
DISTRIBUTIONS, FOURIER TRANSFORMS
AND MICROLOCAL ANALYSIS

Notation

• R and C are the sets of real and complex numbers, respectively;
• Rn denotes the n-dimensional Euclidean space;
• supp f denotes the support of the function f ; by definition, supp f is the closure of

the set {x : f(x) 6= 0};
• a multi-index α is a set of n non-negative integers, α := {α1, α2, . . . , αn};
• if α, β are multi-indices then |α| := α1 + α2 + · · · + αn , α! := α1!α2! . . . αn! and
α + β := {α1 + β1, α2 + β2, . . . , αn + βn};
• x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), ξ = (ξ1, ξ2, . . . , ξn) are elements of Rn;
• if x ∈ Rn and α is a multi-index then xα := xα1

1 x
α2
2 . . . xαn

n , ∂xk := ∂
∂xk

,

∂αx := ∂α1
x1
∂α2
x2
. . . ∂αn

xn , Dxk := −i ∂xk and Dα
x := (−i)|α| ∂αx where i =

√
−1;

• C∞(Rn) is the linear space of all infinitely differentiable functions on Rn;
• C∞0 (Rn) is the linear space of all infinitely differentiable functions on Rn with compact

supports.
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2 MICROLOCAL ANALYSIS

1. Fourier transform

1.1. Schwartz space S(Rn).

Definition 1.1. We say that f ∈ S(Rn) if the function f is infinitely differentiable and

(1.1) ‖f‖α,m := sup
x∈Rn

(1 + |x|)m |∂αx f(x)| <∞

for all multi-indices α and all m = 0, 1, 2, . . .

Obviously, S(Rn) is a linear space which contains C∞0 (Rn). If f ∈ S(Rn) then, for all
multi-indices α and all positive integers k, we have

|∂αx f(x)| ≤ ‖f‖α,m (1 + |x|)−m .

In other words, the functions f ∈ S(Rn) and all their derivatives decay faster than any
negative power of |x| as |x| → ∞. Therefore these functions are said to be rapidly decreasing .

Example 1.2. The function f(x) = e−|x|
2

belongs to S(Rn).

Lemma 1.3.

• If f ∈ S(Rn) then xβ∂γxf(x) ∈ S(Rn) .
• If ‖f‖α,β := sup

x∈Rn

|xβ∂αx f(x)| <∞ for all multi-indices α, β then f ∈ S(Rn).

• ‖f‖α,m ≤ const
∑
|β|≤m ‖f‖α,β and ‖f‖α,β ≤ ‖f‖α,|β|.

Proof is obvious.

We shall need the following version of Taylor’s formula.

Lemma 1.4. Let m be a non-negative integer, f ∈ S(Rn) and y ∈ Rn be a fixed point. If f
and all its derivatives up to the order m vanish at y then there exist functions hβ ∈ S(Rn)
such that

(1.2) f(x) =
∑

β : |β|=m+1

(x− y)β hβ(x) , ∀x ∈ Rn .

Proof. Let ζ ∈ C∞0 (Rn) and ζ ≡ 1 in a neighbourhood of the point y. Denote f1 = (1− ζ)f
and f2 = ζf . Obviously, the function h(x) := |x− y|−2m−2 f1(x) belongs to S(Rn). We have

f1(x) = |x− y|2m+2 h(x) =
∑

β : |β|=m+1

(x− y)β Pβ(x− y)h(x),

where Pβ are some polynomials. Thus, the function f1 can be represented in the form (1.2).
By Taylor’s formula,

f2(x) =
∑

β : |β|=m+1

(x− y)β h̃β(x) ,

where h̃β are some infinitely smooth functions. If ζ̃ ∈ C∞0 (Rn) and ζ̃ ≡ 1 on supp ζ then,

multiplying both parts of the above identity by ζ̃, we obtain the expansion (1.2) for f2. �
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1.2. Convergence in the space S(Rn).

Definition 1.5. We say that a sequence {fk} ⊂ S(Rn) converges to f ∈ S(Rn) in the space

S(Rn) and write fk
S→ f if ‖f − fk‖α,m → 0 as k →∞ for all α and m.

The space S(Rn) can be provided with a metric ρ such that fk
S→ f if and only if

ρ(f, fk)→ 0 . In particular, one can take

ρ(f, g) :=
∑
α,m

‖f − g‖α,m
(α! +m2) (1 + ‖f − g‖α,m)

.

1.3. Fourier transform in S(Rn).

Definition 1.6. Let f ∈ S(Rn). The function

(1.3) f̂(ξ) := Fx→ξf(x) := (2π)−n/2
∫
Rn

e−ix·ξ f(x) dx , ξ ∈ Rn ,

is called the Fourier transform of f .

The Fourier transform is well defined whenever the integral on the right hand side of (1.3)
exists and is finite for all ξ ∈ Rn. Obviously, this is true if f ∈ S(Rn).

Remark 1.7. By means of (1.3) one can define the Fourier transform for functions f from
the Lebesgue space L1(Rn) (which contains S(Rn) as a subspace). However, as we shall see
later, the Fourier transform can be extended to L1(Rn) and even more general classes of
functions in a different, more elegant way.

Lemma 1.8. For all f ∈ S(Rn) and all multi-indices α we have

(1.4) Fx→ξ(Dα
xf(x)) = ξα f̂(ξ) , Fx→ξ(xαf(x)) = (−1)|α|Dα

ξ f̂(ξ) .

Proof. The identities (1.4) are proved by integration by parts and differentiation under the
integral sign. �

Corollary 1.9. If f ∈ S(Rn) then f̂ ∈ S(Rn), and the map F : f → f̂ is continuous in the
space S(Rn).

Proof. For all g ∈ S(Rn) we have

(1.5) sup
ξ∈Rn

|ĝ(ξ)| = (2π)−n/2 sup
ξ∈Rn

|
∫
eix·ξ g(x) dx | ≤ (2π)−n/2

∫
|g(x)| dx

≤ (2π)−n/2
(∫

(1 + |x|)−n−1 dx

)
sup
x∈Rn

(1 + |x|)n+1 |g(x)| .

Therefore the corollary follows from Lemmas 1.3 and 1.8. �

Example 1.10. Let us calculate the Fourier transform of the function f(x) = exp (−|x|2/2).
First, we consider the function f0(t) = exp (−t2/2) on R. This function is a solution of the
differential equation

(1.6) f ′0(t) = −t f0(t) .
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Applying the (one dimensional) Fourier transform to (1.6) and taking into account (1.4), we
obtain

it f̂0(t) = −i f̂ ′0(t) .

where f̂ ′0 is the derivative of the Fourier transform f̂0. Now we see that(
f̂0(t)

f0(t)

)′
=

f̂ ′0(t) f0(t)− f̂0(t) f ′0(t)

f 2
0 (t)

=
−t f̂0(t) f0(t) + t f̂0(t) f0(t)

f 2
0 (t)

= 0 ,

which implies f̂0(t) = c0 f0(t) = c0 exp (−t2/2) with some constant c0 ≥ 0. Passing to the
polar coordinates, we obtain

c 2
0 =

(
f̂0(0)

)2

= (2π)−1

(∫
e−t

2/2 dt

)2

= (2π)−1

∫∫
e−(t2+τ2)/2 dt dτ

= (2π)−1

∫ ∞
0

∫
S1

e−r
2/2 r dθ dr =

∫ ∞
0

e−r
2/2 r dr =

1

2

∫ ∞
0

e−s/2 ds = 1 ,

so f̂0(t) = f0(t) = exp (−t2/2). Finally,

(2π)−n/2
∫
e−ix·ξe−|x|

2/2 dx = f̂0(ξ1) f̂0(ξ2) . . . f̂0(ξn) = exp
(
−|ξ|2/2

)
.

Thus, f̂(ξ) = f(ξ) = exp (−|ξ|2/2).

1.4. Inversion formula.

Theorem 1.11. Let T : S(Rn)→ S(Rn) be a linear map commuting with multiplication by
xk and differentiation Dxk for all k = 1, . . . , n, that is,

(1.7) T (xkf) = xk (Tf) , T (Dxkf) = Dxk(Tf) ,∀ , k = 1, 2, . . . , n ,

for all f ∈ S(Rn). Then there exists a constant c such that Tf = c f for all f ∈ S(Rn).

Proof. Let f, g ∈ S(Rn) and y ∈ Rn be a fixed point. If f(y) = g(y) then, by Lemma 1.4,

f(x)− g(x) =
n∑
k=1

(xk − yk)hk(x) ,

where hk ∈ S(Rn). Now the first identity (1.7) implies that (Tf)(y) = (Tg)(y). Thus, the
value of Tf at any point y depends only on the value of f at the point y. Since T is a linear
map, this implies that (Tf)(y) = c(y) f(y), where c(y) is some constant depending on y.

Since Tf is an infinitely differentiable function for every f ∈ S(Rn), the constant c(y)
smoothly depends on y. Applying the second identity (1.7), we obtain

c(y) ∂ykf(y) = ∂yk (c(y) f(y)) = f(y) ∂ykc(y) + c(y) ∂ykf(y)

for all f ∈ S(Rn) and k = 1, 2, . . . , n. Therefore all first derivatives of c are identically equal
to zero, which means that c does not depend on y. �

Let Jf(x) := f(−x). Obviously, J is a continuous operator in S(Rn) and JF = FJ (the
latter is proved by changing variables ξ = −η in (1.3)).
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Corollary 1.12. If f ∈ S(Rn) then

(1.8) f(x) = J
(
Fξ→xf̂(ξ)

)
= (2π)−n/2

∫
eix·ξ f̂(ξ) dξ

Proof. Define (Tf)(x) := J
(
Fξ→xf̂(ξ)

)
. In view of Corollary 1.9, T is a linear operator

from S(Rn) into S(Rn). Lemma 1.8 implies that

T (Dxkf) = J
(
Fξ→x(ξkf̂(ξ))

)
= J

(
−Dxk

(
Fξ→xf̂(ξ)

))
= Dxk(Tf) ,

T (xkf) = J
(
Fξ→x(−Dxk f̂(ξ))

)
= J

(
−xk

(
Fξ→xf̂(ξ)

))
= xk(Tf) .

Therefore, by Theorem 1.11, there exists a constant c such that Tf = cf for all f ∈ S(Rn).
If f(x) = exp(−|x|2/2) then

c f(x) = (Tf)(x) = J
(
Fξ→xf̂(ξ)

)
= f(x)

(see Example 1.10). This implies that c = 1. �

The linear operator

f(x)→ J(Fx→ξf(x)) = (2π)−n/2
∫
eix·ξ f̂(x) dx

is called the inverse Fourier transform. By Corollary 1.9, JFf ∈ S(Rn) and, by (1.8),
JFFf = FJFf = f whenever f ∈ S(Rn). Thus, we have proved

Theorem 1.13. The Fourier transform F is a one-to-one map from S(Rn) onto S(Rn) and
F−1 = JF = FJ .

Corollary 1.14. (Parseval’s formula) If f, g ∈ S(Rn) then∫
f(x) g(x) dx =

∫
f̂(x) ĝ(x) dx .

Proof. Parseval’s formula follows from (1.8) and the obvious identities

�(1.9) ĝ(x) = F−1(ḡ) ,

∫
f̂(x) g(x) dx =

∫
f(x) ĝ(x) dx , ∀f, g ∈ S(Rn) .
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2. Tempered distributions

2.1. Definition and examples. A map u : S(Rn)→ C is said to be a functional on S(Rn).
The value of functional u on the function f ∈ S(R) is denoted by 〈u, f〉. We say that the
functional u is linear if

〈u, c1f + c2g〉 = c1 〈u, f〉 + c2 〈u, g〉 , ∀f, g ∈ S(Rn) , ∀ c1, c2 ∈ C ,

and u is continuous if 〈u, fk〉 → 〈u, f〉 whenever fk
S→ f .

Definition 2.1. A linear continuous functional on S(Rn) is said to be a tempered distribu-
tion.

If u, v are tempered distribution and c1, c2 ∈ C, let us define the distribution c1u+ c2v by

〈c1u+ c2v, f〉 = c1 〈u, ϕ〉 + c2 〈v, f〉 , ∀ f ∈ S(Rn) .

Then the set of tempered distributions becomes a linear space. This space is denoted by
S ′(Rn).

Example 2.2. Let u be a polynomially bounded function on Rn. If u is sufficiently nice
(continuous, piecewise continuous or, more generally, measurable) then the functional defined
by

(2.1) 〈u, f〉 :=

∫
u(x) f(x) dx , ∀f ∈ S(Rn) ,

is a tempered distribution. This allows us to identify the ‘regular’ polynomially bounded
functions with distributions. Obviously, two functions u1 and u2 define the same distribution
then u1 = u2 ‘almost everywhere’ (with respect to the Lebesgue measure). Further on we
shall use the same notation u for the function on Rn and the corresponding distribution.

If u is not polynomially bounded then the integrals on the right hand side of (2.1) may not
converge in the usual sense. However, in many cases one can use a suitable regularization
of these integrals in order to define a distribution generated by u. This distribution may, of
course, depend on the choice of regularization.

Example 2.3. Let x ∈ Rn be a fixed point. The tempered distribution δx defined by

〈δx, f〉 = f(x) , ∀ f ∈ S(Rn) ,

is said to be the δ-function at x. The δ-function at the origin is usually denoted by δ or δ(y),
where y indicates that δ is considered as a functional on the space of functions depending
on the variables y.

Theorem 2.4. A linear functional u on S(Rn) is continuous if and only if there exists a
constant C and a non-negative integer p such that

|〈u, f〉| ≤ C
∑

|α|+m≤p

‖f‖α,m , ∀f ∈ S(Rn) .
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Proof. Assume first that there exist constants C and p for which the above estimate holds.

If fj
S→ f then ‖f − fj‖α,m → 0 for all α,m and, consequently, 〈u, f − fj〉 → 0. This implies

that u is continuous.
Conversely, let us assume that such constants C and p do not exist. Then there is a

sequence of functions fj ∈ S(Rn) such that

|〈u, fj〉| > j
∑

|α|+m≤j

‖fj‖α,m .

If gj(x) = (〈u, fj〉)−1fj(x) then ‖gj‖α,m ≤ j−1 for all j ≥ |α| + m. This implies that

‖gj‖α,m → 0 as j →∞ for all α and m or, in other words, that gj
S→ 0. On the other hand,

〈u, gj〉 = 1 for all j, so u is not a continuous functional on S(Rn). �

Exercise 1. Prove that the functional f 7→ limε→0

∫
|t|>ε t

−1 f(t) dt belongs to S ′(R).

Exercise 2. Find all distributions u ∈ S ′(R) such that 〈u, f〉 =
∫∞
−∞ t

−1 f(t) dt for all
functions f ∈ S(R) satisfying the condition f(0) = 0.

2.2. Operators in the space of distributions. Let A be a linear operator acting in the
space S(Rn).

Condition 2.5. There exists a continuous operator AT : S(Rn) 7→ S(Rn) such that

(2.2)

∫
(Au)(x) v(x) dx =

∫
u(x) (ATv)(x) dx , ∀u, v ∈ S(Rn) .

Remark. It is clear from (2.2) that (AT )T = A

Lemma 2.6. If Condition 2.5 is fulfilled then one can extend A from S(Rn) to the space of
distributions S ′(Rn).

Proof. If u ∈ S ′(Rn), we define Au by

(2.3) 〈Au, v〉 := 〈u,ATv〉 , ∀ v ∈ S(Rn) .

One can easily see that, under Condition 2.5, Au is a tempered distribution. If u ∈ S(Rn)
then (2.3) turns into (2.2), so (2.3) defines the same operator A on the space S(Rn). �

Lemma 2.6 justifies the following definitions.

Definition 2.7. Let h be an infinitely smooth function on Rn which is polynomially bounded
with all its derivatives. If u ∈ S ′(Rn) then hu is the distribution defined by

〈hu, f〉 := 〈u, hf〉 , ∀ f ∈ S(Rn) .

Definition 2.8. If u ∈ S ′(Rn) and α is a multi-index then ∂αxu is the distribution defined
by

〈∂αxu, f〉 := (−1)|α|〈u, ∂αx f〉 , ∀ f ∈ S(Rn) .

In the same manner one can define other operators in S ′(Rn), in particular, the change of
variables operator u(x)→ v(x) = u(x̃(x)) where x̃(x) is a smooth vector function satisfying
certain conditions at infinity.
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Example 2.9. Let x ∈ Rn be a fixed point and Axf(y) := f(x−y). Then Ax is a continuous
operator in S(Rn) and ATx = Ax. If u(y) is a distribution (y indicates that we apply u to
functions depending on y) then, by (2.3),

〈u(x− y), f(y)〉 := 〈u(y), f(x− y)〉 , ∀ f ∈ S(Rn) .

In particular, for the δ-function (see Example 2.3) we have

〈δ(x− y), f(y)〉 := 〈δ(y), f(x− y)〉 = f(x) = 〈δx, f〉 , ∀ f ∈ S(Rn) ,

that is, δx(y) = δ(x− y). In a similar way one can show that δx(y) = δ(y− x) which implies
that δ(x− y) = δ(y − x).

Example 2.10. Let u(t) be the characteristic function of the positive half-line. Then, for
every s ∈ R, the derivative of the function u(t − s) coincides with δ(t − s). For the second
derivative of u(t− s) we have

〈u′′(t− s), f(t)〉 = 〈δ′(t− s), f(t)〉 = −f ′(s) , ∀f ∈ S(Rn) .

The distribution δ′(t− s) cannot be described in any simpler way. It is called the derivative
of the δ-function at the point s.

Exercise 3. Let −∞ < a1 < a2 < · · · < am < ∞ and u be a function on R with the
following properties:

(1) u vanishes outside the interval [a1, am];
(2) u is continuously differentiable on every interval (ak, ak+1);
(3) u has finite left and right limits at the points ak.

Evaluate the derivative u′ ∈ S ′(R) of the function u.

2.3. Supports of distributions. Generally speaking, a distribution does not take any
particular value at one fixed point. However, two distributions may coincide on an open set.

Definition 2.11. We say that the distribution u vanishes on an open set Ω and write
u|Ω = 0 if 〈u, f〉 = 0 for all f ∈ S(Rn) with supp f ⊂ Ω. We say that u coincides with
another distribution v on Ω if (u− v)|Ω = 0 .

In particular, the distribution u coincides with a function v on Ω if 〈u, f〉 =
∫

Ω
vf dx

whenever supp f ⊂ Ω.

Definition 2.12. If u ∈ S ′(Rn) then suppu := Rn \ Ωu, where Ωu is the union of all open
sets Ω such that u|Ω = 0.

Example 2.13. The support of any derivative of the δ-function at y coincides with the
point y.

The support of a continuous function u coincides with the support of the corresponding
distribution (if u is not continuous then this statement is correct modulo a set of Lebesgue’s
measure zero). If h is a function satisfying conditions of Definition 2.7 then

supp(hu) ⊂ (supph) ∩ (suppu) , ∀u ∈ S ′(Rn) .

In particular, if h = 0 in a neighbourhood of suppu then hu = 0. This is not necessarily
true if h = 0 only on suppu.



MICROLOCAL ANALYSIS 9

Example 2.14. If h = 0 at the origin then h(x)δ(x) ≡ 0. However,

〈h(x) ∂xkδ(x), f(x)〉 = − ∂xk(h(x)f(x))|x=0 = −hxk(0) f(0) ,

that is, h(x) ∂xkδ(x) = −(∂xkh(0)) δ(x).

The set of distributions with compact supports is denoted by E ′(Rn). Theorem 2.4 implies
the following result (see [H, Theorem 4.4.7]).

Theorem 2.15. If u ∈ E ′(Rn) then there exists a non-negative integer m such that

(2.4) u(x) =
∑
|α|≤m

∂αxuα(x) ,

where uα are some continuous functions on Rn.

One can always choose C∞0 -functions ψj such that
∑

j ψj(x) ≡ 1 (it is called a partition of

unity). Then an arbitrary distribution u ∈ S ′(Rn) is represented as the sum of distributions
uj = ψju with compact supports, that is, as a sum of distributions of the form (2.4).

2.4. Fourier transform in S ′(Rn). By Corollary 1.9, the Fourier transform F and the
inverse Fourier transform F−1 = JF are linear continuous operators in S(Rn). Obviously,
F and F−1 satisfy Condition 2.5 with FT = F and (F−1)T = F−1. Therefore, according to
Lemma 2.6, the operators F and F−1 can be extended to S ′(Rn).

Definition 2.16. If u ∈ S ′(Rn) then û = Fu and F−1u are the tempered distributions
defined by

〈Fu, f〉 := 〈u,Ff〉 , 〈F−1u, f〉 := 〈u,F−1f〉 , ∀ f ∈ S(Rn) .

Lemma 1.8, Theorem 1.13 and Definition 2.16 immediately imply

Lemma 2.17. For all u ∈ S ′(Rn) we have F−1Fu = FF−1u = u and

Fx→ξ(Dα
xu) = ξα û(ξ) , Fx→ξ(xαu) = (−1)|α|Dα

ξ û(ξ) .

Example 2.18. Let u be a ‘nice’ polynomially bounded function (as in Example 2.2). Then

〈û, f〉 = 〈u, f̂〉 = (2π)−n/2
∫
u(x)

(∫
e−ix·ξ f(ξ) dξ

)
dx , ∀f ∈ S(Rn) .

If we can change the order of integration then

〈û, f〉 = (2π)−n/2
∫ (∫

e−ix·ξ u(x) dx

)
f(ξ) dξ , ∀f ∈ S(Rn) ,

which implies that û(ξ) = (2π)−n/2
∫
e−ix·ξ u(x) dx. In particular, this formula holds for all

functions u from the Lebesgue space L1(Rn) (see Remark 1.7).

Example 2.19. If δ(x) is the δ-function then Fx→ξ(Dα
xδ(x)) = (2π)−n/2 ξα. Indeed,

〈Fx→ξ(Dα
xδ(x)), f(ξ)〉 = (−1)|α|〈δ(x), Dα

x f̂(x)〉 = (2π)−n/2
∫
ξα f(ξ) dξ .
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2.5. Divergent integrals. We have defined the Fourier transform for all distributions u ∈
S ′(Rn), in particular, for all continuous polynomially bounded functions u. This means, in
fact, that we have defined the integral

∫
e−ix·ξ u(x) dx for every such a function u. Of course,

this integral may not converge in the classical sense, but can be understood as a distribution
in ξ. This idea can be generalized as follows.

Definition 2.20. Let z ∈ RN , ξ ∈ Rn and G(z, ξ) be a continuous polynomially bounded
function on RN × Rn. We shall say that the integral

∫
G(z, ξ) dξ converges in the sense

of distributions if the consecutive integral
∫ (∫

G(z, ξ) f(z) dz
)

dξ converges for every f ∈
S(RN) and the linear functional

∫
G(z, ξ) dξ defined by

(2.5)
〈∫

G(z, ξ) dξ , f
〉

:=

∫ (∫
G(z, x) f(z) dz

)
dx , ∀f ∈ S(RN) ,

belongs to S ′(RN).

Considering the integral
∫
G(z, ξ) dξ as a distribution, one can operate with it as with an

absolutely convergent integral: formally integrate by parts, differentiate under the integral
sign, etc. A rigorous justification of all these operations is obtained with the use of Definition
2.20.

Example 2.21. We have (2π)−n
∫
e−ix·ξ dξ = δ(x) . Indeed, if f ∈ S(Rn) then

(2π)−n
∫ (∫

e−ix·ξ f(x) dx

)
dξ = (2π)−n/2

∫
f̂(ξ) dξ = F−1

ξ→yf̂(ξ)
∣∣∣
y=0

= f(0) .

It may well happen that the distribution
∫
G(z, ξ) dξ coincides with a function even if the

integral does not converge in the usual sense.

Example 2.22. For all nonzero z ∈ C with Re z ≤ 0 we have

(2.6) Fx→ξ exp(z|x|2/2) = (2π)−n/2
∫
ez|x|

2/2 e−ix·ξ dx = z−n/2 exp(z−1|ξ|2/2) ,

where z−n/2 = |z|−n/2 exp(−n
2

arg z) and arg z ∈ [−π/2, π/2] . In particular, for z = i,

Fx→ξ exp(i|x|2/2) = (2π)−n/2
∫
ei|x|

2/2−ix·ξ dx = eiπn/4e−i|ξ|
2/2 .

Proof. If z = 1 then (2π)−n/2
∫
e−|y|

2/2 e−iy·ξ dy = exp(−|ξ|2/2) (see Example 1.10). Chang-

ing variables y = |z|1/2 x, we see that (2.6) holds for all real negative z.

Let us fix an arbitrary complex number z0 with Re z0 < 0 , substitute e−z|x|
2/2 =

e−(z−z0)|x|2/2e−z0|x|
2/2 and expand the function e−(z−z0)|x|2/2 into its Taylor series at the point

z = z0. Integrating the obtained series term by term, we see that for each fixed ξ ∈ Rn the
function Fx→ξ exp(−z|x|2/2) is given by an absolutely convergent power series in a neigh-
bourhood of z0. This implies that Fx→ξ exp(−z|x|2/2) is analytic in the open half-plane
{z ∈ C : Re z < 0}. The function z−n/2 exp(−z−1|ξ|2/2) is also analytic in this half-plane
and, by the above, coincides with Fx→ξ exp(−z|x|2/2) on the negative half-line. Now, from
the identity theorem for analytic functions, it follows that (2.6) holds for all z with Re z < 0.

Finally, letting Re z → 0, we obtain (2.6) for all imaginary numbers z 6= 0. �
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3. Schwartz kernels, oscillatory integrals
and pseudodifferential operators

3.1. Schwartz kernels.

Theorem 3.1. For every linear continuous operator A in the space S(Rn) there exists a
family of tempered distributions A(x, ·) depending on the parameter x ∈ Rn such that

Av(x) = 〈A(x, y), v(y)〉 , ∀x ∈ Rn.

Proof. For every x ∈ Rn the map v → Av(x) is a linear continuous functional on S(Rn),
that is, a tempered distribution which we denote A(x, ·). �

It is clear from the proof that A is uniquely defined by the operator A.

Definition 3.2. The family of distributions A is said to be the Schwartz kernel of the
operator A.

If A is a linear continuous operator in S(Rn) then, for every u ∈ S ′(Rn), the map

v(x) → 〈u(x), Av(x)〉 = 〈u(x), 〈A(x, y), v(y)〉〉 , v ∈ S(Rn) ,

is a tempered distribution.

Definition 3.3. The linear operator AT in S ′(Rn) defined by

〈ATu(x), v(x)〉 = 〈u(x), Av(x)〉 , ∀u ∈ S ′(Rn) , ∀v ∈ S(Rn) ,

is said to be the transposed to A.

Now Condition 2.5 be rewritten as follows.

Condition 3.4. The transposed operator AT continuously maps S(Rn) into itself.

If Condition 3.4 is fulfilled then AT also has a Schwartz kernel AT (x, y).

Lemma 3.5. Let A be a linear continuous operator in S(Rn). If its Schwartz kernel A can
be considered as a distribution A(·, y) smoothly depending on y ∈ Rn, that is, if there exists
a family of distributions A(·, y) such that u 7→ 〈A(x, y), u(x)〉 is a continuous mapping from
S(Rn) into itself and

(3.1)

∫
〈A(x, y), u(x)〉v(y) dy =

∫
u(x) 〈A(x, y), v(y)〉dx

for all u, v ∈ S(Rn), then A satisfies Condition 3.4 and AT (x, y) = A(y, x).

Proof. The identity (3.1) implies that

〈Bu(x), v(x)〉 = 〈u(x), Av(x)〉 = 〈ATu(x), v(x)〉 , ∀u, v ∈ S(Rn) ,

where B is the operator in S(Rn) given by the Schwartz kernel B(x, y) = A(y, x). Therefore
ATu = Bu ∈ S(Rn) for all u ∈ S(Rn). �
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Example 3.6. The δ-function δ(x − y) (see Example 2.9) can be considered either as a
distribution in x depending on the parameter y, or as a distribution in y depending on the
parameter x. We have

〈δ(x− y), f(y)〉 = f(x) , ∀f ∈ S(Rn),

that is, δ(x− y) is the Schwartz kernel of the identity operator.

3.2. Oscillatory integrals.

Definition 3.7. We say that a function a(x, y, ξ) on Rn
x ×Rn

y ×Rn
ξ belongs to the class Sm

if a is infinitely smooth and

|∂αξ ∂βx∂γya(x, y, ξ)| ≤ constα,β,γ (1 + |ξ|)m−|α| .
for all multi-indices α, β, γ. We define S−∞ := ∩mSm, where the intersection is taken over
all m ∈ R.

Obviously, ξα1∂α2
ξ ∂

β
x∂

γ
ya ∈ Sm−|α2|+|α1| whenever a ∈ Sm.

Example 3.8. The polynomial
∑
|α|≤m aα(x, y) ξα with smooth coefficients aα belongs to

Sm if aα are bounded with all their derivatives.

Definition 3.9. A function a(x, y, ξ) is said to be positively homogeneous of degree m in ξ
if a(x, y, λξ) = λma(x, y, ξ) for all λ > 0.

Example 3.10. Let a(x, y, ξ) be a positively homogeneous of degree m function such that

|∂βx∂γya(x, y, ξ)| ≤ constβ,γ , ∀ξ : |ξ| = 1 .

Then, for every smooth cut-off function ζ(ξ) vanishing in a neighbourhood of zero and equal
to 1 for large ξ, we have ζa ∈ Sm.

Definition 3.11. Let mk be a sequence of real numbers such that mk → −∞ as k → ∞,
and let am−k ∈ Smk . We say that the function a ∈ Sm admits an asymptotic expansion

(3.2) a(x, y, ξ) ∼
∞∑
k=0

am−k(x, y, ξ), |ξ| → ∞ ,

if
(
a−

∑l
k=0 am−k

)
∈ Spl where pl → −∞ as l → ∞ for all l = 1, 2, . . . We say that a

admits the asymptotic expansion (3.2) with am−k positively homogeneous of degree mk in ξ
if a ∼

∑∞
k=0 ζ am−k , where ζ = ζ(ξ) is the same cut-off function as in Example 3.10.

Lemma 3.12. Let mk be as in Definition 3.11, and let m = max{mk}. Then for any
sequence of functions amk

∈ Smk there exists a function a ∈ Sm such that (3.2) holds. This
function is determined uniquely modulo S−∞ .

Proof. See [H, Proposition 18.1.3]. �

Definition 3.13. The integral

(3.3) Ia(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ) dξ

with a ∈ Sm is called oscillatory integral and the function a is called its amplitude.
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Remark 3.14. One can replace (x − y) · ξ in (3.3) with a more general phase function
ϕ(x, y, ξ) which has to be positively homogeneous in ξ of degree 1 and non-degenerate in
some appropriate sense (see, for example, [Sh], [SV] or [T]).

One can easily see that for every fixed y the integral (3.3) converges in the sense of
distributions in x and, the other way round, for every fixed x it converges in the sense of
distributions in y. Thus, Ia can be considered either as a distribution in x depending on
the parameter y or as a distribution in y depending on the parameter x. If m < −n then
the integral (3.3) is absolutely convergent, so the distribution Ia coincides with a function.
Clearly, this function gets smoother and smoother as m → −∞; if a ∈ S−∞ then it is
infinitely smooth and bounded with all its derivatives. As a rule, the oscillatory integrals are
used for the study of singularities of functions and distributions, and therefore all calculations
are carried out modulo S−∞.

3.3. Pseudodifferential operators.

Lemma 3.15. Let a(x, y, ξ) ∈ Sm, and let σ(x, ξ) be an arbitrary amplitude from Sm such
that

(3.4) σ(x, ξ) ∼
∑
α

1

α!
Dα
ξ ∂

α
y a(x, y, ξ)

∣∣
y=x

.

Then R(x, y) := Ia(x, y) − Iσ(x, y) is an infinitely differentiable function on Rn
x × Rn

y such
that

(3.5) |∂βx∂γyR(x, y)| ≤ constβ,γ,N (1 + |x− y|)−N

for all multi-indices β, γ and positive integers N .

Proof. By Taylor’s formula, for all l = 1, 2, . . ., we have

a(x, y, ξ) =
∑
|α|≤l

1

α!
(y − x)α ∂αy a(x, y, ξ)

∣∣
y=x

+
∑
|α|=l+1

(y − x)α ãα(x, y, ξ) ,

where

ãα(x, y, ξ) =
l + 1

α!

∫ 1

0

(1− t)l ∂αz a(x, z, ξ)|z=x+t(y−x) dt .

If we substitute this expansion into (3.3), replace (y−x)αei(x−y)·ξ with (−1)|α|Dα
ξ e

i(x−y)·ξ and
integrate by parts, then we obtain an oscillatory integral with the amplitude

(3.6)
∑
|α|≤l

1

α!
Dα
ξ ∂

α
y a(x, y, ξ)

∣∣
y=x

+
∑
|α|=l+1

Dα
ξ ãα(x, y, ξ) dξ .

One can easily see that the second sum in (3.6) belongs to Sm−l−1.
The above arguments show that, for every σ satisfying (3.4) and every positive integer l,

the difference R(x, y) = Ia(x, y)− Iσ(x, y) can be represented by the oscillatory integral∫
ei(x−y)·ξbl(x, y, ξ) dξ
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with an amplitude bl ∈ Sm−l−1. If l > |β|+ |γ|+m+ n then

(3.7) ∂βx∂
γ
y

(
(x− y)α

∫
ei(x−y)·ξbl(x, y, ξ) dξ

)
= ∂βx∂

γ
y

∫
(Dα

ξ e
i(x−y)·ξ) bl(x, y, ξ) dξ

= (−1)|α|
∫
∂βx∂

γ
y

(
ei(x−y)·ξDα

ξ bl(x, y, ξ)
)

dξ

and the integral on the right hand side is absolutely convergent and bounded uniformly with
respect to x and y. Since l can be chosen arbitrarily large, it follows that∣∣∂βx∂γy ((x− y)αR(x, y))

∣∣ 6 constα,β,γ , ∀α, β, γ .
This implies (3.5). �

In a similar way one can prove that Ia(x, y) − Iσ′(x, y) is an infinitely smooth function
satisfying (3.5) if

(3.8) σ′ = σ′(y, ξ) ∼
∑
α

1

α!
(−1)|α|Dα

ξ ∂
α
xa(x, y, ξ)

∣∣
x=y

.

Thus, the distribution Ia(x, y) can be represented, modulo a smooth function satisfying
(3.5), by the oscillatory integral with an amplitude independent either of y or of x.

Definition 3.16. We say that an operator A belongs to the class Ψm if its Schwartz kernel is
given by an oscillatory integral Ia(x, y) with some amplitude a ∈ Sm. The operator A ∈ Ψm

is said to be a pseudodifferential operator (PDO) of order m, and the functions σ and σ′

satisfying (3.4) and (3.8) are said to be its symbol and dual symbol respectively.

Lemma 3.15 and (3.8) imply that

σ′(y, ξ) ∼
∑
α

1

α!
(−1)|α|Dα

ξ ∂
α
y σ(y, ξ) ,

σ(x, ξ) ∼
∑
α

1

α!
Dα
ξ ∂

α
xσ
′(x, ξ) .

(3.9)

Clearly, Ψm ⊂ Ψl whenever m 6 l. We shall denote Ψ−∞ :=
⋂
m∈R Ψm.

Lemma 3.17. An operator R : S(Rn)→ S(Rn) belongs to Ψ−∞ if and only if its Schwartz
kernel is an infinitely smooth function satisfying (3.5).

Exercise 4. Prove Lemma 3.17. Hint: the Schwartz kernel of an operator from Ψ−∞ can
be estimated with the use of (3.7).

Lemma 3.18. A PDO A ∈ Ψm continuously maps S(Rn) into itself.

Proof. According to Definitions 2.20, 3.2 and 3.16, if A ∈ Ψm then

Au(x) = (2π)−n
∫
eix·ξ

(∫
e−iy·ξa(x, y, ξ)u(y) dy

)
dξ

with some a ∈ Sm. If u ∈ S(Rn) then the integral with respect to y absolutely converges for
each fixed x, ξ and defines a smooth function of (x, ξ) rapidly decreasing with respect to ξ
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with all its derivatives. The same is true for all integrals obtained by formal differentiation.
We have

(3.10) |Au(x)| ≤
∫
|
∫
e−iy·ξa(x, y, ξ)u(y) dy | dξ

=

∫
|
∫ (

(1−∆y)
Ne−iy·ξ

)
(1 + |ξ|2)−Na(x, y, ξ)u(y) dy | dξ

=

∫
|
∫
e−iy·ξ(1 + |ξ|2)−N(1−∆y)

N (a(x, y, ξ)u(y)) dy | dξ

≤
∫∫

(1 + |ξ|2)−N |(1−∆y)
N (a(x, y, ξ)u(y)) |dy dξ

for all positive integers N , where ∆y :=
∑

k ∂
2
yk

. The integral on the right hand side converges
and is estimated by a finite linear combination of ‖u‖α,β. Differentiating under the integral
sign and integrating by parts, we see that

(3.11) ∂xkAu(x) =

∫
eix·ξ

(∫
e−iy·ξ(iξk) a(x, y, ξ)u(y) dy

)
dξ

+

∫
eix·ξ

(∫
e−iy·ξ∂xka(x, y, ξ)u(y) dy

)
dξ ,

(3.12) xk Au(x) =

∫
(Dξke

ix·ξ)
(∫

e−iy·ξa(x, y, ξ)u(y) dy
)

dξ

=

∫
eix·ξ

(∫
e−iy·ξa(x, y, ξ) yk u(y) dy

)
dξ −

∫
eix·ξ

(∫
e−iy·ξ∂ξka(x, y, ξ)u(y) dy

)
dξ .

This implies that xβ∂αx (Au)(x) coincides with a finite sum of integrals of the same type as
Au(x) and therefore is also estimated by a finite linear combination of ‖u‖α′,β′ . �

By Lemma 3.5, if A is a PDO with an amplitude a(x, y, ξ) then its transposed AT is a PDO
with the amplitude a(y, x,−ξ). Therefore, in view of Lemma 2.6, a PDO can be extended
to the space S ′(Rn).

Example 3.19. Every differential operator with smooth coefficients bounded with all their
derivatives is a PDO. Indeed, if the Schwartz kernel of A is given by the oscillatory integral
with an amplitude a(x, y, ξ) =

∑
|α|≤m aα(x, y) ξα then, by Lemma 2.17,

Au(x) =
∑
|α|≤m

Dα
y (aα(x, y)u(y))

∣∣
y=x

.

In particular, if A is the PDO with symbol σ(x, ξ) =
∑
|α|≤m aα(x) ξα then

Au(x) =
∑
|α|≤m

aα(x)Dα
x u(x) ,
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and if A is the PDO with dual symbol σ(y, ξ) =
∑
|α|≤m aα(y) ξα then

Au(x) =
∑
|α|≤m

Dα
x (aα(x)u(x)) .

This explains the role of the factor (2π)−n appearing in (3.3).

Example 3.20. If A is a PDO with symbol σA(x, ξ) then, by Lemma 3.15, the symbol σAT

of the transposed operator AT admits the asymptotic expansion

(3.13) σAT (x, ξ) ∼
∑
α

1

α!
Dα
ξ ∂

α
xσ(x,−ξ) .

Remark 3.21. In the process of proving Lemmas 3.15, we have shown that Ia = Ib where b is
the amplitude given by (3.6). Thus two different amplitudes may define the same oscillatory
integral. In particular, it may well happen that Ia = 0 but a 6= 0, and even a 6∈ S−∞.

On the other hand, the symbol σ of the PDO A with Schwartz kernel Ia is defined uniquely
modulo S−∞. Indeed, if Ã is the PDO defined by the oscillatory integral Iσ then, by Lemmas
3.15 and 3.17, R = A− Ã is an integral operator with smooth kernel R(x, y) satisfying (3.5).

Let us fix η ∈ Rn and consider the smooth function uη(y) = eiy·η. Using (3.5), one can
easily show that the function

r(x, η) := e−ix·η Ruη(x) =

∫
R(x, y) e−i(x−y)·η dy

lies in S−∞. Thus we have e−ix·η Auη = e−ix·η Ãuη modulo S−∞. It remains to notice that

Ãuη(x) = (2π)−n
∫
ei(x−y)·ξσ(x, ξ) eiy·η dy dξ

= (2π)−n
∫
eix·ξσ(x, ξ) eiy·(η−ξ) dy dξ

= 〈δ(η − ξ), eix·ξσ(x, ξ)〉 = eix·ησ(x, η) ,

so that σ(x, η) = e−ix·ηAuη(x) modulo S−∞.

3.4. Other classes of PDOs. Lemma 3.15 plays the key role in the theory of PDOs. One
can consider much more general classes of amplitudes and the corresponding classes of PDOs
(see, for example [H]), and usually all classical results remain valid as far as an analogue of
Lemma 3.15 holds. For example, given a ‘weight’ functions g(x, y, ξ) and two real numbers
ρ, δ ∈ [0, 1], we can consider the classes Sm,gρ,δ which consist of amplitudes satisfying the
estimates

(3.14) |∂αξ ∂βx∂γya(x, y, ξ)| ≤ constα,β,γ (g(x, y, ξ))m−ρ|α|+δ|β|+δ|γ| .

These classes are more convenient than Sm if we want to control not only the smoothness
properties of functions but also their behaviour at infinity.

One often has to deal with differential operators depending on an additional parameter h
(for instance, the semi-classical parameter). In this case one can introduce a weight function
g depending on this parameter and use the classes of amplitudes defined by (3.14) in order
to study asymptotics with respect to h (see, for example, [DS]).
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4. Solution of partial differential equations

Example 4.1. Consider the differential equation t2u′(t) = 0 on the real line. Obviously,
this equation does not have any classical solution apart from u ≡ const. However, if we
rewrite this equation as

d

dt

(
t2u(t)

)
− 2t u(t) = 0

then we see that any function of the form

(4.1) u(t) =

{
c1 , t ≥ 0 ,

c2 , t < 0 ,

where c1, c2 are constants, is also a solution.

This example shows that if we are looking only for classical solutions then the class of
solutions may depend on the way we write down the equation. This problem does not arise
if we understand solutions in the sense of distribution. For instance, the derivative of the
function (4.1) is the δ-function multiplied by some constant, so t u(t) is equal to 0 as a
distribution.

4.1. Differential equations with constant coefficients. Let a(ξ) :=
∑
|α|≤m cα ξ

α be a

polynomial with constant coefficients cα and A = a(Dx) =
∑
|α|≤m cαD

α
x be the differential

operator with symbol a(ξ) (see Example 3.19). Then, by Lemma 2.17,

Au(x) = F−1
ξ→xa(ξ)Fy→ξu(y) , ∀u ∈ S ′(Rn) .

Therefore Au = f if and only if

(4.2) a(ξ) û(ξ) = f̂(ξ) .

Thus, in order to solve partial differential equation Au = f with f ∈ S ′(Rn) it is sufficient
to solve the algebraic equation (4.2).

Example 4.2. If (a(ξ))−1 is a polynomially bounded continuous function then the equation
Au = f has the only solution u(x) = F−1

ξ→x(a(ξ))−1f(ξ) ∈ S ′(Rn) for every f ∈ S(Rn).

Example 4.3. If (a(ξ))−1 is an infinitely differentiable function polynomially bounded with
all its derivatives then the equation Au = f has the only solution u(x) = F−1

ξ→x(a(ξ))−1f(ξ) ∈
S ′(Rn) for every f ∈ S ′(Rn).

Example 4.4. If u ∈ S ′(Rn) and Au = 0 then necessarily

supp û ⊂ Σa := {ξ : a(ξ) = 0} .

Every distribution u ∈ S ′(Rn) whose Fourier transform is given by

(4.3) 〈û(ξ), f(ξ)〉 =

∫
Σa

v(ξ) f(ξ) dΣa(ξ) , ∀f ∈ S(Rn) ,
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where dΣa is an arbitrary measure and v is an arbitrary integrable function on Σa, solves
the equation Au = 0. If (4.3) holds true and the function v is ‘sufficiently nice’ then

u(x) = (2π)−n/2
∫

Σa

eixξv(ξ) dΣa(ξ)

is a function on Rn.

A comprehensive exposition of the theory of partial differential equations with constant
coefficients can be found in [H, Volume II].

4.2. Non-stationary equations with constant coefficients. If the operator includes the
time variable t and we want to solve the Cauchy problem then it is usually more convenient
to consider the Fourier transform only with respect to the spatial variables. If, for example,

A(∂t, Dx) = ∂mt +
∑
|α|=1

cm−1,αD
α
x∂

m−1
t +

∑
|α|=2

cm−2,αD
α
x∂

m−2
t + · · ·+

∑
|α|=m

c0,αD
α
x

where ck,α are some constants, then u(x, t) solves the Cauchy problem

A(∂t, Dx)u(t, x) = 0 , ∂kt u(t, x)
∣∣
t=0

= vk(x) , k = 0, 1, . . . ,m,

if and only if û(t, ξ) = Fx→ξu(t, x) is a solution of the ordinary differential equation

A(∂t, ξ)û(t, ξ) = 0 , ∂kt û(t, ξ)
∣∣
t=0

= v̂k(ξ) , k = 0, 1, . . . ,m,

where A(∂t, ξ) = ∂mt +
∑
|α|=1 cm−1,α ξ

α∂m−1
t +· · ·+

∑
|α|=m c0,α ξ

α . In this case we understand

u(t, x) as a family of distributions in x depending on the parameter t, and ∂kt u is the family
of distributions such that

〈∂kt u(t, x), f(x)〉 = ∂kt 〈u(t, x), f(x)〉 , ∀f ∈ S(Rn) .

Example 4.5. (Heat equation.) Let a(x) be a semibounded from below polynomial on
Rn and A = a(Dx). Then, for every v ∈ S ′(Rn) the distribution

u(t, x) = F−1
ξ→xe

−ta(ξ)v̂(ξ)

is the only solution of the Cauchy problem

∂tu+ Au = 0 , u(0, x) = v(x) .

If v ∈ S(Rn) then, obviously, u(t, ·) ∈ S(Rn) for every t, and the Schwartz kernel of the
operator exp(−tA) : v(x) 7→ u(t, x) (the so-called heat kernel) is given by the integral

(2π)−n
∫
ei(x−y)·ξe−ta(ξ) dξ

which converges in the sense of distributions.

Example 4.6. (Wave equation.) If v ∈ S ′(Rn) then the distribution

u(t, x) = F−1
ξ→x cos(t|ξ|) v̂(ξ)

is the only solution of the Cauchy problem

∂2
t u−∆u = 0 , u(0, x) = v(x) , ∂tu(0, x) = 0 ,
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where ∆ =
∑

k ∂
2
xk

is the Laplacian. As in the previous example, this implies that u(t, ·) ∈
S(Rn) for every t whenever v ∈ S(Rn).

4.3. Elliptic (pseudo)differential equations.

Lemma 4.7. (Composition of PDOs.) If A ∈ Ψm1 and B ∈ Ψm2 then AB ∈ Ψm1+m2

and the symbol σAB of the PDO AB is given by the asymptotic series

(4.4) σAB(x, ξ) ∼
∑
α

1

α!
Dα
ξ σA(x, ξ) ∂αxσB(x, ξ)

where σA and σB are the symbols of A and B respectively.

Proof. If A and B are given by the oscillatory integrals (3.3) with σA(x, ξ) and σ′B(y, ξ)
respectively then

Av(x) = (2π)−n
∫
ei(x−y)·ξ σA(x, ξ) v(y) dy dξ = (2π)−n/2

∫
eix·ξ σA(x, ξ) v̂(ξ) dξ

and

Bu(x) = (2π)−n
∫
ei(x−y)·ξ σ′B(y, ξ)u(y) dy dξ = F−1

ξ→x

(
(2π)−n/2

∫
e−iy·ξ σ′B(y, ξ)u(y) dy

)
.

Therefore

ABu(x) = (2π)−n
∫
eix·ξ σA(x, ξ)

(∫
e−iy·ξ σ′B(y, ξ)u(y) dy

)
dξ ,

that is, the Schwartz kernel of AB coincides with the oscillatory integral with the amplitude
σA(x, ξ)σ′B(y, ξ). By (3.4), we have

σAB(x, ξ) ∼
∑
α

1

α!
Dα
ξ (σA(x, ξ) ∂αxσ

′
B(x, ξ)) .

Now (4.4) is obtained by substituting the first expansion (3.9) and rearranging terms in the
asymptotic series. �

Definition 4.8. A PDO A ∈ Ψm is said to be classical if its symbol admits an asymptotic
expansion into the series (3.2) with am−k positively homogeneous in ξ of degree m− k. The
spaces of classical PDOs A ∈ Ψm and their symbols are denoted by Ψm

cl and Smcl , respectively.

Obviously, every differential operator is a classical PDO.

Definition 4.9. If A ∈ Ψm
cl then the leading homogeneous term am in the expansion of σA

is said to be the principal symbol of the operator A. The operator A is said to be elliptic if
am(x, ξ) 6= 0 whenever ξ 6= 0.

Definition 4.10. The operator B is said to be a left parametrix of A if BA− I ∈ Ψ−∞.

If B is a left parametrix of A and Au = f then (I + R)u = Bf where R ∈ Ψ−∞. The
‘remainder’ operator R often turns out to be compact in a suitable function space H. In this
case the existence of a parametrix implies that the subspace {u ∈ H : Au = 0} is of finite
dimension, and that the equation Au = f has a solution for all f from a subspace of finite
codimension.
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Theorem 4.11. Every elliptic classical PDO A ∈ Ψm
cl has a left parametrix B ∈ Ψ−mcl .

Proof. We shall construct the symbol of B as an asymptotic series of positively homoge-
neous in ξ functions b−m−k(x, ξ) of degree −m − k. If we substitute the formal series
σA =

∑m
k=0 am−k and σB =

∑∞
k=0 b−m−k into (4.4), collect together homogeneous terms

of the same degree, equate the first term to 1 and others to zero, then we obtain a recurrent
system of differential equations of the form

am b−m = 1 ,

am b−m−1 = L1(am, am−1, b−m) ,

. . . = . . .

am b−m−k = Lk(am, am−1 . . . , am−k, b−m, b−m−1, . . . , b−m−k+1) ,

. . . = . . .

where Lk(am, am−1 . . . , am−k, b−m, b−m−1, . . . , b−m−k+1) are some polynomials of the functions
am, am−1 . . . , am−k, b−m, b−m−1, . . . , b−m−k+1 and their derivatives. If b−m = a−1

m ,

b−m−k = a−1
m Lk(am, . . . , am−k, b−m, . . . , b−m−k+1) , k = 1, 2, . . . ,

and σB ∼
∑∞

k=0 b−m−k then σAB = 1 modulo S−∞, that is, AB − I ∈ Ψ−∞. �

Exercise 5. Prove that

(1) A ∈ Ψm
cl if and only if AT ∈ Ψm

cl , where AT is the transposed operator
(see Definition 3.3);

(2) A is elliptic if and only if AT is elliptic;
(3) if A ∈ Ψm

cl is elliptic then there exists an operator B ∈ Ψ−mcl , called a right parametrix
of A, such that AB − I ∈ Ψ−∞.

Hint: deduce (3) from (1), (2) and Theorem 4.11.

Remark 4.12. Let A ∈ Ψm
cl be a classical PDO andO ⊂ Rn

x×(Rn
ξ \{0}) be a conic with respect

to ξ subset (the word conic means that (x, λ ξ) ∈ O for all λ > 0 whenever (x, ξ) ∈ O). If
the principal symbol of A is separated from 0 on the set O ∩ {|ξ| = 1} then, exactly in the
same way, one can construct a PDO B ∈ Ψ−mcl such that σBA = 1 on O. Such an operator
is called a microlocal parametrix of A in O.

4.4. General partial differential equations with variable coefficients. An arbitrary
partial differential operator does not necessarily have a pseudodifferential parametrix. How-
ever, quite often one can construct a parametrix in the form of a general oscillatory integral
(Remark 3.14) or a PDO which belongs to a more general class (Subsection 3.4). The pro-
cedure remains almost the same as in the proof Theorem 4.11: we formally replace the
amplitude with an asymptotic series, substitute the integral into the equation, get rid of the
variable y in the new amplitude (like we did in the proof of Lemma 3.15), collect together
the terms of the same order, equate them to zero and try to solve these equations. Note that
in the general case the equations may also involve the unknown phase function, and that the
terms in the asymptotic expansions may not be homogeneous in ξ (in which case the words
‘terms of the same order’ simply mean that these terms satisfy estimates of the form (3.14)
with the same m, ρ and δ).
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5. Singularities of functions and distributions

5.1. What is microlocal analysis. Suppose that we want to describe singularities of a
function f(x) on Rn. In classical analysis one only deals with the variables x, and the typical
statements look like “the function f has a singularity at the point x0” or “f is smooth in a
neighbourhood of x0”. However, the function may well be smooth in one direction and non-
smooth in another direction, so such statements contain a limited information. More detailed
description of singularities should involve additional variables ξ specifying the directions in
which the function is not smooth. In other words, the set of singularities should be a subset
of Rn

x×Rn
ξ , and then we say that “f is not smooth at the point (x, ξ) ∈ Rn

x×Rn
ξ ” if f is not

smooth at the point x in the direction ξ. This is the main idea of microlocal analysis; the
word ‘microlocal’ simply means that we conduct analysis of functions in the space Rn

x×Rn
ξ of

dimension 2n, even though the functions themselves are defined on the n-dimensional space.

5.2. Singular supports and wave front sets.

Definition 5.1. If u ∈ S ′(Rn) then the singular support of u is defined by

sing suppu := Rn \ Ωu,

where Ωu is the union of all open sets Ω such that u|Ω ∈ C∞(Ω). In other words, Ωu is the
maximal open subset of Rn such that u|Ωu

∈ C∞(Ωu).

Definition 5.2. If u ∈ S ′(Rn) then the wave front set of u is defined by

WFu := (Rn
x × Rn

ξ ) \ Ou
where Ou is the maximal open subset of Rn

x × Rn
ξ with following property: for every point

(x0, ξ0) ∈ Ou there exist a cut-off function χ ∈ C∞0 (Rn) equal to 1 in a neighbourhood of x0

and a conic neighbourhood Ωξ0 of ξ0 such that the Fourier transform Fx→ξ (χ(x)u(x)) decays
faster than any negative power of |ξ| in Ωξ0 as |ξ| → ∞.

If (x0, ξ0) ∈ Ou then (x0, λξ0) ∈ Ou for all λ > 0 because ξ0 and λξ0 have the same conic
neighbourhoods. It follows that the sets Ou and WFu are invariant under the transforma-
tions (x, ξ) 7→ (x, λξ) for all λ > 0.

Definition 5.2 can be rewritten as follows.

Definition 5.3. Denote by Qa,χ the PDO with dual symbol a(ξ)χ(y). The point (x0, ξ0)
does not belong to WFu if there exist a C∞0 -function χ equal to 1 in a neighbourhood of x0

and a function a ∈ Smcl equal to 1 in a conic neighbourhood of ξ0 such that Qa,χu ∈ S(Rn).

Indeed, if Fx→ξ (χu) decays faster than any negative power of |ξ| in Ωξ0 then

Qa,χu(x) = F−1
ξ→x (a(ξ)Fx→ξ (χu)) ∈ S(Rn)

for any a ∈ Smcl with supp a ∈ Ωξ0 . Conversely, if Qa,χu ∈ S(Rn) then the function

Fx→ξ (Qa,χu) = a(ξ)Fx→ξ (χu)

is rapidly decreasing, which implies that Fx→ξ (χu) decays faster than any negative power
of |ξ| in the conic neighbourhood Ωξ0 where a = 1.

Note that
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(S) a compactly supported distribution u coincides with an infinitely smooth function if
and only if its Fourier transform û(ξ) decays faster than any negative power of |ξ| as
|ξ| → ∞ everywhere.

Indeed, if u ∈ C∞(Rn) ∩ E ′(Rn) then u ∈ S(Rn) and û ∈ S(Rn); if û(ξ) satisfies the above
condition then

u(x) = (2π)−n/2
∫
eix·ξ û(ξ) dξ ∈ C∞(Rn)

since we can differentiate under the integral sign infinitely many times. From (S) it follows
that the projection of WFu onto Rn

x coincides with sing suppu.

5.3. Operators R ∈ Ψ−∞ in the space of distributions.

Lemma 5.4. Let R ∈ Ψ−∞ and R(x, y) be the Schwartz kernel of R. Then

(5.1) Ru(x) = 〈u(y),R(x, y)〉 , ∀u ∈ S ′(Rn) .

Note that, in view of Lemma 3.17, we have R(x, ·) ∈ S(Rn) for each fixed x ∈ Rn.
Therefore the expression on the right hand side of (5.1) makes sense.

Proof. Recall that the Schwartz kernel of the transposed operator RT is R(y, x), so that
RTv(y) =

∫
R(x, y) v(x) dx for all v ∈ S(Rn).

Assume first that u ∈ E ′(Rn). Then, applying Theorem 2.15, we see that for all v ∈ S(Rn)

〈Ru, v〉 = 〈u,RTv〉 =
∑
|α|≤m

(−1)|α|〈uα(y), ∂αy (RTv)(y)〉

=
∑
|α|≤m

(−1)|α|
∫
uα(y)

(
∂αy

∫
R(x, y) v(x) dx

)
dy

=
∑
|α|≤m

(−1)|α|
(∫

uα(y) ∂αyR(x, y) dy

)
v(x) dx =

∫
〈u(y),R(x, y)〉v(x) dx ,

where uα are the continuous compactly supported functions given by Theorem 2.15. Thus
(5.1) holds true whenever u ∈ E ′(Rn).

If u 6∈ E ′(Rn), let us choose a function χ ∈ C∞0 (Rn) which is equal to 1 on the ball
{|x| ≤ 1} and consider the family of distributions ut(x) := χ(tx)u(x). Since χ(tx) − 1 = 0
for |x| < t−1, we have

sup
x∈Rn

|xβ∂αx
(
χ(tx)v(x)− v(x)

)
| = sup

x : |x|>t−1

|xβ∂αx
(
χ(tx)v(x)− v(x)

)
| →
t→0

0

for all v ∈ S(Rn) and all multi-indices α, β. It follows that χ(tx)v(x)
S→ v(x) and, conse-

quently, 〈ut, v〉 → 〈u, v〉 for all f ∈ S(Rn) as t → 0. Now the lemma is proved by applying
(5.1) to the distribution ut ∈ E ′(Rn) for each fixed t and letting t → 0 in the identity
〈ut, RTv〉 =

∫
〈ut(y),R(x, y)〉v(x) dx . �

Corollary 5.5. If R ∈ Ψ−∞ then R : S ′(Rn) 7→ C∞(Rn) and R : E ′(Rn) 7→ S(Rn).
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Proof. By Taylor’s formula

ε−1 (R(x1, . . . , xk + ε, . . . , xn, y)−R(x, y))− ∂xkR(x, y)

= ε

∫ 1

0

∂2
xk
R(x1, . . . , xk + tε, . . . , xn, y) (1− t) dt .

If the Schwartz kernel R(x, y) satisfies (3.5) then the above identity implies that

ε−1 (R(x1, . . . , xk + ε, . . . xn, y)−R(x, y))
S→ ∂xkR(x, y) , ε→ 0 ,

for every fixed x = (x1, . . . , xn) ∈ Rn and all k = 1, 2, . . . , n. Therefore, for every u ∈ S ′(Rn),
the function 〈u(y),R(x, y)〉 of variable x is differentiable and

∂xk〈u(y),R(x, y)〉 = 〈u(y), ∂xkR(x, y)〉
for all k = 1, 2, . . . , n. Since the derivatives ofR also satisfy (3.5), the function 〈u(y),R(x, y)〉
is infinitely differentiable and ∂αx 〈u(y),R(x, y)〉 = 〈u(y), ∂αxR(x, y)〉 for all multi-indices α.
If, in addition, u ∈ E ′(Rn) then, applying Theorem 2.15, one can easily show that this
function and all its derivatives vanish faster than any power of |x| as |x| → ∞. �

5.4. Wave front sets and PDOs. The following lemma shows that Qa,χ in Definition 5.3
can be replaced by a much more general PDO.

Lemma 5.6. The point (x0, ξ0) does not belong to WFu if and only if there exists a classical
PDO Q such that Qu ∈ C∞(Rn) and the principal symbol of Q does not vanish at (x0, ξ0).

Proof. If (x0, ξ0) 6∈WFu then we can take Q = Qa,χ, where Qa,χ is the classical PDO from
Definition 5.3.

Conversely, assume that Qu ∈ C∞(Rn) for some classical PDO Q ∈ Ψm
cl whose principal

symbol does not vanish at (x0, ξ0). Let us fix arbitrary functions χ1, χ2 ∈ C∞0 (Rn) such
that χ1 = 1 in a neighbourhood of x0 and χ2 = 1 in a neighbourhood of suppχ1. Denote
Q0 = χ1Qχ2. Lemma 4.7 implies that χ1Q−Q0 ∈ Ψ−∞. Since Qu ∈ C∞(Rn), from Corollary
5.5 it follows that Q0u ∈ C∞0 (Rn).

As χ1(x0) = χ2(x0) = 1, the principal symbols of Q and Q0 coincide at (x0, ξ0). Therefore,
there exist a neighbourhood Ωx0 and a conic neighbourhood Ωξ0 such that the principal
symbol of Q0 is separated from zero on O ∩ {|ξ| = 1}, where O := Ωx0 × Ωξ0 . Let P be a
microlocal parametrix of Q0 in O (see Remark 4.12), and let Ra,χ = Qa,χPQ0 −Qa,χ where
χ ∈ C∞0 (Rn) and a ∈ Smcl are such that suppχ ⊂ Ωx0 and supp a ⊂ Oξ0 . Then, by Lemma
4.7, Ra,χ ∈ Ψ−∞. Also, Ra,χ = Ra,χχ̃ for any function χ̃ ∈ C∞0 (Rn) equal to 1 on suppχ
and suppχ2. In view of Corollary 5.5, this implies that Ra,χ : S ′(Rn) 7→ S(Rn). Since
Q0u ∈ S(Rn) and, consequently Qa,χPQ0u ∈ S(Rn), we have Qa,χu ∈ S(Rn). By Definition
5.3, it follows that (x0, ξ0) 6∈WFu. �

Corollary 5.7. If P is a classical PDO whose symbol vanishes in a conic (with respect to
ξ) neighbourhood O of (x0, ξ0) then (x0, ξ0) 6∈WF(Pu).

Proof. By Lemma 4.7, we have QP ∈ Ψ−∞ for every classical PDO Q whose symbol vanishes
outside a smaller conic set O′ ⊂ O. In view of Corollary 5.5, this implies that Q(Pu) ∈
C∞(Rn) for every such a PDO Q. �
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The following is a version of the famous elliptic regularity theorem.

Corollary 5.8. Let A be a classical PDO whose principal symbol does not vanish at (x0, ξ0).
Then (x0, ξ0) ∈WFu if and only if (x0, ξ0) ∈WF(Au).

Proof. If (x0, ξ0) 6∈ WF(Au) then there exists a classical PDO Q whose principal symbol
does not vanish at (x0, ξ0), such that QAu ∈ C∞(Rn). Since the principal symbol of QA
does not vanish at (x0, ξ0), it follows that (x0, ξ0) 6∈WFu.

Let us now assume that (x0, ξ0) ∈WF(Au) and let B be a microlocal parametrix of A in
a neighbourhood of (x0, ξ0). Then, applying Corollary 5.7 with P = BA − I, we see that
(x0, ξ0) 6∈WF(BAu−u). At the same time, by the above, (x0, ξ0) ∈WF(BAu). This implies
that (x0, ξ0) ∈WFu. �

Remark. PDOs play the same role in microlocal analysis as smooth cut-off functions in
classical analysis. One can construct, for example, a microlocal partition of unity using the
classical PDOs and represent an arbitrary function as the sum of functions with small wave
front sets which are often easier to deal with (this procedure is called microlocalization).

5.5. Propagation of singularities. If A is an elliptic PDO then, by Corollary 5.8, we
have WF(Au) = WFu and, consequently, sing supp (Au) = sing suppu. In other words, a
solution u of an elliptic (pseudo)differential equation Au = f has the same singularities as
the function f . This is usually not true if the operator A is not elliptic: the solutions u of a
non-elliptic equation Au = f may have additional singularities.

Corollary 5.8 immediately implies that WFu ⊂ WF(Au) ∪ CharA, where CharA is the
set of zeros of the principal symbol of A. A more interesting question is what happens with
the singularities inside the set CharA. The following theorem answers this question (see, for
example, [Sh, Appendix 1]).

Theorem 5.9. Let B be a classical PDO with a real principal symbol bm(x, ξ) and let
(x(t), ξ(t)) be a solution of the Hamiltonian system

(5.2) ẋ(t) = ∂ξbm(x(t), ξ(t)) , ξ̇(t) = −∂xbm(x(t), ξ(t)).

Assume that bm(x(t), ξ(t)) = 0 and (x(t), ξ(t)) 6∈ WF(Bu) for all t ∈ (t1, t2). Then either
(x(t), ξ(t)) 6∈WFu or (x(t), ξ(t)) ∈WFu for all t ∈ (t1, t2).

Remark 5.10. One can easily see that bm(x(t), ξ(t)) is constant, so bm(x(t), ξ(t)) = 0 for all
t ∈ (t1, t2) provided that bm(x(t0), ξ(t0)) = 0 for some fixed t0 ∈ (t1, t2).

The Hamiltonian trajectories (x(t), ξ(t)) satisfying bm(x(t), ξ(t)) = 0 are said to be the
bicharacteristics of the operator B. By Theorem 5.9, if a solution u of the equation Bu = 0
has at least one singularity on a bicharacteristic (x(t), ξ(t)) then the whole trajectory lies in
WFu. This effect is called propagation of singularities.
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Solutions to exercises
Solution 1. If ε < 1 then∫

|t|>ε
t−1 f(t) dt =

∫
|t|≥1

t−1 f(t) dt+

∫
1>|t|>ε

t−1 f(t) dt .

The first integral is estimated by∫
|t|≥1

t−2 |t f(t)| dt ≤ 2 sup
s∈R
|s f(s)|

∫ ∞
1

t−2 dt = 2 sup
s∈R
|s f(s)| .

Since |f(t)− f(−t)| ≤ 2t sups∈[−t,t] |f ′(s)| , the second integral is estimated as follows

|
∫

1>|t|>ε
t−1 f(t) dt | = |

∫ 1

ε

t−1 (f(t)− f(−t)) dt | ≤ 2 sup
s∈R
|f ′(s)| .

Thus |
∫
|t|>ε t

−1 f(t) dt | ≤ 2 sups∈R |s f(s)| + 2 sups∈R |f ′(s)| for all ε ∈ (0, 1] and f ∈ S(R).

This implies that u0 : f 7→ limε→0

∫
|t|>ε t

−1 f(t) dt is a continuous functional on S(R), that

is, u0 ∈ S ′(R).

Solution 2. Clearly, the distribution u0 from Exercise 2 satisfies this condition. If u is
another distribution with the same property then 〈u − u0, f〉 depends only on the value of
f at the origin. The map f(0) → 〈u − u0, f〉 is a linear functional on C, and therefore
〈u − u0, f〉 = cf(0) with some constant c. This implies that u = u0 + cδ, where δ is the
δ-function at the origin. Conversely, every distribution u = u0 +cδ has the required property.

Solution 3. Let ck = u(ak + 0)− u(ak − 0) be the jumps of u at the points ak, and let

v(x) =

{
u′(x), x ∈ (ak, ak+1) , k = 1, . . . ,m− 1,

0, x < a1 or x > am.

Integrating by parts we obtain −〈u, f ′〉 = −
∫
u f ′ dx =

∫
v f dx+

∑m
k=1 ck f(ak) . Therefore

u′ = v +
∑m

k=1 ck δak where δak are the δ-functions at the points ak.

Solution 4 (proof of Lemma 3.17). Let R(x, y) be the Schwartz kernel of R. If R ∈ Ψ−∞

then R(x, y) is infinitely smooth (since we can differentiate under the integral sign), and the
required estimates follow from (3.7).

Conversely, if R is smooth and satisfies (3.5) then it is represented by the oscillatory
integral with the amplitude a(x, ξ) = (2π)n/2Fz→ξR̃(x, z), where R̃ is defined by the equality

R̃(x, x− y) = R(x, y).



26 MICROLOCAL ANALYSIS

Solution 5. Let A ∈ Ψm, and let σ be the symbol of A, so that

A(x, y) = (2π)−n
∫
ei(x−y)·ξσ(x, ξ) dξ

modulo a function R(x, y) defining an operator from Ψ−∞ (see Lemma 3.17). Lemma 3.5
implies that AT is a PDO whose dual symbol coincides with σ . Now (1) and (2) follow from
(3.9).

By (2), A is elliptic if and only if AT is elliptic. Applying Theorem 4.11, let us find a
PDO B1 ∈ Ψ−mcl such that B1A

T − I ∈ Ψ−∞. In view of Lemmas 3.5 and 3.17, we have
ABT

1 − I = (B1A
T − I)T ∈ Ψ−∞. It remains to notice that, by (1), BT

1 ∈ Ψ−mcl .


