mange in coyotes (Canis latrans) inhabiting Fort Irwin, California, USA. We deployed remote cameras across 180 sites within the desert surrounding the populated garrison and classified sites by mange presence or absence depending on whether a symptomatic or asymptomatic coyote was photographed. Coyotes selected flatter sites closer t...
Tooth damage in carnivores can reflect shifts in both diet and feeding habits, and in large carni... more Tooth damage in carnivores can reflect shifts in both diet and feeding habits, and in large carnivores, it is associated with increased bone consumption. Variation in tooth condition in Icelandic arctic foxes, a mesocarnivore, was recorded from 854 individual foxes spanning 29 years. We hypothesized that annual climatic variations, which can influence food abundance and accessibility, will influence tooth condition by causing dietary shifts toward less edible prey. We examined tooth condition in relation to four climatic predictors: mean annual winter temperature, indices of both the El Niño anomaly and North Atlantic subpolar gyre (SPG), and the number of rain‐on‐snow days (ROS). We found unequivocal evidence for a strong effect of annual climate on tooth condition. Teeth of Icelandic foxes were in better condition when winter temperatures were higher, when the SPG was more positive, and when the number of ROS was low. We also found a substantial subregional effect with foxes from northeastern Iceland having lower tooth damage than those from two western sites. Contradicting our original hypothesis that foxes from northeastern Iceland, where foxes are known to scavenge on large mammal remains (e.g., sheep and horses), would show the highest tooth damage, we suggest that western coastal sites exhibited greater tooth damage because cold winter temperatures lowered the availability of seabirds, causing a shift in diet toward abrasive marine subsidies (e.g., bivalves) and frozen beach wrack. Our study shows that monitoring tooth breakage and wear can be a useful tool for evaluating the impact of climate on carnivore populations and that climate change may influence the condition and fitness of carnivores in complex and potentially conflicting ways.
Zenodo (CERN European Organization for Nuclear Research), Nov 30, 2018
Life history theory predicts individuals should breed as soon as they are able to reproduce, but ... more Life history theory predicts individuals should breed as soon as they are able to reproduce, but many long-lived birds delay breeding. In the Accipitriformes, delayed breeding is the norm, and age when breeding begins is influenced by competing selective pressures. In most Accipitriformes, reproductive roles of males and females differ; males do most of the foraging and females tend eggs and young. Thus, sexual differences in age at first breeding might be expected, but these differences, possible causes, and implications for individual fitness have received little study. We investigated sexual differences in age at first breeding in a marked population of Cooper's Hawks (Accipiter cooperii) from 2011 through 2018 in central New Mexico, USA. We predicted: (1) a lower mean age at first breeding for females than males because male provisioning ability is thought to improve with experience, and (2) that expected individual fitness of early-breeding males would be lower than for early-breeding females. Consistent with our predictions, we found that 79% more females than males bred in their first year (HY), and expected individual fitness of HY-breeding females was 21% greater than for HY-breeding males. HY males that attempted to breed settled on nesting territories with exceptionally high prey abundance, nevertheless they experienced 37% lower second-year survival than males that delayed breeding. Females competed for mates based on male age. HY females that paired with relatively older males had 33% higher second-year survival and 16% higher expected individual fitness than HY females that paired initially with relatively younger males. The observed annual rate of growth (λ) of our study population was 1.08, midway between λ predicted by male (1.02) and female (1.19) demographic models. Delayed breeding by males thus had important ramifications for λ, highlighting the need to consider sexual differences in age at first breeding in demographic models.
The phylogeography of the American black bear (Ursus americanus) is characterized by isolation in... more The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the genetic structure of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used linear mixed‐effects models to quantify the relationship between landscape resistance and genetic distance among individuals, which indicated that both isolation by resistance and geographic distance govern gene flow. Gene flow was highest among subpopulations occupying large tracts of contiguous habitat, was reduced among subpopulations in the Madrean Sky Island Archipelago, where montane habitat exists within a lowland matrix of arid lands, and was essentially nonexistent between two isolated subpopulations. We found significant asymmetric gene flow supporting the hypothesis that bears expanded northward from a Pleistocene refugium located in the American Southwest and northern Mexico and that major highways were not yet affecting gene flow. The potential vulnerability of the species to climate change, transportation infrastructure, and the US–Mexico border wall highlights conservation challenges and opportunities for binational collaboration.
The island fox (Urocyon littoralis) is endemic to the California Channel Islands, a continental a... more The island fox (Urocyon littoralis) is endemic to the California Channel Islands, a continental archipelago located off the coast of the southwestern United States. A descendent of the mainland gray fox (U. cinereo argenteus), it is hypothesized that island foxes first colonized the three northern Channel Islands (Santa Cruz, Santa Rosa, and San Miguel) by chance. Native Americans then transported foxes from these islands to three southern Channel Islands (Santa Catalina, San Clemente, and San Nicolas). Each island's fox population is currently recognized as a distinct subspecies, and both the hypothesized colonization scheme and the current taxonomic classification are supported by morphological and genetic evidence. This chapter discusses the evolution, ecology, and conservation of the island fox.
With the accelerating pace of global change, it is imperative that we obtain rapid inventories of... more With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14‐week period (17 August–24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian’s eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera ...
The phylogeography of the American black bear (Ursus americanus) is characterized by isolation in... more The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the phylogeography of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used li...
Life-history theory predicts individuals should breed as soon as they are able to reproduce, but ... more Life-history theory predicts individuals should breed as soon as they are able to reproduce, but many long-lived birds delay breeding. In the Accipitriformes, delayed breeding is the norm, and age when breeding begins is influenced by competing selective pressures. In most Accipitriformes, the reproductive roles of males and females differ; males do most of the foraging and females tend eggs and young. Thus, sexual differences in age at first breeding might be expected, but these differences, possible causes, and implications for individual fitness have received little study. We investigated sexual differences in age at first breeding in a marked population of Cooper’s Hawks (Accipiter cooperii) from 2011 through 2018 in central New Mexico, USA. We hypothesized that males required more experience to pair and breed successfully than females, and we predicted: (1) a lower mean age at first breeding for females than males, and (2) that expected individual fitness of early-breeding male...
Increasing urbanization and use of urban areas by synanthropic wildlife has increased human and d... more Increasing urbanization and use of urban areas by synanthropic wildlife has increased human and domestic animal exposure to zoonotic diseases and exacerbated epizootics within wildlife populations. Consequently, there is a need to improve wildlife disease surveillance programs to rapidly detect outbreaks and refine inferences regarding spatiotemporal disease dynamics. Multistate occupancy models can address potential shortcomings in surveillance programs by accounting for imperfect detection and the misclassification of disease states. We used these models to explore the relationship between urbanization, slope, and the spatial distribution of sarcoptic mange in coyotes (Canis latrans) inhabiting Fort Irwin, California, USA. We deployed remote cameras across 180 sites within the desert surrounding the populated garrison and classified sites by mange presence or absence depending on whether a symptomatic or asymptomatic coyote was photographed. Coyotes selected flatter sites closer t...
Uploads
Papers by Gary Roemer