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Abstract

The concept of orbifolds should unify differential geometry with equivariant homotopy theory, so that orb-
ifold cohomology should unify differential cohomology with proper equivariant cohomology theory. Despite
the prominent role that orbifolds have come to play in mathematics and mathematical physics, especially in
string theory, the formulation of a general theory of orbifolds reflecting this unification has remained an open
problem. Here we present a natural theory argued to achieve this. We give both a general abstract axiomati-
zation in higher topos theory, as well as concrete models for ordinary as well as for super-geometric and for
higher-geometric orbifolds. Our first main result is a fully faithful embedding of the 2-category of orbifolds
into a singular-cohesive ∞-topos whose intrinsic cohomology theory is proper globally equivariant differential
generalized cohomology, subsuming traditional orbifold cohomology, Chen-Ruan cohomology, and orbifold
K-theory. Our second main result is a general construction of orbifold étale cohomology which we show to
naturally unify (i) tangentially twisted cohomology of smooth but curved spaces with (ii) RO-graded proper
equivariant cohomology of flat but singular spaces. As a fundamental example we present J-twisted orbifold
Cohomotopy theories with coefficients in shapes of generalized Tate spheres. According to “Hypothesis H” this
includes the proper orbifold cohomology theory that controls non-perturbative string theory.
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1 Introduction

1.1 Motivation

The concept of orbifolds [Sa56][Sa57][Th80][Hae84] – manifolds with singularities modeled on fixed points of
finite group actions (review in [MM03][Ka08, §6][BG08, §4][IKZ10]) – has become commonplace in mathematics
(e.g. [BLP05][Rat06, §13][JY11]), and plays a central role in theoretical physics (see [AMR02]), notably so in
string theory ([DHVW85][DHVW86][BL99][SS19]). However, the definition of the homotopy theory, i.e. of the
∞-category ([Lu09a], see §2.1) of orbifolds, hence in particular of orbifold cohomology, is subtle, as witnessed by
the convoluted history of the concept; see [Le08, Intro.][IKZ10, §1]. In fact, the issue has remained open:

Orbifolds as étale stacks? A proposal popular among Lie theorists [MP97] (see [Mo02][Le08][Am12]) is to
regard an orbifold with local charts Gi yUi (347) as

• the étale groupoid; specifically: Lie groupoid (see [MM03][TX06]) or topological groupoid (see [CPRST14]);
• equivalently, the étale geometric stack; specifically: differentiable or topological stack ([Ca11][Ca19][Gi13])

obtained by gluing the corresponding homotopy quotient stacks Ui�Gi (17).
This proposal is directly modeled (explictly so in [Jo12, §8]) on the concept of Deligne-Mumford stacks in al-
gebraic geometry ([DM69], review in [Kr09]) and extends to a concept of general étale ∞-stacks [Ca20][Ca16].
It relies on the fact that étale stacks, in their role as homotopy-theoretic generalizations of sheaves, fully cap-
ture geometric aspects (via generalized sheaf cohomology [Br73], see [NSS12a]), while in their role as geometric
refinements of classifying spaces they support Borel equivariant cohomology (see [Tu11]). However, Borel coho-
mology is coarser than the proper equivariant cohomology that is generally relevant in theory and in applications:

Proper equivariant cohomology1, formulated in equivariant homotopy theory (review in [Blu17][May96]), is
obtained by refining the purely homotopy-theoretic nature of Borel cohomology by the geometric (“cohesive”, see
§1.2) nature of fixed loci (see Example 3.71) of topological group actions – hence by the characteristic nature of
orbifold geometry – as encoded in the category of orbits of the equivariance group (recalled in §B). The proper
equivariant version of ordinary cohomology is known as Bredon cohomology [Br67a][Br67b] (review in [Blu17,
§1.4][tD79, §7]); beyond that, there is a wealth of proper equivariant generalized cohomology theories (Def. B.6
below) such as equivariant K-theory [Se68][AS69] (which is proper equivariant by [AS04, §6 & A3.2][FHT07,
A.5][DL98]) and equivariant Cohomotopy theory [Se71][tD79, §8][SS19][BSS19].

However, if orbifolds are modeled just by étale stacks, then their proper equivariant cohomology remains, by
and large, invisible. This is true even for Chen-Ruan orbifold cohomology:

Traditional orbifold cohomology and its shortcomings. Given an orbifold X , we write (see §1.2) ⊂X for the
étale stack underlying it, and2 S ⊂X for its geometric realization or classifying space (often denoted BX ). In the
case that X is the global quotient orbifold of a G-space X , this is the homotopy type of the Borel construction; so
that we may generally call S ⊂X the Borel space of the orbifold. Now, traditional orbifold cohomology is [ALR07,
p. 38] just the ordinary cohomology (e.g. singular cohomology) of this Borel space, hence is Borel cohomology:

traditional
orbifold cohomology

H•trad
(
X , A

)
:=

Borel cohomology

H•sing
singular

cohomology

(
S ⊂X

Borel
space

, A
)
. (1)

This can be considered with any kind of coefficients A, notably in the generality of local coefficient systems
[MP99], but it always remains an invariant of just the Borel space. Moreover, for a coefficient ring that inverts
the order of the isotropy groups of X , hence in particular for rational, real and complex number coefficients
A ∈ {Q,R,C}, the purely torsion cohomology of the orbifold’s finite isotropy groups becomes invisible, and
traditional orbifold cohomology reduces further (e.g. [ALR07, Prop. 2.12]) to an invariant of just the shape S <X
of the singular quotient space <X (the “coarse moduli space”) underlying the orbifold (often denoted |X |):

1We follow [DHLPS19] with this terminology, see Remark 4.60 below.
2The “esh”-symbol “S” stands for shape [Sc13, 3.4.5][Sh15, 9.7], following [Bo75], which for well-behaved topological spaces is

another term for their homotopy type [Lu09a, 7.1.6][Wa17, 4.6]; see Example 3.18.
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rational
orbifold cohomology

H•trad
(
X ,Q

)
'

ordinary cohomology

H•sing
singular

cohomology

(
S <X
naive/coarse

quotient
space

,Q
)
. (2)

It is in this form that orbifold cohomology was originally introduced in [Sa56, Thm. 1] (following [Ba54], reviewed
in [ALR07, 2.1]).

Of course it did not go unnoticed that this coarse notion of orbifold cohomology is insensitive to the actual
nature of orbifolds. In reaction to this (and motivated by algebraic constructions [DHVW85][DHVW86] on 2d
conformal field theories interpreted as describing strings propagating on orbifold spacetimes), Chen and Ruan
famously introduced a new orbifold cohomology theory in [CR04]. But in fact (see [Cl14, p. 4,7] for review)
Chen-Ruan cohomology of an orbifold is just Satake’s coarse cohomology (2) (typically considered with complex
coefficients), but applied to the corresponding “inertia orbifold” Maps

(
SS1,X

)
:

Chen-Ruan
orbifold cohomology

H•CR
(
X
)
'

traditional orbifold cohomology

H•trad
(
Maps(SS1,X )

inertia orbifold
, C
)
. (3)

Still, it turns out that, for global G-quotient orbifolds X = ≺(X�G), Chen-Ruan cohomology is equivalent to a
proper equivariant cohomology theory, namely to Bredon cohomology with coefficient system given specifically
by:

ACR : G/H 7−! ClassFunctions(H,C) . (4)

This was observed in [Mo02, p. 18], using [Ho90, Thm. 5.5] with [Ho88, Prop. 6.5 b)]:
Chen-Ruan

orbifold cohomology

H•CR
(

≺(X�G)
global quotient

orbifold

, C
)
'

Bredon cohomology

H•G
(
X , ACR

specific system
of coefficients (4)

)
. (5)

Thus the success of Chen-Ruan cohomology (surveyed in [ALR07, §4,5]) highlights the relevance of proper equiv-
ariance in orbifold cohomology. At the same time, this means that to detect the full proper equivariant homotopy
type of orbifolds, one needs an orbifold cohomology theory that induces Bredon coefficient systems more general
than (4); and, in fact, one that subsumes also generalized equivariant cohomology theories such as equivariant
K-theory. In [AR01] the authors define orbifold K-theory to be the equivariant K-theory of any global quotient
presentation (see also [ARZ06][BU09][HW11]):

traditional
orbifold K-theory

K•
(

≺(X�G)
global quotient

orbifold

)
:=

equivariant
K-theory

K•G(X) . (6)

This works for the case of K-theory, because it has been proven explicitly [PS10, Prop. 4.1] that the right hand
side of (6) is independent of the choice of global quotient presentation. However, in general, this approach of
circumventing an intrinsic definition of orbifold cohomology by just defining it to be equivariant cohomology of
global quotient presentations is, besides being somewhat unsatisfactory, in need of justification:

Orbifolds in global equivariant homotopy theory? That orbifold cohomology should also capture proper equiv-
ariant cohomology was suggested explicitly in [PS10]. However, the fundamental issue remained that a quotient
presentation X ' ≺(X�G) of an orbifold is not intrinsic to the orbifold, similarly to a choice of coordinate at-
las, while in equivariant cohomology theory the equivariance group G is traditionally taken to be fixed. But this
suggests [Schw17, Intro.][Schw18, p. ix-x] (details in [Ju20]) that the right context for orbifold cohomology is
“global” equivariant homotopy theory [Schw18] (following [HG07] and originally motivated from patterns seen in
genuine equivariant stable homotopy theory [Se71][LMS86]) where the equivariance group G is allowed to vary in
a prescribed class of groups. On the other hand, plain global homotopy theory retains no geometric information!

The open problem is thus to set up a mathematical theory of proper orbifold cohomology which unifies:
(i) the higher geometric (differential, étale) aspects of orbifolds captured by geometric ∞-stack theory; and

(ii) the singular (equivariant) aspects of orbifolds captured by proper and global equivariant homotopy theory.
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To achieve this, we look to higher topos theory [TV05][Lu09a][Re10] (more pointers in §2.1 below) as an
ambient foundational homotopy theory of higher geometric spaces [Sc13][Sc19]:

∞-Toposes as collections of generalized higher geometric spaces. Viewed from the outside (i.e., “externally”),
an ∞-topos is a collection of geometric spaces of a given flavor, which may be:
(a) generalized geometric, as well as (b) higher geometric.

(a) Here “generalized geometry” refers to what Grothedieck
called functorial geometry [Gr65] (review in [DG80]), which
he urged in [Gr73] should supersede any point-set (e.g. lo-
cally ringed) definition of geometric spaces (further ampli-
fied by Lawvere, e.g. [La86][La91]). In hindsight, the ba-
sic idea here is just that of how physicists describe emergent
spacetimes X in terms of what (classical) p-brane sigma-
models on worldvolumes Σ detect when probing X (see
[FSS13a][FSS13b][JSSW19]):

Charts =

CartesianSpaces (Def. 2.5)
JetsOfCartesianSpaces (Def. 3.22)
SuperCartesianSpaces (Def. 3.41)
Singularities (Def. 3.46)
SingularCharts (Lem. 3.60)
. . .

(7)

Given any category of local model spaces (often: “affine spaces”, here: “charts”; see Def. 3.9 below), such as
those shown in (7), one may encode a would-be generalized (“target”-)space X by assigning to each Σ ∈ Charts
the collection

probe space

Σ
� //

collection of probes of generalized space X by Σ

X (Σ) :=
{

“ Σ!X ”
}

(8)

of geometric (e.g. smooth, super-geometric, etc.) maps into X ; where the quotation marks indicate that, at this
point of bootstrapping X into existence, the category in which these maps are actual morphisms is yet to be
specified. To that end, one observes that a minimal set of consistency conditions on such an abstract assignment
(8) to be anything like collections of maps into a space X are:

(1) Functoriality of probes.
For every morphism φ of Charts there is an opera-
tion of “pre-composition of probe maps by φ”:

map of
probe spaces

Σ1

φ

��

pre-composition operation
on collections of probes

X (Σ1)

Σ2 X (Σ2)

X (φ) = “ (−)◦φ ”

OO

such that

X (φ2)◦X (φ1)
'

X (φ2 ◦φ1)

(9)

(2) Gluing of probes.
If {Ui // Σ }i∈I is a cover of Σ ∈ Charts, then probes of
X by Σ should be equivalent to those tuples of probes by
the Ui which are coherently identified on intersections:

X (Σ) '


tuples of probes Ui −!X

identified on intersections Ui∩U j
compatibly on Ui∩U j ∩Uk

etc.

 (10)

In the jargon of topos theory (see [MLM92][Joh02]), condition (9) says that the collection X (−) of probes of X
is a pre-sheaf on Charts, while condition (10) says that this is in fact a sheaf. Hence the category of generalized
geometric spaces probeable by Charts is the category of sheaves (the Grothendieck topos) on Charts:

topos of generalized
geometric spaces GeneralizedSpaces := Sheaves

(
Charts

)
category of sheaves

on site of charts (11)

Now, every Σ ∈ Charts is itself canonically regarded as a generalized space y(Σ) ∈ GeneralizedSpaces, by taking
its probes to be those given by morphisms of Charts (this is the Yoneda embedding3, recalled as Prop. 2.37 below):

chart regarded as
generalized space y(Σ) : Σ

′ � //
{

Σ
′! Σ

}
=: Charts(Σ′,Σ) collection of its

Σ′-shaped probes (12)

Hence we have completed the bootstrap construction of generalized spaces X in (8) if we may remove the quota-
tion marks there, hence if for X ∈ GeneralizedSpaces there is a natural equivalence

collection of Σ-shaped
probes of X

X (Σ) '
{

y(Σ)!X
}

:= GeneralizedSpaces
(
y(Σ),X

)
collection of maps
from y(Σ) to X

. (13)

That this is indeed the case is the statement of the Yoneda lemma (recalled as Prop. 2.38 below), which thus implies
consistency and existence of generalized geometry.

3Shown here for sub-canonical Grothendieck topologies on Charts, which is the case in all examples of interest here.
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(b) On the other hand, “higher geometry” (see [FSS13a][FSS19a][JSSW19] for exposition and applications)
refers to the refinement of the above theory of generalized geometric spaces, where the collection of probes (8) of a
generalized space is not necessarily just a set, but may be a set equipped with equivalences (gauge transformations)
between its elements, and with higher order equivalences (higher gauge transformations) between these, etc. –
called an ∞-groupoid (e.g., modeled as a Kan simplicial set, see [GJ99, I.3]). For example, for X ∈ Sets and G
a discrete group acting on S, the corresponding action groupoid (Example 2.15 below) consists of the elements
x ∈ X , but equipped with an equivalence between x1 and x2 for every group element whose action takes x1 to x2:

homotopy
quotient X�G '


y

gi

��

g1·x

g3·g2

��

g2

  
x

g1

BB

g3·g2·g1 $$

g2·g1 // g2·g1·x

g3xx
g3·g2·g1·x

z

g1

��
^^

g−1
1

g1·z

g2

!!
dd

g−1
2

g2·g1·z

g3

%%
gg

g−1
3

g3·g2·g1·z · · ·


plain

quotient X/G '
{

[y] [x] [z] · · ·
}

τ0

(14)

This is a model for the homotopy quotient of X by G, which resolves the plain quotient X/G (the set of equivalence
classes) by remembering not only that but how two elements are equivalent. More precisely, the action groupoid
remembers the graph and syzygies of the G-action, encoded in its Kan simplicial nerve (Example 2.69 below):

X �G '

 X×G×G

(x,g1,g2)7!(g1·x,g2) //
oo

(x,g1,g2)7!(x,g2·g1) //
oo

(x,g1,g2)7!(x,g1) //

set of
morphisms

X×G
(x,g)7!g·x //

oo (x,e) [x

(x,g)7!x
//

set of
objects

X

 (15)

In particular, if an element y ∈ X is fixed by the group action, then
in the homotopy quotient it appears as the one-object groupoid also
known as K(G,1) or (since G is assumed to be discrete here) as BG.

K(G,1) ' BG '
{
∗

g
�� | g ∈ G

}
(16)

More generally, if X ∈ Charts in the list (7) is equipped with the action of a discrete group G, then we obtain
a higher generalized space X := X �G whose ∞-groupoid of Σ-shaped probes (8) is the action groupoid of the
induced action on the set of Σ-shaped probes of X (the following formula is for contractible charts, Lemma 3.12):

global quotient
orbifold X�G : Σ 7−!

(
X�G

)
(Σ) := X(Σ)�G = Charts(Σ,X)�G . groupoid of its

Σ-shaped probes (17)

Such a higher generalized space with collections of probes (8) being groupoids, and satisfying the appropriate
gluing condition (10), may be called a 2-sheaf or sheaf of groupoids [Br93] on Charts, in generalization of (11),
but is commonly known as a stack [DM69][Gi72][Ja01][Ho08], following champ [Gi66]. Generally, a higher
generalized space with ∞-groupoids of probes is thus an ∞-sheaf or ∞-stack on Charts, in generalization of (11):

∞-topos

H :=
context for higher generalized geometry

HigherGeneralizedSpaces :=
∞-category of ∞-stacks

Sheaves∞

(
Charts

∞-site of probe spaces

)
. (18)

The theory of ∞-stacks originates with [Br73], developed in [Ja87][Ja96] (survey in [Ja15]) and brought into the
more abstract form of ∞-topos theory in [TV05][Lu09a][Re10]. In fact, finitary constructions internal to ∞-toposes
behave so well that they may naturally be formulated [Sh19] in a kind of programming language now known as
homotopy type theory [UFP13]. While we will not dwell on this here, we do focus on elegant internal constructions.
For some of these, a homotopy type-theoretic formulation has already been explored in the literature:

Theory internal
to an ∞-topos

Internal formulation in
traditional mathematics

Partial formulation in
homotopy type theory

Galois theory §2.2 [NSS12a] [BvDR18]
modalities & cohesion §3.1 [SSS12][Sc13] [RSS17][Sh15]

étale ∞-stacks §4.2 [KS17] [We18][CRi20]
cohomology §5 [SSS12][NSS12a][Sc13] [Cav15][BH18]
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Differential topology in an ∞-topos. As a consequence of the above, every ∞-topos H behaves like a homotopy
theory of generalized geometric spaces. In order to narrow back in, among these generalized spaces, on those
with some minimum properties, we may, following [La91][La94][La07], axiomatize qualities of geometric objects
(such as being discrete, smooth, étale, reduced, bosonic, singular, etc.) via the systems of (co-)reflective sub-∞-
categories H#,H2, · · · ⊂H, that the objects with these properties (should) form inside H [SSS12][Sc13]:

ambient ∞-topos of
generalized geometric spaces H

i!
⊥

//

oo i∗ ? _

i∗

⊥ //
H2 or H

oo i∗

⊥
? _

i∗ //

oo
i!
⊥ ? _

H# sub-∞-category of
objects of pure#-nature (19)

This induces systems of adjoint (co-)projection operators # a2 : H!H, the associated idempotent (co-)monads:

# := i∗ ◦ i! , 2 := i∗ ◦ i∗ or # := i∗ ◦ i∗ , 2 := i! ◦ i∗ , (20)

to which we refer as modal operators or just modalities [Sc13][RSS17][Co20]. These are idempotent (Prop. 2.29)

##X ' #X , 22X ' 2X , (21)

which means that they act like projecting out certain qualitative aspects of generalized spaces, while them being
adjoint means that they project out an opposite pair of such qualities. Therefore, their (co-)unit transformations
η2 (48) and ε# (49) exhibit every X ∈H as carrying a quality intermediate to these two opposite extreme aspects
[LR03, p. 245]:

#X
pure

#-aspect

ε
#

X // X
generalized

geometric space

η2X // 2X
pure

2-aspect

.

For example, any adjoint modality [ a ] (see Def. 3.1 below) that contains the initial modality ∅ a ∗ (which
globally projects to the initial and the terminal object, respectively) acts like projecting out discrete and purely
continuous (co-discrete, chaotic) aspects of a space. Consequently, the existence of such a modality on H exhibits
each space X ∈ H as carrying quality intermediate to these extremes, hence, in this example, as equipped with a
kind of topology (see [Sh15, §3], following [La94]).

We observe here that extending this basic example to a larger system of adjoint modalities allows to abstractly
encode the presence of differential geometric structure (Def. 3.21 below) and of super-geometric structure (Def.
3.40 below) in ∞-toposes, and hence on higher generalized spaces.

Generalized cohomology in an ∞-topos. Following [SSS12][NSS12a][Sc13], we may regard the concept of
∞-toposes H as the ultimate notion of generalized cohomology theory, subsuming and combining all of:

Sheaf hypercohomology in non-discrete ∞-toposes [Br73]
Non-abelian cohomology in general ∞-toposes [SSS12][NSS12a, 3]
Twisted non-abelian cohomology in slice ∞-toposes Prp. 2.46, Rem. 2.94
Twisted abelian cohomology in tangent ∞-toposes Exl. 2.51, Rem. 2.96
Differential cohomology in cohesive ∞-toposes Def. 3.1, Rem. 3.20
Étale cohomology in elastic ∞-toposes Def. 3.21, Def. 5.11
Superspace cohomology in solid ∞-toposes Def. 3.40, Rem. 3.44
Proper equivariant cohomology in singular ∞-toposes Def. 3.48, Rem. 5.4, Thm. 5.9

In all these cases, for X ,A ∈H any two objects, with X regarded as a domain “space” and A as the “coefficients”,
the A-cohomology of X is embodied by the homomorphisms from X to A:

(i) a morphism X c // A is a cocycle;

(ii) a homotopy X

c1
$$

c2

:: A�� is a coboundary;

(iii) the homotopy groups of the cocycle space

H−n(X ,A) := πn H(X ,A) ' π0 H(X ,ΩnA) (22)

are the cohomology sets of X with coefficients in A. (Here Ωn(−) is the n-fold based loop space.)
This is the intrinsic cohomology theory of the ∞-topos H – we discuss various examples below in §5.
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1.2 Results
We survey the results presented below:

Axiomatic orbifold geometry in modal
homotopy theory.
Building on the above, therefore, to formu-
late proper orbifold cohomology we ask for
∞-toposes (18) equipped with a system of ad-
joint modalities (20) that capture both aspects
of proper orbifold cohomology:
(i) the geometric (differential, étale) aspect
and
(ii) the singular (proper equivariant) aspect.

Modalities for Singular Super-Geometry (§3)
τn

n-groupoidal

S
shaped

[
discrete

]
continuous

ℜ

reduced
ℑ

étale
L

locally constant

⇒
even

 
bosonic

Rh
rheonomic

<

singular

⊂

smooth

≺

orbi-singular

1. The geometric aspect of orbifold
theory. In order to formulate, internal to
suitable ∞-toposes, the (a) differential topol-
ogy, (b) differential geometry, and (c) super-
geometry of orbifolds (hence of manifolds,
super-manifolds, super-orbifolds, etc.) in
their smooth guise as étale ∞-stacks (18), we
consider a corresponding progression of ad-
joint modalities (20), which starts out in the
form of the “axiomatic cohesion” of [La07],
on to a second layer that contains a “de Rham
shape” operation ℑ as considered in [Si96]
[ST97], and then to a third layer which cap-
tures super-geometry in a new axiomatic way.

id a

∨

id
∨

⇒ a  a

∨

Rh
∨

for super-geometry in
solid ∞-toposes (Def. 3.40)

ℜ a ℑ a

∨

L
∨

for differential geometry in
elastic ∞-toposes (Def. 3.21)

S a [ a

∨

]

∨

for differential topology in
cohesive ∞-toposes (Def. 3.1)

∅ a ∗

2. The singular aspect of orbifold theory.
Envision the picture of an orbifold singularity

≺ and a mathematical magnifying glass held
over the singular point. Under this magnifi-
cation, one sees resolved the singular point as
a fuzzy fattened point, to be denoted ≺

G. Re-
moving the magnifying glass, what one sees
with the bare eye depends on how one squints:

(i) The physicists (see, e.g., [BL99, §1.3])
and the classical geometers (see, e.g.,
[IKZ10][Wat15]) say that they see an
actual singular point, such as the tip of a
cone <. This is the plain quotient

<

G := ∗/G = ∗, a point.
(ii) The higher geometers (see, e.g., [MP97]

[CPRST14]) say that they see the
smooth G-action around that point,
hence a smooth stacky geometry ⊂.
This is the homotopy quotient

⊂

G := ∗�G = BG = K(G,1) (16).

Singular quotient Smooth homotopy quotient

orbi-singularity

≺

G



project onto

purely smooth aspect⊂

%%

4
project onto

purely singular aspect

<

yy

opposite extreme
aspects of orbifold singularities

<

G = ∗/G= ∗

singular
quotient

⊂

G = ∗�G= BG

smooth
homotopy quotient

We observe in §3.2 that just this is captured by the cohesive structure on global equivariant homotopy theory that
had been observed in [Re14], but whose conceptual interpretation had remained open [Re14, Footnote 8].
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Differential geometry of étale ∞-stacks. We present, in §4.2, a general theory of higher differential geometry
formulated internally to these elastic ∞-toposes (§3.1). This deals with étale ∞-stacks locally modeled on any group
∞-stack V (“V -folds”, Def. 4.14). For the special case V = (Rn,+), this subsumes ordinary manifolds (Example
4.17) and ordinary étale Lie groupoids (Example 4.18). For V a super-symmetry group (197), this produces a
theory of super-orbifolds (Example 4.20), capturing, for instance, those that appear as target spaces in superstring
theory (e.g. [PR04][GIR08]) and M-theory [HSS18], or those that appear as moduli spaces of super-Riemann
surfaces [Ra87][LBR88][Wi12][CV17].

oo coarser finer //

(X/G)top  − [ X/G  − [ X�G  − [ ≺

(
X�G

)
{

underlying
topological spaces

}
oo Dtplg

Prop. 2.7

{
orbifolds as

diffeological spaces

} ss Snglr

Prop. 3.50, Prop. 4.9

oo
τ0� _

��

{
orbifolds as
étale stacks

}
oo Smth

Prop. 3.50, Prop. 4.7 //� _
Def. 4.14 ��

{
orbifolds as

cohesive orbi-spaces

}
� _

Def. 4.58��{
sheaves on

CartesianSpaces

} � � //
{

∞-stacks on
CartesianSpaces

} � � OrbSnglr

Prop. 3.50, Def. 4.58
//
{

∞-stacks on
SingularCartesianSpaces

}
SmoothGroupoids∞

Example 3.18

� � // SingularSmoothGroupoids∞

Example 3.56

Gerbes on étale ∞-stacks. With orbifolds, in their incarnation as étale stacks, thus embedded into a fully-fledged
∞-topos, the general theory of ∞-bundles [NSS12a][NSS12b] (see §2.2 below) applies to provide the theory of fiber
bundles on orbifolds (e.g. [LGTX04][Se06][BG08]) and of gerbes on orbifolds (e.g. [LU04][Ca10][BX][TT14])
naturally generalized to higher, to non-abelian and to twisted gerbes on orbifolds.
Differential cohomology of étale ∞-stacks. Moreover, since the intrinsic cohomology theory of cohesive ∞-
toposes is differential cohomology (Remark 3.20), this realization of étale ∞-stacks within cohesive ∞-toposes
immediately provides their differential cohomology theory (see [SSS12][FSS13a][FSS15]). This includes, in par-
ticular (as made explicit in [PR19]), the Borel-equivariant/orbifold Deligne cohomology considered in [KT18]
(which, for finite groups, coincides with [LU03][Gom05]), given, in low degrees, by:

(i) gerbes with connection, hence including what in string theory is known as the discrete torsion classification
of the B-field on orbifolds [Va86][VW95][Sha00a][Sha00c][Sha02][Ru03]; or

(ii) 2-gerbes with connection, hence including what in M-theory is known as the discrete torsion classification
of the C-field on orbifolds [Sha00b][Se01][dBDHKMMS02, §4.6.2].

Geometric enhancement of global equivariant homotopy theory. We enhance all of the above to a theory of
properly orbi-singular spaces, formulated internally to “singular-elastic” ∞-toposes (§3.2), where a natural notion
of orbi-singularization ≺ (Prop. 3.50) promotes (Def. 4.58) any such ∞-category of étale ∞-groupoids faithfully
to its proper orbifold version (Remark 4.60). This detects geometric fixed point spaces (Def. 3.69) in the sense of
proper equivariant homotopy theory. We show (Prop. 4.2, Lemma 4.7) that the cohesive shape (Def. 3.1) of the
orbi-singularization of an étale groupoid is its incarnation as an orbispace in global equivariant homotopy theory,
in the sense of [HG07][Re14][Kö16][Schw17] (Remark 4.1).
The proper 2-category of orbifolds. One model
for the axioms of singular-cohesive homotopy the-
ory is the ∞-topos of singular-smooth ∞-groupoids
(Examples 3.18, 3.56 below). In this model, the
proper 2-category (Rem. 4.60) of orbifolds X , ei-
ther Lie theoretically (Example 4.10) or topologi-
cally (Example 4.11), is equivalent, via passage to

(i) their purely smooth aspect ⊂X , to the tradi-
tional 2-category of étale stacks (Prop. 4.9),

(ii) while their purely singular aspect <X gives
the underlying singular coarse quotient space
(Prop. 4.6).

proper
orbifold

§4

≺(X�G)
� project onto

purely smooth aspect⊂ &&

2

project onto

purely singular aspect

<yy

opposite extreme
aspects of orbifolds

X/G
singular

space
[IKZ10]

X�G
smooth

étale stack
[MP97][CPRST14]
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Cartan geometry of étale ∞-stacks. In this internal formulation we find all fundamental phenomena of differential
geometry naturally generalized to étale ∞-stacks, hence in particular to orbifolds:

§4.2
Cartan geometry
for étale ∞-stacks

Discussion for ordinary orbifolds, e.g. in

(i) Def. 4.26 Frame bundles [MM03, p. 42]
(ii) Def. 4.36 G-structures

[Wo16][Zh06][BZ03]
Def. 4.42,
Def. 4.43

-locally
-globally

integrable

(ii.a) Ex. 4.44 Geometric structures [Ap00, §1.8][Wo16]

- Riemannian structure
[Bo92][HM04][Rat06][BZ07][He09a][He09b]
[Ak12][Kan13][BDP17][Lan18]

- Flat structure [BDP17][Ref06][IU12, §8][SS19]
- Complex structure [SW99][FS07]
- Symplectic structure [Ve00][Go01][DE05][HM12][CP14][Ch17][RC19]
- Lorentzian structure [HS91][Ne02][LMS02a][LMS02b][BR07][ZR12]
- Pseudo-Riemannian structure [Me09][Zh18][BZ19]
- Conformal structure [Ap98][Ap00]
- CR-structure [DM02]
- Hypercomplex structure [BGM98]
- . . .

(ii.b) Ex. 4.44 Special holonomy [Jo00][CT05]
- Kähler structure [Fu83][Je97][Ab01][BBFMT16]

- Calabi-Yau structure
[Ro91][Jo98][Jo99a][Jo99b][Jo00, §6.5.1][St10][RZ11]
[CDR16]

- Quaternionic Kähler [GL88][Jo00, §7.5.2]
- Hyper-Kähler struc. [BD00]
- G2-structure [Jo00, §11][Rei15]
- Spin(7)-structure [Jo00, §13][Ba07]

(iii) Def. 4.41 Local isometries [BZ07]
(iv) Def. 4.45 Haefliger stacks [Hae71][Hae84][Ca19, §2.2, §3][Ca16]).
(v) Def. 4.48 Tangential structures [Wee18][Pa20]
(v.a) Ex. 4.52 Higher Spin-structures

- Orientation [Dr94]
- Spin structure [Ve96][Ac01][BGR07][DLM02]
- Spinc structure [Du96, §14]
- String structure [PW88][LU04][LU06]
- Fivebrane structure [BL12] (cf. [SSS09][SSS12])
. . .

Orbifold étale cohomology. Based on this, we give a natural general definition of étale cohomology of V -étale
∞-stacks (Def. 5.11) hence in particular of orbifold étale cohomology, which is sensitive to the above (integrable)
G-structures, and hence to geometry/special holonomy on orbifolds. For example, in the case of complex structure,
this orbifold étale cohomology subsumes traditional notions of complex-geometric orbifold cohomology such as
orbifold Dolbeault cohomology [Ba54][Ba56][CR04][Fe03] and orbifold Bott-Chern cohomology [An12][Ma05].
Abstractly, orbifold étale cohomology is the intrinsic cohomology (22) of integrably G-structured étale ∞-stacks
when regarded in the slice ∞-topos (Prop. 2.46) over the G-Haefliger stack (Def. 4.45) via the classifying map
of their G-structure (Prop. 4.47). As such, orbifold étale cohomology is the progenitor of tangentially twisted
(proper) orbifold cohomology (Def. 5.13, Def. 5.15), to which we turn next.
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Proper equivariant cohomology. While the proper 2-category of orbifolds is equivalent to the traditional one
of orbifolds as étale stacks, its full embedding into an ambient singular-cohesive ∞-topos (§3.2) provides for
more general coefficient objects, each of which is guaranteed to produce a proper orbifold Morita-class invariant
(Remark 4.60). Our first main Theorem 5.9 shows that the intrinsic cohomology (22) of orbifolds, regarded in
singular-cohesive homotopy theory (Def. 3.48), subsumes all proper G-equivariant cohomology theories: Bredon
cohomology with any coefficient system, as well as proper equivariant generalized cohomology theories.

Traditional orbifold cohomology. In particular, Prop. 4.2 and Theorem 5.9 imply, via [Ju20] (Remark 4.1),
that proper orbifold cohomology in singular-cohesive homotopy theory subsumes Chen-Ruan orbifold cohomol-
ogy, via (5), and Adem-Ruan orbifold K-theory, via (6). Hence it also subsumes Freed-Hopkins-Teleman orb-
ifold K-theory [FHT07] (reviewed in [Nu13, §3.2.2]) and Jarvis-Kaufmann-Kimura’s “full orbifold K-theory”
[JKK05][GHHK08] for orbifolds with global quotient presentations (by [FHT07, Prop. 3.5] and [JKK05, 3], re-
spectively). Moreover, singular-cohesion provides a natural transformation ⊂X ε ⊂X

// ≺X which restricts this
proper orbifold cohomology to the underlying étale stack, where it reduces to traditional Borel orbifold cohomol-
ogy (1) and, in particular, to Satake cohomology (2) (see also, e.g., [ADG11][BNSS18]).

Twisted orbifold cohomology. All these cohomology theories generalize to their twisted cohomology versions
(e.g., local coefficients for ordinary cohomology, as in [MP99], or twisted K-theory, as in [AR01]), by passage to
slice ∞-toposes of the ambient singular-cohesive ∞-topos (Remark 2.94). In particular, slicing of orbifolds over ≺Z2

via their orientation bundle promotes them (Example 5.10) to orientifolds [DFM11][FSS15, 4.4][SS19].

Proper orbifold étale cohomology. Finally, we
promote (Def. 5.15) orbifold étale cohomology,
in its guise as tangentially twisted cohomology,
to a proper orbifold cohomology theory in the
above sense (Remark 4.60). Our second main
theorem 5.16 shows that this proper orbifold
étale cohomology unifies:

(i) ( ⊂) étale cohomology (Def. 5.11) of
smooth V -folds (Def. 4.14).

(ii) ([ ) proper equivariant cohomology (Def.
5.2) of flat orbifolds (Def. 4.53), i.e., of
their flat frame bundles (Prop. 4.54).

proper
orbifold étale cohomology

Def. 5.15

H S ≺τ
(
X , A

)
E

(i ⊂)
∗

sm
oo

th
or

bif
old

s

��

�

(i[)
∗

flat orbifolds

##
H Sτ
(
X, A

)
smooth

étale cohomology
Def. 5.13

H[G
(
([G)Frames(X),A

)
proper

equivariant cohomology
Def. 5.2

J-twisted orbifold Cohomotopy. We construct
a fundamental class of examples of such proper
orbifold étale cohomology theories, which we
call J-twisted orbifold Cohomotopy theories
(Def. 5.28). Their coefficients are Tate spheres
(Def. 5.19), in the sense of (unstable) motivic
homotopy theory (Example 5.20), with twist-
ing via an intrinsic Tate J-homomorphism (Def.
5.24). Specified to ordinary orbifolds (Example
5.29), Theorem 5.16 shows that J-twisted orb-
ifold Cohomotopy subsumes:

(i) ( ⊂) J-twisted Cohomotopy theory of
smooth but curved spaces, as introduced in
[FSS19b][FSS19c].

(ii) ([) RO-graded equivariant Cohomotopy
theory of flat orbifolds, as discussed in
[SS19][BSS19].

J-twisted
orbifold Cohomotopy

Def. 5.28

π
S ≺τ
(
X
)

J

(i ⊂)
∗

sm
oo

th
or

bi
fo

ld
s

��

�

(i[)
∗

flat orbifolds

  
π Sτ
(
X
)

J-twisted
Cohomotopy theory
[FSS19b][FSS19c]

π[G

(
([G)Frames(X)

)
RO-graded

equivariant Cohomotopy
[SS19][BSS19]

We conclude with a Remark 5.30 on the impact of this unification.
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Other approaches and outlook. We briefly comment on relations of our constructions to other approaches in the
literature, further discussion of which is beyond the scope of this article.
Proper ∞-categories of general étale ∞-stacks. Another general theory of étale ∞-stacks has been presented
in [Ca20], generalizing an elegant characterization of étale 1-stacks due to [Ca19] by following the discussion of
derived Deligne-Mumford stacks conceived as structured ∞-toposes in [Lu09b]. This approach proceeds externally
via characterizing the sites (recalled below as Prop. 2.41) which present ∞-toposes of étale ∞-stacks; and is thus
complementary to the internal perspective proceeding from inside an ambient ∞-topos which we are presenting
here. We briefly indicate the relation between the two:
◦ The approach in [Ca20] is to pick an ∞-site of ModelSpaces (denoted “L ” there) which is equipped with a

suitable notion of which of its 1-morphisms qualify as being étale maps (the external version of our notion
Def. 3.26). The inclusion i of the wide subcategory on these étale morphisms induces, by left Kan extension,
a pair of adjoint ∞-functors (i! a i∗) between the corresponding ∞-stack ∞-toposes, and the étale ∞-stacks
are then characterized as those in the essential image of the left adjoint i!. This is shown on the right of the
following diagram:

Sheaves∞

(
ModelSpaces×Singularities

) Smth //

oo OrbSinglr
⊥

? _

Prop. 3.50

Sheaves∞

(
ModelSpaces

)
oo i!

i∗

>

//
Sheaves∞

(
LocalModelSpacesét

)
tttt

OrbSinglr
(
ÉtaleStacks∞

)
proper ∞-category
of higher orbifolds

(Remark 4.60)

� ?

OO

ÉtaleStacks∞
∞-category

of étale ∞-stacks
[Ca20]

'
oo

� ?

OO (23)

◦ Following Remark 4.60, we may and should enhance this construction to the proper ∞-category of higher
orbifolds Def. 3.48, Def. 4.58, as shown on the left in (23).
◦ In fact, the archetypical example of ModelSpaces considered in [Ca20] is SmoothManifolds (Def. 2.9), in

which case the left hand side of (23) is the singular-cohesive ∞-topos of our Examples 3.18, 3.56, containing
the proper (Def. 4.58) ∞-category of orbi-Rn-folds in our Example 4.18.
◦ On the other hand, a general ∞-topos Sheaves∞(ModelSpaces) is not going to be cohesive (Def. 3.1) or even

elastic (Def. 3.21). This means that various nice geometric properties, which we derive here, of objects in the
proper ∞-category of higher orbifolds, are not guaranteed to exist in the general setup of [Ca20]. Notably
the theory of frame bundles on orbifolds, according to Prop. 4.26, and the main theorem on the induced
étale cohomology of orbifolds (Theorem 5.16) crucially uses the internal modal logic of singular-cohesive
and singular-elastic ∞-toposes as in §3, which may not exist, or not exist completely, for any given site of
ModelSpaces as in [Ca20].

Proper orbifold differential cohomology. While
(i) generalized differential cohomology on smooth manifolds [HS05] is well-understood (see [Bu12]) and

(ii) plain global equivariant cohomology has been established [Schw18] and understood to provide proper orb-
ifold cohomology ([Ju20], see Remark 4.1 below),

their combination to (generalized, global) proper equivariant differential cohomology has remained elusive. Ex-
plicit constructions have been explored for the case of equivariant/orbifold differential K-theory [SV07][BS09]
[Or09], but even these theories do not seem to be well-understood yet [BS12, p. 47]. What has been missing is a
coherent theoretical framework for proper equivariant differential cohomology: Since

(a) differential cohomology is the intrinsic cohomology (22) of cohesive ∞-toposes (by Remark 3.20) and
(b) proper equivariant cohomology is the intrinsic cohomology of ∞-toposes over a (global) orbit category (by

Remark 5.4),
proper equivariant differential cohomology should be the intrinsic cohomology of ∞-toposes that combine these
two properties. This is exactly what our notion of singular-cohesive ∞-toposes expresses (Def. 3.48), as confirmed
by Theorem 5.9. For example, in singular-cohesive ∞-toposes there exists the (global) proper equivariant version
of twisted differential non-abelian cohomology [FSS20b], now given by homotopy fiber products parametrized
over Singularities (Def. 3.46). Hence singular-cohesive ∞-toposes constitute a coherent framework in which to
discuss proper equivariant/orbifold differential cohomology in general. We will develop this elsewhere.
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2 Preliminaries

We recall basics of higher topos theory in §2.1 and lay out in §2.2 the internal formulation, in ∞-toposes, of group
actions and the classification of fiber bundles.

2.1 Topos theory

We briefly record basics of ∞-topos theory [TV05][Lu09a][Re10] (review is in [Re19], exposition with an eye
towards differential geometric applications is in [FSS13a]). This is to set up our notation and to highlight some
less widely used aspects that we need further below.

Categories. We make free use of the language and the basic facts of category theory and homotopy theory (see
[GJ99][Rie14][Ri20]) as well as of ∞-category theory (see [Joy08a][Joy08a][Lu09a][Rie14][Ci19]).
(i) We write Categories∞ for the (“very large”) ∞-category of (large) ∞-categories [Re98][Be05][Lu09a, Ch. 3],
though we only use this for declaring ∞-categories. Inside Categories∞, there is the sequence of full sub-∞-
categories (Def. 2.1) of n-categories (i.e.: (n,1)-categories) as well as of n-groupoids (see Def. 2.12) for all n ∈N,
denoted thus:

Sets �
� // Categories1

� � // Categories2
� � // · · · �

� // Categories∞

Sets �
� // Groupoids1

� � //?�
OO

Groupoids2
� � //?�

OO

· · · �
� // Groupoids∞

?� a
OO
�� Core

(24)

(ii) Here Core(C ) denotes the maximal ∞-groupoid inside an ∞-category C .
(iii) For C ∈ Categories∞ and for X ,Y ∈ C a pair of objects, we write

C (X ,Y ) := HomC (X ,Y ) ∈ Groupoids∞ (25)

for the hom-∞-groupoid, i.e. the ∞-groupoid of morphisms between them, and higher homotopies between these
(see [Lu09a, 1.2.2][DS09]). This is well-defined, up to equivalence of ∞-groupoids, independently of which model
for ∞-categories is used, since these are all equivalent to each other [Be06][Be14]. We have no need to specify any
particular model for ∞-categories (except for the construction of examples, in §A).

Definition 2.1 (Fully faithful functor [Lu09a, 1.2.10]). For C ,D ∈ Categories∞ (24), a functor F : C // D is
called fully faithful, to be denoted C �

� F // D , (26)

if it is an equivalence on all hom-∞-groupoids (25):

∀
X ,Y∈C

C (X , Y )
FX ,Y

'
// D
(
F(X) , F(Y )

)
.

In this case we also say that (26) exhibits a full sub-∞-category inclusion.

Topology. The category of ∆-generated or D-topological spaces (Remark 2.3) is both: a convenient foundation for
homotopy theory (Prop. 2.4) as well as pivotal for our key example context (Example 3.18):

Definition 2.2 (Topological spaces). We write

CWComplexes �
� // DTopologicalSpaces �

� // TopologicalSpaces ∈ Categories1 (27)

for (from right to left):
(i) the category of all topological spaces with continuous functions between them;
(ii) the full subcategory on those spaces whose topology coincides with the final topology on the set of continuous
functions out of a Euclidean space Rn, hence whose open subsets coincide with those subsets whose pre-images
under all continuous functions Rn! X are open in Rn, for all n ∈ N;
(iii) the further full subcategory on those that admit the structure of a CW-cell complex, hence that are homeomor-
phic to topological spaces which are obtained, starting with the empty space, by gluing on standard n-disks along
their (n−1)-sphere boundaries, iteratively for n ∈ N.
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Remark 2.3 (D-topological is ∆-generated).
(i) Since the topological n-simplex ∆n

top is a retract of the Euclidean space Rn, the condition on X ∈TopologicalSpaces
of being D-topological (Def. 2.2) is equivalent to being ∆-generated, in that the open subsets of X are precisely
those whose pre-images under all continuous functions of the form ∆n

top! X are open.
(ii) The concept of ∆-generated spaces is due to [Sm][Dug03]; and independently due to [SYH10], where they are
called numerically generated.
(iii) We say D-topological to better bring out their conceptual role, in view of Prop. 2.7 below.

Proposition 2.4 (D-topological spaces are convenient). The category of DTopologicalSpaces (Def. 2.2) is a con-
venient category of topological spaces in the sense of [St67] in that it:

(i) contains all CW-complexes (27) [SYH10, Cor. 4.4];

(ii) has all small limits and colimits [SYH10, Prop. 3.4];

(iii) is locally presentable [FR07, Cor. 3.7];

(iv) is Cartesian closed [SYH10, Cor. 4.6]: the mapping space between X ,Y ∈DTopologicalSpaces is the reflec-
tion (32) of the internal mapping space Maps (56) of DiffeologicalSpaces [SYH10, Prop. 4.7]:

Maps(X ,Y ) = Dtplg
(

Maps
(
Cdfflg(X), Cdfflg(Y )

))
. (28)

Differential topology. D-topological spaces lend themselves to differential topology via their joint (co-)reflection
(Prop. 2.7) both into all topological spaces and into diffeological spaces (Def. 2.6):

Definition 2.5 (Cartesian spaces). We write

CartesianSpaces �
� // SmoothManifolds ∈ Categories1

for the category whose objects are the natural numbers n ∈ N, thought of as representing the Cartesian spaces
Rn, and whose morphisms are the smooth functions between these. We regard this category as equipped with
the coverage (Grothendieck pre-topology) whose covers are the differentially good open covers (i.e., such that all
non-empty finite intersections of patches are diffeomorphic to a Cartesian space [FSS12, 6.3.9]).

Definition 2.6 (Diffeological spaces). (i) The category of diffeological spaces ([So80][So84][IZ85], see [BH08]
[IZ13]) is the full subcategory of sheaves on CartesianSpaces (Def. 2.5)

DiffeologicalSpaces �
� // Sheaves(CartesianSpaces) (29)

on those X ∈ Sheaves(CartesianSpaces) which are concrete sheaves [Du79b] supported on their underlying set

Xs := Sheaves(SmthMfd)(∗,X)

in that the canonical function X(U) �
� // Set(Us,Xs)

is an injection, for all U ∈ CartesianSpaces, with Us denoting their underlying set of U .
(ii) We call

X(U) '
Prop. 2.38

DiffeologicalSpaces(U,X) ∈ Set (30)

the set of U-plots of the diffeological space X .

Proposition 2.7 (Topological/diffeological adjunction). (i) There is an adjunction [SYH10, Prop. 3.1]

TopologicalSpaces
oo Dtplg

Cdfflg
⊥ // DiffeologicalSpaces (31)

between the categories of topological spaces (Def. 2.2) and of diffeological spaces (Def. 2.6), where

• the right adjoint Cdfflg sends a topological space to the same underlying set equipped with the topological
diffeology whose plots (30) are precisely the continuous functions;
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• the left adjoint Dtplg sends a diffeological space to the same underlying set equipped with the diffeological
topology (“D-topology” [IZ13, 2.38][CSW13]), which is the final topology with respect to all plots (30),
hence such that a subset is open precisely if its pre-image under all plots is open.

(ii) The fixed points X ∈ TopologicalSpaces of this adjunction are the D-topological spaces (Remark 2.3)

X is D-topological ⇔ Dtplg
(
Cdfflg(X)

) εX

'
// X .

(iii) The adjunction is idempotent [SYH10, Lemma 3.3], hence factors through the category of D-topological
spaces, exhibiting them as a co-reflective subcategory of TopologicalSpaces and a reflective subcategory of
DiffeologicalSpaces:

TopologicalSpaces
oo ? _

Cdfflg
⊥ // DTopologicalSpaces

oo Dtplg

� � ⊥ // DiffeologicalSpaces . (32)

The following Prop. 2.8 is due to [Har13, Thm. 3.3].

Proposition 2.8 (Model structure on D-topological spaces).
(i) The standard cell inclusions define a cofibrantly generated model category structure on DTopologicalSpaces
(Def. 2.2).
(ii) With respect to this model structure and the standard model structure on TopologicalSpaces, the co-reflection
(32) becomes a Quillen equivalence:

TopologicalSpaces
oo ? _

Cdfflg

'Quillen // DTopologicalSpaces .

Differential geometry.

Definition 2.9 (Smooth Manifolds). We write
SmoothManifolds ∈ Categories (33)

for the category of finite-dimensional paracompact smooth manifolds with smooth functions between them. We
regard this as a site with the Grothendieck topology of open covers.

Proposition 2.10 (Cartesian spaces are dense in the site of manifolds). With respect to the coverages in Def.

2.9 and Def. 2.5, the inclusion CartesianSpaces
i
↪! SmoothManifolds is a dense sub-site, in that it induces an

equivalence of categories of sheaves

Sheaves(CartesianSpaces)
oo i∗

i∗

' // Sheaves(SmoothManifolds) .

Proposition 2.11 (Smooth manifolds inside diffeological spaces). Every X ∈ SmoothManifolds (33) becomes a
diffeological space (Def. 2.6) on its underlying set by taking its plots (30) of shape U ∈ CartesianSpaces to be the
ordinary smooth functions: X(U) := SmoothManifolds(U,X) .

More generally, every possibly infinite-dimensional Fréchet manifold (e.g. [KS17, 2.2]) becomes a diffeological
space this way. Moreover, this constitutes fully faithfull embeddings (Def. 2.1) into the category of Diffeological
spaces [Lo94, Thm. 3.1.1]:

SmoothManifolds
finite-dimensional

� � // FréchetSmoothManifolds
possibly infinite-dimensional

� � // DiffeologicalSpaces . (34)

Homotopy theory.

Definition 2.12 (∞-Groupoids). (i) We write
Groupoids∞ ∈ Categories∞ (35)

for the ∞-category which is presented by the topologically enriched category whose objects are the CW-complexes
(27) and whose hom-spaces are the mapping spaces (28).
(ii) The full sub-∞-category (Def. 2.1) on the homotopy n-types is that of n-groupoids

Groupoidsn
� � // Groupoids∞ .
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Definition 2.13 (Topological shape). (i) We write

ShpTop : CWComplexes // Groupoids∞

for the ∞-functor from the 1-category of CW-complexes (27) to the ∞-category of ∞-groupoids (Def. 2.12) which,
as a topologically enriched functor, is the identity on objects, and is on hom-spaces the continuous map given by
the identity function from the discrete set of continuous maps to the mapping space (28).
(ii) For any choice of CW-approximation functor

TopologicalSpaces
(−)cof // CWComplexes

we get the corresponding functor on all topological spaces (Def. 2.2), hence on D-toplogical spaces (Def. 2.2)
which we denote by the same symbol:

ShpTop : TopologicalSpaces
(−)cof // CWComplexes

ShpTop // Groupoids∞ . (36)

Example 2.14 (Delooping groupoids). For G ∈ Groupsfin, consider the groupoid with a single object ∗, and with
G as its set of morphisms, whose composition is given by the product in the group:

∗ g2

))∗
g1 55

g2·g1
// ∗

(37)

This groupoid is the topological shape (36) of the Eilenberg-MacLane space K(G,1) as well as (since G is assumed
to be finite) the classifying space BG. More intrinsically, this groupoid is, equivalently, the homotopy quotient of
the point by the trivial G-action: ∗�G ∈ Groupoids1

� � // Groupoids∞ .

More generally:

Example 2.15 (Action groupoids). For G∈Groupsfin a finite group and for X ∈ Set a set equipped with a G-action

G×X
ρ // X

(g,x) � // g · x
(38)

the corresponding action groupoid has as objects the elements of X and its morphisms and their composition are
given as follows:

g1 · x g2
++

x
g1 55

g2·g1
// g2 ·g1 · x

(39)

This action groupoid is a model for the homotopy quotient of X by its G-action

X�G ∈ Groupoids1
� � // Groupoids∞ .

The following elementary example plays a pivotal role in later constructions (Lemma 4.7):

Example 2.16 (Hom-groupoid into action groupoid). Let G ∈ Groupsfin, X ∈ Set equipped with a G-action (38),
hence with action groupoid/homotopy quotient X�G ∈ Groupoids1 (Example 2.15). Let K ∈ Groupsfin be any
finite group, with ∗�K ∈ Groupoids1 its delooping groupoid (Example 2.14). Then the hom-groupoid (functor
groupoid) of morphisms (functors) ∗�K −! X�G is, equivalently, the action groupoid of G acting on the set of
pairs consisting of a group homomorphism φ : K! G and a point in X fixed by the image of φ :

Groupoids1
(
∗�K , X�G

)
'
( ⊔

φ∈Groups(K,G)

Xφ(K)
)

�G . (40)

Here
• φ(K)⊂ G denotes the subgroup of G which is image of the group homomorphism φ : K! G;

• Xφ(K) =

{
x ∈ X

∣∣∣∣ ∀
h∈φ(K)

h · x = x
}

denotes the φ(K)-fixed-point set in X ;

• the G-action by which the homotopy quotient is taken is the conjugation action on φ , hence g ·φ := Adg ◦φ ,
and the given G-action on x ∈ X .
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This follows by direct unwinding of the definition of functors and of natural transformations between the groupoids
(37) and (39).

Definition 2.17 (Simplicial-topological shape). Let
X• : ∆op // TopologicalSpaces (41)

be a simplicial topological space, for instance the nerve of a topological groupoid. Then we say that its simplicial-
topological shape is the homotopy colimit (Prop. 2.36) of its degreewise topological shape (Def. 36):

ShpsTop
(
X•
)

:= lim
−!

(
ShpTop(X)

)
• ∈ Groupoids∞ . (42)

The following Prop. 2.18 appears as [Wa18, 4.3,. 4.4]:

Proposition 2.18 (Simplicial-topological shape of degreewise cofibrant spaces is fat geometric realization). If
X• is a simplicial topological space (41) which degreewise admits the structure of a retract of a cell complex
(for instance: degreewise a CW-complex (27)), then its simplicial topological shape (42) is equivalent to its fat
geometric realization ‖−‖ [Se74] (see [HG07, 2.3]):

X•
degreewise cofibrant

simplicial topological spaces

∈
(
TopologicalSpacescof

)∆op ⇒ ShpsTop
(
X•
)

simplicial
topological shape

' ‖X•‖
fat geometric

realization

.

Definition 2.19 (Diffeological simplices). (i) We write

∆
∆•smth // DiffeologicalSpaces

[n] � //
{
~x ∈ Rn+1 |∑

i
xi = 1

}
for the diffeological extended simplicies, hence for the simplicial object in diffeological spaces (Def. 2.6) (in fact
in smooth manifolds, under Prop. 2.11) which in degree n is the extended n-simplex in Rn+1, regarded with its
sub-diffeology, and whose face and degeneracy maps are the standard ones (see [CW14, Def. 4.3][BEBP19, p. 1]).
(ii) The induced nerve/realization construction is a pair of adjoint functors (Def. 2.24)

DiffeologicalSpaces
oo |−|diff

Singdiff

⊥ // SimplicialSets (43)

between the categories of simplicial sets and of diffeological spaces (Def. 2.6), where the right adjoint Singdiff
sends X ∈ DiffeologicalSpaces to its smooth singular simplicial set

Singdiff(X)• := DiffeologicalSpaces
(
∆
•
diff,X

)
.

The following Prop. 2.20 is due to [CW14, Prop. 4.14]:

Proposition 2.20 (Diffeological singular simplicial set of continuous Diffeology). For all Xtop ∈TopologicalSpaces
there is a weak homotopy equivalence between the diffeological singular simplicial set (Def. 2.19) of its continuous
diffeology (Def. 2.7) and its ordinary singular simplicial set:

Sing
(
Xtop
)
'whe Singdiff

(
Cdfflg(Xtop)

)
.

Equivalently this means, in the terminology to be introduced in a moment, that the topological shape (36) of
topological spaces is equivalent to the cohesive shape (Def. 3.1) of their incarnation as continuous-diffeological
spaces (see Example 3.18 below):

ShpTop
(
Xtop
)
' Shp

(
Cdfflg(Xtop)

)
∈ Groupoids∞ .

Universal constructions. All diagrams we consider now are homotopy-coherent, even if we do not notationally
indicate the higher cells, unless some are to be highlighted. Similarly, all universal constructions we consider now
are ∞-categorical, even if this is not further pronounced by the terminology. In particular, we say “colimit” lim

−!
for “homotopy colimit”, “limit” lim

 −
for “homotopy limit” (see Prop. 2.36), “Cartesian square” for “homotopy

Cartesian square”, etc.:
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Notation 2.21 (Cartesian squares). We say a square in an ∞-category is Cartesian, to be denoted

X×B Y
f ∗g ��

//

(pb)

Y
g
��

X f // B

(44)

if it is an limit cone over the diagram consisting of f and g. We also say this is the pullback square of g along f .

Example 2.22 (Pullback of equivalence is equivalence). Let C ∈ Categories∞. Then a square in C whose right
vertical morphism is an equivalence is Cartesian (Notation 2.21) precisely if the left vertical morphism is also an
equivalence: A

(pb)

//

��

B
'
��

C // D
⇔

A
'
��

C
(45)

hence precisely if C // D is equivalent to A // B in C ∆1
.

Proposition 2.23 (Pasting law [Lu09a, Lemma 4.4.2.1]). In any ∞-category, consider a diagram of the form

A

��

//
⇓

B

��

//
⇓

C

��
D // E // F

such that the right square is Cartesian (Notation 2.21). Then the left square is Cartesian if and only if the total
rectangle is Cartesian.

Definition 2.24 (Adjoint ∞-functors [Lu09a, 5.2.2.7, 5.2.2.8][RV13, 4.4.4]). Let C ,D ∈ Categories∞ (24) and
L : C oo // D : R two functors between them, back and forth. This is an adjoint pair with L left adjoint and R
right adjoint, to be denoted (L a R):

D
oo L

R

⊥ // C (46)

if there is a natural equivalence of hom-∞-groupoids (25) of the form

D
(
L(−) ,−

)
' C

(
− , R(−)

)
(47)

(This is unique when it exists [Lu09a, Prop. 5.2.1.3, 5.2.6.2]). In this case, one says:
(i) The adjunction unit is the natural transformation

X
ηX // R◦L(X) (48)

which is the (pre-)image under (47) of the identity on R(X).
(ii) The adjunction co-unit is the natural transformation

L◦R(X)
εX // X (49)

which is the image under (47) of the identity on L(X).

As in the classical situation of 1-category theory, it follows that:

Proposition 2.25 (Triangle identities). Let D
oo L

R
⊥ // C be a pair of adjoint ∞-functors (Def. 2.24). Then their

adjunction unit η (48) and counit ε (49) satisfy the following natural equivalences:
(i) for all c ∈ C ,

L◦R◦L(c) εL(c)
++L(c)

L(ηc) 33

L(c) ;

(ii) for all d ∈D ,
R◦L◦R(d) R(εd)

++
R(d)

ηR(d) 33

R(d) .
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Proposition 2.26 (Right/left adjoints preserve limits/colimits [Lu09a, 5.2.3.5]). Let D
oo L

R
⊥ // C be a pair of ad-

joint ∞-functors (Def. 2.24) and let I ∈ Categories∞ .
(i) If X• : I // D is a diagram whose limit exists, then this limit is preserved by the right adjoint R:

R
(
lim
 −

X•
)
' lim
 −

RX• (50)

(ii) If X• : I // C is a diagram whose colimit exists, then this colimit is preserved by the left adjoint L:

L
(
lim
−!

X•
)
' lim
−!

LX• (51)

Conversely:

Proposition 2.27 (Adjoint ∞-functor theorem [Lu09a, 5.5.2.9]). Let C1,2 ∈ Categories∞ be presentable (e.g. ∞-
toposes, Def. 2.30), then an ∞-functor C1 // C2 is a:
(i) right adjoint (i.e., has a left adjoint, Def. 2.24) precisely if it preserves limits (50);
(ii) left adjoint (i.e., has a right adjoint, Def. 2.24) precisely if it preserves colimits (51).

Proposition 2.28 (Fully faithful adjoints [Lu09a, 5.2.7.4]). For adjoint ∞-functors (Def. 2.24) D
oo L

R
⊥ // C ,

(i) L is fully faithful D oo
L ? _C (Def. 2.1) iff the adjunction unit η (48) is an equivalence: id

η

'
// R◦L ;

(ii) R is fully faithful D �
� R // C (Def. 2.1) iff the adjunction counit ε (49) is an equivalence L◦R ε

'
// id .

Proposition 2.29 (Idempotent Monads and Comonads). For D
oo L

R
⊥ // C a pair of adjoint ∞-functors (Def. 2.24):

(i) If R is fully faithful (Def. 2.1) then # := R◦L is idempotent, exhibited by the #-image of the adjunction unit η

(48):
#(c)

#(ηL(c))

'
// #◦#(c) . (52)

(ii) If L is fully faithful (Def. 2.1) then 2 := L◦R is idempotent, exhibited by the 2-image of the adjunction counit
η (49):

2◦2(d)
2(εR(d))

'
// 2(d) . (53)

Proof. Consider case (i), the other case is formally dual. Since R is fully faithful, by assumption, the condition
that #(ηL(c)) := R◦L(ηL(c)) is an equivalence is equivalent to L(ηL(c)) being an equivalence. But, by the triangle
identity (Prop. 2.25), we have that the composite εL(L(c)) ◦ L(ηL(c)) is an equivalence, while by Prop. 2.28 the
counit ε is a natural equivalence. By cancellation, this implies that L(ηL(c)) is an equivalence. �

∞-Toposes. For our purposes, we take the following characterization to be the definition of ∞-toposes. This is due
to Rezk and Lurie [Lu09a, 6.1.6.8]; we follow the presentation in [NSS12a, Prop. 2.2]:

Definition 2.30 (∞-topos). An ∞-topos H is a presentable ∞-category with the following properties:
(i) Universal colimits. For all morphisms f : X −! B and all small diagrams A : I −!H/B, there is an equiva-

lence:
lim
−!

i

f ∗Ai ' f ∗
(
lim
−!

i

Ai
)

(54)

between the pullback (44) of the colimit and the colimit over the pullbacks of its components.
(ii) Univalent universes. For every sufficiently large regular cardinal κ , there exists a morphism Ôbjectsκ −!

Objectsκ in H, such that for every object X ∈H, pullback (44) along morphisms X −! Objectsκ constitutes
an equivalence

Core
(
H/κ X

)
' H

(
X ,Objectsκ

)
E 7−! ` E

E
(pb)

//

��

Ôbjectsκ

��
X

`E
// Objectsκ

(55)

between the ∞-groupoid core (24) of bundles (Notation 2.45) which are κ-small over X , and the hom-∞-
groupoid (25) of morphisms from X to the object classifier Objectsκ .
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Example 2.31 (Internal mapping space in an ∞-topos). Let H be an ∞-topos (Def. 2.30) and X ∈ H an object.
As a special case of universality of colimits (54), we have that the functor X × (−) of Cartesian product with X
preserves all colimits. Hence, by the adjoint ∞-functor theorem (Prop. 2.27), this functor has a right adjoint, to be
denoted Maps(X ,−), the internal hom- or internal mapping space- or mapping stack-functor:

H
oo X×(−)

Maps(X ,−)
internal mapping space

⊥ // H . (56)

By adjointness, the probes of the internal mapping space over any U ∈H are given by

H
(
U,Maps(X ,Y )

)
' H

(
U×X , Y

)
. (57)

Proposition 2.32 (Colimits and equifibered transformations [Lu09a, 6.1.3.9(4)][Re10, 6.5]). Let H be an ∞-topos
(Def. 2.30), I a small ∞-category, X•,Y• : I // H two I -shaped diagrams.
(i) If X• f• +3 Y• is a natural transformation which is equifibered [Re10, p. 9], in that its value on all mor-
phisms i1 φ // i2 in Y is a Cartesian square (Notation 2.21), then the value of lim

−!
f• on all colimit component

morphisms is also Cartesian:

∀
i1

φ
!i2

Xi1
fi1 //

Xφ �� (pb)

Yi1
Yφ��

Xi2 fi2

// Yi2

⇒ ∀
i

Xi
fi //

qXi ��
(pb)

Yi1
qYi��

lim
−!

X• lim
−!

f•
// lim
−!

Y•
(58)

(ii) Let X�• : I � // H be a cocone under X•, with tip X ∈ H, and let Y�• : I � // H denote the colimiting

cocone under Y• with tip lim
−!

Y•. If X�•
f�• +3 Y�• is a natural transformation of cocone diagrams which is equifibered,

then X�• is a colimiting cocone:

∀
i1

φ
!i2

Xi1
fi1 //

Xφ ��
(pb)

Yi1
Yφ��

Xi2 fi2

// Yi2

and ∀
i

Xi
fi //

qXi
��

(pb)

Yi1
qYi��

X
lim
−!

f•
// lim
−!

Y•
⇒ X ' lim

−!
X• . (59)

Example 2.33 (Initial object in ∞-topos is empty object [Re19, p. 16]). Let H be an ∞-topos (Def. 2.30). Applying
the implication (59) in Prop. 2.32 to the colimit over the empty diagram, which is the initial object, shows that any
object with a morphism to the initial object is itself equivalent to the initial object. Hence if we write

∅ ∈ H s.t. ∀
X∈H

(
H(∅ , X) ' ∗

)
(60)

for the initial object, this means that
X ∃ // ∅ ⇒ X ' ∅ . (61)

Proposition 2.34 (Tensoring of ∞-toposes over ∞-groupoids). Let H be an ∞-topos (Def. 2.30) with inverse base
geometric morphism (Prop. 2.43) denoted ∆ : Groupoids∞ −!H . Then, for S ∈ Groupoids∞ and X ,Y ∈H, there
is a natural equivalence of ∞-groupoids

H
(
∆(S)×X , Y

)
' Groupoids∞

(
S , H(X ,Y )

)
. (62)

Proof. By [Lu09a, Cor. 4.4.4.9] we have, for S ∈ Groupoids∞ ↪! Categories∞ and X ,Y ∈H, natural equivalences

lim
−!

S

const∗ ' S and H
(

lim
−!

S

constX , Y
)
' Groupoids∞

(
S , H(X ,Y )

)
. (63)

This implies the statement in the form (62) by using (a) that ∆ preserves all colimits as well as finite limits (Prop.
2.43) and (b) that Cartesian products may be taken inside colimits, as a special case of (54):

H
(
∆(S)×X , Y

)
'H

(
∆
(
lim
−!

S

∗
)
×X , Y

)
'H

((
lim
−!

S

∆(∗)︸︷︷︸
'∗

)
×X , Y

)
'H

((
lim
−!

S

(∗×X)︸ ︷︷ ︸
'X

)
, Y
)
' Groupoids∞

(
S , H(X ,Y )

)
.

The composite equivalence is (62). �
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Sheaves.

Notation 2.35 (∞-Presheaves). For C a small ∞-category, we write

PreSheaves∞(C ) := Functors∞

(
C op , Groupoids∞

)
(64)

for the ∞-category of ∞-presheaves on C . More generally, if H is any ∞-topos (Def. 2.30) we also write

PreSheaves∞

(
C ,H

)
:= Functors∞

(
C op , H

)
. (65)

Proposition 2.36 (Limits and colimits in an ∞-topos [Lu09a, Lem. 4.2.4.3]). Let H be an ∞-topos (Def. 2.30) and
C a small ∞-category. Then the ∞-functor which sends an object in H to the H-valued presheaf (65) constant on
this object has a right- and a left-adjoint (Def. 2.24), given by the limit and colimit construction, respectively:

Functors∞

(
C , H

) lim
−! //

oo const
⊥
⊥

lim
 −

//
H (66)

Proposition 2.37 (∞-Yoneda embedding [Lu09a, Lemma 5.5.2.1]). Let C be an ∞-category. Then the ∞-functor
from C to its ∞-presheaves (64) which assigns representable presheaves

C �
� y // PreSheaves∞(C )

c � // C (−,c)
(67)

is fully faithful (Def. 2.1).

Proposition 2.38 (∞-Yoneda lemma [Lu09a, Lemma 5.5.2.1]). Let C be an ∞-category. Then for X ∈PreSheaves∞(C )
(64) and c ∈ C , there is a natural equivalence

PreSheaves∞

(
y(c),X

)
' X(c) ,

where y is the Yoneda embedding (67) from Prop. 2.37.

Proposition 2.39 ((Co-)Limits of presheaves are computed objectwise [Lu09a, Cor. 5.1.2.3]). Let H be an ∞-
topos, let C and D be small ∞-categories, and let

I : D // PreSheaves∞(C ,H)

be a diagram of H-valued ∞-presheaves over C . Then the limit and colimit over I exist and are given objectwise
over c ∈ C by the limit and colimit of the components in Groupoids∞:(

lim
−!

I
)

: c 7−!
(
lim
−!

Ic
)
,(

lim
 −

I
)

: c 7−!
(
lim
 −

Ic
)
.

Lemma 2.40 (Colimit of representable functor is contractible). Let C be a small ∞-category, and consider an
∞-functor yC : C op −!Groupoids∞ to the ∞-category of ∞-groupoids (35), which is representable, hence which is
in the essential image of the ∞-Yoneda embedding (67). Then the colimit of this functor is contractible:

lim
−!

C

(yC) ' ∗ . (68)

Proof. The terminal ∗ ∈ Groupoids∞ is characterized by the fact that for S ∈ Groupoids∞ there is a natural equiva-
lence

S ' Groupoids∞

(
∗ , S

)
.

Hence it is sufficient to see that lim
−!

(yC) satisfies the same property. But we have the following sequence of natural
equivalences:

Groupoids∞

(
lim
−!

(yC) , S
)
' Functors∞

(
C op)(yC , const

)
' (constS)(C) ' S .

Here the first step is the adjunction (66), while the second step is the ∞-Yoneda lemma (Prop. 2.38). �
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Proposition 2.41 (Topos is accessibly lex reflective in presheaves over site [Lu09a, 6.1.0.6]). Let H be an ∞-topos
(Def. 2.30).
(i) Then there exists an ∞-site for H, namely a small C ∈ Categories∞ equipped with a pair of adjoint ∞-functors
(Def. 2.24) between H and PreSheaves∞(C ) (Notation 2.35):

H
oo L

� � ⊥ // PreSheaves∞

(
C
)

(69)

such that (a) the right adjoint is accessible and fully faithful (Def. 2.1) and (b) the left adjoint preserves finite
limits (in addition to preserving all colimits, by Prop. 2.26).
(ii) Conversely, any such accessibly embedded lex reflective sub-∞-category of an ∞-category of ∞-presheaves is
an ∞-topos.

Definition 2.42 (Sheaf ∞-topos [Lu09a, 6.2]). An ∞-topos H (Def. 2.30) is called an ∞-category of ∞-sheaves or
of ∞-stacks, or just a sheaf topos for short, to be denoted

H ' Sheaves∞

(
C
)

(70)

if there exists a site C , namely a small C ∈ Categories∞ with a reflection (Lconst a Γ) (69) as in Prop. 2.41, such
that Lconst exhibits localization at a set{

U �
� // y(c)
covering sieves

}
⊂ t

c∈C
SubObjects

(
y(c)

)
of monomorphisms (Def. 2.59) into representable presheaves (67).

Proposition 2.43 (Base geometric morphism [Lu09a, 6.3.4.1]). Let H be an ∞-topos (Def. 2.30). There is an
essentially unique pair of adjoint ∞-functors (Def. 2.24) between H and Groupoids∞ (Def. 2.12)

H
oo Lconst

⊥
Γ

// Groupoids∞ (71)

such that the left adjoint Lconst preserves finite limits (in addition to preserving all colimits, by Prop. 2.26).

Example 2.44 (Base geometric morphism via site). Let H be an ∞-topos (Def. 2.30) and C a site (Prop. 2.41).
Then the composite of pairs of adjoint ∞-functors (Def. 2.24)

H
oo L

� � ⊥ // PreSheaves∞

(
C
) oo const

lim
 −

⊥ // Groupoids∞ (72)

of (a) the reflection into presheaves over the site (Prop. 2.41) with (b) the limit-construction on presheaves (Prop.
2.36) is such that the composite left adjoint Lconst preserves finite limits (since L does by Prop. 2.41 and const
does by Prop. 2.26 with Prop. 2.36). Hence, by the essential uniqueness of Prop. 2.43, the composite (72) is a
factorization of the base geometric morphism of H.

Bundles.

Notation 2.45 (Bundles and slicing.). Let H an ∞-topos (Def. 2.30) and X ∈H an object. We write:
(i) (X , p) ∈ H/X for objects in the slice ∞-category of H over X , corresponding to morphisms p to X in H (bundles
over X): E

p��
X

(ii) ( f ,α) ∈H/X

(
(E1, p1) , (E2, p2)

)
for morphisms in the slice ∞-category, corresponding to diagrams in H of the

form
E1

p1 ''

f // E2

p2wwX
α

08 (73)
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Proposition 2.46 (Slice ∞-topos [Lu09a, Prop. 6.3.5.1 (1)]). Let H be an ∞-topos (Def. 2.30) and X ∈H an object.
Then the slice ∞-category H/X (Notation 2.45) is also an ∞-topos.

Example 2.47 (Iterated slice ∞-topos). Let H be an ∞-topos (Def. 2.30), X ∈H and (Y, p) ∈H/X an object in the
slice, hence (Notation 2.45) a morphism Y p // X . Then H/X is itself an ∞-topos, by Prop. 2.46, and we may slice
again to obtain the iterated slice ∞-topos (

H/X
)
/(Y,p) ∈ Categories∞ . (74)

(i) an object in (74) is a diagram in H of this form:
Z

$$
-- Y

puuX

*2

(ii) a morphism in (74) is a diagram in H of this form:
(This is furthermore filled by a 3-morphism,
which we notationally suppress, for readability.)

Z1

  

--

// Z2

!!

��

Y

X ww
p

5=

iq

"*
;C

Proposition 2.48 (Hom-∞-groupoids in slices [Lu09a, Prop. 5.5.5.12]). Let H be an ∞-topos (Def. 2.30) and
B ∈H an object. Then for (X1, p1),(X2, p2)∈H/B two objects in the slice over B (Prop. 2.46) the hom-∞-groupoid
between them is given by the following homotopy fiber-product of hom-∞-groupoids of H:

H/B
(
(X1, p1) , (X2, p2)

)
' {p1} ×

H(X1,B)
H(X1,X2) (75)

hence by the ∞-groupoid given by the following Cartesian square (Notation 2.21):

H/B
(
(X1, p1) , (X2, p2)

)
��

//

(pb)

H(X1,X2)

p2◦(−)
��

∗
`p1

// H(X1,B)

Proposition 2.49 (Base change [Lu09a, HTT 6.3.5]). Let H be an ∞-topos (Def. 2.30). Then for every morphism

X
f
! Y in H there is an induced base change adjoint triple (Def. 2.24) between the corresponding slice ∞-toposes

(Prop. 2.46):

H/X

f! //

oo f ∗
⊥

f∗

⊥ //
H/Y (76)

where, in H, f! is given by postcomposition with f while f ∗ is given by pullback along f .

Example 2.50 (Bundle morphisms covering base morphisms). For H an ∞-topos (Def. 2.30), the system of all its
slice ∞-toposes (Prop. 2.46)

Hop
H/(−) // Categories∞

X 7−! H/X

(77)

related via contravariant base change (76) arranges into the “arrow ∞-topos” [Lu09a, 2.4.7.12]

Bundles(H) :=
∫

X
H/X ' H∆[1] , (78)

which, in view of Notation 2.45, may be thought of as the ∞-category of bundles in H, but now with bundle
morphisms allowed to cover non-trivial base morphisms.

Example 2.51 (Spectral bundles and tangent ∞-topos). Let H be an ∞-topos (Def. 2.30). Instead of the system (79)
of its plain slices, consider the corresponding system of stabilized slices (stabilized under the suspension/looping
adjunction on pointed objects, e.g. [Lu07, 1.4]):
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Hop
Stab(H/(−)) // Categories∞

X 7−! Stab
(
H/X

) (79)

The resulting total ∞-category

SpectralBundles(H) :=
∫

X
Stab

(
H/X

)
, (80)

is that of bundles of spectra in H (parametrized spectrum objects). Remarkably, this is itself an ∞-topos [Joy08a,
35.5][Lu17, 6.1.1.11], also called the tangent ∞-topos T H of H (e.g. [Lu07][BM19]).

Example 2.52 (Base change along terminal morphism). Let H be an ∞-topos (Def. 2.30) and X ∈ H any object.
With H'H/∗ regarded as its own slice (Prop. 2.46) over the terminal object, base change (Prop. 2.49) along the
terminal morphism X ! ∗ is of the form

H/X

dom //

oo X×(−)
⊥

⊥ //
H (81)

where (a) the top functor sends a morphism Y ! X to its domain object Y , and (b) the middle functor is Cartesian
product with X . In particular, it follows that:
(i) The base geometric morphism (Prop. 2.24) of the slice ∞-topos H/X (Prop. 2.46) is given by(

∆ a Γ
)
'
(
(X ! ∗)∗ a (X ! ∗)∗

)
(82)

(since (X ! ∗)∗ is a left adjoint that also preserves finite limits, as it is also a right adjoint, Prop. 2.26).
(ii) The forgetful functor dom : H/X !H is a left adjoint (X ! ∗)! and hence preserves all colimits (Prop. 2.26).

While dom (81) does not preserve all limits, it does preserve fiber products:

Proposition 2.53 (Fiber products in slice ∞-toposes). Let H be an ∞-topos (Def. 2.30), B ∈ H, H/B the slice

∞-topos (Prop. 2.46) and H/B
dom // X its forgetful functor (81) from Example 2.52.

(i) Given a cospan (Y,φY ) // (X ,φX) oo (Z,φZ) in H/B, the underlying object of its fiber product is the fiber
product of its underlying objects:

dom
(
(Y,φY ) ×

(X ,φX )
(Z,φZ)

)
' Y ×

X
Z . (83)

(ii) In particular, since (X , idX) is the terminal object in H/X , so that the plain product in the slice is

(Y,φY )× (Z,φZ) = (Y,φY ) ×
(X ,idX )

(Z,φZ) ,

we have the that product in H/X is given by the fiber product over X in H:

dom
(
(Y,φY )× (Z,φZ)

)
' Y ×

X
Z .

Proof. Generally, limits in H/X are given by limits in H over the underlying co-cone diagram. Specifically: for
Y : I // H we have dom

(
lim
 −

Y•
)
' lim
 −

(
Y/X

)
• . With this, the claim follows from the fact that the canonical

inclusion of diagram categories{
y // b oo z

} � � //

{ t
��ww ''y // b oo z

}
is an initial functor (i.e., under (−)op it is a final functor). �

Proposition 2.54 (Terminal right base change of bare ∞-groupoids). In the base ∞-topos H = Groupoids∞ (35),
the right base change along the terminal morphism (Example 2.52) of an object X ∈ Groupoids∞ is given by the
hom-∞-groupoid out of X, regarded as the terminal object in the slice:

(X ! ∗)∗ ' H/X
(
X ,−

)
:
(
Groupoids∞

)
/X

// Groupoids∞ .
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Proof. We have the following chain of natural equivalences:

Groupoids∞

(
A,(Groupoids∞)/X(X ,B)

)
' (Groupoids∞)/X

(
∆(A)×X X ,B

)
' (Groupoids∞)/X

(
∆(A),B

)
' (Groupoids∞)/X

(
(X ! ∗)∗(A),B

)
.

(84)

Here the first step observes that the slice (Groupoids∞)/X is itself an ∞-topos by Prop. 2.46, so that the tensoring
equivalence of Prop. 2.34 applies. The second step uses the fact that X is regarded as the terminal object in its
own slice, so that forming Cartesian product with it is equivalently the identity operation. The last step observes
that for the slice ∞-topos ∆ ' (X ! ∗)∗ (82) by Example 2.52. In summary, the total equivalence of (84) is the
hom-equivalence that characterizes H/X(X ,−) as a right adjoint to (X ! ∗)∗. �

Proposition 2.55 (Base change along effective epi is conservative [NSS12a, 3.15] ). Let H be an ∞-topos (Def.
2.30). For Y // // X an effective epimorphism (Def. 2.63) in H, the induced base change (Prop. 2.49)

H/X
i∗ // H/Y

is a conservative ∞-functor, meaning that a morphism f ∈H/X is an equivalence if its base change i∗( f ) in H/Y is
an equivalence.

Proposition 2.56 (Colimits of classifying maps are classifying maps of colimits). Let H be an ∞-topos (Def. 2.30),
I a small ∞-category, X• : I ! H a diagram and (` E)• : X• ! constObjectsκ

a transformation to the diagram
constant on the object classifier (55), thus classifying a diagram E• : I !H of bundles over X•. Then the colimit
of (` E)• formed in the slice H/Objectsκ

(Prop. 2.46) is the colimit of X• equipped with the classifying map for the
colimit of E•:

lim
−!

(` E)• ' `
(
lim
−!

E•
)
.

Proof. Since underlying the colimit lim
−!

(` E)• in the slice ∞-
topos H/Objectsκ

is the colimit lim
−!

X• in H (by Example 2.52) we
are dealing with a situation as shown in the diagram on the right
(where a simplicial diagram shape is shown just for definiteness
of illustration). We need to demonstrate that the front square in
this diagram is Cartesian. Observe that

(a) the vertical squares over each `Ei are Cartesian by assump-
tion, whence

(b) also the solid vertical squares over each Xi // X j are
Cartesian, by the pasting law (Prop. 2.23).

This means that the assumption of Prop. 2.32 is satisfied for the
left part of the diagram (regarded as a transformation of diagrams
from top to bottom) implying that the dashed square is Cartesian.
This implies, together with (a), that the front square is Cartesian,
again the pasting law (Prop. 2.23). �

��

DD

��

DD

��E1

��

""

��

CC

��
E0

��

++

��

Ôbjectsκ

��

lim
−!

E•

��

22

X1

`E1

""

��

DD

��
X0

`E0 ++

��

Objectsκ

lim
−!

X•
lim
−!

(`E•)

22

n-Truncation.

Definition 2.57 (n-truncated objects [Lu09a, Def. 5.5.6.1]). Let n ∈ {−2,−1,0,1,2, · · ·}.
(i) An ∞-groupoid is called n-truncated for n ≥ 0 if all its homotopy groups of degree > n are trivial. It is called
(−1)-truncated if it is either empty or contractible, and (-2)-truncated if it is (non-empty and) contractible.
(ii) Let C be an ∞-category. Then an object X ∈ C is n-truncated if for all objects U ∈ C the hom-∞-groupoid
C (U,X) is n-truncated, in the above sense.

Definition 2.58 (n-truncated morphisms [Lu09a, Def. 5.5.6.8]). Let n ∈ {−2,−1,0,1,2, · · ·}.
(i) A morphism of ∞-groupoids is called n-truncated if all its homotopy fibers are n-truncated ∞-groupoids accord-
ing to Def. 2.57.
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(ii) Let C be an ∞-category. A morphism X
f
−! Y in C is called n-truncated if for all objects U ∈ C the induced

morphism of hom-∞-groupoids C (U,X) C (U, f ) // C (U,Y ) is n-truncated in the above sense.

Definition 2.59 (Monomorphisms). A (-1)-truncated morphism (Def. 2.58) is also called a monomorphism, to be
denoted

X �
� // Y . (85)

Proposition 2.60 (Monomorphisms are preserved by pushout [Re19, p. 21]). Let H be an ∞-topos (Def. 2.30).
Then the class of monomorphisms in H (Def. 2.59) is closed under (i) pullback and (ii) composition.

Definition 2.61 (Poset of subobjects). Let H be an ∞-topos and X ∈H any object. Then the poset of subobjects of
X is the sub-∞-category (Def. 2.62) of (−1)-truncated objects of the slice over X :

SubObjects(X) �
� // H/X (86)

whose objects are equivalently the monomorphisms (Def. 2.59) U ↪! X .

Proposition 2.62 (n-Trucation modality [Lu09a, 5.5.6.18]). If H is an ∞-topos (Def. 2.30), for all n∈{−1,0,1,2, · · ·},
its full sub-∞-category (Def. 2.1) of n-truncated objects (Def. 2.57) is reflective, in that the inclusion functor has a
left adjoint (Def. 2.24):

H
τn

⊥
//

oo
in

? _ Hn

∞-topos sub-∞-category
of n-truncated objects

(87)

We write for the induced n-truncation modality (20):(
τττn := in ◦ τn

“n-truncated”

)
: H−!H . (88)

Definition 2.63 (Effective epimorphisms [Lu09a, Cor. 6.2.3.5]). Let H be an ∞-topos. A morphism in H is called
an effective epimorphism, to be denoted

Y
f // // Z (89)

if, when regarded as an object of the slice over X (Prop. 2.46), its (−1)-truncation (Prop. 2.62) is the terminal
object

τ(−1)( f ) ' ∗ ∈H/X .

We write
EffectiveEpimorphisms(H) ⊂ H(0!1) ∈ Categories∞ (90)

for the full sub-∞-category (Def. 2.1) of the arrow-category of H on those that are effective epimorphisms.

Definition 2.64 (n-Connected morphisms [Lu09a, Prop. 6.5.1.12]). Let H be an ∞-topos (Def. 2.30) and n ∈

{−1,0,1,2 · · ·}. Then a morphism X
f // Y in H is called n-connected if, regarded as an object in the slice over

X (Prop. 2.46), its n-truncation (Def. 2.62) is the terminal object:

Y
f // X is n-truncated ⇔ τn( f ) ' ∗ ∈H/X .

Hence the (−1)-connected morphisms are equivalently the effective epimorphisms (Def. 2.63).

Lemma 2.65 (Effective epimorphisms are preserved by pullback [Lu09a, 6.2.3.15]). Let H be an ∞-topos (Def.
2.30). Then the class of effective epimorphisms in H (Def. 2.63) is closed under (i) pullback and (ii) composition.
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n-Image factorization.

Proposition 2.66 (Connected/truncated factorization system [Lu09a, Ex. 5.2.8.16][Re10, Prop. 5.8]). Let H be an
∞-topos. Then, for all n ∈ {−1,0,1,2, · · ·}, the pair of classes of n-connected/n-truncated morphisms (Def. 2.64,
Def. 2.58) forms an orthogonal factorization system:
(i) every morphism f in H factors essentially uniquely as

X
n-connected ))

f // Y

imn( f )
n-truncated

55 (91)

(ii) every commuting square as follows has an essentially unique dashed lift:

X //

n-connected ��

A
n-truncated��

Y

66

// B
(92)

Example 2.67 (Epi/mono factorization). For n = −1, the connected/truncated factorization system (Prop. 2.66)
has as left class the effective epimorphisms (Def. 2.63) and as right class the monomorphisms (Def. 2.59). Hence,
with the notation from (89) and (85):
(i) the (-1)-image factorization (91) reads: X

** **

f // Y

im−1( f )
' �

44 (93)

(ii) the lifting property (92) for n =−1 reads:
X //

����

A� _
��

Y

77

// B
(94)

Groupoids and Stacks.

Definition 2.68 (Groupoids internal to an ∞-topos [Lu09a, 6.1.2.7]). Let H be an ∞-topos (Def. 2.30).
(i) A groupoid in H is a simplicial diagram

X• : ∆op // H (95)

which satisfies the groupoidal Segal condition: For all n ∈ N and for all partitions of the set of n+1 elements by
two subsets that share a unique element, the corresponding image under X• is a Cartesian square (Notation 2.21):

{0,1, · · · ,n}

S1
' �

55

S2
7 W

jj

∗
jj 44(po)

X•7−!

Xn
uu ))

(pb)X|S1|−1

))

X|S2|−1

uuX0

(96)

(ii) We write Groupoids(H) �
� // H(∆op) ∈ Categories∞ (97)

for the full sub-∞-category of that of simplicial diagrams in H on those that are groupoids.

Example 2.69 (Nerves). Let H be an ∞-topos (Def. 2.30) and X
f //X a morphism in H. Its nerve is the

simplicial diagram of its iterated homotopy fiber products:

Nerve•( f ) : ∆op // H
[n] 7−! X×X X×X · · ·×X X︸ ︷︷ ︸

n factors

(98)

with face maps the projections and degeneracy maps the diagonals. This is evidently a groupoid object according
to Def. 2.68: Nerve•( f ) ∈ Groupoids(H) .
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Proposition 2.70 (Groupoids equivalent to stacks with atlases [Lu09a, 6.2.3.5]).
Let H be an ∞-topos (Def. 2.30). Then the ∞-functor sending
X• ∈ Groupoids(H) (Def. 2.68) to the X0-component of its col-
imiting cocone

(i) lands in effective epimorphisms (90) and
(ii) constitutes an equivalence of ∞-categories whose inverse

is given by the construction of nerves (Example 2.69):
Groupoids(H)

' // EffectiveEpimorphisms(H)

X• 7−!
(
X0� lim

−!
X•
)

Nerve•(a)  − [
(
X

a
� X

)
(99)

��

OO

��

OO

�� ��

OO

��

OO

��
X×X X '

pr1

��

OO

∆ pr2

��

X1

s
��

OO

e t
��

“groupoid”

X0

a
����

X0

����
“atlas”

X ' lim
−!

X• “stack”

(100)

Remark 2.71 (Internal groupoids with prescribed properties). Often one considers X• ∈ Groupoids(H) (Def.
2.68) whose simplicial component diagram (95) is inside a chosen sub-∞-category of H. Key examples are étale
groupoids (Def. 3.35 below) and V -étale groupoids (Remark 4.15 below).

Remark 2.72 (Morita morphisms of groupoids). A morphism between stacks X := lim
−!

X• underlying groupoids
X• (according to Prop. 2.70) without (i.e., disregarding) the corresponding atlas is also known as a Morita mor-
phism (in particular, a Morita equivalence if it is an equivalence), or a Hilsum-Skandalis morphism [HS87][Pr89],
or a groupoid bibundle [Bl07][Nu13, Prop. 2.2.34] between the corresponding groupoids:

Groupoids(H)
' // EffectiveEpimorphisms(H)

codom // H

groupoid X• 7−! (X0�X ) 7−! X “stack”

f morphism of underlying stacks =
“Morita morphism” of groupoids��

groupoid Y• 7−! (Y0� Y ) 7−! Y “stack”

Hence whether or not there is a conceptual distinction between “geometric groupoids” and “stacks” depends on
whether morphisms of groupoids are taken to be their plain morphisms or their Morita morphisms. In practice, one
is typically interested in the latter case. Indeed, the groupoid atlas of a stack, whose preservation restricts Morita
morphisms to plain morphisms of groupoids, by Prop. 2.70, is, in practice, typically required to exist with a certain
property, but not required to be preserved by morphisms (this is so notably for V -étale groupoids, Remark 4.15
below). In particular, the SmoothGroupoids∞ of Example 3.18 and the JetsOfSmoothGroupoids∞ of Example 3.24
below are ∞-groupoids with Morita morphisms understood, hence could also be called (jets of ) smooth ∞-stacks.

Proposition 2.73 (Equifibered morphisms of groupoids). Let H be an ∞-topos (Def. 2.30) and X•,Y• ∈ Groupoids(H)
(Def. 2.68). Then, under the equivalence (99) between groupoids and their stacks with atlases (Prop. 2.70), we
have that equifibered morphisms of groupoids correspond to Cartesian squares between their atlases:

X•
f• +3 Y• such that ∀

[n1]
φ
![n2]

Xn1

fn1 //

Xφ ��
(pb)

Yn1

Yφ��
Xn2 fn2

// Yn2

⇔
X0

aX ����

f0 //

(pb)

Y0
aY����

X
lim
−!

f•
// Y

Proof. From right to left this follows by the pasting law (Prop. 2.23), while from left to right this is Prop. 2.32. �

2.2 Galois theory

We discuss here the internal formulation in ∞-toposes of the theory of groups, group actions, and fiber bundles,
following [NSS12a][SSS12] (see [FSS13a] for exposition). Externally, these concepts are known as grouplike
A∞-algebras or equivalently: grouplike E1-algebras (here: in ∞-stacks) and as their A∞-modules etc., and are
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traditionally presented by simplicial techniques [May72][Lu17]. But internally the theory becomes finitary and
elementary, with all concepts emerging naturally from pastings of a few Cartesian squares. Accordingly, much of
the following constructions may readily be expressed fully formally in homotopy type theory [BvDR18] (see p.
5). Thus, the following elegant characterizations of
◦ groups (Prop. 2.74),
◦ group actions (Prop. 2.79),
◦ principal bundles (Prop. 2.88),
◦ fiber bundles (Prop. 2.92),

in an ∞-topos H may be taken to be the definition of these notions for all purposes of internal constructions.

Groups. The following characterization of group ∞-stacks (Prop. 2.74) is the time-honored May recognition
theorem [May72] generalized from Groupoids∞ to general ∞-toposes [Lu09a, 7.2.2.11][Lu17, 6.2.6.15]:

Proposition 2.74 (Groups [NSS12a, Thm. 2.19]). Let H be an ∞-topos (Def. 2.30). Then the operation of sending
an ∞-group G to the homotopy quotient of its action on a point constitutes an equivalence of ∞-categories:

Groups
(
H
) oo Ω

B
' // H

∗/
≥1

G � // ∗�G

(101)

between the ∞-category of ∞-group objects and the ∞-category of pointed and connected objects in H. The inverse
equivalence is given by forming the loop space object

G'ΩBG

��

//

(pb)

∗
��

∗ // BG

(102)

Example 2.75 (Point in delooping is an effective epi). For G ∈ Groups(H), the essentially unique morphism that
exhibits its delooping as a pointed object (Prop. 2.74)

∗ // // BG , (103)
is an effective epimorphism (Def. 2.62). Thus, Prop. 2.70 says here that
(i) groups in H are, equivalently, the groupoids in H (Def. 2.68) that admit an atlas by the point and,
(ii) with (102), we have

BG ' lim
−!

G×• ∈ H . (104)

Example 2.76 (Neutral element). Let H be an ∞-topos. Given a group G ∈
Groups(H) in the form of a pointed connected object ∗! BG, according to
Prop. 2.74, its neutral element ∗ e

−! G is the diagonal morphism into the
defining homotopy fiber product (102), hence the canonical morphism induced
by the universal property of the homotopy fiber product from the equivalence
with itself of the point inclusion into BG (103).

∗
e��

G
ss ++(pb)∗

++
∗

ssBG

Example 2.77 (Group division/shear map). Let H be an ∞-topos. Given a group G ∈ Groups(H) in the form of a
pointed connected object ∗−! BG, according to Prop. 2.74, the group division operation

G×G
(−)·(−)−1

// G
is exhibited by the universal morphism shown dashed in the following diagram:

G×G

�� ��

(−)·(−)−1
// G

�� ��
G

��

// ∗

��
∗ // BG

G×G

�� ��

(−)·(−)−1

,, G

�� ��
G

  
,,

G

~~
,,∗

��

∗

��
∗

,, BG

�� qy
�

(105)
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On the left, we are showing this as part of a morphism of Čech nerve augmented simplicial diagrams. On the right,
the situation is shown in more detail: Here the right and the two bottom squares are all the looping relation (102),
while the left square exhibits the plain product of G with itself. With this, the universal property of the right square
implies the essentially unique dashed morphism making the total diagram homotopy-commute. Notice:
(i) The two top squares are also Cartesian: This follows from the pasting law (Prop. 2.23) using, for the top front
square, that the left and right and the bottom rear squares are Cartesian; and similarly for the top rear square.
(ii) The total homotopy filling the top and the right faces in (105) is, by commutativity, equivalent to the total
homotopy filling the left and the bottom faces. But, in performing the composition this way, the direction of one of
the two bottom homotopies gets reversed. This is why this construction gives the division map (−) · (−)−1 (shear
map) instead of the plain group product.

Proposition 2.78 (Mayer-Vietoris sequence [Sc13, Prop. 3.6.142]). Let H be an ∞-topos (Def. 2.30), G ∈
Groups(H) (Prop. 2.74) and (X , f ),(Y,g) ∈ H/G two objects in the slice (Prop. 2.46) over the underlying ob-
ject of G. Then their homotopy fiber product

X×
G

Y

prX ��

prY //

(pb)

Y
g
��

X
f

// G

is equivalently exhibited by the following Mayer-Vietoris homotopy fiber sequence

X×G Y
(prX ,prY ) ��

(pb)

// ∗

��
X×Y

( f ,g) //

f ·g−1

44G×G
(−)·(−)−1

// G ,

(106)

where the morphism on the bottom right is the group division map (105).

Group actions.

Proposition 2.79 (Group actions [NSS12a, 4.1]). Let H an ∞-topos and G ∈ Groups(H) (Prop. 2.74).
(i) An action (X ,ρ) of G is an object X ∈H and homotopy fiber sequence in H of the form

X
fib(ρ) // X�G

ρ��
BG ,

(107)

where BG is the delooping of G (2.74).
(ii) The object X�G appearing in (107) is, equivalently, the homotopy quotient of the action of G on V :

X�G ' lim
−!

(
··· X×G×G

//oo //oo // X×G //oo // X
)
. (108)

(iii) Hence the ∞-category of G-actions is, equivalently, the slice ∞-topos (Prop. 2.46) of H over BG:

GActions(H) ' H/BG ∈ Categories∞ . (109)

We record the following immediate but important aspect of this characterization:

Lemma 2.80 (Homotopy quotient maps are effective epimorphisms). Let H be an ∞-topos, G∈Groups(H) (Prop.
2.74), and (X ,ρ) ∈GActions(H) (Prop. 2.79). Then the quotient morphism from X to its homotopy quotient (108)
is an effective epimorphism (Def. 2.63):

X
fib(ρ) // // X�G .
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Proof. By (107) in Prop. 2.79, the quotient map sits in a homotopy pullback square of the form

X

��

fib(ρ) //

(pb)

X�G
ρ��

∗ // BG
The bottom morphism is an effective epimorphism (Example 2.75). Since these are preserved by pullback (Lemma
2.65), the claim follows. �

Example 2.81 (Left multiplication action). Let H be an ∞-topos (Def. 2.30) and G ∈ Groups(H) (Prop. 2.74).
The defining looping relation (102) exhibits, by comparison with (107), an action of G on itself:

G
fib(ρ`) // ∗

ρ`��
BG

This is the left multiplication action with G�G ' ∗ .

Example 2.82 (Adjoint action). Let H be an ∞-topos (Def. 2.30) and G ∈ Groups(H) (Prop. 2.74). Then the free
loop space object L BG of the delooping BG (101), defined by the Cartesian square

L BG //

ρad
��

(pb)

BG
∆
��

BG
∆

// BG×BG
sits in a homotopy fiber sequence of the form

G
fib(ρad) // L BG

ρad��
BG

By comparison with (107), this exhibits an action of G on itself. This is the adjoint action with G�adG ' L BG.

Definition 2.83 (Equivariant maps). By the functoriality/universality of the homotopy fiber construction in (107)
and using the equivalence (109), we have the ∞-functor that assigns the underlying objects of the G-actions in Def.
2.79:

GActions(H)'H/BG

fib // H . (110)

With two G-actions (Xi,ρi) given, we say that a morphism X1! X2 ∈H between their underlying objects is equiv-
ariant if it lifts through this functor, hence if it is the image of a morphism (X1,ρ1)! (X2,ρ2) ∈ GActions(H).

Example 2.84 (Group division is equivariant under diagonal left and adjoint action). Let H be an ∞-topos (Def.
2.30) and G ∈ Groups(H) (Prop. 2.74). Then the group division operation (Example 2.77) is equivariant (Def.
2.83) with respect to the diagonal left multiplication action ρ` (Example 2.81) on its domain and the adjoint action
ρad (Example 2.82) on its codomain:

(G,ρ`)× (G,ρ`)
(−)·(−)−1

// (G,ρad) ∈ GActions(H) . (111)

Proof. Observe the following pasting of Cartesian squares:

G×G
(−)·(−)−1

//

(−)−1·(−)◦σ
��

G //

��

∗

��
G

��

// L BG //

��

BG

∆

��
∗ // BG ∆ // BG×BG

The middle horizontal composite, regarded as a morphism in the slice over BG and hence as a morphism of G-
actions (107), gives (111). �
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Proposition 2.85 (Restricted and induced group actions). Let H be an ∞-topos. Then, for φ : H!G a morphism in
Groups(H) (Prop. 2.74), there is a triple of adjoint ∞-functors (Def. 2.24) between the corresponding ∞-categories
of group actions (Prop. 2.79)

HActions(H)

“left-induced”
Bφ! //

oo Bφ∗
⊥

⊥
Bφ∗

“right-induced”

//
GActions(H) (112)

such that Bφ ∗ preserves the object being acted on (“restricted action”).

Proof. By (109) in Prop. 2.79, an adjoint triple (Def. 2.24) of the form (112) is given by base change (Prop.
2.49) of homotopy quotients (108) along the delooped morphism Bφ (Prop. 2.74). This means that Bφ ∗ is given
by sending the homotopy fiber sequence (107) corresponding to a G-action to the following homotopy pullback
(Prop. 2.74):

X
fib(φ∗ρ)

//

fib(φ)

,,X�H

(pb)φ∗ρ
��

// X�G

ρ

��
BH

Bφ

// BG

(113)

That this preserves the object X being acted on, as indicated, follows by the pasting law (Prop. 2.23). �

Definition 2.86 (Automorphism group). Let H be an ∞-topos and F ∈H an object. Then the automorphism group
Aut(F) ∈ Groups(H) of F is the looping (Prop. 2.74) of the (-1)-image (91) of the classifying map (55) of F :

∗ (-1)-conn. // //

`F

22BAut(F) �
� (-1)-trunc. // Objectsκ .

The canonical action of this group (Prop. 2.79) on V is exhibited, via (107), by the left square of the following
pasting composite of Cartesian squares:

F

��

fib(ρAut) //

(pb)

F�Aut(F) //

ρAut
��

(pb)

Ôbjectsκ

��
∗

`F

33
// // BAut(F) �

� / Objectsκ ,

(114)

where we use the pasting law (Prop. 2.23) to identify F as the homotopy fiber of ρAut.

Proposition 2.87 (Automorphism group is universal). Let H be an ∞-topos, G ∈ Groups(H) (Prop. 2.74), and
(X ,ρ) ∈GActions(H) (Def. 2.79). Then there is a group homomorphism from G to the automorphism group (Def.
2.86)

G
iρ // Aut(X)

such that the action ρ is the restricted action (Prop. 2.85) along iρ of the canonical automorphism action (114),
i.e., such that there is a Cartesian square of this form:

X�G //

(pb)ρ

��

X�Aut(X)

ρAut

��
BG

Biρ
// BAut(X)

31



Proof. Let κ be a regular cardinal such that X is κ-small, and consider the following solid diagram of classifying
maps (55) for ρ , ρAut and for X :

X //

$$

��

X�Aut(X)

((

��

X�G

��

//

66

Ôbjectsκ

��

∗
(-1)-connected

%%

// BAut(X) � v
(-1)-truncated))

BG
Biρ

66

`ρ

// Objectsκ

Here the bottom square homotopy-commutes by the essential uniqueness of the classifying map ` X (55). Hence
the dashed lift exists essentially uniquely (92), by the connected/truncated factorization system (Prop. 2.66). �

Principal bundles.

Proposition 2.88 (Principal bundles [NSS12a, Thm. 3.17]). Let H be an ∞-topos, X ∈ H, and G ∈ Groups(H)
(Prop. 2.74). Then G-principal ∞-bundles P!X over X are, equivalently, given by classifying maps `P : X!BG.
Forming their homotopy fibers

P
fib(`P)

��
X

`P
// BG

constitutes an equivalence of ∞-groupoids:

GBundlesX(H) oo
fib
' H(X ,BG) .

P 7−! ` P
(115)

Remark 2.89 (Principal base spaces are homotopy quotients). Comparison of the abstract characterization of (i)
group actions (Prop. 2.79) and (ii) principal bundles (Prop. 2.88), reveals that these are about one and the same
abstract concept, just viewed from two different perspectives: In an ∞-topos, every G-principal bundle is a G-action
whose homotopy quotient is the given base space; and, conversely, every G-action is that of a principal bundle over
its homotopy quotient:

principal
G-bundle P

y

G

��

G-action

base
space X ' P�G homotopy

quotient

Notice (see [NSS12a, 3.1] for exposition) that it is the higher geometry inside an ∞-topos that makes this work.

Definition 2.90 (Atiyah groupoid). Let H be an ∞-topos (Def. 2.30), X ∈ H, G ∈ Groups(H) (Prop. 2.74), and
P ∈ GBundlesX (Prop. 2.88). Then the Atiyah groupoid of P is the groupoid At•(P) ∈ Groupoids(H) (Def. 2.68)
whose corresponding stack with atlas (via Prop. 3.36) is the (-1)-image projection (Example 2.67) of the bundle’s
classifying map ` P (115):

X // //

`P

44A t(P) �
� // BG . (116)

Fiber bundles.

Definition 2.91 (Fiber bundle). Let H be an ∞-topos (Def. 2.30).
(i) morphism Y

p
−! X in H is a fiber bundle with typical fiber F ∈ H if there exists an effective epimorphism

U i // // X (Def. 2.63) and a Cartesian square (Notation 2.21) of the form

U×F

��

//

(pb)

Y
p
��

U
i

// // X
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(ii) We write
FFiberBundlesX(H) ⊂ Core

(
H/X

)
∈ Groupoids∞

for the full ∞-groupoid of the core (24) of the slice H/X over X (Prop. 2.46) on the F-fiber bundles.

Proposition 2.92 (Classification of fiber bundles [NSS12a, Prop. 4.10]). Let H be an ∞-topos (Def. 2.30) and
X ,F ∈H. Then fiber bundles over X (Def. 2.91) with typical fiber F are equivalent to morphisms X −! BAut(F)
from X to the delooping (Prop. 2.74) of the automorphism group (Def. 2.86) of F:

FFiberBundlesX(H)
' // H

(
X , BAut(F)

)
E 7−! ` E

(117)

Proof. Let κ be a regular cardinal such that F is κ-small. Then, by assumption, we have the following solid
diagram of classifying maps (55):

U×F

��

pr2 //

))

F�Aut(F)

��

**
E

��

// Ôbjectsκ

��

U //

(-1)-connected
)) ))

BAut(F) � x
(-1)-truncated ++

X //
`E 44

Objectsκ

Now the (-1)-connected/(-1)-truncated factorization system (Prop. 2.66) implies that the dashed morphism exists
essentially uniquely (92).

It just remains to see that this assignment is independent of the choice of U : For U ′ // //X any other effective
epimorphism with (` E)′ the associated classifying map as above, observe that the fiber product U×X U ′ // //X is
again an effective epimorphism, since the class of effective epimorphisms is closed under pullbacks as well as under
composition (Lemma 2.65). Therefore ` E and (` E)′ are jointly lifts in a diagram as above but with U ×X U ′ in
the top left. Hence, by the essential uniqueness of lifts in the connected/truncated orthogonal factorization system,
they are equivalent, (` E)' (` E)′, in an essentially unique way. �

Notation 2.93 (Associated bundles). We say that
(i) the morphism ` E in (117) is the classifying map of E and
(ii) that E is associated to the Aut(F)-principal bundle which is classified by ` E according to Prop. 2.88.

Remark 2.94 (Twisted cohomology in slice ∞-toposes). Prop. 2.92 implies (together with the universal property
of the pullback) that sections σ of A-fiber bundles E over some X are, equivalently, lifts c of the classifying map
c := ` E (117) through ρAut (114):

A�Aut(A)

ρAut

��
X

τ := `E
classifying map

//

lift of
classifying map

c
77

BAut(A)

'

associated bundle

E

p

��

//

(pb)

A�Aut(A)

ρAut

��
X

section
σ

??

X
τ

// BAut(A)

(118)

(i) If A is regarded here as a coefficient object for A-cohomology (22), then such a section σ is a locally A-valued
cocycle, which is “twisted” over X according to the classifying map τ . Hence such a σ is a cocycle in (non-
abelian) τ-twisted cohomology [NSS12a, 4.2]. But the left hand side of (118) is, equivalently, a morphism (73) in
the slice ∞-topos (Prop. 2.46) H/BAut(A). It follows that twisted cohomology is the intrinsic cohomology (22) of
slice ∞-toposes:
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τ-twisted
cohomology

Hτ
(
X , A

)
:= π0 H/BAut(A)

(
(X ,τ) , (A�Aut(A),ρAut)

)
'


X

τ
  

cocycle
c // A�Aut(A)

ρAutyy
BAut(A)

px

/
∼

(119)

(ii) By the universality of Aut(A) (Prop. 2.87), this holds for slicing over any pointed connected object BG (101).
(iii) If the base object is not connected, the intrinsic cohomology of its slice may be thought of as a mixture of
twisted and parametrized cohomology. We encounter an example of this in Def. 5.11 below.

Remark 2.95 (Twisted cohomology as global sections). The ∞-groupoid of sections of the associated bundle

E := τ∗(A�G)
p // X in (118), is equivalently its image ΓX(E) under the base geometric morphism (Prop. 2.43)

H/X
oo ∆X

ΓX

⊥ // Groupoids∞

of the slice ∞-topos HX (Prop. 2.46), in that (by Prop. 2.34) ΓX(E) ' HX
(
idX , p

)
. Hence the τ-twisted coho-

mology (119) of X is equivalently the set of connected components of the ∞-groupoid of global sections:
Hτ
(
X ; A

)
' π0 ΓX

(
τ
∗(A�G)

)
. (120)

Remark 2.96 (Twisted abelian cohomology in tangent ∞-toposes). Let H be an ∞-topos (Def. 2.30).
(i) Notice that the intrinsic cohomology (22) of Bundles(H) (Example 2.50) is still twisted cohomology as in
Remark 2.94, just up to a change in perspective: now the twisting τ is encoded not in the domain object, but in the
cocycles on these (a morphism of the form idX // ρAut in Bundles(H) is still manifestly given by the diagrams in
(118)).
(ii) Therefore, similarly, the intrinsic cohomology (22) in the tangent ∞-topos SpectralBundles(H) (Example 2.51)
is twisted cohomology with local coefficients being spectra [Sc13, 4.1][ABGHR14][GS19a][GS19b], hence is
twisted abelian cohomology.
(iii) In the case that H = Groupoids∞, the base tangent ∞-topos

T Groupoids∞ = SpectralBundles
(
Groupoids∞

)
(121)

is the topic of traditional parametrized stable homotopy theory [Jam95][MSi06][ABGHR14, 2][BM19] and its
intrinsic cohomology theory (22) is traditional twisted generalized cohomology [Do05][ABG10].

Fixed points and fixed loci.

Definition 2.97 (Fixed points and fixed loci). Let H be an ∞-topos, G ∈ Groups(H) (Prop. 2.74) and (X ,ρ) ∈
GActions(H) (Prop. 2.79).

(i) A fixed point of (X ,ρ) is an element
∗ x // X induced from a section x�G of ρ in

(107), as shown on the right (where we are using
the pasting law, Prop. 2.23, and Example 2.22 to
identify the top square as Cartesian).

∗ //

x
��

(pb)

BG
x�G
��

X fib(ρ) //

��
(pb)

X�G
ρ
��

∗ // BG ,

(122)

(ii) The G-fixed locus of (X ,ρ) is the object

XG := B(G! ∗)∗
(
(X ,ρ)

)
∈ 1Action(H) ' H , (123)

that is right induced (Prop. 2.85) along the unique morphism to the trivial group.
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Example 2.98 (Global points of fixed loci are homotopy fixed points). The global points of a homotopy-fixed locus
XG (123) are indeed, equivalently, the fixed points (122). By the adjunction (112), we have the hom-equivalence
(47) (

∗ // XG = B(G! 1)∗(X ,ρ)
)
↔

(
B(G! 1)∗(∗) // (X ,ρ)

)
and, by Prop. 2.79, the latter morphisms are equivalent to homotopy-commuting diagrams of the form

BG

B(G!1)∗(∗)
'
&&

x�G // X�G

ρxx
BG

This is just the type of diagram characterizing homotopy fixed points. as seen vertically on the right in (122).

Example 2.99 (Fixed loci in ∞-groupoids). Consider H := Groupoids∞, G ∈ Groups(Groupoids∞) and (X ,ρ) ∈
GActions

(
Groupoids∞

)
. Then the G-fixed locus (Def. 2.97) is given (due to Prop. 2.54) by

XG ' H/∗�G
(
∗�G , X�G

)
∈ Groupoids∞ .

Definition 2.100 (Pointed-automorphism group). Let H be an ∞-topos and ∗ x // X ∈ H∆1
a pointed object in

H. Then its pointed-automorphism group Aut∗(X) ∈ Groups(H) is its automorphism group, according to Def.
2.86, formed in the arrow ∞-topos H∆1

. This is characterized by a diagram in H of the form

∗
!!

//

��

∗�Aut∗(X)

))
X //

��

X �Aut∗(X)

ρAut∗

��

∗
!!

// BAut∗(X)

∗ // BAut∗(X)

(124)

where the front, rear, top and bottom squares are Cartesian: the bottom face trivially, the front face exhibiting the
action on X , the top face exhibiting the given base point as a homotopy fixed point (Def. 2.97) and the rear square
exhibiting the trivial action on that point.

Definition 2.101 (Group-automorphism group). Let H be an ∞-topos and G ∈ Groups(H) (Prop. 2.74). Then
the group of group-automorphisms of G is the group of pointed-automorphisms (Def. 2.100) of its delooping BG
(101):

AutGrp(G) := Aut∗(BG) ∈ Groups(H) .

Proposition 2.102 (Canonical action of group-automorphism group). Let H be an ∞-topos and G ∈ Groups(H)
(Prop. 2.74). The group-automorphism group of G (Def. 2.101) has a canonical action (Prop. 2.79)

(G,ρAutGrp) ∈ AutGrp(G)Actions(H)

on the underlying object G ∈H, which is such that

(i) The neutral element ∗ e // G (Example 2.76) is a fixed point of the action (Def. 2.97).

(ii) Together with the defining action on the delooping BG of G (101), the looping equivalence (102) G ' // ΩBG
is AutGrp(G)-equivariant (Def. 2.83).

Proof. First consider item (ii): Write G � AutGrp(G) for the homotopy fiber product in the following pullback
square

G�AutGrp(G) //

��
(pb)

∗�AutGrp(G)

��
∗�AutGrp(G) // (BG)�AutGrp(G)

(125)
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We need to show that this really is the homotopy quotient of the canonical group-automorphism action with the
claimed property, in that it makes the total solid rear rectangle of the following diagram be Cartesian:

∗ //

e

��

∗�AutGrp(G)

(id, id)
��

G

!!

//

��

G�AutGrp(G)

**

��

∗ //

��

∗�AutGrp(G)

��

∗
!!

//

��

∗�AutGrp(G)

**
BG //

��

(BG)�AutGrp(BG)

ρ∗

��

∗

!!

// BAutGrp(G)

∗ // BAutGrp(G)

(126)

Here:
• the bottom part is the diagram (124) (for X = BG) which exhibits the pointed-automorphism action on BG;
• the top front square is Cartesian and exhibits the base point being a homotopy-fixed point; as in (124),
• the top left square is Cartesian and exhibits the looping/delooping relation (102);
• the top right square is (125) and this Cartesian by definition.

Hence the solid top rear square and thus the total solid rear square are Cartesian, by the pasting law (Prop. 2.23).
Finally to see item (i): Observe that there is the dashed morphism shown in the top right of (126), this being

the diagonal morphism induced from the Cartesian property of the top right square, by the above. This means, by
construction, that the total vertical morphism on the right is an equivalence. Now define the dashed top square to
be a pullback square. Then, by the pasting law (Prop. 2.23), the pullback object in the top left of the dashed square
is equivalently the pullback of the total rear diagram, hence the pullback of an equivalence to a point, hence is itself
equivalent to the point, as shown. Since the point is terminal, the top left dashed morphism is thus a cone over the
Cartesian square on the top left. By the universal property of the homotopy fiber product, this means that the top
left dashed morphism must be the neutral element (Example 2.76). The top dashed square hence exhibits this as a
homotopy fixed point. �

Proposition 2.103 (Group division is equivariant under group-automorphisms). Let H be an ∞-topos and G ∈
Groups(H) (Prop. 2.74). Then the group division morphism G×G (−)·(−)−1 // G (Example 2.77) is equivariant
(Def. 2.83) with respect to the canonical group-automorphism action (Prop. 2.102) of the group-automorphism
group AutGrp(G) (Def. 2.101) acting on all three copies of G:

(G,ρAutGrp)× (G,ρAutGrp)
(−)·(−)−1

// (G,ρAutGrp) ∈ AutGrp(G)Actions(H) .

Proof. By (105) the group division morphism is a universal morphism induced from pasting of copies of the
looping square (102). Thus the claim follows by Prop. 2.102. �
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3 Singular geometry

Here we establish foundations of a geometric homotopy theory of orbifolds which unifies:
(i) §3.1 – the cohesive geometric homotopy theory due to [SSS12][Sc19], which reflects the geometric aspects

of orbifolds;
(ii) §3.2 – the cohesive global-equivariant homotopy theory due to [Re14], understood as reflecting the singular

aspects of orbifolds, as in Figure D.

3.1 Geometry

We present axioms internal to ∞-toposes for

- §3.1.1 – Differential topology

- §3.1.2 – Differential geometry

- §3.1.3 – Super-geometry

This is to provide, in §4 below, a general abstract theory of geometric aspects of orbi-singular spaces and of étale
∞-stacks.

3.1.1 Differential topology

We present a formulation of differential topology internal to ∞-toposes which we call cohesive [Sc13]. In ∞-
categorical generalization of [La94][La07], this involves an abstract shape operation S that relates higher geometric
spaces to their bare underlying homotopy type.

Definition 3.1 (Cohesive ∞-topos). (i) An ∞-topos H (Def. 2.30) is called cohesive if its base geometric morphism
(Prop. 2.43), to be denoted Pnts : H // Groupoids∞ , is part of an adjoint quadruple of ∞-functors (Def. 2.24)

H

×“shape” Shp
⊥

//

oo“discrete” Disc
⊥

? _

“points” Pnts
⊥

//

oo“chaotic” Chtc ? _
B

cohesive
∞-topos

discrete
sub-topos

(127)

such that (a) Disc and Chtc are fully faithful (Def. 2.1), and (b) such that Shp preserves finite products.
(ii) We write (

S := Disc◦Shp
)

“shape”
a
(
[ := Disc◦Pnts

)
“discrete”

a
(
] := Chtc◦Pnts

)
“continuous”

: H−!H (128)

for the induced adjoint triple (Def. 2.24) of modalities (20) (cohesive modalities).

The following direct consequence may serve to illustrate how these axioms are put to work:

Proposition 3.2 (Composite cohesive modalities). The cohesive modalities (Def. 3.1) satisfy:

S◦ [ ' [ and [◦ ] ' [ .

Proof. That Disc and Chtc in (127) are fully faithful means, equivalently (Prop. 2.28), that the co-unit morphisms
(49)

Shp◦Disc ' // id , Pnts◦Chtc ' // id

are natural equivalences. Hence the image under Disc ◦ (−) ◦Pnts of the first of these is a natural equivalence of
the form

S◦ [ = Disc◦Shp◦Disc◦Pnts ' // Disc◦Pnts = [ .

while the image of the second is of the form
[◦ ] = Disc◦Pnts◦Chtc◦Pnts ' // Disc◦Pnts = [ . �
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Lemma 3.3 (Only the empty object has empty shape). Let H be a cohesive ∞-topos (Def. 3.1). Then X ∈ H is
empty, i.e., equivalent to the initial object ∅ (60), precisely if its shape (128) is empty:

X ' ∅ ⇔ SX ' ∅ .

Proof. In one direction, assume that X ' ∅. Noticing that ∅ is the initial colimit and that colimits are preserved
by S, this being a left adjoint (Prop. 2.26), it follows that S(∅) ' ∅.

In the other direction, assume that the shape of X is empty. Then the shape unit (48) is a morphism of the form

X
η

S
X // SX ' ∅

and thus X '∅ follows as in (61), by universality of colimits (Example 2.33). �

Cohesive ∞-group actions. The condition that Shp preserves finite products implies the following properties.
Proposition 3.4 (Shape preserves groups, actions and their homotopy quotients). Let H be a cohesive ∞-topos
(Def. 3.1), G ∈ Groups

(
H
)

(101) and and (X ,ρ) ∈ GActions(H) (Prop. 2.79).
(i) Then the shape SX (128) of X is equipped with an induced SG-action, such that the shape of the homotopy
quotient (108) is the homotopy quotient of the shapes. The analogous statement holds for [ (128):

S
(
X�G

)
'
(
SX
)
�
(
SG
)

and [
(
X�G

)
'
(
[X
)
�
(
[G
)
.

(ii) In particular, both S and [ preserve group objects and their deloopings (Prop. 2.74):

SBG ' B SG and [BG ' B[G .

Proof. The homotopy quotient of X by G is, equivalently, a colimit over a simplicial diagram of finite Cartesian
products of copies of X and G (108). Hence the statement follows for every ∞-functor that commutes with simpli-
cial colimits and with finite products. But, since S is a left adjoint, it commutes with all colimits (Prop. 2.26) and
also with finite products, by assumption on Shp and since Disc is a right adjoint. Similarly, [ is both left and right
adjoint, and hence preserves all colimits and all limits (again Prop. 2.26). That preservation of homotopy quotients
implies preservation of ∞-groups follows by the delooping theorem (Prop. 2.74). �

Lemma 3.5 (Cohesive shape preserves homotopy fiber products). In a cohesive ∞-topos H (Def. 3.1), the shape

functor Shp (127) preserves homotopy fiber products over cohesively discrete objects. That is, for B ∈ B �
� Disc // H

and X ,Y ∈H/B, we have a natural equivalence
Shp
(
X×

B
Y
)
' Shp(X)×

B
Shp(Y ) .

Proof. This is proven in [Sc13, Thm. 3.8.19] under the assumption that H admits an ∞-cohesive site of definition.
This assumption was shown to be unnecessary in [BP19, Lemma 3.10]. �

Lemma 3.6 (Shape of η S-induced action). Let H be a cohesive ∞-topos (Def. 3.1), G ∈ Groups(H) (Prop. 2.74)
and (X ,ρ) ∈ GActions(H) (Prop. 2.79).
(i) The left-induced action (Prop. 2.85)

(X̃ , ρ̃) := B
(
η

S
G

)
! (X ,ρ) ∈ (SG)Actions(H)

along the shape unit morphism (48) G η
S
G
// SG acts on an object whose shape (128) is that of X:

S X̃ ' SX ,

whence (
SX , Sρ

)
∈
(
SG
)
Actions(H) . (129)

(ii) Similarly, the restricted-induced action (Prop. 2.85)

(X̃ , ρ̃) := B
(
Sε[
)∗ ◦B

(
η

S
G

)
! (X ,ρ) ∈ ([G)Actions(H)

along the pair of group homomorphisms (using Prop. 3.4) G η
S
G
// SG oo Sε[

G [G acts on an object whose
shape (128) is that of X:

S X̃ ' SX .

38



Proof. By Prop. 2.79 and Prop. 2.85, the object X̃ sits in a diagram of Cartesian squares (Notation 2.21) as shown
on the left in the following (the full square in case (i), the pasting decomposition for case (ii)):

X̃

��

//

(pb)

X̃�[G

��

//

(pb)

X�G

ρ

��

S X̃

��

(pb)

//
(
S X̃
)
�
(
[G
)

//

��

(pb)

(
SX
)
�
(
SG
)

Sρ

��

BG
Bη

S
G��

S
7−!

∗ // B[G
B Sε[

G

// B SG ∗ // B[G
B Sε[

G

// B SG

(130)

But, since the objects in the bottom row B SG ' SBG and B[G ' [BG (equivalences by Prop. 3.4) are both
cohesively discrete, Lemma 3.5 says that the image of these squares under shape are still Cartesian. This is shown
on the right in (130), where we have identified the shape of the various objects by using Prop. 3.4 and idempotency
of the modality (Prop. 2.29). With this, the pasting law (Prop. 2.23) implies that the outer right square in (130) is
itself Cartesian, hence that SX̃ is the homotopy fiber of Sρ . This implies the claim, by Prop. 2.79. �

Proposition 3.7 (Automorphisms along shape-unit). Let H be a cohesive ∞-topos (Def. 3.1), G ∈ Groups(H)
(Prop. 2.74) and (X ,ρ) ∈ GActions(H) (Prop. 2.79). There is a canonical homomorphism

Aut(X)
Aut
(

η
S
X

)
// Aut(SX) (131)

from the automorphism group (Def. 2.86) of X to that of the shape (128) of X, which is such that the shape unit η
S
X

(48) is equivariant (Def. 2.83) with respect to the canonical automorphism action (114) on X and the restriction
(Prop. 2.85) along this morphism (131) of the canonical automorphism action on SX:

(X ,ρAut(X))
η

S
X // Aut(η S

X)
∗(SX ,ρAut(SX)

)
∈ Aut(X)Actions(H) .

Proof. Take the morphism (131) to be the composite

Aut(X)
Aut
(

η
S
X

)
//

η
S
Aut(X)

**

Aut
(
SX
)

S
(
Aut(X)

) Ω ` SρAut

44

where (a) the left morphism is the shape unit (48), using Prop. 3.4, while (b) the right morphism is that which
exhibits, via Prop. 2.87, the SAut(X)-action SρAut (129) on SX from Lemma 3.6. Then consider the following
diagram of homotopy fiber sequences:

SX // (SX)�Aut
(
SX
)

ρAut(S(X))

��

SX // (SX)�
(
SAut(X)

)
SρAut(X)

��

33

(pb)

X //
η

S
X

55

X�Aut(X)

ρAut(X)

��

η
S
X�Aut(X)

33

BAut
(
SX
)

BSAut(X)

` SρAut

33

BAut(X)

η
S
BAut(X)

33

Aut
(
η

S
X

)

88

Here (i) the fiber squence in the middle is that from the right of (130), (ii) the right part is the defining pullback
from Prop. 2.87, while (iii) the left part exists by the naturality of η S. By the commutativity of the total front square
it factors through the coresponding pullback square, thus implying the claim. �
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Concrete cohesive objects.

Definition 3.8 (Concrete objects). Let H be a cohesive ∞-topos (Def. 3.1).
(i) For X ∈ H0 ↪! H 0-truncated (Def. 2.57), we say that X is a concrete object or concrete cohesive space if
the unit η

]
X (48) of the ]-modality (128) is (-1)-truncated (Def. 2.58), hence a monomorphism. By the 0-image

factorization (91),

X
(-1)-conn. // //

η
]
X

unit morphism of ]-modality

33
image factorization

]1X � � (-1)-trunc. // ]X

this means equivalently that X is equivalent to its 0-image under the ]-unit (48):

X ∈H0 : X is concrete ⇔ X �
� η

]
X // ]X ⇔ ]1X ' X . (132)

(ii) We write
H0,]1 ↪−!H0 ↪−!H (133)

for the full subcategory of the 0-truncated objects on those which are concrete.
(iii) Moreover, for n ∈ N we define, recursively, full sub-∞-categories of concrete (n+ 1)-truncated objects (Def.
2.57)

Hn+1,]1 ↪−!Hn+1 ↪−!H (134)

by declaring that X ∈Hn+1 is concrete if:
• it admits a concrete atlas, namely an effective epimorphism out of a concrete 0-truncated object (132),
• such that the homotopy fiber product of the atlas with itself (which is an n-truncated object) is a concrete:

X ∈Hn+1 : X is concrete ⇔ ∃
X0∈H0,]1

: X0
(−1)-trunc. // // X and X0×

X
X0 ∈ Hn,]1 . (135)

Cohesive charts.

Definition 3.9 (Charts). Let H be a cohesive ∞-topos (Def. 3.1). We say that an ∞-category of cohesive charts for
H is an ∞-site Charts for H (Prop. 2.41)

H
oo L

� � ⊥ // PreSheaves∞(Charts)

all of whose objects (under the ∞-Yoneda embedding y, Prop. 2.37) have contractible shape (128):

Charts �
� y // H

Shp // Groupoids∞

U � // U � // Shp(U)' ∗
⇔ Charts �

� y // H
S // H

U � // U � // S(U)' ∗
(136)

Lemma 3.10 (Charts are cohesively connected). Let H be a cohesive ∞-topos (Def. 3.1) with a site of Charts (Def.
3.9). Then, for U ∈ Charts and

{
Xi ∈ H

}
i∈I an indexed set of objects of H, we have that every morphism from U

into the coproduct of the Xi factors through one of the Xi:

U
f // t

i∈I
Xi ⇔ ∃

i0∈I
U

f

44// Xi0

qXi0 // t
i∈I

Xi .

Proof. Consider the pullbacks Ui
qUi // U along f of the canonical inclusions of the Xi into their coproduct, given

by these Cartesian squares (Notation 2.21):

Ui

qUi
��

//

(pb)

Xi
qXi
��

U
f

// ⊔
i∈I

Xi

(137)
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By Prop. 2.32, this is such that
U '

⊔
i∈I

Ui . (138)

The image of (138) under shape (128) is

∗ ' SU '
⊔
i∈I

SUi ∈ Groupoids∞

� � Disc // H ,

where on the left we used the defining property (136) of charts and on the right we used that the shape operation,
being a left adjoint, preserves coproducts (Prop. 2.26). But, since ∗ ∈ Groupoids∞ is connected, this implies that
there is i0 ∈ I with

SUi '
{

∅ | i 6= i0
∗ | i = i0

From this, Lemma 3.3 implies that Ui ' ∅ for i 6= i0 and, with (138), this implies

Ui0 '

qUi0 // U .

Using this in (137) gives the desired factorization. �

Lemma 3.11 (Quotient by cohesively discrete ∞-group). Let H be a cohesive ∞-topos (Def. 3.1) which admits a
site of Charts (Def. 3.9). Then, for

G ∈ Groups(Groupoids∞)
� � Disc // Groups(H) (139)

a cohesively discrete ∞-group (101) and U ∈ Charts, we have an equivalence

H(U,∗�G) ' ∗�G ∈ Groupoids∞ . (140)

Proof. Since Disc is both a left and a right adjoint, it preserves (Prop. 2.26) the homotopy quotient that corresponds
to the effective epimorphism ∗ // // ∗�G (Prop. 2.70) so that

∗�G ∈ Groupoids∞

� � Disc // H

is a cohesively discrete object. With this, we have the following sequence of natural equivalences:

H
(
U, ∗�G

)
' H

(
U, Disc(∗�G)

)
' Groupoids∞

(
Shp(U), ∗�G

)
' Groupoids∞

(
∗, ∗�G

)
' ∗�G

where the second step is the hom-equivalence (47) of the Shp a Disc-adjunction and the third step is the condition
that the chart U has contractible shape. �

Lemma 3.12 (Homming Charts into quotients by discrete groups). Let H be a cohesive ∞-topos (Def. 3.1) which
admits Charts (Def. 3.9). Then, for X ∈ H an object equipped with an ∞-action (Prop. 107) by a geometrically
discrete ∞-group G (139), the homotopy quotient X �G (108) is given as an ∞-sheaf on Charts, by assigning to
U ∈ Charts the homotopy quotient of the ∞-groupoid of U-shapes plots of X:

X�G : U 7−! H(U,X)�G .

Proof. Consider the image of the homotopy fiber sequence that characterizes the given ∞-action (Prop. 2.79) under
homming the chart U into it:

X
fib(p) // X�G

p
��
∗�G

H(U,−)
7−!

H(U,X)
fib(H(U,p)) // H(U,X)�G ' H

(
U,X�G

)
H(U,p)
��
∗�G ' H(U,∗�G)

(141)

Since the hom-functor H(U,−) preserves limits, the result is again a homotopy fiber sequence, as shown on
the right of (141). Moreover, by the assumption that G is geometrically discrete and that U is geometrically
contractible, we have the equivalence (141) shown on the bottom right. This means that the fiber sequence on the
right of (141) exhibits H(U,X�G) as the homotopy quotient H(U,X)�G of an ∞-action by G on H(U,X). �
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Lemma 3.13 (Fixed locus in 0-truncated objects for discrete groups). Let H be a cohesive ∞-topos (Def. 3.1) with
a site of Charts (Def. 3.9). Let G ∈ Groups(H) (Prop. 2.74) be discrete G' [G and 0-truncated, G' τ0G, and let
(X ,ρ) ∈ GActions(H) (Prop. 2.79) with X ' τ0X also 0-truncated. Then the G-fixed locus XG ∈H (Def. 2.97) is
itself 0-truncated and such that, for U ∈ Charts, we have a natural equivalence

H
(
U,XG) ' H(U,X)G :=

{
φ ∈H(U,X) | ∀

g∈G
g ·φ = φ

}
(142)

between (a) the hom-set from U to XG and (b) the naive set of fixed points in the hom-set from U to X, with respect
to the restriction (Prop. 2.85) along K ↪! G of the induced G-action (141) on the latter.

Proof. We claim that we have the following sequence of natural equivalences:

H(U,XG) = H
(
U,B(G! ∗)∗

(
(X ,ρ)

))
'H/BG

(
B(G! ∗)∗

(
U
)
,X�G

)
'H/BG

(
(∗�G)×U , X�G

)
'H

(
(∗�G)×U , X�G

)
×

H
(
(∗�G)×U , ∗�G

) {pr1
}

' Groupoids
(
∗�G , H

(
U , X�G

))
×

Groupoids
(
∗�G , H

(
U , ∗�G

))
{

p̃r1
}

' Groupoids
(
∗�G , H

(
U , X

)
�G
)

×
Groupoids

(
∗�G , ∗�G

) {id
}

'H(U,X)G .

(143)

Here the first three lines are the definition of fixed loci (123) and the hom-equivalences (47) of the resulting
adjunction (81). The fourth line is the characterization (75) of hom-∞-groupoids in slices (Prop. 2.48), the fifth
line uses the tensoring (62) of H over Groupoids∞ (Prop. 2.34), and the sixth line follows by Prop. 3.12.

To see the last step in (143), use the explicit presentation of the groupoid H(U,X)�G as an action groupoid,
by Example 2.15. This way the projection map in the fiber product in the sixth line in (143) is presented by a Kan
fibration, whence this homotopy fiber product may be computed equivalently as a 1-categorical fiber product of
sets of objects and of sets of morphisms, separately. Moreover, since {id} has no non-trivial morphisms and since
the projection functor itself is faithful, there are in fact no non-trivial morphisms in this fiber product, which is
hence just the set whose elements are precisely those functors of action groupoids which are equal to the identity
on labels in G:

Groupoids
(
∗�G , H

(
U , X

)
�G
)

×
Groupoids

(
∗�G , ∗�G

){id
}
'


∗�G // H(U,X)�G

∗ 7−!

g∈G
��

φ

g
��

∗ 7−! g ·φ

 ' H(U,X)G.

�

Lemma 3.14 (n-Truncated morphisms via n-truncated homotopy fibers). Let H be an ∞-topos which is cohesive
(Def. 3.1). Let G be a finite group in H (215). Then, for every n ∈ {−2,−1,0,1, · · ·} and for any morphism in H
to its delooping groupoid (Example 2.14) X

p
−! ∗�G, the following are equivalent

(i) p is an n-truncated morphism (Def. 2.58);
(ii) the homotopy fiber of p (over the essentially unique point of ∗�G) is an n-truncated object (Def. 2.57).

Proof. Let U ∈ Charts and consider homming it into the homotopy fiber sequence in question:

X
(pb)

��

//X
p
��

∗ // ∗�G
⇒

H(U,X)

(pb)

��

// H(U,X )

H(U, p)
��

∗ // H(U,∗�G) ' ∗�G
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Since the hom-functor H(U,−) preserves limits, the square on the right is again a homotopy pullback. Since U is
a chart and G is discrete, we have the equivalence (140) shown on the bottom right. Since ∗�G has an essentially
unique point, the square on the right exhibits the essentially unique homotopy fiber of the morphism H(U, p).
Since the charts U are generators of H (objects of an ∞-site of definition), the morphism p is n-truncated (Def.
2.58) precisely if for each chart U the homotopy fiber of H(U, p) is n-truncated. But the square on the right shows
that this homotopy fiber is H(U,X), and hence this means, equivalently, that X is an n-truncated object (according
to Def. 2.57). �

Examples of cohesive ∞-toposes. We indicate some examples of cohesive ∞-toposes (Def. 3.1), following [Sc13].
For full details of the constructions see [SS20c].

Example 3.15 (Discrete cohesion). The base ∞-topos Groupoids∞ is trivially a cohesive ∞-topos (Def. 3.1) with
all operations being identities:

Groupoids∞

× id
⊥

//

oo id
⊥

? _

id
⊥

//

oo id ? _

Groupoids∞ (144)

For emphasis we also call this the ∞-topos of geometrically discrete ∞-groupoids.

Definition 3.16 (Site for homotopical cohesion). A small ∞-site (70) is an ∞-site for homotopical cohesion if
(i) its Grothendieck topology is trivial and
(ii) the underlying ∞-category has finite products, i.e., has a terminal object and binary Cartesian products.

Example 3.17 (Homotopical cohesion). The ∞-topos of ∞-sheaves (Def. 2.42) over an ∞-site C for homotopical
cohesion (Def. 3.16) is cohesive (Def. 3.1):

H := Sheaves∞(C )

× lim
−!
⊥

//

oo const
⊥

? _

lim
 −
⊥

//

oo Chtc ? _

Groupoids∞ (145)

(i) The operation Pnts ' lim
 −

forms the limit of ∞-presheaves regarded as ∞-functors on C op (by Prop. 2.36); but
since C is assumed to have a terminal object, this is equivalently just the evaluation on that object:

Pnts(X) ' X(∗) ' H(∗,X) ,

where on the right we used the ∞-Yoneda lemma (Prop. 2.38). This makes manifest how Pnts(X) is the “underlying
∞-groupoid of points of X”.

(ii) The operation Shp ' lim
−!

is the colimit of ∞-presheaves regarded as ∞-functors (by Prop. 2.36). Since the
colimit of any representable functor is the point (Lemma 2.40)

C

const∗

11
� � y // Sheaves∞(C )

Shp // Groupoids∞ ,

this means that C serves itself as a category of Charts in this case (Def. 3.9).

Example 3.18 (Smooth cohesion). The ∞-sheaf ∞-topos (Def. 2.42) over the site of SmoothManifolds (Def. 2.9,
see [FSS12, App.]), which we call the ∞-topos of smooth ∞-groupoids

SmoothGroupoids∞ := Sheaves∞(SmoothManifolds) ,

is cohesive (Def. 3.1): The adjoint quadruple (127) arises as in Example 3.17, which here happens to descend from
∞-presheaves to ∞-sheaves.
In this case we have:
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(i) A category of Charts (Def. 3.9) is given (Prop. 2.10) by CartesianSpaces (Def. 2.5)

CartesianSpaces �
� y // Sheaves∞(CartesianSpaces) ' // SmoothGroupoids∞

S(y(Rn)) ' ∗
(146)

(ii) The concrete 0-truncated objects (Def. 3.8) are equivalently the diffeological spaces (Def. 2.6), including the
D-topological spaces4 (Def. 2.2) as well as smooth and possibly infinite-dimensional Fréchet manifolds (Prop.
2.11) as further full subcategories (32):

TopologicalSpaces
Cdfflg // DTopologicalSpaces � { --

DiffeologicalSpaces �
�

concrete
0-truncated

objects // SmoothGroupoids∞

FréchetManifolds
# � 11 (147)

(iii) The concrete 1-truncated objects (Def. 3.8) form the (2,1)-category of diffeological groupoids with Morita/Hilsum-
Skandalis morphisms (Remark 2.72) between them, which includes, by (147), the (2,1)-categories of D-topological
groupoids and of (possibly infinite-dimensional Fréchet-)Lie groupoids:

TopologicalGroupoids
Cdfflg // DTopologicalGroupoids � | --

DiffeologicalGroupoids �
�

concrete
1-truncated

objcts // SmoothGroupoids∞

FréchetLieGroupoids
" � 11

(148)

(iv) The cohesive shape (128) is given equivalently [Pav20][BEBP19] by the smooth ∞-path ∞-groupoid:

SX ' lim
−!

Maps
(
∆
•
smth,X

)
∈ SmoothGroupoids∞ , hence Shp(X) ' lim

−!
X(∆•smth) ∈ Groupoids∞ (149)

where ∆•smth is the simplicial smooth manifold of extended simplices (Def. 2.19) and Maps(−,−) denotes the
internal hom (56) in SmoothGroupoids∞.
(v) The cohesive shape (128) of (a) any topological space and (b) any finite-dimensional smooth manifold regarded,
respectively, as smooth ∞-groupoids via (147) is equivalently (by (149) with Prop. 2.20, and by [Sc13, 4.3.29],
respectively) its standard topological homotopy type ShpTop (36):

(a) TopologicalSpaces

ShpTop

⇓ '
33

Cdfflg // DiffeologicalSpaces �
� // SmoothGroupoids∞

Shp // Groupoids∞ (150)

(b) SmoothManifolds

ShpTop◦Dtplg

⇓ '
33

� � // DiffeologicalSpaces �
� // SmoothGroupoids∞

Shp // Groupoids∞ (151)

(vi) The cohesive shape (128) of a topological groupoid, when regarded, via its coreflection (32), as a D-topological
groupoid and hence as a smooth ∞-groupoid (148) is equivalently (by (150), and since S is left adjoint and hence
preserves homotopy colimits, Prop. 2.26) its simplicial-topological shape (Def. 42):

TopologicalGroupoids

ShpsTop

⇓ '
22

Cdfflg // DiffeologicalGroupoids �
� // SmoothGroupoids∞

Shp // Groupoids∞ (152)

Example 3.19 (Spectral cohesion). Let H be a cohesive ∞-topos (Def. 3.1). Then its tangent ∞-topos T H =
SpectralBundles(H) (Example 2.51) is cohesive [Sc13, 4.1.9] over the base tangent ∞-topos (121):

T H

× T Shp
⊥

//

oo T Disc
⊥

? _

T Pnts
⊥

//

oo T Chtc ? _
T Groupoids∞ (153)

4These are the ∆-generated spaces of [Sm][Dug03]; see Remark 2.3.
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Remark 3.20 (Differential cohomology in cohesive ∞-toposes). The intrinsic cohomology theory (22) of a cohe-
sive ∞-topos (Def. 3.1) is differential cohomology [Sc13].
(i) In the case when H := SmoothGroupoids∞ (Example 3.18), this is a non-abelian differential cohomology theory
generalizing the theory of Cartan-Ehresmann connections on smooth fiber bundles to ∞-connections on smooth ∞-
bundles [SSS12][FSS12][NSS12a].
(ii) In the case when H := T SmoothGroupoids∞ is the cohesive tangent ∞-topos (Example 3.19) to that of smooth
∞-groupoids (Example 3.18), the intrinsic cohomology furthermore subsumes abelian Hopkins-Singer differential
cohomology theories and variants [BNV13], as well as the twisted versions of these (Remark 2.96), such as twisted
differential KU-theory [GS19a] and twisted differential KO-theory [GS19b].

3.1.2 Differential geometry

We present a formulation of differential geometry internal to ∞-toposes which we call elastic [Sc13], adjoining to
the plain shape operation S of §3.1.1 a de Rham shape operation ℑ, in generalization of [Si96][ST97].

Definition 3.21 (Elastic ∞-topos).
(i) An elastic ∞-topos over B = Groupoids∞ is an ∞-topos H (Def. 2.30) whose base geometric morphism (Prop.
2.43), to be denoted Pnts : H // Groupoids∞ , is equipped with a factorization as follows, having adjoints (Def.
2.24) as shown:

Shp :

Pnts :

H

oo“reduced” Rdcd
⊥

? _

“infinitesimal shape” Shpinf
⊥

//

oo“infinitesimally discrete” Discinf
⊥

? _

“infinitesimal points” Pntsinf //

oo Chtc ? _
−−−
⊥

Hℜ

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ
//

B : Disc

elastic
∞-topos

reduced
sub-topos

discrete
sub-topos

(154)

(ii) Hence the elastic ∞-topos H is, in particular, a cohesive ∞-topos over B, according to Def. 3.1, and so is its
sub-∞-topos Hℜ of reduced objects.
(iii) We write(

ℜ := Rdcd◦Shpinf
)

“reduced”
a
(

ℑ := Discinf ◦Shpinf
)

“étale”
a
(

L := Discinf ◦Pntsinf
)

“locally constant”
: H−!H (155)

for the further induced modalities (20) (elastic modalities), accompanying the cohesive modalities of (128).

Examples of elastic ∞-toposes. We indicate some examples of elastic ∞-toposes (Def. 3.21), following [Sc13].
For full details on the constructions, see [SS20c].

Definition 3.22 (Jets of Cartesian spaces). Let k ∈ N.
(i) We write

kJetsOfCartesianSpaces �
� C∞(−) // CommutativeAlgebrasop

R
Rn×DW

� // C∞(Rn)⊗R (R⊕W )

(156)

for the full subcategory of that of commutative R-algebras on those which are tensor products of (a) the algebra of
real-valued smooth functions on a Cartesian space Rn, with (b) a finite-dimensional real algebra with a maximal
ideal W that is nilpotent of order k+1, in that W k+1 = 0.
(ii) We write

∞JetsOfCartesianSpaces :=
⋃

k∈N
kJetsOfCartesianSpaces �

� C∞(−) // CommutativeAlgebrasop
R

R×DW
� // C∞

(
Rn
)
⊗RW

(157)

for the analogous full subcategory where each W is (finite dimensional and) nilpotent of some finite order.
(iii) We regard these categories as equipped with the coverage (Grothendieck pre-topology) whose covers are the
families of morphisms of the form{

Rn×D
fi×id // Rn×D

}
i∈I such that

{
Rn fi // Rn

}
i∈I is a cover in CartesianSpaces (Def. 2.5).
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Lemma 3.23 (Coreflections of jets of Cartesian spaces). Consider the kJetsOfCartesianSpaces from Def. 3.22.
(i) For k = 0, this is equivalently the category of plain Cartesian spaces of Def. 2.5:

0JetsOfCartesianSpaces ' CartesianSpaces .

(ii) For any k ∈ N, the evident full inclusion of kJetsOfCartesianSpaces into (k+ 1)JetsOfCartesianSpaces is co-
reflective

∞JetsOfCartesianSpaces
oo Rdcd∞ ? _

Shpinf,∞

⊥ // · · ·
oo Rdcd2 ? _

Shpinf,2

⊥ // 2JetsOfCartesianSpaces
oo Rdcd1 ? _

Shpinf,1

⊥ // 1JetsOfCartesianSpaces
oo Rdcd ? _

Shpinf

⊥ // CartesianSpaces

with
C∞
(
Shpinf,k

(
Rn×DW

))
' C∞(Rn)⊗R (R⊕W )/W k+1. (158)

Proof. Statement (i) follows as a special case of the general fact, sometimes known as Milnor’s exercise (since the
key idea is hinted at in [MSt74, Prob. 1-C]), that passage to their real algebras of smooth functions embeds smooth
manifolds fully faithfully into the opposite or real algebras (a general proof is in [KMS93, 35.10], see also [Gr05];
for general perspective see [Nes03, 6]) :

SmoothManifolds �
� C∞(−) // CommutativeAlgebrasop

R .

Statement (ii) follows readily from the definition, using the fact that algebra homomorphisms preserve order of
nilpotency. �

Example 3.24 (Jets of smooth ∞-groupoids). For k ∈ Nt{∞}, the ∞-sheaf ∞-topos (Def. 2.42) over the site of
k-jets of Cartesian spaces (Def. 3.22)

kJetsOfSmoothGroupoids∞ := Sheaves∞(kJetsOfCartesianSpaces)
is elastic (Def. 3.21), with (Rdcd a Shpinf) in (154) given by Kan extension of the co-reflections of sites from
Lemma 3.23:

kJetsOfSmoothGroupoids∞

oo Rdcd
⊥

? _

Shpinf
⊥

//

oo Discinf
⊥

? _

Pntsinf //

oo Chtc ? _

SmoothGroupoids∞

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ
//

Groupoids∞

(i) Here for k = 1 we will, for short, abbreviate
JetsOfSmoothGroupoids∞ := 1JetsOfSmoothGroupoids∞ . (159)

(ii) For the case k = ∞, the underlying 1-topos is the “Cahiers topos” [Du79a][Ko86][KS17].
(iii) For any k, we have:

(a) The full sub-∞-topos of reduced objects (154) is (by Lemma 3.23) that of smooth ∞-groupoids from Example
3.18

kJetsOfSmoothGroupoids∞
oo Discinf ? _ SmoothGroupoids∞ (160)

(b) the 0-truncated concrete objects (Def. 3.8) are still equivalently the diffeological spaces (Def. 2.6) as was
the case in (147)

DTopologicalSpaces � |
.. DiffeologicalSpaces �

�

0-truncated
concrete
objects // kJetsOfSmoothGroupoids∞

FréchetManifolds
! � 00 (161)

and, more generally, the 1-truncated concrete objects are still the diffeological groupoids, as was the case in
(148):

DTopologicalGroupoids � } ..
DiffeologicalGroupoids �

�

1-truncated
concrete
objects // kJetsOfSmoothGroupoids∞

FréchetLieGroupoids
! � 00 (162)

(c) A category of charts (Def. 3.9) for JetsOfSmoothGroupoids∞ is given by kJetsOfCartesianSpaces (Def. 3.22)
itself.
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Étale geometry.

Definition 3.25 (Étale-over-X modality). Let H be an elastic ∞-topos (Def. 3.21) and X ∈ H an object. We say
that the étale-over-X modality on the slice ∞-topos over X (Def. 2.46) is the ∞-functor

H/X
ℑX // H/X

Y
f
��

Y ×ℑX ℑY
(ηℑ

X )
∗(ℑ f )

��
7−!

X X

X η
ℑ

X

((

f
**

))
X×ℑX ℑY

��

//

(pb)

ℑX
ℑ f
��

Y η
ℑ

Y
// ℑY

which sends any morphism f into X to the pullback of its image under the plain étale modality ℑ (155) along its
unit morphism (48), hence to the left vertical morphism in the Cartesian square shown on the right.

Definition 3.26 (Local diffeomorphism). Let H be an elastic ∞-topos (Def. 3.21). We say that a morphism Y
f
! X

in H is a local diffeomorphism if it is étale-over-X (Def. 3.25)

ℑX( f ) ' X ,

hence (see Prop. 3.32 for this implication) if the naturality square of the unit (48) of the ℑ-modality (155) is a
Cartesian square:

Y
f ét
�� ⇔

Y
(pb)f

��

η
ℑ

Y // ℑY
ℑ f
��

X X
η

ℑ

X

// ℑX

(163)

Lemma 3.27 (Closure of class of local diffeomorphisms). Let H be an elastic ∞-topos (Def. 3.21). The class of
local diffeomorphisms in H (Def. 3.26)
(i) satisfies left-cancellation: given a pair of composable morphisms f ,g where g is a local diffeomorphism, then
f is so precisely if the composite g◦ f is:

Z

g◦ f ""

f // Y
étg||

X
⇒

(
f is a local diffeo ⇔ g◦ f is a local diffeo

)
. (164)

(ii) is closed under pullbacks: if in a Cartesian square the right vertical morphism is a local diffeomorphism, then
so is the left morphism

Y ′×X Y

(pb)

//

g∗ f
��

Y

ét f
��

Y ′ g
// X

⇒ g∗ f is a local diffeo.

Proof. This is a routine argument: (i) For two composable morphisms, consider the pasting of their ηℑ-naturality
squares

Z
f
��

η
ℑ

Z //

(pb)

ℑZ
ℑ f��

Y
g
��

η
ℑ

Y
//

(pb)

ℑY
ℑg��

X
η

ℑ

X

// ℑX

By the functoriality of ℑ, the total rectangle is the ηℑ-naturality square of g ◦ f . But, by the pasting law (Prop.
2.23) and the assumption that the bottom square is Cartesian, the total rectangle is Cartesian precisely if so is the
top square.
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(ii) For two morphisms with the same codomain, consider the pasting of their pullback square with the ηℑ-
naturality square of one of them, as shown on the left here:

Y ′×X Y

g∗ f
��

f ∗g //

(pb)

Y

f
��

ηℑ

//

(pb)

ℑY

ℑ f
��

Y ′ g
// X

η
ℑ

X

// ℑX

'
Y ×X Y ′

g∗ f
��

η
ℑ

(Y×X Y ′) // ℑ(Y ×X Y ′)
ℑ( f ∗ f ) //

ℑ(g∗ f )
��

(pb)

ℑY ′

ℑg
��

Y ′
η

ℑ

Y ′

// ℑY ′
ℑ( f ′)

// ℑX

By the naturality of ηℑ, this pasting diagram on the left is equivalent to that shown on the right. Moreover, if f is a
local diffeomorphisms, it follows that three of the squares are pullbacks (the rightmost one by using that ℑ is right
adjoint and thus preserves pullbacks, Prop. 2.26), as shown. With that, the pasting law (Prop. 2.23) implies, first,
that the total rectangle on the left is a pullback, hence also that on the left, and then that the remaining square on
the right is a pullback. This means that g∗ f is a local diffeomorphism. �

Definition 3.28 (Local neighborhood). Let H be an elastic ∞-topos (Def. 3.21). For Y
f
−! X a morphism in H,

we say that the corresponding local neighborhood of Y in X is the purely étale aspect of f , hence is the object
Nf X ∈H/X given by ℑ/X( f )' (ηℑ

X )
∗(ℑ f ), hence given by the following homotopy pullback square:

Nf X
(pb)

//

ℑ/X ( f )
��

ℑX
ℑ f
��

Y
η

ℑ

X

// ℑY

Definition 3.29 (Tangent bundle). Let H be an elastic ∞-topos (Def. 3.21). Then for X ∈H any object, we say that
its infinitesimal tangent bundle is

T X := X ×
ℑX

X ∈ H/X ,

hence the left morphism in this Cartesian square:

T X //

(ηℑ

X )
∗(ηℑ

X )!(idX ) ��
(pb)

X
η

ℑ

X��
X

η
ℑ

X

// ℑX

(165)

Example 3.30 (Local neighborhood of a point). Let H be an elastic ∞-topos (Def. 3.21). For X ∈ H any object
and ∗ x

−! X any point, the homotopy fiber of the tangent bundle (Def. 3.29) over x is equivalent to the local
neighborhood of x (Def. 3.28):

TxX ' NxX . (166)

This follows immediately from the definitions, by the pasting law (Prop. 2.23):

NxX ' TxX
(pb)

��

// T X
(pb)

//

��

X
η

ℑ

X��
∗ x

// X
η

ℑ

X

// ℑX

Proposition 3.31 (Pullback along local diffeomorphisms preserves tangent bundles). In an elastic ∞-topos (Def.

3.21), pullback along a local diffeomorphism Y
f
ét
// X (Def. 3.26) preserves tangent bundles (Def. 3.29) in that

f ∗(T X) ' TY via:

TY
(pb)��

T f // T X

��
Y

f
ét // X
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Proof. Consider the pasting of the defining Cartesian squares, shown on the left here:

f ∗T X
(pb)��

// T X

��

//

(pb)

X
η

ℑ

X��
Y

f
ét // X

η
ℑ

X

// ℑX
'

TY

��

//

(pb)

Y
η

ℑ

X��

f //

(pb)

X
η

ℑ

X��
Y

η
ℑ

X

// ℑY
ℑ f

// ℑX

By the pasting law (Prop. 2.23), the total rectangle on the left is itself Cartesian. Moreover, the bottom composite
morphism on the left is equivalent to the bottom composite morphism on the right, by the naturality of η

ℑ

X . There-
fore, using again the pasting law (Prop. 2.23) the total rectangle on the left is equivalent to the pasting of the two
consecutive Cartesian squares shown on the right. These identify, in the top row, the middle object Y by (163) and
thus the left object TY by (165). �

Étale toposes.

Definition 3.32 (Étale topos). Let H be an elastic ∞-topos (Def. 3.21) and X ∈ H. Then we say that the étale
∞-topos of X , to be denoted ÉtX , is the full sub-∞-category (Def. 2.1) of the slice ∞-topos over X (Prop. 2.46) on
those morphisms that are local diffeomorphisms (Def. 3.26):

ÉtX :=
(
H/X

)
ℑX

� � // H/X . (167)

Proposition 3.33 (Reflections of étale toposes). Let H be an elastic ∞-topos (Def. 3.21) and X ∈ H an object.
Then the étale topos ÉtX from Def. 3.32:
(i) is indeed an ∞-topos (Def. 2.30);
(ii) its defining full inclusion (167) has both a left- and a right-adjoint (Def. 2.24):

ÉtX

oo EtlX
⊥� � iX //

oo
LcllCnstntX

⊥
H/X (168)

(iii) whose induced adjoint modality (20)(
ℑX := iX ◦ ÉtlX

“étale over X”

)
a
(

LX := iX ◦LcllCnstntX
“locally constant over X”

)
(169)

is on the left that of Def. 3.25:

ÉtlX :

Y
p
��

X

7−!

(ηℑ

X )
∗(ℑY )

(ηℑ

X )
∗(ℑp)

��
X

i.e.:

(ηℑ

X )
∗(ℑY )

(ηℑ

X )
∗(ℑp)

��

(ℑp)∗(ηℑ

X ) //

(pb)

ℑY

ℑp
��

X
η

ℑ

X

// ℑX

(170)

Proof. First to see that (170) is well-defined as a functor to ÉtX (this proceeds as in [CHM85, 3.3][CJKP97,
3][CRi20, 7.3]): We need to check that (ηℑ

X )
∗(ℑp) is a local diffeomorphism (Def. 3.26). For this, it is sufficient

to have equivalences
ℑ
(
(ηℑ

X )
∗(ℑp)

)
' ℑp , (171)

and
(ℑp)∗(ηℑ

X ) ' η
ℑ

X (172)

because then the Cartesian square on the right of (170) exhibits this property.
But (171) follows by applying ℑ to the square on the right of (170), by idempotency (Prop. 2.29) and since

equivalences are preserved by pullback (Example 2.22). With this, (172) follows from the naturality of the ℑ-unit,
by the universal factorization shown dashed in the following diagram:
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(ηℑ

X )
∗(ℑY )

'
))

η
ℑ

(ηℑ
X )∗(ℑY )

**

(ηℑ

X )
∗(ℑp)

))

(ηℑ

X )
∗(ℑY )

(ηℑ

X )
∗(ℑp)
��

(ℑp)∗(ηℑ

X )
//

(pb)

ℑY

ℑp

��
X

η
ℑ

X

// ℑX

(173)

Notice that, similarly, there is a natural transformation

Y
p ((

η
EtlX
Y // EtlX(Y )

étuuX

(174)

induced as the universal factorization shown dashed in the following diagram:

Y '
))

η
ℑ

Y

**

p

((

(ηℑ

X )
∗(ℑY )

(ηℑ

X )
∗(ℑp)
��

(ℑp)∗(ηℑ

X )
//

(pb)

ℑY

ℑp

��
X

η
ℑ

X

// ℑX

(175)

and notice that this in an ℑ-equivalence:

ℑ
(
η

EtlX
Y1

)
is an equivalence . (176)

Condition (176) follows by applying ℑ to the whole left part of the diagram on the right of (177), using idempotency
(Prop. 2.29) and that equivalences are preserved by pullback (Example 2.22).

Second, to see that (170) defines a left adjoint to the inclusion: We need to check the corresponding hom-
equivalence (47), shown on the left here:

ÉtlX(Y1)

ÉtlX(p) ��

f̃ // Y2

ét
��

B

⇔
Y1

p
��

f // Y2

ét
��

B

'

ℑY1

��

ℑ f // ℑY2

��

Y1

p

!!

η
ℑ

Y1
00

η
EtlX
Y1

// (ηℑ

X )
∗(ℑX)

η
ℑ

(ηℑ

X )
∗(ℑX)

;;

EtlX (p)

��

f̃ // Y2

ét

{{

η
ℑ

Y2

66

ℑX

X
η

ℑ

X

44
(177)

On the right of (177) we show an induced factorization: The square sub-diagram on the right of (177) is Cartesian
by the assumption that we are homming into a local diffeomorphism, while the square in the middle is Cartesian
by (173). Thus, given f , the morphism f̃ is induced by the universal property of the right Cartesian square.
Conversely, given f̃ , precomposition with the η

EtlX
Y1

(175) gives a morphism f . To see that this correspondence is
an equivalence, we just need to observe that ℑ( f̃ )' ℑ f . This follows by (176).

Thus we have established the existence of the left adjoint ÉtlX . With this, to see the right adjoint LcllCnstX as

well as the fact that Ét is an ∞-topos, it is now sufficient to show that ÉtX
� � iX // H/X preserves colimits: Because,

by the reflection ÉtlX this implies, first, that ÉtX is a presentable ∞-category, in fact an ∞-topos (by Prop. 2.41,
since it is then an accessibly embedded reflective subcategory of the slice H/X , which is an ∞-topos by Prop. 2.46);
and thus, second, the existence of the right adjoint by the adjoint ∞-functor theorem (Prop. 2.27).
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So to see that iX preserves colimits, consider any small I ∈ Categories∞ and a diagram

Y• : I // ÉtX
� � iX // H/X . (178)

Since iX is fully faithful by construction, it is sufficient to show that the colimit of this diagram formed in H/X
is itself in the image of iX . This colimit, in turn, is computed in H (by Example 2.52) with its morphism q to X
universally induced, and this we need to show to be a local diffeomorphism (Def. 3.26). Hence we need to show
that the following square on the left is Cartesian:

lim
−!

Y•

q
��

η
ℑ

lim
−!

Y•
//

(pb)

ℑ
(
lim
−!

Y•
)

ℑq
��

X
η

ℑ

X

// ℑX

⇔
lim
−!

Y•

q
��

(ηℑ

Y• ) //

(pb)

lim
−!

(
ℑY•
)

ℑq
��

X
η

ℑ

X

// ℑX

⇔ ∀
i∈I

Yi

qi

��

η
ℑ

Yi //

(pb)

ℑYi

ℑqi
��

X
η

ℑ

X

// ℑX

But, since ℑ is a left adjoint and hence preserves colimits (Prop. 2.26), this is equivalent to the square on in middle
being Cartesian. Finally, by universality of colimits (54) in the ∞-topos H, this is equivalent to all the squares on
the right being Cartesian. This is the case, by the assumption (178). �

Remark 3.34 (Local and global ∞-section functors.). Let H be an elastic ∞-topos (Def. 3.21) and X ∈H. Then we
may think of the étale ∞-topos ÉtX (Def. 3.32, Prop. 3.33) as the internal construction of the ∞-topos of ∞-sheaves
over X . Under this interpretation:
i) the ∞-functor LcllCnst (168) has the interpretation of sending any ∞-bundle E // X (Notation 2.45) to its
∞-sheaf of local sections E := LcllCnstX(E);
ii) the direct image of the base geometric morphism (71) has the interpretation of sending any ∞-sheaf to its
∞-groupoid of global sections:

∞-bundles
over X

H/X
oo iX ? _

(−) :=LcllCnstntX
form ∞-sheaf of local sections

⊥ //

ΓX

33

∞-sheaves
on X

ÉtX
oo ∆X

ΓX
form ∞-groupoid of global sections

⊥ // Groupoids∞ (179)

Notice that the global sections of the ∞-sheaf of local sections of an ∞-bundle E is the global sections of that
∞-bundle (as in Remark 2.94):

ΓX
(
E
)
' ΓX(E)

(by the essential uniqueness of the base geometric morphism (Prop. 2.43) and the fact that the base geometric
morphism on ∞-bundles forms global sections, Remark 2.95).

Étale groupoids.

Definition 3.35 (Étale groupoid). Let H be an elastic ∞-topos (Def. 3.21).
(i) We say that X• ∈ Groupoids(H) (Def. 2.68) is an étale groupoid if all its face maps are local diffeomorphisms
(Def. 3.26):

X• is étale groupoid ⇔ ∀
n∈N

0≤i≤n

Xn+1
di

ét
// Xn .

(ii) We write
ÉtaleGroupoids(H) �

� // Groupoids(H) ∈ Categories∞ (180)

for the full sub-∞-category of that of all groupoids (97) on those that are étale groupoids.

As a variant of Prop. 2.70 we have:
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Proposition 3.36 (Étale groupoids are equivalent to stacks with étale atlases).

Let H be an elastic ∞-topos (Def. 3.21) and X• ∈
Groupoids(H) (Def. 2.68). Then the following con-
ditions are equivalent:
(i) The groupoid X• is an étale groupoid (Def. 3.35).
(ii) The associated atlas X0

a // //X (via Prop.
2.70) is a local diffeomorphism (Def. 3.26).

��

OO

��

OO

�� ��

OO

��

OO

��
X×X X '

ét
��

OO
ét ét
��

X1

s
��

OO
e t
��

“étale groupoid”

X0

a ét����

X0

����
“étale atlas”

X ' lim
−!

X• “étale stack”

(181)

Proof. By definition of local diffeomorphisms, we need to demonstrate the logical equivalence shown on the left:

∀
n1

φ
!n2

Xn1

η
ℑ

Xn1 //

Xφ

��
(pb)

ℑXn1

ℑXφ��
Xn2

η
ℑ

Xn2

// ℑXn2

⇔

X0
η

ℑ

X0 //

a
��

(pb)

ℑX0

ℑa
��

lim
−!

X•
η

ℑ

lim
−!

X•

// ℑlim
−!

X•

⇔

X0
η

ℑ

X0 //

a
��

(pb)

ℑX0

ℑa
��

lim
−!

X•
lim
−!

η
ℑ

X•

// lim
−!

ℑX•

(182)

But since ℑ preserves all limits and colimits (being a left and a right adjoint, Prop. 2.26), we have (a) also the
logical equivalence shown on the right of (182); and (b) that ℑX• is itself a groupoid with atlas ℑa, and that
X• η

ℑ

X•
// ℑX• is a morphism in Groupoids(H) (97). By (a), it is now sufficient to prove the composite logical

equivalence in (182). By (b), this follows with Prop. 2.73. �

Proposition 3.37 (Tangent stacks). Let H be an elastic ∞-topos (Def. 3.21) and X• ∈ ÉtaleGroupoids(H) (Def.

3.35) with étale atlas X ét //X (via Prop. 3.36). Then:
(i) the system of tangent bundles T X• (Def. 3.29) is itself an étale groupoid (Def. 3.35), the tangent groupoid;

(ii) its atlas (under Prop. 3.36) is the differential T X0
Ta // TX of the given atlas, hence the tangent stack is:

TX ' lim
−!

T X• (183)

Proof. (i) That T X• is itself a groupoid (Def. 2.68) follows because both the tangent bundle construction T (−)
(165) as well as the groupoid Segal conditions (96) are pullback constructions, hence limits, which commute over
each other. To see that T X• is an étale groupoid, consider the following diagram:

tt 44
tt 44
tt

tt 44
tt 44
ttT

(
X0×X X0

)

��

//
tt 44
tt

X0×X X0

��

tt 44
ttT X0 //

��

vv
X0

��

vv
lim
−!

T X• //

��

X

��

tt 44
tt 44
tt

tt 44
tt 44
ttX0×X X0 //

tt 44
tt

ℑ
(
X0×X X0

)
tt 44
ttX0 //

uu
ℑX0

uu
X // ℑX

(184)

Here the simplicial sub-diagram in the top right consists of local diffeomorphism by the assumption that X• is étale.
But this implies that all the horizontal squares in the top of (184) are Cartesian, by Prop 3.31, hence that also all
morphisms of the simplicial sub-diagram in the top left are local diffeomorphisms, by Lemma 3.27.
(ii) To see (183) we need to show that the front square in (184) is Cartesian. Observe:

(a) All horizontal squares in (184) are Cartesian: the top ones by the above argument for (i), the bottom ones by
the assumption that X• is étale.

(b) All solid vertical squares in (184) are also Cartesian, by definition (165) of tangent bundles.
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(c) The object X in the bottom front left of (184) is not just the colimit of the simplicial sub-diagram in the
bottom left, but in fact of the full left sub-diagram (because of the colimit of the top left sub-diagram in the
front top left). Similarly, the object ℑX is in fact the colimit over the full right sub-diagram in (184) (using
that ℑ preserves colimits, being a left adjoint, Prop. 2.26).

Now (a) and (b) verify the assumption of Prop. 2.32 applied to the diagram (184), regarded as a natural transfor-
mation from its left part to its right part; and with (c), the conclusion of Prop. 2.32 says that the front square in
(184) is Cartesian. �

Lemma 3.38 (Degreewise local diffeomorphisms of étale groupoids). Let H be an elastic ∞-topos (Def. 3.21) and
X•,Y• ∈ ÉtaleGroupoids(H) (Def. 3.35). If a morphism X• f• // Y• is such that for all n ∈ N, the component
Xn fn // Yn is a local diffeomorphism (Def. 3.26), then induced morphism on stacks X lim

−!
f• // Y is also a

local diffeomorphism (Def. 3.36).

Proof. Consider the following diagram:
��
OO
��
OO
�� ��

OO
��
OO
��

X1

��

OO

��

//
η

ℑ

X1 '' ��
OO
��
OO
��

Y1

��

OO

��

η
ℑ

Y1 && ��
OO
��
OO
��

ℑX1

��

OO

��

// ℑY1

��

OO

��
X0 //

��

η
ℑ

X0 ''

Y0

��

η
ℑ

Y0 &&
ℑX0

��

// ℑY0

��
X //

η
ℑ

X ''

Y
η

ℑ

Y ''
ℑX // ℑY

Observe that:
(a) all solid ηℑ-naturality squares in this diagram are Cartesian, by the assumption that the rear part of the

diagram is a degreewise local diffeomorphism of étale groupoids.
(b) Y is not just the colimit of the partial diagram Y• in the rear right, but in fact is also the colimit of the full

non-dashed rear part of the diagram (using that X is the colimit of the rear left part). Similarly, ℑY is the
colimit of the non-dashed front part of the diagram (using that ℑ preserves limits and colimits, being a left
and a right adjoint, Prop. 2.26).

Hence if we regard the diagram as a natural transformation from its rear to its front part, then Prop. 2.32 applies
and says that also the bottom dashed square is Cartesian, and hence that X ! Y is a local diffeomorphism. �

Definition 3.39 (Étalification of groupoids). Let H be an elastic ∞-topos (Def. 3.21) and X• ∈Groupoids(H) (Def.
2.68). Notice that, by Prop. 2.70 for all n ∈ N we have for all 0 ≤ i ≤ n that all face maps Xn+1 di // Xn are
in fact equivalent to each other, being related by an automorphism of Xn+1 given by permutation of fiber product
factors (98)

X• '

X2 '
  

X1 '
  

X2 '
  

X0 oo d0
vv

d1

X1 oo d0
uu

d1��

d2

X2 oo
ww��

(185)

(and similarly for the degeneracy maps). Therefore, we may regard X• as a diagram in the slice HX0 . and apply
LX0 (169) to this diagram (185) to obtain

X ét
• '

LX0X2
'
&&

LX0X1
'
&&

LX0X2
'
&&

X0 oo ét
uu

ét

LX0X1 oo ét
ss

ét}}

ét

LX0X2 oo
vv��

(186)

Observe that:
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(a) the simplicial diagram (186) is again a groupoid, since the right adjoint functor LX0 preserves the character-
izing fiber products (96) (by Prop. 2.26);

(b) this groupoid is étale (Def. 3.35), since the morphisms of the form LX0Xn −! X0 in (186) are local diffeo-
morphisms by construction, whence all other morphisms LX0Xn1 −!LX0Xn2 are local diffeomorphisms by
the left-cancellation property (164).

Hence we say that:
(i) The simplicial diagram (186) is the étalification of the groupoid X•.

X ét
• ∈ ÉtaleGroupoids(H) . (187)

(ii) If the corresponding atlas of X• (via Prop. 2.70) is denoted X0 // //X , then we write

X0
ét // //X ét (188)

for the corresponding étale atlas (via Prop. 3.36) of the étalified groupoid (187).

3.1.3 Super-geometry

We present a formulation of super-geometry internal to ∞-toposes which we call solid [Sc13].

Super-geometry.

Definition 3.40 (Solid ∞-topos).

(i) An ∞-topos H (Def. 2.30) over B = Groupoids∞ is a solid ∞-topos if its base geometric morphism (Prop. 2.24),
to be called Pnts : H // B , is equipped with a factorization as follows, with adjoints (Def. 2.24) as shown:

Shp :

Γ :

H

×“even” Evn
⊥

//

oo“bosonic” Bsnc
⊥

? _

“super shape” Shpsup
⊥

//

oo“super discrete” Discsup ? _

Pntsinf
⊥ //

oo Chtc
⊥

? _

H 

oo Rdcd
⊥

? _

Shpinf
⊥

//

oo Discinf ? _

−−−
Hℜ

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ
//

B : Disc

solid
∞-topos

bosonic
sub-topos

reduced
sub-topos

discrete
sub-topos

(189)

(ii) In particular, a solid ∞-topos is also an elastic ∞-topos (Def. 3.21), as its is sub-∞-topos H of bosonic objects.

(iii) We write(
⇒ := Bsn◦Evn

)
“even”

a
(
 := Bsn◦Shpsup

)
“bosonic”

a
(

Rh := Discsup ◦Shpsup
)

“rheonomic”
: H−!H (190)

for the further induced modalities (20) (solid modalities) accompanying the elastic modalities (155) and the cohe-
sive modalities (128).

Examples of solid ∞-toposes. We indicate an example of a solid ∞-topos (Def. 3.40). For full details on the
construction see [SS20c]. In generalization of Def. 3.22 we have the following:

Definition 3.41 (∞-Jets of super Cartesian spaces).
(i) Write

∞JetsOfSuperCartesianSpaces �
� C∞(−) // CommutativeSuperAlgebrasop

R

Rn|q×DW
� // C∞

(
Rn
)
⊗R ∧•R

(
Rq
)
⊗R (R⊕W)

(191)

for (as in [KS97][KS00]) the full subcategory of the opposite of super-commutative super-algebras over the real
numbers on those which are tensor products of

(a) algebras C∞(Rn) of smooth functions on a Cartesian space Rn, for d ∈ N;

(b) Grassmann algebras ∧•RRq on q ∈ N generators in odd degree;

54



(c) finite dimensional R⊕W ∈ CommutativeAlgebras with a single nilpotent maximal ideal W .

(ii) We regard this as a site via the the coverage (i.e., a Grothendieck pre-topology) whose covers are of the form{
Rn×R0|q︸ ︷︷ ︸

Rn|q

×D
fi×id×id // Rn×R0|q×D

}
i∈I

such that
{
Rn fi // Rn

}
i∈I

is a cover in CartesianSpaces (Def. 2.5).

Lemma 3.42 (Reflections of super-commutative algebras into commutative algebras). The canonical inclusion of
∞JetsOfCartesianSpaces (Def. 3.22) into ∞JetsOfSuperCartesianSpaces (Def. 3.41) has a left and a right adjoint
(Def. 2.24)

∞JetsOfSuperCartesianSpaces
Evn //

oo Bsnc
⊥
⊥

? _

Shpsup //
∞JetsOfCartesianSpaces (192)

where:
(i) The left adjoint Evn in (192) is given in terms of super-algebras of smooth functions (191) by passage to the
sub-algebra of even-graded elements:

C∞

(
Evn

(
Rn|q×D

))
' C∞

(
Rn|q×D

)
even

' C∞
(
Rn×D

)
⊗RC∞

(
R0|q)

even .
(193)

(ii) The right adjoint Shpsup in (192) is given in terms of super-algebras of smooth functions (191) by passage to
the quotient algebra by the ideal of odd-graded elements:

C∞

(
Shpsup

(
Rn|q×D

))
' C∞

(
Rn|q×D

)
/C∞

(
Rn|q×D

)
odd

' C∞
(
Rn×D

)
⊗RC∞

(
R0|q)/C∞

(
R0|q)

odd︸ ︷︷ ︸
'R

'C∞
(
Rn×D

) (194)

and hence directly by
Shpsup

(
Rn|q×D

)
' Rn×D . (195)

Proof. By regarding the situation under the defining embedding as being in CommutativeSuperAlgebrasR (Def.
3.41), it is equivalent to the statement that the canonical inclusion of commutative algebras into super-commutative
super-algebras has a right and a left adjoint given by passage to the even sub-algebra and to the quotient by the odd
ideal, respectively:

CommutativeSuperAlgebrasR

A 7! A/Aodd //

oo ⊥
⊥

? _

A 7! Aeven //
CommutativeAlgebrasR .

This follows readily by inspection from the fact that homomorphisms of super-algebras preserve super-degree, by
definition. One place where this adjoint triple has been made explicit before is [CR12, below Example 3.18]. �

Example 3.43 (Jets of super-geometric ∞-groupoids). The ∞-category of ∞-sheaves (Def. 2.42)

∞JetsOfSupergeometricGroupoids∞ := Sheaves∞

(
∞JetsOfSuperCartesianSpaces

)
over the site from Def. 3.41 is a solid ∞-topos (Def. 3.40).

55



(i) Its bosonic (190) sub-∞-topos is that of ∞JetsOfSmoothGroupoids (Example 3.24) and its reduced (154) sub-
∞-topos that of SmoothGroupoids∞ (Example 3.18):

∞JetsOfSupergeometricGroupoids∞

Evn //

oo Bsnc
⊥

? _

Shpsup
⊥ //

oo Discsup
⊥

? _ ∞JetsOfSmoothGroupoids∞
oo Discinf ? _ SmoothGroupoids∞

oo Disc ? _ Gropoids∞

...
?�
OO

2JetsOfSmoothGroupoids∞

?�

OO

JetsOfSmoothGroupoids∞

?�
OO

tt

q Q

where the adjoint triple
(
Evn a Bsnc a Shpsup

)
arises by left Kan extension from that of Lemma 3.42.

(ii) The full inclusion of SmoothManifolds, inherited from (147), extends to a full inclusion of super-manifolds (as
in [CCF11, 4.6][HKST11, 2]):

SmoothManifolds �
� Discsup // SuperManifolds �

� // ∞JetsOfSupergeometricGroupoids∞
(196)

(iii) Accordingly, super-Lie groups (e.g. [Ya93][CCF11, 7]) embed faithfully into all group objects (Prop. 2.74):

Groups
(
SmoothManifolds

)
Lie groups

� �Discsup // Groups
(
SuperManifolds

)
super Lie groups

� � // Groups
(
∞JetsOfSupergeometricGroupoids∞

) (197)

(iv) In particular, for d ∈N and N∈ Spin(d,1)RepresentationsR, the corresponding supersymmetry groups, i.e., the
super-Poincaré group and its underlying translational super-Minkowski group (e.g. [Fr99, §3]) are group objects

Rd,1|N
super-Minkowski
super Lie group

� � // Iso
(
Rd,1|N)

super-Poincaré
super Lie group

// // Spin(d,1) ∈ Groups
(
∞JetsOfSupergeometricGroupoids

)
. (198)

Remark 3.44 (Superspace cohomology theory in solid ∞-toposes). The intrinsic cohomology (22) in the solid
∞-topos of ∞JetsOfSupergeometricGroupoids∞ (Example 3.43)
(i) includes the super-rational cohomology of super-Minkowski spacetimes (198) that governs the fundamental
(κ-symmetric) super p-brane sigma-models of string/M-theory [FSS13b][FSS16a][FSS16b], review in [FSS19a].
(ii) Its enhancement to twisted super-rational cohomology of super-Minkowski spacetimes (198), which happens
(by Remark 2.96) in the intrinsic cohomology of the tangent ∞-topos T

(
∞JetsOfSupergeometricGroupoids∞

)
(Ex-

ample 2.51), encodes the double dimensional reduction from fundamental M-branes to D-branes [BSS18].
(iii) Its enhancement to proper equivariant super-rational cohomology of super-Minkowski spacetimes (198),
which happens (by Remark 5.4 and Theorem 5.9 below) in the intrinsic cohomology of the singular-solid ∞-
topos Singular∞JetsOfSupergeometricGroupoids∞ (Example 3.2 below), encodes also the black (solitonic) super
p-branes [HSS18].

Lemma 3.45 (In super-geometric groupoids étale implies bosonic).
In the solid ∞-topos of ∞JetsOfSupergeometricGroupoids (Example 3.41) we have a natural equivalence

 ◦ℑ ' ℑ (199)

saying that ℑ-modal objects (155) are bosonic (190).

Proof. Observe that on ∞JetsOfSuperCartesianSpaces
y

↪−! ∞JetsOfSupergeometricGroupoids∞ (Def. 3.41), we
have a natural equivalence

ℜ◦⇒ ' ℜ (200)
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saying that the reduction (155) of the even aspect (190) of the space is equivalently the reduced aspect.
To see this, consider Rn|q×DW ∈ ∞JetsOfSuperCartesianSpaces and use, by Example 3.43 with Lemma 3.42,

the operation ℜ◦⇒ is given in terms of the defining super-algebras of functions (3.41) by passage to the reduced
algebra of the even subalgebra:

C∞

(
ℜ◦⇒

(
Rn|q×DW

))
'
((

C∞
(
Rn)⊗R

(
∧•RRq)⊗R (R⊕W )

)
even

)
red

'
(

C∞
(
Rn)⊗R

(
∧•RRq)

even︸ ︷︷ ︸
'R⊕∧2Rq⊕∧4Rq⊕···

⊗R (R⊕W )
)

red

'
(

C∞(Rn)⊗R
(
R⊕ (W ⊕∧2Rq⊕∧4Rq⊕·· ·)

))
red

' C∞(Rn)⊗R
(
R⊕ (W ⊕∧2Rq⊕∧4Rq⊕·· ·)

)
red︸ ︷︷ ︸

'R

'C∞(Rn) .

Here in the last step we used that every non-unit element in the Grassmann algebra is nilpotent. But, by (194) and
(158), we also have

C∞
(
ℜ(Rn|q×DW )

)
' C∞

(
Shpinf ◦Shpsup(Rn|q×DW )

)
'C∞

(
Shpinf(Rn×DW )

)
'C∞

(
Rn) ,

where in the first step we used the elastic structure (189) ℜ := Bsnc◦Rdcd◦Shpinf ◦Shpsup leaving the two full
embeddings on the left notationally implicit. Since all these equivalences are natural, this implies (200). With this,
we have the following sequence of natural equivalences for general X ∈H := ∞JetsOfSupergeometricGroupoids∞:

H
(
Rn|q×D , ◦ℑ(X)

)
' H

(
ℜ◦⇒

(
Rn|q×D

)
, X
)

' H
(

ℜ
(
Rn|q×D

)
, X
)

'H
(
Rn|q×D , ℑX

)
,

where the first and the last steps are the defining hom-equivalences (47) while the middle step is (200). Thus the
statement (199) follows, by the ∞-Yoneda lemma (Prop. 2.38). �

3.2 Singularities

Given a cohesive ∞-topos H ⊂ as in §3.1.1, we construct here a new ∞-topos H (Def. 3.48 below), to be called
singular-cohesive, with the following properties:

1. H contains ((213) below) for each finite group G, an object ≺

G ∈ H, to be thought of as the generic G-orbi-
singularity (Figure D).

2. H carries (Prop. 3.50 below) an adjoint triple of modalities (20) to be read as follows

<

“singular”
a ⊂

“smooth”
a ≺

“orbi-singular”

with H ⊂ being the full sub-∞-category of smooth objects in H,
3. such that (Prop. 3.62 below):

<

(

≺

G) ' ∗ “The purely singular aspect of an orbi-singularity is the quotient of a point, hence a point.”

⊂

(

≺

G) ' ∗�G “The purely smooth aspect of an orbi-singularity is the homotopy quotient of a point.”

≺

(

≺

G) ' ≺

G “An orbi-singularity is purely orbi-singular.”
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Essentially this list of conditions might completely characterize H to be as in Def. 3.48 below. Here we
leave a fully axiomatic characterization of singular cohesion as an open problem and are content with making the
following definitions:

Singular cohesive geometry.

Definition 3.46 (The 2-site of singularities).
(i) We write

Singularities := Groupoids≤1,cn,fin
� � // Groupoids∞ (201)

for the full sub-∞-category of ∞-groupoids on the connected 1-truncated objects whose π1 is finite.

(ii) A skeleton of this (2,1)-category has, of course, as objects the delooping groupoids (Example 2.14) ∗�G that
are presented by a single object and a finite group G of automorphisms of that object.

(iii) When regarded as objects of Singularities in (201), we will denote these by “ ≺” attached to the symbol for the
group:

≺
G

_
��

∈ Singularities� _

��
∗�G ∈ Groupoids∞

(202)

(iv) The hom-∞-groupoids between these singularities are, equivalently, the action groupoids (Example 2.15)
whose objects are group homomorphisms and whose morphisms are conjugation actions on these:

Singularities
(

≺

G1, ≺

G2
)

:= Groupoids∞

(
∗�G1,∗�G2

)
' Groups(G1,G2)�conjG2

(203)

(v) We regard Singularities as an ∞-site with trivial Grothendieck topology, so that ∞-sheaves on Singularities are
∞-presheaves (65).

Remark 3.47 (The global orbit category). The category Singularities in Def. 3.46 is sometimes known in the
literature as the “global orbit category” (though at other times this term is used for its wide but non-full subcategory
on the faithful morphisms). It has elsewhere been denoted: “Orb case 1©” (in [HG07, 4.1]), “Glob” (in [Re14, 2.2]),
“Orb” (in [Kö16, 2.1][Ju20, 3.2]) and (up to equivalence) “Ogl” (in [Schw17][Kö16, 2.2]). The terminology in
Def. 3.46 is meant to be more suggestive of the role this category plays in the theory, from the perspective of
cohesive homotopy theory. In fact, the (global) orbit category is often taken to contain not just all finite groups,
but all compact Lie groups, with the hom-spaces then being the geometric realization of the topological mapping
groupoids. We restrict to discrete groups (hence finite if compact) for reasons explained in Remark 3.64 below.
This restriction is also amplified in [DHLPS19].

Definition 3.48 (Singular-cohesive ∞-topos). Consider a cohesive ∞-topos (Def. 3.1), now to be denoted with
“ ⊂”-subscripts

H ⊂

× Shp
⊥

//

oo Dsc
⊥

? _

Pnts
⊥

//

oo coDsc ? _
B ⊂ := Groupoids∞ (204)

and assumed to have a site of Charts (Def. 3.9). The corresponding singular-cohesive ∞-topos is that of H ⊂-valued
∞-sheaves (65) over the site of Singularities (Def. 3.46):

H :=Sheaves∞

(
Singularities, H ⊂

) oo NnOrbSnglr

Smth
⊥ //

OO

Disc Pntsa

��

H ⊂OO

Disc Pntsa

��
B := Sheaves∞

(
Singularities, B ⊂

) oo NnOrbSnglr
? _

Smth
⊥ // B ⊂

(205)
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where horizontally we are showing the base geometric morphisms (Prop. 2.43) of sheaves over the site Singularities,
while vertically we are showing the base geometric morphism (127) of H ⊂ over B ⊂ extended objectwise over
Singularities, by functoriality.

Lemma 3.49 (Singularities is 2-site for homotopical cohesion). The 2-site Singularities (Def. 3.46) is an ∞-site
for homotopical cohesion, in the sense of Def. 3.16.

Proof. It is immediately checked that

1. the terminal object is given by the trivial group: ∗ ' ≺

1 (206)

2. Cartesian product is direct product of groups: ≺

G1× ≺

G2 ' ≺

G1×G2 . �

Proposition 3.50 (Singular cohesion). A singular-cohesive ∞-topos (Def. 3.48)

H Pnts
++

Smth
rrH ⊂

Pnts ++
B

SmthssB ⊂

is itself cohesive (Def. 3.1) in two ways:
(i) over the singular-base ∞-topos B by the cohesion of H ⊂! B ⊂ (127) applied object-wise over all Singularities

H

×“shape” Shp
⊥

//

oo“discrete” Disc
⊥

? _

“points” Pnts
⊥

//

oo“chaotic” Chtc ? _
B ; (207)

(ii) over the non-singular cohesive base ∞-topos H ⊂ (Def. 3.1) in that the global section geometric morphism

H Smth
−!H ⊂ of (205) is part of a cohesive adjoint quadruple, to be denoted

H

×“singular” Snglr
⊥

//

oo“not orbi-singular” NnOrbSnglr
⊥

? _

“smooth” Smth
⊥

//

oo“orbi-singular” OrbSnglr ? _
H ⊂ . (208)

Proof. The first statement is immediate. The second statement follows via Lemma 3.49 by Example 3.17. �

Notation 3.51 (Singular-elastic/solid ∞-topos). Let H be a singular-cohesive ∞-topos (Def. 3.48) with underlying
smooth cohesive ∞-topos H ⊂ ↪!H. Then
(i) if H ⊂ is in fact an elastic ∞-topos (Def. 3.21), we say that H is a singular-elastic ∞-topos;
(ii) if H ⊂ is in fact a solid ∞-topos (Def. 3.40), we say that H is a singular-solid ∞-topos.

Definition 3.52 (Singular-cohesive modalities). Given a singular cohesive ∞-topos (Def. 3.48), with its singular
cohesion from Prop. 3.50, we write(

< := NnOrbSnglr◦Snglr
)

“singular”
a
(

⊂ := NnOrbSnglr◦Smth
)

“smooth”
a
(

≺ := OrbSnglr◦Smth
)

“orbi-singular”
(209)

for the adjoint triple of modalities H! H induced (20) via (208); accompanying the cohesive modalities (128)
induced via (207).

The above terminology reflects the difference (see Figure D) between a plain singularity < (singular but not orbi-
singular) as opposed to its enhancement to an actual orbifold singularity ≺. We record the following elementary
but important consequence:
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Proposition 3.53 (Smooth orbi-singular is smooth). The singularity modalities (Def. 3.52) satisfy:

< ◦ ⊂ ' ⊂ and ⊂ ◦ ≺ ' ⊂ .

Proof. As in Prop. 3.2. �

Lemma 3.54 (Objectwise application of singularity modalities). The singular-modalities in (208) are computed
objectwise over Charts, as in Example 3.17, followed by ∞-sheafification LCharts (69):

Sheaves∞

(
Singularities×Charts

)
Snglr

++

kk

NnOrbSnglr

� � // PreSheaves∞

(
Singularities×Charts

) lim
−!

Singularities
//

oo ⊥
constSingularities

? _
PreSheaves∞

(
Charts

) LCharts //

oo ⊥
? _
Sheaves∞

(
Charts

)

Proof. By essential uniqueness of adjoints (47). �

Examples of singular-cohesive ∞-toposes.

Example 3.55 (Singular ∞-groupoids). For H ⊂ := Groupoids∞ the base ∞-topos of plain ∞-groupoids (35), the
singular-cohesive ∞-topos from Def. 3.48

SingularGroupoids∞ := Sheaves∞

(
Singularities, Groupoids∞

)
is that of traditional unstable global homotopy theory [Schw18, §1s], as discussed in this form in [Re14, §4.1]
(here with evaluation on all finite groups instead of all compact Lie groups).

Example 3.56 (Singular-smooth ∞-groupoids). (i) We call the singular-cohesive ∞-topos (Def. 3.48) over those
of smooth ∞-groupoids (Example 3.18) the ∞-topos of singular-smooth ∞-groupoids:

SingularSmoothGroupoids∞ := Sheaves∞

(
Singularities, SmoothGroupoids∞

)
' Sheaves∞

(
CartesianSpaces×Singularities

)
.

(210)

(ii) We call the singular-elastic ∞-topos (Def. 3.51) over JetsOfSmoothGroupoids∞ (Example 3.24)

SingularJetsOfSmoothGroupoids∞ := Sheaves∞

(
Singularities, JetsOfSmoothGroupoids∞

)
' Sheaves∞

(
JetsOfCartesianSpaces×Singularities

)
.

(211)

(iii) We call the singular-solid ∞-topos (Def. 3.51) over ∞JetsOfSupergeometricGroupoids∞ (Example 3.43)

Singular∞JetsOfSupergeometricGroupoids∞ := Sheaves∞

(
Singularities, ∞JetsOfSupergeometricGroupoids∞

)
' Sheaves∞

(
∞JetsOfSuperCartesianSpaces×Singularities

)
.

(212)
For the second lines of (211), (211), and (212), see Lemma 3.60.

Basic properties of singular cohesion.

Definition 3.57 (Orbi-singularities). Let H be singular-cohesive ∞-topos (Def. 3.48).
(i) We regard the objects ≺

G ∈ Singularities (202) as objects of H under the ∞-Yoneda-embedding (Prop. 2.37)
and the inclusion (205) of discrete objects:

≺

G ∈ Singularities �
� y // Sheaves∞

(
Singularities,B ⊂

) � � Disc // Sheaves∞

(
Singularities,H ⊂

)
= H . (213)

(ii) More generally, for
G ∈ Groups(Groupoids∞)

Groups(Disc) // Groups(H ⊂)

any discrete ∞-group (207), we also write

≺

G := ≺(BG) ∈ H (214)

for the orbi-singularization (208) of its delooping (101).
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Lemma 3.61 shows that the two notations in Def. 3.57 are consistent with each other.

Remark 3.58 (Finite groups in singular cohesion). Given a singular-cohesive ∞-topos (Def. 3.48), the images of
a finite group G under the following sequence of inclusions are naturally all denoted by the same symbol:

Groupsfin � � // Groups(Set) �
� // Groups(Groupoids∞)

� � Groups(Disc) // Groups
(
H ⊂

) � � Grp(NnOrbSnglr) // Groups
(
H
)

G � // G � // G � // G � // G
(215)

With this understood, we also have identifications as follows (where now the ambient ∞-categories are implicit
from the context):

∗�G ' Disc(∗�G) and ≺

G ' Disc
(

≺

G) (216)

where on the right we are recalling the definition (213).

Similarly:

Remark 3.59 (Smooth charts in singular cohesion). Consider a singular-cohesive ∞-topos (Def. 3.48) with an
∞-site Charts of charts (Def. 3.9). Then images of the charts U ∈ Charts under the ∞-Yoneda embedding (Prop.
2.37), and further under NnOrbSnglr (205), are naturally denoted by the same symbol:

S
y // H ⊂

NnOrbSnglr // H
U � // U � // U

(217)

Lemma 3.60 (∞-Yoneda on product site). Consider a singular-cohesive ∞-topos H (Def. 3.48) with an ∞-site
Charts of cohesive charts (Def. 3.9) for H ⊂.
(i) Then a site (Def. 2.42) for the full singular-cohesive H is the Cartesian product site

SingularCharts := Charts×Singularities (218)
in that

H ' Sheaves∞

(
Charts×Singularities

)
. (219)

(ii) Under the ∞-Yoneda embedding (Prop. 2.37) objects in the product site map to the Cartesian product of their
prolonged Yoneda embeddings (in the sense of Remark 3.58 and Remark 3.59):

Charts×Singularities
y // H(

U, ≺

G) � // U× ≺

G ,

where on the right we are using the abbreviated notation from (213) and (217).

Proof. On the one hand, we have a natural equivalence

H
(

y
(
U1, ≺

G1
)
, y
(
U2, ≺

G2
))
' Charts(U1,U2)×Singularities

(
∗�G1 , ∗�G2

)
(220)

by fully-faithfulness of the ∞-Yoneda embedding (Prop. 2.37) and by the definition of product sites. On the other
hand, we have a sequence of natural equivalences

H
(

y
(
U1, ≺

G1
)
, U2× ≺

G2
)
= H

(
y
(
U1, ≺

G1
)
, NnOrbSnglr(U2)×Disc

(

≺

G2
))

'H
(

y
(
U1, ≺

G1
)
, NnOrbSnglr(U2)

)
×H

(
y
(
U1, ≺

G1
)
, Disc

(

≺

G2
))

'H ⊂

(
Snglr

(
y
(
U1, ≺

G1
))
,U2

)
×B
(

S
(
y
(
U1, ≺

G1
))
, ≺

G2
)

'H ⊂

(
U1,U2

)
×B
(

≺

G1 , ≺

G2
)

' Charts
(
U1,U2

)
×Singularities

(

≺

G1 , ≺

G2
)
.

(221)

Here the first step is by definition, the second step is the universal property of the Cartesian product, and the third
step is the hom-equivalence (47) of the adjunctions Snglr a NnOrbSnglr and S a Disc, respectively. In the fourth
step, we use (136) and (223), respectively. The last step is the fully-faithfulness of the ∞-Yoneda embedding
(Prop. 2.37). Since both (220) and (221) are natural in

(
U ′,(∗�G) ≺

)
, and since their right hand sides coincide,

it follows by the ∞-Yoneda embedding (Prop. 2.37) that also the representatives of the left hand sides coincide:
y
(
U2, ≺

G2
)
' U2× ≺

G2. �
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Lemma 3.61 (Images and pre-images of orbi-singularities). Let H be a singular-cohesive ∞-topos (Def. 3.48).
Then the images and pre-images of the generic singularities ≺

G (213) under the functors (208) exhibiting the
singular cohesion are as follows (see Figure D):

≺

G&Snglr
ss

�
Smth ++

kk OrbSnglr

�
∗�G ∈H

∗= ∗/G ∗�G
&

NnOrbSnglr

22

∈H ⊂ (222)

Proof. By the singular cohesion established in the proof of Prop. 3.50 we have that:

1. the functor Snglr ' lim
−!

is the colimit functor (Prop. 2.36),
2. the functor Smth ' Singularities

(

≺

1,−
)

is the hom-functor (25) out of the terminal object (206).

Using this, we deduce the claim:

1. Since colimits of representable ∞-functors are equivalent to the point (Lemma 2.40) we have

Snglr
(

≺

G) ' ∗ ' ∗/G . (223)

2. Observing that (203) reduces to Singularities
(

≺

1, ≺

G) ' ∗�G we have

Smth
(

≺

G) ' ∗�G .

3. With this and by the various adjunctions we have, for U ∈H ⊂ any geometically contractible generator (136)
and K ∈ Groupsfin any finite group, the following sequence of natural equivalences:

H
(

U× ≺

K ,OrbSnglr(∗�G)
)
'H ⊂

(
Smth

(
U× ≺

K)︸ ︷︷ ︸
'U×Smth

(

≺

K) ,∗�G
)
' H ⊂

(
U× (∗�K), ∗�G︸︷︷︸

'Disc(∗�G)

)

' Groupoids∞

(
Shp(U)︸ ︷︷ ︸
'∗

× (∗�K),∗�G
)
' Singularities

(

≺

K , ≺

G)
' B

(
Shp(U)︸ ︷︷ ︸
'∗

× ≺

K , ≺

G
)
' B

(
Shp
(
U× ≺

K), ≺
G
)

'H
(

U× ≺

K ,Disc
(

≺

G)) ' H
(

U× ≺

K , ≺

G
)
,

where in several steps we recognized geometric discreteness, by (216) in Remark 3.58.
But, by Lemma 3.60, this chain of natural equivalences in total a natural equivalence of the form

H
(

y
(
U, ≺

K),OrbSnglr
(
∗�G

))
' H

(
y
(
U, ≺

K), ≺G) .
From this, the ∞-Yoneda embedding (Prop. 2.37) implies that OrbSnglr

(
∗�G

)
' ≺

G . �

It is useful to re-express this in terms of the modalities:

Proposition 3.62 (Orbi-singularities are orbi-singular). Let H be a singular-cohesive ∞-topos (Def. 3.48) and
consider a finite group G ∈ Groupsfin (215). Then the images of the generic orbi-singularity ≺

G ∈ H (213) under
the modalities (209) are (see Figure D):

<

(

≺

G) ' ∗ , ⊂

(

≺

G) ' ∗�G , ≺

(

≺

G) ' ≺

G . (224)

Proof. This follows directly with Lemma 3.61 and the definition (209). For example:

≺

(

≺

G) ' OrbSnglr◦Smth
(

≺

G)︸ ︷︷ ︸
'∗�G︸ ︷︷ ︸

' ≺

G

�

62



In the same vein, we also have the following immediate but important property:

Proposition 3.63 (Orbi-singularities are geometrically discrete). Let H be a singular-cohesive ∞-topos (Def. 3.48)
and consider a finite group G ∈ Groupsfin (215).
(i) Then the basic orbi-singularity ≺

G ∈H (213) is geometrically discrete (128) and thus also pure shape:

[ ≺

G ' ≺

G , S ≺

G ' ≺

G . (225)

(ii) The same is true for Smth(∗�G) ≺ ' ∗�G:

[(∗�G) ' ∗�G , S(∗�G) ' ∗�G . (226)

Proof. Both statements follow immediately from the definitions and the fact that G is finite and hence geometrically
discrete (215). �

Remark 3.64 (Need for discrete/finite groups in Singularities). It is to make Lemma 3.61 and hence Prop. 3.62
true that Def. 3.46 requires the global orbit category Singularities to consist of finite groups, instead of more
general compact Lie groups (Remark 3.47): If Singularities were to contain non-discrete compact Lie groups G,
then the same argument as in Lemma 3.61 would give in (224) the following more general formula:

⊂ ≺

G ' ∗�[G

(where on the right we think of the Lie group G as being cohesive via (147)). Since the condition G ' [G char-
acterizes discrete groups, this would break Prop. 4.2 below, in that then the shape of the orbi-singularization of a
topological groupoid would take non-traditional values on non-discrete groups in the global orbit category.

The following lemma further illustrates the nature of orbi-singular cohesion:

Lemma 3.65 (Smooth 0-truncated objects are orbi-singular). Let H be a singular-cohesive ∞-topos (Def. 3.48).
Then if X ∈H ⊂,0 is smooth (209) and 0-truncated (Def. 2.57), it is also orbi-singular (209):

τ0(X)' X and ⊂(X)' X ⇒ ≺(X) ' X . (227)

Proof. Since X is smooth, there exists X ⊂ ∈H ⊂ such that X ' Smth(X ⊂) . Observe that X being 0-truncated implies
that X ⊂ is 0-truncated, (by using in Def. 2.57 the hom-equivalence (47) of the right adjoint Smth).

Now let S be any site (69) for H ⊂. Then, for U ∈S ↪!H ⊂ and G∈Groupsfin, we have the following sequence
of natural equivalences, using the various adjoint functors, their idempotency and respect for products:

( ≺X)
(
Smth(U)× ≺

G)' ( ≺Smth(X ⊂))
(
Smth(U)× ≺

G)
'H

(
Smth(U)× ≺

G, ≺Smth(X ⊂)
)

'H
(
Smth(U)× ⊂( ≺

G),Smth(X ⊂)
)

'H
(
Smth(U× (∗�G)),Smth(X ⊂)

)
'H ⊂

(
U× (∗�G),X ⊂

)
' Groupoids∞

(
∗�G, H ⊂

(
U, X ⊂

))
' Groupoids∞

(
∗, H ⊂

(
U, X ⊂

))
'H ⊂

(
U, X ⊂

)
'H

(
Smth(U), Smth(X ⊂)

)
'H

(
Smth(U)× ≺

G,Smth(X ⊂)
)

'H
(
Smth(U)× ≺

G,X
)

' X
(
Smth(U)× ≺

G).
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Here the first and the last step use the ∞-Yoneda embedding (Prop. 2.37), while the middle step uses the fact that
X ⊂ is 0-truncated, hence that H ⊂(U,X ⊂) is 0-truncated (i.e. a set), to find that there is in fact no dependency on G.
Hence the claim follows by the ∞-Yoneda embedding (Prop. 2.37), in view of Lemma 3.60. �

Remark 3.66 (Degenerate case of orbi-singular). The natural language statement of Lemma 3.65 shows that the
modality ≺ “orbi-singular” (208) really means: “All singularities that are present are orbi-singularities.”, which
becomes a trivially satisfied condition when there are no singularities, such as for smooth and 0-truncated objects.

Interplay between geometric and singular cohesion.

Lemma 3.67 (Smooth commutes with shape). In a singular-cohesive ∞-topos (Def. 3.48) the smooth-modality
(209) commutes with all three cohesive modalities (128) (as per Prop. 3.50):

⊂ ◦ S ' S◦ ⊂ , ⊂ ◦ [ ' [◦ ⊂ , ⊂ ◦ ] ' ]◦ ⊂ .

Proof. Under the defining identification H' Sheaves∞

(
Singularities,H ⊂

)
, let X ∈H be any object regarded as a

H ⊂-valued ∞-presheaf on Singularities:

X : ≺
K 7−! X ( ≺

K) ∈ H ⊂ .

Observe then (by Example 3.17 via Lemma 3.49) that ⊂ turns such a presheaf into the constant presheaf on its
value at the terminal object ≺

1: (

⊂X
)

: ≺

K 7−! X ( ≺

1) .

On the other hand, the geometric modalities operate objectwise over Singularities (Remark 3.54):(
SX
)

: ≺

K 7−! S
(
X ( ≺

K)
)
.

With this, we have the following sequence of natural equivalences for X ∈ H and ≺

K ∈ Singularities:(

⊂SX
)
( ≺

K)'
(
SX
)
( ≺

1)

' S
(
X ( ≺

1)
)

' S
(
( ⊂X )( ≺

K)
)

'
(
S ⊂X

)
( ≺

K) .

Hence the claim follows by the ∞-Yoneda embedding (Prop. 2.37). The argument for [ and ] is analogous. �

Remark 3.68 (Dichotomy between naive and proper orbifold cohomology via singular-cohesion). In contrast to
Lemma 3.67, the orbi-singular modality ≺ (209) does not commute with the cohesive shape modality S (128),
in general. This phenomenon is the very source of the proper equivariant structure seen in singular-cohesive ∞-
toposes, reflected in the following dichotomy between geometric- and homotopy fixed points of an orbi-space and
in the distinction between proper- and Borel-equivariant cohomology:

≺ ◦ S S◦ ≺

Def. 3.69 (i) Homotopy
fixed-points

Geometric
fixed-points Def. 3.69 (ii)

Def. 5.1
Borel-equivariant

cohomology
Proper equivariant

cohomology Def. 5.2

Def. 5.13
Tangentially twisted

cohomology
Tangentially twisted

proper orbifold cohomology Def. 5.15

Definition 3.69 (Geometric- and homotopy-fixed points). Let H be a singular-cohesive ∞-topos (Def. 3.48), G ∈
Groups(H) (Prop. 2.74) being discrete G' [G and 0-truncated G' τ0G, and (X ,ρ) ∈ GActions(H) (Prop. 2.79)
with smooth X ' ⊂X , hence

X ∈ H ⊂

� � NnOrbSinglr // H .

For any subgroup K ⊂ G, the ∞-groupoid of ≺

K-points in the slice (Prop. 2.46) over ≺

G (214)...
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(i) ...of the orbi-singularization (208) of the shape (207) of X�G is the homotopy fixed point space of X

HmtpFxdPntSpcK(X) := H/

≺

G

(

≺

K , ≺ S(X�G)
)
. (228)

(ii) ...of the shape (207) of the orbi-singularization (208) of X�G is the geometric fixed point space of X

GmtrcFxdPntSpcK(X) := H/

≺

G

(

≺

K , S ≺ (X�G)
)
. (229)

On the right we are using Prop. 3.62 and Prop. 3.63 to see that both expressions indeed live in the slice over ≺

G.

Proposition 3.70 (Homotopy-fixed point spaces are fixed loci in shapes). The homotopy-fixed point spaces (228)
of the G-space X in Def. 3.69 are, equivalently, the fixed-loci (Def. 2.97) of the shape Shp(X) ∈ Groupoids∞ (127)
of X :

HmtpFxdPntSpcsK(X) '
(
Shp(X)

)K ∈ Groupoids∞ (230)

with respect to the induced G ' SG-action (using Prop. 3.4, discreteness of G and cohesion in the form of Prop.
3.2).

Proof. We claim a sequence of natural equivalences as follows:

HmtpFxdPntSpcK(X) := H/

≺

G

(
≺

K , ≺ S(X�G)
)

'H/

≺

G

(

≺

K , ≺ (SX)�G
)

' H/
OrbSnglr(∗�G)

(
OrbSinglr

(
∗�K

)
, OrbSnglr

(
(SX)�G

))
'
(
H ⊂

)/
∗�G

(
∗�K, (SX)�G

)
'
(
Groupoids∞

)/
∗�G

(
∗�K, Shp(X)�G

)
'
(
Groupoids∞

)/
∗�K

(
∗�K, Shp(X)�K

)
'
(
Shp(X))K

(231)

Here the first step is the definition (228), and the second step uses Prop. 3.4, discreteness of G and cohesion in the
form of Prop. 3.2. In the third step we observe with ≺

K ' ≺(∗�K) (Lemma 3.61) and ≺ := OrbSinglr ◦Smth
(209) that all objects and morphisms are in the image of OrbSnglr, and in the fourth step we use that this functor
is fully faithful, by Prop. 3.50. In the fifth step, we similarly observe that all objects and morphisms are, in fact,
furthermore in the image of Disc (by assumption on G and by definition of S := Disc ◦Shp (128)), which is fully
faithful by the axioms of cohesion (127). The sixth step observes the universal factorization through the pullback

∗�K

&&

// Shp(X)�G

vv
∗�G

'

∗�K // Shp(X)�K
**uu

(pb)∗�K
))

Shp(X)�G
tt∗�G

The pullback, in turn, is the homotopy quotient of the restricted action, as shown, by Prop. 2.85. With this, the
last step follows by Example 2.99. In summary, the composite of the sequence of equivalences (231) gives the
statement (230). �

Example 3.71 (Geometric fixed points generally differ from homotopy fixed points). As in Example 3.56, let
H := SingularSmoothGroupoids∞. For n ∈ N, n≥ 1, consider the Cartesian space Rn ∈ SmoothManifolds ↪−!H,
via (147), and regard it as equipped with the additive translation action of Zn induced from the left action of the
additive group (Rn,+) on itself, under the canonical inclusion (Zn,+) ↪! (Rn,+):
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(Rn,ρ`) ∈ ZnActions(Hs) . (232)

So the quotient of this action Rn�Zn ' Rn/Zn ' Tn ∈ SmoothManifolds ↪−!H is the standard n-torus. We then
have for the two notions of fixed-point spaces from Def. 3.69:
(i) The Homotopy-fixed point space (228) of the action (232) is equivalently the point (by Prop. 3.70 and (146)):

HmtpFxdPntSpcZ
n
(Rn)'

(
SRn︸︷︷︸
'∗

)Zn

' ∗

(ii) The geometric fixed point space (229) of the action (232) is empty

GmtrcFxdPntSpcZ
n
(Rn)'

(
Rn)Zn

' ∅

This follows by Lemma 4.7, using that no element of the set underlying Rn is fixed by the action of Zn.
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4 Orbifold geometry

Within an ambient context of singular-cohesive homotopy theory (§3), we now formulate the two geometric aspects
of orbifolds:

- §4.1 – as cohesive spaces with orbi-singularities,
- §4.2 – as cohesive spaces locally equivalent to a given model space.

In the end, we combine both aspects to form the proper ∞-categories of orbifolds: this is Def. 4.58 below.

4.1 Orbispaces

We observe (Prop. 4.2) that the shape of the orbi-singularization of a topological groupoid, regarded in singular-
smooth homotopy theory (Example 3.56), is the corresponding orbispace in global equivariant homotopy theory.

Remark 4.1 (Orbispaces in topology and in global equivariant homotopy theory).
(i) Orbispaces in topology. The term orbispace was originally introduced [Hae90] to mean the topological
version of orbifolds, i.e., Satake’s original concept [Sa56] but disregarding any differentiable structure. From
the perspective of étale groupoids/stacks, this means to consider topological groupoids/stacks instead of Lie
groupoids/differentiable stacks. So this usage of the term “orbispace” serves to complete the following table:

Smooth manifold Topological manifold
orbifold orbispace (geometric sense)

Lie groupoid topological groupoid
differentiable stack topological stack

In this sense, orbispaces have been discussed, e.g., in [Hae84][Hae91, §5][Ch01][He01].
(ii) Orbispaces in global equivariant homotopy theory. In [HG07] it was suggested to change perspective and
to instead regard these topological groupoids Xtop via the systems of homotopy types of all their geometric fixed
point spaces, by the following formula [HG07, 4.2] (beware the differing conventions, as per Remark 3.47):

G 7−!

homotopy type of (fat) geometric realization of∥∥∥∥∥Maps
(
BG , Xtop

)
topological mapping groupoid

∥∥∥∥∥ orbispace
(equivariant homotopical sense)

(233)

This is a global-equivariant version of how topological G-spaces are incarnated in G-equivariant homotopy theory
via Elmendorf’s theorem (recalled as Prop. B.10), and has served to motivate the development of global equivariant
homotopy theory [Schw18].

In the course of this development, homotopy theorists adopted the term “orbispace” to refer not to the topo-
logical groupoid Xtop (as [Hae90] originally did) but rather to the global equivariant homotopy type that is rep-
resented via (233). Usage of the term orbispace in this sense of global homotopy theory is, after [HG07], in
[Re14][Kö16][Schw17][Lu19, 3][Ju20]. In [Ju20, 3.15] formula 233 is used (following suggestions in [Schw17,
Introd.][Schw18, p. ix-x]) to define (abelian, non-geometric) cohomology of orbifolds with coefficients in global
equivariant spectra.

Our Prop. 4.2 below shows that these two different meanings of the term “orbispace” in the literature are
disentangled as well as unified by the notion of singular cohesion (Def. 3.48), in that orbispaces in the sense (ii)
are the shape S (127) of the orbi-singularization ≺ (209) of the topological groupoids in (i):

TopologicalGroupoids
S ◦ ≺ // Orbispaces

Xtop //
(

≺

G 7!
∥∥Maps

(
BG,Xtop

)∥∥) (234)

Hence Prop. 4.2 below means that, before passing to their pure shape, we may think of the orbi-singularizations of
objects in singular-cohesive ∞-toposes as cohesive orbispaces, lifting the concept of plain orbispaces in the sense
(ii) from plain homotopy theory to geometric (differential, étale) homotopy theory, hence back to sense (i) and
beyond.
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The crucial fact underlying the phenomenon (234), both in Prop. 4.2 and in Lemma 4.7 below, is that the probe
of an orbi-singular object ≺X ⊂ by a generic orbi-singularity ≺

K (202) is, by adjunction (209), equivalently the
probe of the underlying smooth object by the smooth aspect of ≺

K , hence is, by (224) in Prop. 3.62, the geometric
G-fixed locus in X ⊂:

≺
G // ≺X ⊂

(209)

⇔ ⊂ ≺

G //X ⊂

(224)

⇔ ∗�G //X ⊂ . (235)

Equivalently, since ≺
G ' ≺(∗�G) (Lemma 3.61) the composite corespondence (235) is fully-faithfulness of ≺.

Example: Topological groupoids as cohesive orbispaces.

Proposition 4.2 (Shape of orbi-singularized topological groupoid is orbispace). Let H :=SingularSmoothGroupoids∞

(Example 3.56), and let

TopologicalGroupoids
Cdfflg // SmoothGroupoids∞

NnOrbSnglr // H
Xtop

� //X ⊂

be a topological groupoid, regarded via the embeddings (148) and (208). If X ⊂ is such that both its space of
objects and of morphisms are retracts of cell complexes (for instance: both are CW-complexes (27)) then the shape
(207) of its orbi-singularization (209) is, as an ∞-presheaf (205) of ∞-groupoids on Singularities (3.46) (i.e., on
the global orbit category, Remark 3.47)

S ≺X ⊂ ∈ Sh∞

(
Singularities

) � � Disc // H

given by the assignment (235)
S ≺X ⊂ : ≺

G 7−!
∥∥Maps

(
BG,Xtop

)∥∥ , (236)

where on the right we have the fat geometric realization of the topological functor groupoid [Se74] (see [HG07,
2.3]), with BG ' ∗�G (Example 2.14) regarded as a finite topological groupoid.

Proof. Recall from (146) in Example 3.18 that Charts := CartesianSpaces (Def. 2.5) is a site of cohesive charts
(Def. 3.9) for SmoothGroupoids∞. We claim that for Rn ∈ CartesianSpaces and ≺

G ∈ Singularities (Def. 3.46),
hence Rn× ≺

G ∈ CartesianSpaces×Singularities (Lemma 3.60), we have the following sequence of natural equiv-
alences:

H
(
Rn× ≺

G, ≺X ⊂

)
= H

(
Rn× ≺

G, OrbSnglr
(
X ⊂

))
'H ⊂

(
Smth

(
Rn× ≺

G)︸ ︷︷ ︸
'Rn×BG

, X ⊂

)
'H ⊂

(
Rn , Maps

(
BG , X ⊂

))
'H ⊂

(
Rn , CdfflgMaps

(
BG , Xtop

))
.

(237)

Here the first step is (240), the second is the hom-equivalence (47) of the adjunction Smth a OrbSnglr (208)
and using under the brace that Smth preserves products (by Prop. 2.26), that Rn is already smooth, and that
Smth

(

≺

G)' (∗�G) by (222). The third step is Lemma A.5.
Since also the composite of all these natural equivalences is thus natural, the ∞-Yoneda lemma (Prop. 2.38) implies
that

≺X ⊂ : ≺

K 7−! CdfflgMaps
(
BG , X ⊂

)
.

Now, since S acts objectwise over ≺

K (207), we find from this that

S ≺X ⊂ : ≺

K 7−! SCdfflgMaps
(
BG , Xtop

)
' ShpsTop

(
Maps

(
BG , Xtop

))
'

∥∥Maps
(
BG , Xtop

)∥∥ .

Here the first step is (152) and the last step follow by Prop. 2.18. �
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Cohesive G-orbispaces. We now discuss in more detail the analogue of Prop. 4.2 in (a) the special case of global
quotient stacks X ⊂ ' X�G by a discrete group G, but (b) in the full generality of X being any 0-truncated cohesive
space (not necessarily a topological space, but for instance a smooth manifold or diffeological space (147) or even
a non-concrete object).

Remark 4.3 (Good orbifolds and good cohesive orbispaces). The traditional orbifolds that arise as global quotients
X ⊂ ' X�G of a smooth manifold X by the action of a discrete group G are called good orbifolds (e.g. [Ka08, 6]).
Therefore, the cohesive G-orbispaces discussed now (Def. 4.4) could be called (after forgetting their slicing over

≺

G) the good cohesive orbispaces.

Definition 4.4 (Cohesive G-orbispace). Let H be a singular-cohesive ∞-topos (Def. 3.48) and G ∈ Groups(H)
(Prop. 2.74) discrete G' [G. We say that a cohesive G-orbispace is an object

X
p��

≺

G
∈ H/

≺

G

in the slice over the G-orbi-singularity (214) that is:

(a) orbi-singular: ≺(p)' p (Def. 3.52) ,

(b) 0-truncated: (τ0)/ ≺
G(p)' p (Def. 2.57) .

(238)

Definition 4.5 (Universal covering space of a G-orbi-singular space). Given a Cohesive G-orbispace X ∈ H/ ≺

G

(Def. 4.4), we say that its universal covering space X ∈H the homotopy fiber of the defining morphism to ≺

G over
its essentially unique point:

X
fib(p) //X

p��

≺

G

(239)

Proposition 4.6 (Properties of universal covering spaces). Let H be a singular-cohesive ∞-topos (Def. 3.48).
Given a G-orbi-singular space X ∈H/ ≺

G (Def. 4.4), its universal covering space X (Def. 4.5)
(i) is:

(a) 0-truncated: τ0(X)' X (Def. 2.57) ,

(b) smooth: ⊂(X)' X (Def. 3.1) ,

(ii) and is equipped with a G-action (Prop. 2.79) such that X is the orbi-singularization (209) of the corre-
sponding homotopy quotient:

X ' ≺

(
X�G

)
. (240)

Proof. (i) That X is (a) 0-truncated follows from the condition that p is 0-truncated and using Lemma 3.14. To see
that X is (b) smooth, observe that by the defining assumption (238) that p is orbi-singular, it is the image under
OrbSnglr (208) of a morphism p ⊂ in H ⊂:

X
fib(p) //X

p��

≺

G

' OrbSnglr

X ⊂

fib(p ⊂) //X ⊂

p ⊂��
∗�G

 . (241)

We claim that in fact X 'NnOrbSinglr(X ⊂), whence X ' ⊂(X): First, since OrbSnglr is a right adjoint it preserves
homotopy fibers (Prop. 2.26), fib(p) ' OrbSnglr

(
fib(p ⊂)

)
, hence we have X ' OrbSnglr(X ⊂). It follows, in

particular, that X ⊂ is 0-truncated, since X ' OrbSnglr(X ⊂) is 0-truncated by part (a), and using that OrbSnglr is
fully faithful. From this it follows that OrbSnglr(X ⊂)'NnOrbSinglr(X ⊂), by Lemma 3.65. Together this gives the
claim (b).
With this, part (ii) now follows by comparison with (107). �
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Shape of Cohesive G-orbispaces. We derive the following formula (242) in Prop. 5.6 which generalizes the
embedding of G-spaces into global equivariant homotopy theory, discussed in [Re14, p. 7][Lu19, 3.2.17], from
topological G-spaces to general cohesive G-spaces. Below in §5.1 this serves to prove that the intrinsic cohomology
of good cohesive orbispaces subsumes proper equivariant cohomology (Theorem 5.9).

Lemma 4.7 (Shape of Cohesive G-orbispaces). Let H be a singular-cohesive ∞-topos (Def. 3.48). (35), G ∈
Groups

(
H
)

(Prop. 2.74) be a 0-truncated G ' τ0G and discrete G ' [G and let X ∈ H be smooth X ' ⊂X and
0-truncated X ' τ0X and equipped with a G-action (X ,ρ) ∈ GActions(H) (Prop. 2.79).

(i) Then the orbi-singularization (208) of the corresponding homotopy quotient (107)

X := ≺

(
X�G

)
∈ H := Sheaves∞

(
Singularities, H ⊂

)
,

when regarded as an H ⊂-valued ∞-presheaf on Singularities (205), assigns to a singularity ≺

K (213) the disjoint
union of fixed loci Xφ(K) (Def. 2.97) of the smooth covering space X (Def. 4.5) for all group homomorphisms
φ : K! G homotopy-quotiented (108) by the residual G-action (Prop. 4.6):

X : ≺

K 7−!

( ⊔
φ∈Groups(K,G)

Xφ(K)
)

�G . (242)

(ii) Moreover, its shape (207)

Shp
(

≺

(
X�G

))
∈ SingularGroupoids := Sheaves∞

(
Singularities

)
assigns to a singularity ≺

K (213) the cohesive shape (127) of these disjoint unions of fixed loci (Def. 2.97) of the
smooth covering space X (Def. 4.5) homotopy-quotiented by its G-action (Prop. 4.6):

Shp
(
X
)

: ≺

K 7−! Shp
( ⊔

φ∈Groups(K,G)

Xφ(K)
)

�G . (243)

Proof. We claim that for U ∈ Charts (Def. 3.9) and ≺

K ∈ Singularities (Def. 3.46), hence U × ≺

K ∈ Charts×
Singularities (Lemma 3.60), we have the following sequence of natural equivalences:

H
(
U× ≺

K , X
)
= H

(
U× ≺

K , OrbSnglr
(
X�G

))
'H ⊂

(
Smth

(
U× ≺

K)︸ ︷︷ ︸
'U×(∗�K)

, X�G
)

' Groupoids∞

(
(∗�K), H ⊂

(
U,X�G

))
' Groupoids1

(
(∗�K), H ⊂

(
U,X

)
�G
)

'
( ⊔

φ∈Groups(K,G)

H ⊂

(
U,X

)φ(K)
)

�G '
( ⊔

φ∈Groups(K,G)

H ⊂

(
U,Xφ(K)

))
�G

'
(

H ⊂

(
U,

⊔
φ∈Groups(K,G)

Xφ(K)
))

�G ' H ⊂

(
U,

( ⊔
φ∈Groups(K,G)

Xφ(K)
)

�G
)
.

(244)

Here the first step is (240), the second is the adjunction Smth a OrbSnglr (208) and using under the brace that
Smth preserves products (by Prop. 2.26), that U is already smooth by assumption, and that Smth

(

≺

K) ' (∗�K)
by (222). The third step is the tensoring of H over ∞-groupoids (Prop. 2.34) (using the geometric discreteness
(∗�K)'Disc(∗�K) by Remark 3.58) The fourth step uses the geometric contractibility of U and the discreteness
of G to identify H ⊂(U,X�G)'H ⊂(U,X)�G (Lemma 3.12). The fifth is the general observation of Example 2.16
about hom-groupoids between quotient groupoids of sets. The sixth step uses Prop. 3.13 to find that the fixed
points in the set of maps are the maps into the fixed point locus. After this key step, we just re-organize term: The
seventh step uses the connectedness of U (Lemma 3.10) to find that a coproduct of homs out of U is a hom into the
coproduct. Finally, the eighth step uses again Lemma 3.12.
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(i) The composite equivalence (244) implies the first claim (242) by the ∞-Yoneda embedding (Prop. 2.37),
using Lemma 3.60.

(ii) From this, the second claim (243) follows, using that Shp acts objectwise over Singularities (207), and pre-
serves homotopy quotients by discrete groups (Prop. 3.4). �

Remark 4.8 (Relevance of 0-truncated orbi-singular spaces).
(i) The crucial assumption that makes the proof of Lemma 4.7 work is, (a) that G is discrete and (b) that X is
0-truncated. This is what yields 1-groupoidal homs in the middle step of (244) and thus the form of the expression
in the next step, as on the right hand side of (40).
(ii) Without the assumption of X being 0-truncated over ∗�G, the proof of Lemma 4.7 would proceed verbatim
up to that middle step, but then would break as the nontrivial morphisms present in X would then mix with those
of the action by G.
(iii) Lemma 4.7 shows that this subltety is closely related to the cohesive nature of the problem: We either have
a space which is 0-truncated but carries cohesive (i.e. geometric) structure, or we turn it into its cohesive shape
which is un-truncated but geometrically discrete.

Singular quotient of Cohesive G-orbispaces.

Proposition 4.9 (Singular quotient of G-orbi-singular space). Let H be a singular-cohesive ∞-topos (Def. 3.48),
G ∈ Groups(H) being discrete G ' [G and 0-truncated G ' τ0G. For X be a G-orbi-singular space (Def. 4.4)
with universal covering space X ∈ H ⊂,0 ↪!H equipped with its induced G-action (Def. 4.5, Prop. 4.6). Then the
singularization (208) of X is the plain G-quotient of X

Snglr
(
X
)
' X/G ∈ H ⊂,0 ↪−!H ⊂

(i.e., the quotient of the G-action formed in the 1-topos H ⊂,0 of 0-truncated objects).

Proof. For U ∈ Charts, write
H ⊂

(
U,X

)
�G '

⊔
c

(
∗�Hc

)
∈ Groupoids1 (245)

for the essentially unique decomposition of the groupoid on the left into its connected components

c ∈ π0

(
H ⊂

(
U,X

)
�G
)
' H ⊂

(
U,X

)
/G ∈ Set (246)

each of which is equivalent to the delooping groupoid (Example 2.14) of its fundamental group

Hc := π1

(
H ⊂

(
U,X

)
�G , c

)
∈ Groups .

Now, by Lemma 4.7 and re-instantiating the last few manipulations in (244), we have that over each U ∈ Charts
the incarnation of the G-orbi-singular space X as an ∞-presheaf on Singularities is given by:

X (U) : ≺

K 7−! Groupoids1

(
∗�K , H ⊂

(
U,X

)
�G
)

' Groupoids1

(
∗�K ,

⊔
c

(
∗�Hc

))
'
⊔
c

Groupoids1

(
∗�K , ∗�Hc

)
'
⊔
c

Singularities
(

≺

K , ≺

Hc
)
.

(247)

Here the first step is (245), the second step uses that the delooping groupoids ∗�K are connected and the last step
observes the definition of Singularities (Def. 3.46). By the ∞-Yoneda embedding (Prop. 2.37) over the site of
Singularities (201) this means that

X (U) '
⊔
c

≺

Hc ∈ Sheaves∞

(
Singularities

)
. (248)

With this, we find that Snglr(X ) ∈ PreSheaves∞(Charts) is given by
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Snglr
(
X
)

: U 7−! Snglr
(
X (U)

)
' Snglr

(⊔
c ≺

Hc
)

'
⊔
c

Snglr
(

≺

Hc
)

'
⊔
c
∗

' π0

(
H ⊂

(
U,X

)
�G
)

' H ⊂

(
U,X

)
/G .

Here the first line is the object-wise application of Snglr (Remark 3.54), while the next line is (248). From there
we use that Snglr, being a left adjoint, preserves coproducts (Prop. 2.26) and then that it takes the elementary
singularies to points, by Lemma 3.61. Finally, we identify (246). But this resulting assignment is just that of
X/G ∈ PreSheaves(Charts):

X/G : U 7−! H(U,X)/G
and hence the claim follows. �

Examples of Cohesive G-orbispaces. We make explicit two classes of examples of cohesive G-orbispaces (Def.
4.4): Fréchet-smooth orbispaces and topological orbispaces.

Example 4.10 (Fréchet smooth G-orbispaces). Consider
X ∈ FréchetManifolds �

� // SmoothGroupoids∞

a (possibly infinite-dimensional Fréchet-)smooth manifold regarded as a 0-truncated concrete smooth ∞-groupoid
(147). Given a G ∈ Groups(H) (215) being discrete G ' [G, a smooth action ρ of G on X is equivalently a
homotopy fiber sequence in SmoothGroupoids∞ of this form (Prop. 2.79):

X
fib(ρ) // X�G

ρ��
∗�G

.

Here the homotopy quotient (107)
X�G ∈ LieGroupoids �

� // SmoothGroupoids∞

is the corresponding (possibly infinite-dimensional Fréchet-)Lie groupoid, regarded as a smooth ∞-groupoid via
the embedding (148). Its orbi-singularization (208) is a G-orbi-singular space, in the sense of Def. 4.4, in the
∞-topos SingularSmoothGroupoids∞ (211):

X
��

≺

G
:= OrbSnglr


X�G

��
∗�G

 . (249)

This orbi-singular smooth groupoid (249) what we suggest is the proper incarnation of the quotient orbifold that is
presented by the smooth manifold X with its G-action. Notice that (see Figure G):

(i) its purely smooth aspect is the Lie groupoid

⊂

(
X
)
' X�G ∈ LieGroupoids �

� // SingularSmoothGroupoids∞ ,

(by Prop. 4.6) which is the incarnation of this orbifold, according to [MP97][PS10]
(ii) its purely singular aspect is the diffeological space

<

(
X
)
' X/G ∈ DiffeologicalSpaces �

� // SingularSmoothGroupoid∞

(by Prop. 4.9) which is the incarnation of this orbifold, according to [IKZ10].
However, it is only the full orbi-singular object X which is structured enough to have proper (Bredon-)equivariant
cohomology. This is the content of Theorem 5.9 below.
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Example 4.11 (Topological G-orbispaces). For G a finite group, let G y Xtop be a topological G-space (Def B.1)
with Borel construction

Xtop // X×
G

EG

��
BG

Via its continuous diffeology (32), this is equivalently a 0-truncated (and concrete) object in H ⊂ :=SmoothGroupoids∞

(Example 3.18)
X := Cdfflg(Xtop) ∈ H ⊂,0

equipped with a smooth G-action (Prop. 2.79)
X // X�G

��
∗�G .

The orbi-singularization (208) of the corresponding homotopy quotient is a G-orbi-singular space (Def. 4.4)

X

��

≺

G

:= OrbSnglr


Cdfflg(Xtop)�G

��
∗�G

 .

Proposition 4.12 (Shape of good orbifolds). Consider a finite-dimensional smooth G-orbifold, as in Example 4.10
(a good orbifold, Remark 4.3)

X := OrbSnglr
(
X�G

)
.

Then its cohesive shape (208) Shp
(
X
)
∈ Sheaves∞

(
Singularities

)
is, over any singularity ≺

K (202), the topolog-

ical shape (36) of the G-Borel construction on the disjoint union of all K-fixed subspaces Xφ(K)
top ⊂ Xtop (349) in the

underlying (32) D-topological G-space (Def. B.1):

Shp
(
X
)

: ≺

K 7−! ShpTop

(( ⊔
φ∈Groups(K,G)

(Dtplg(X))φ(K)
)
×
G

EG
)
. (250)

Proof. With Lemma 4.7, the task is reduced to showing that, for φ(K) ⊂ G any specified subgroup, we have an
equivalence

Shp
(
Xφ(K)

)
' ShpTop

(
(Dtplg(X))φ(K)

)
∈ Groupoids∞

between the cohesive shape (127) of the orbi-singular homotopy quotient of X by G and the ordinary topological
shape (36) of the D-topological space underlying X . But this is (151) in Example 3.18, given by [Sc13, 4.3.29]. �

Proposition 4.13 (Shape of topological G-orbi spaces). Consider the topological G-orbi-singular space, as in
Example 4.11,

X := OrbSnglr
(
Cdfflg(Xtop)�G

)
.

Then its cohesive shape (208) Shp
(
X
)
∈ Sheaves∞

(
Singularities

)
is, over any singularity ≺

K (202), the topo-

logical space (36) of the G-Borel construction on the disjoint union of all K-fixed subspaces Xφ(K)
top ⊂ Xtop (349):

Shp
(
X
)

: ≺

K 7−! ShpTop

(( ⊔
φ∈Groups(K,G)

Xφ(K)
top

)
×
G

EG
)
. (251)

Proof. With Lemma 4.7, the task is reduced to showing that, for φ(K) ⊂ G any specified subgroup, we have an
equivalence

Shp
(
Cdfflg(Xtop)

φ(K)
)
' ShpTop

(
Xφ(K)

top
)
∈ Groupoids∞

between the cohesive shape (127) of the orbi-singular homotopy quotient by G of the continuous-diffeological
space and the ordinary topological shape (36) But this is item (150) in Example 3.18, given by combining the
result (149) of [BEBP19] with Prop. 2.20 from [CW14]. �
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4.2 Orbifolds

We introduce a general theory of orbi-singular spaces, whose underlying smooth cohesive groupoid is locally
diffeomorphic to a fixed local model space V . Since, for V = Rn ∈ JetsOfSmoothGroupoids∞, these are ordinary
n-folds (i.e., ordinary n-dimensional manifolds for any n, see Example 4.17), or, more generally, étale ∞-groupoids
with atlases by n-folds (Example 4.18), including ordinary orbifolds, we generally speak of V -folds, with a hat
tip to [Sa56]. Externally these are V -étale ∞-stacks (Remark 4.15) but their theory internal to the ambient elastic
∞-topos (such as the construction of their frame bundles in Prop. 4.26) is elegant and finitary and lends itself to
full formalization in homotopy type theory [We18] (see p. 5). The proper incarnation (see Remark 4.60) of these
V -folds as orbifolds is via their orbi-singularization (Def. 4.58, Remark 4.60).

V -folds and V -étale groupoids.

Definition 4.14 (V -folds). Let H be an elastic ∞-topos H (Def. 3.21).
(i) Given V ∈ Groups(H) (Prop. 2.74), we say that an object X ∈ H is a V -fold if there exists a correspondence
between V and X

U
ét

uu
ét
)) ))V X

(252)

such that
(a) both morphisms are local diffeomorphisms (Def. 3.26) and
(b) the right one is, in addition, an effective epimorphism (Def. 2.63), then called a V -atlas of X (100).

(ii) We write
V Folds(H) ⊂ H (253)

for the full sub-∞-category of V -folds in H and we write

V Folds(H)ét ⊂ H (254)

for its wide subcategory on those morphisms which are local diffeomorphisms (Def. 3.26).

Remark 4.15 (V -folds and V -étale groupoids). By Prop. 3.36, a V -fold (Def. 4.14) is a stack (100) whose choice
of V -atlas (252) realizes it as an étale groupoid (Def. 3.35) with space of objects locally diffeomorphic over V :

��

OO

��

OO

�� ��

OO

��

OO

��
U×X U '

pr1

��

OO

∆ pr2

��

U1

s
��

OO

e t
��

“V -étale groupoid”

V oo ét U

a ét

����

U0

����
“V -atlas”

X ' lim
−!

U• “V -fold”

(255)

Example 4.16 (V is a V -fold). Let H be an elastic ∞-topos H (Def. 3.21) and V ∈ Groups(H) (Prop. 2.74). Then
the underlying object V ∈H itself is a V -fold (Def. 4.14): A V -atlas (252) is given by the identity morphisms

Vid
étuu

id
ét )) ))V V .

(256)

Example 4.17 (Smooth manifolds are Rn-folds). For k ∈ N with k ≥ 1, let H = kJetsOfSmoothGroupoids∞ (Ex-
ample 3.24). Then, for every n ∈ N, the object

V := Rn ∈ CartesianSpaces �
� // kJetsOfSmoothGroupoids∞ (257)

canonically carries the structure of a group object (Rn,+) ∈ Groups(H), via addition in Rn regarded as a vector
space. Now every smooth manifold
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X ∈ SmoothManifolds �
� // kJetsOfSmoothGroupoids∞

of dimension n is a V -fold, hence an Rn-fold in the sense of Def. 4.14: For any choice of atlas in the traditional
sense of manifold theory, namely an open cover{

U j
φi // X

}
j∈J

by local diffeomorphisms φi from open subsets of Cartesian space

U j
� � ι j // Rn ,

a V -atlas (252) is obtained by setting:
t
j∈J

U j

ét

(ι j) j∈J

vv ét

(φ j) j∈J

(( ((Rn X

(258)

Example 4.18 (Differentiable étale stacks are Rn-folds [Sc13, Prop. 4.5.56]). Let H = JetsOfSmoothGroupoids∞

(Example 3.24) and take V = (Rn,+) as in Example 4.17. Then a diffeological groupoid X ∈H (161) is a V -fold
(Def. 4.14) for V = Rn (259) if it is an n-dimensional differentiable étale stack in that:

(i) it admits an atlas (effective epimorphism) X0 // // X from a smooth n-manifold X0 (via (147) and (160))

(ii) its source and target morphisms with respect to this atlas are local diffeomorphisms.

Generally, a smooth ∞-groupoid presented by a Kan simplicial smooth manifold is an Rn-fold in the sense of
Def. 4.14 if it presents an étale ∞-groupoid in that all its simplicial face maps are local diffeomorphisms.

Examples 4.19 (Super-manifolds are Rn|q-folds). Let H = ∞JetsOfSupergeometricGroupoids∞ (Example 3.43).
Then, for every n,q ∈ N, the super-Cartesian space (Def. 3.41)

V := Rn|q ∈ ∞JetsOfSuperCartesianSpaces �
� // ∞JetsOfSupergeometricGroupoids∞ (259)

carries the structure of a group object, whose bosonic aspect (189) is (259). The corresponding V -folds (Def. 4.14)
are the (n|q)-dimensional supermanifolds (196).

Example 4.20 (General super étale ∞-stacks). Let H = ∞JetsOfSupergeometricGroupoids∞ (Example 3.43). Then
for any V ∈Groups(H) the corresponding V -étale ∞-stacks (Remark 4.15) realize a flavor of super étale ∞-stacks,

locally modeled on V . Lemma 3.45 implies that, generally, the bosonic part
 
X of a super étale ∞-stack is a bosonic

étale ∞-stack locally modeled on the bosonic part
 
V of V :

V Folds(H)
 //

 
V Folds(H)

supergeometric
étale ∞-stack X 7−!

 
X underlying bosonic

étale ∞-stack

Quotients of V -folds.

Proposition 4.21 (Orbifolding of a V -fold is a V -fold). Let H be an elastic ∞-topos H (Def. 3.21), V,G ∈
Groups(H) (Prop. 2.74) with G ' [G discrete, and (X ,ρ) ∈ GActions(H) (Prop. 2.79). Then if X is a V -fold

(Def. 4.14) so is its homotopy quotient X�G (108). Specifically, if U ét // // X is a V -atlas for X (252), then a
V -atlas for V �G is given by composition with the homotopy fiber inclusion map fib(ρ) (107):

U
ét

vv
ét

(( ((V X
fib(ρ) // X�G .

(260)

Proof. We need to show that the composite morphism on the right of (260) is (a) an effective epimorphism and (b)
a local diffeomorphism. Since both of these classes of morphisms are closed under composition (Lemma 2.65 and
Lemma 3.27), it is sufficient to show that fib(ρ) itself has these two properties.
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For (a) observe that, by definition of homotopy fibers (107), we have a Cartesian square

X

��

fib(ρ) //

(pb)

X�G
ρ
��

∗ // // BG
(261)

Here the bottom morphism is an effective epimorphism (Example 2.75). Since these are preserved by homotopy
pullback, also fib(ρ) is an effective epimorphism.

For (b) consider the image of this square (261) under ℑ. Since ℑ is both a right and a left adjoint it preserves
Cartesian squares and homotopy quotients (by Prop. 2.26), while it preserves discrete objects by elasticity (154)
and idempotency (Prop. 2.28, Prop. 2.29). Therefore

ℑX

��

ℑfib(ρ)' fib(ℑρ) //

(pb)

(
ℑX
)
�G

ℑρ

��
∗ // // BG

(262)

is Cartesian. Consider finally the pasting composite of this second square (262) with the naturality square of ηℑ

on fib(ρ):
X

η
ℑ

X
��

fib(ρ) // X�G

η
ℑ

X�G ��
ρ

yy

ℑX

��

//

(pb)

(
ℑX
)
�G

ℑρ
��

∗ // BG

(263)

Here the composite morphism on the right is equivalent to ρ , as shown, by the naturality of ηℑ and using that
the object BG, being discrete, is ℑ-modal. Therefore, the total outer rectangle of (263) is Cartesian by (261).
Moreover, the bottom square of (263) is Cartesian by (262). Therefore the pasting law (Prop. 2.23) implies that
the top square of (263) is Cartesian. But this means (163) that fib(ρ) is a local diffeomorphism. �

Proposition 4.22 (Induced G-action on the tangent bundle). Let H be an elastic ∞-topos H (Def. 3.21), V,G ∈
Groups(H) (Prop. 2.74), with G ' [G discrete, (X ,ρ) ∈ GActions(H) (Prop. 2.79) and X ∈ V Folds(X) (Def.
4.14). Then the tangent bundle T X (Def. 3.29) carries an essentially unique G-action T ρ such that:

(i) the defining projection T X ! X is G-equivariant (Def. 2.83);
(ii) the homotopy quotient of T X is the tangent bundle of the orbifolded V -fold X�G (Prop. 4.21):

(T X)�G ' T (X�G) ∈H/
X�G

. (264)

Proof. Consider the following diagram:

T X
**

��

// X

��

fib(ρ)

**
T (X�G) //

��

T ρ

��

X�G

η
ℑ

X �G' η
ℑ

X�G

��

X

��

fib(ρ) ))

η
ℑ

X // ℑX
ℑfib(ρ)

))
X�G

ρ

��

η
ℑ

X�G

// (ℑX)�G

∗
** BG

(265)

Here the bottom left square is that characterizing the G-action on X , by (107); while the bottom and right squares
are both the naturality square of ηℑ on the morphism fib(ρ) (where we use that ℑ commutes with taking the
homotopy quotient by the discrete group G). Now observe that:
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(a) The bottom and right squares are pullback squares since fib(ρ) is a local diffeomorphism (Def. 3.26) by
Prop. 4.21.

(b) The front and back squares are pullback squares by the definition of tangent bundles (Def. 3.29).
In particular, the solid part of the diagram is homotopy-commutative, so that, by the universal property of the front
pullback square, the dashed morphism exists, essentially uniquely, such as to make the top and the top left square
homotopy-commutative. Further observe, by repeatedly applying the pasting law (Prop. 2.23), that:

(c) The top left square is a homotopy pullback since the back, right and front squares are pullbacks by (a) and
(b).

(d) The total left rectangle is a pullback, since the top one is so, by (c), and the bottom one is so, by the action
property (107).

Thus, again by the action property (107), the total left rectangle exhibits a G-action on T X whose homotopy
quotient is as claimed (264), and its factorization into two pullback squares as shown exhibits the projection
T X ! X as a homomorphism of G-actions, hence as being G-equivariant (Def. 2.83). �

Proposition 4.23 (Induced G-action on local neighborhood of fixed point). Let H be an elastic ∞-topos H (Def.
3.21), V,G ∈ Groups(H) (Prop. 2.74), with G ' [G discrete, (X ,ρ) ∈ GActions(H) (Prop. 2.79) with X ∈
V Folds(X) (Def. 4.14) and ∗ x // X a homotopy fixed point (Def. 2.97). Then the induced G-action T ρ on
the tangent bundle T X, from Prop. 4.22, restricts to a G-action Txρ on the local neighborhood TxX (Example 3.30)
of the homotopy fixed point x.

Proof. Consider the following diagram:
TxX //

��

**

T X
))

��

(TxX)�G //

Txρ

��

(T X)�G

��
T ρ

��

∗ x //

**

X

��

fib(ρ)

**
BG

x�G
// X�G

ρ

��

∗
** BG

(266)

Here the squares on the right are from (265) and are thus both homtopy Cartesian. The rear square is the homotopy
pullback square defining the tangent fiber, and we define the front square to be a homotopy pullback, giving us the
object denoted (TxX)�G. We need to show that this object really is the homotopy quotient of the restricted action.
But the bottom horizontal square homotopy-commutes, exhibiting the homotopy fixed point by (122), so that, by
applying the pasting law (Prop. 2.23) to the top vertical squares, it follows that also the top left square is Cartesian.
This already identifies (TxX)�G as the homotopy quotient of some G-action on TxX , by Prop. 2.79. To see that this
is indeed the restricted action, observe that the front triangle commutes, again by (122), so that the total diagram
exhibits the fiber inclusion TxX ! T X as being a homomorphism G-actions Txρ ! Tρ (by Prop. 2.79). �

Frame bundles.

Definition 4.24 (Structure group of V -folds). Let H be an elastic ∞-topos (Def. 3.21) and V ∈ Groups(H) (Prop.
2.74), to be regarded as the local model space of V -folds (Def. 4.14).
(i) Then we say that the automorphism group (Def. 2.86) of the local neighborhood (Example 3.30) of the neutral
element ∗ e // V (Example 2.76)

Aut(TeV ) ∈ Groups(TeV ) (267)

is the structure group of V -folds.
(ii) We write

(TeV,ρAut) ∈ Aut(TeV )Actions(H)

for its canonical action (114).
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Example 4.25 (Ordinary general linear group). Let H = JetsOfSmoothGroupoids∞ (Example 3.24) and let

V := (Rn,+) ∈ Groups(SmoothManifolds) �
� // Groups(H)

via the full inclusion (161), with Rn regarded as a group under addition of tuples of real numbers. Then the
structure group of Rn-folds, according to Def. 4.24, is the traditional general linear group, regarded as a Lie group:

Aut(T0Rn) ' GL(n) .

Proposition 4.26 (Frame bundle). Let H be an elastic ∞-topos H (Def. 3.21), V ∈ Groups(H) (Prop. 2.74) and
X ∈ H a V -fold (Def. 4.14). Then the tangent bundle of X (Def. 3.29) is a fiber bundle (Def. 2.91) with typical
fiber the local neighborhood TeV (Def. 3.28) of the neutral element ∗ e

−!V , hence is the associated bundle of an
Aut(TeV )-principal (267) bundle (Prop. 2.88), to be called the frame bundle of X:

tangent bundle

T X //

��
(pb)

(
TeV
)
�Aut

(
TeV
)

��
X

` Frames(X)
// BAut(TeV )

frame bundle

Frames(X)

��

//

(pb)

∗

��
X

` Frames(X)
// BAut(TeV )

structure
group

(268)

Proof. By Prop. 3.31 the tangent bundles over any V -atlas (252) for X form two Cartesian squares as follows:

TU
uu )) ))

�� (pb)
V ×TeV ' TV

(pb)

��

T X

��
U

étuu ét )) ))V X

(269)

Moreover, by Prop. 4.32 the tangent bundle of V is trivial, as shown on the left. Since Cartesian products are
preserved by homotopy pullback, the left square implies that also TU ' U × TeV is trivial. But with this the
existence of the right square is the defining characterization for T X being a TeV -fiber bundle. �

Remark 4.27 (Frame bundles are well-defined). The frame bundle (Def. 4.26) of a V -fold (Def. 4.14) is inde-
pendent, up to a contractible space of equivalences, of the choice of V -atlas (252) in the construction (269): This
follows as a special case of the essential independence of classifying maps of fiber bundles from the choice of
trivializing cover, as in Prop. 2.92, using that not only the class of effective epimorphisms but also that of local
diffeomorphisms is closed under pullback and composition (Lemma 3.27).

Proposition 4.28 (V -fold is Aut(TeV )-quotient of its frame bundle). Let H be an elastic ∞-topos H (Def. 3.21),
V ∈Groups(H) (Prop. 2.74) and X ∈V Folds(H) (Def. 4.14). Then X is equivalent to the homotopy quotient (108)
of its own frame bundle (Prop. 4.26) by Aut(TeV ):

X ' Frames(X)�Aut(TeV ) .

Proof. This is immediate from the equivalence between principal bundles and homotopy qotient projections (Re-
mark 2.89) applied to the frame bundle (268). �

Example 4.29 (Frame bundles on smooth manifolds). Let H = JetsOfSmoothGroupoids∞ (Example 3.24) and
X ∈ SmoothManifolds ↪!H a smooth manifold (161) regarded as an Rn-fold according to Example 4.17.
(i) Then its frame bundle, according to Prop. 4.26, is the GL(n)-principal bundle on X which is the frame bundle
in the traditional sense of differential geometry.
(ii) For the same manifold but regarded in H = kJetsOfSmoothGroupoids∞ with k ≥ 1 we instead get the corre-
sponding jet version of the frame bundle (see e.g. [KMS93, 12.12]).
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Framed V -folds.

Definition 4.30 (Framing). Let H be an elastic ∞-topos H (Def. 3.21). A framing of an objext X ∈ H is a
trivialization of its tangent bundle Def. 3.29, hence an equivalence

T X ' X×TxX ∈H/X

for ∗ x // X any point.

Remark 4.31 (Framing on a V -fold). If X is a V -fold (Def. 4.14) then a framing on V in the sense of Def. 4.30
is equivalent, by Prop. 4.26, to a trivialization of the frame bundle, hence to a trivialization of its classifying map
(268):

T X

  

fr
'

// X×TeV

{{
X

⇔
∗

++
X

66

` Frames(X)

66
BAut(TeV ) .

LT
' ` fr (270)

Proposition 4.32 (Groups carry canonical framings by left-translation). In an elastic ∞-topos H (Def. 3.21) every
group object V ∈ Groups(H) (Prop. 2.74) carries a canonical framing (Def. 4.30), which we call the framing by
left translation:

TV
fr`
'

// V ×TeV ∈H/V . (271)

Proof. Since ℑ preserves group structure (as in Prop. 3.4), the defining homotopy fiber product of the tangent
bundle of V (165) sits in a Mayer-Vietoris sequence (Prop. 2.78) as shown on the left of the following:

TV //

��
(pb)

∗
`e
��

V ×V
(ηℑ

V ,ηℑ

V )=η
ℑ

V×V

// ℑV ×ℑV
(−)·(−)−1

// ℑV

'
TV

(pb)

��

// TeV

��

//

(pb)

∗
`e
��

V ×V
(−)·(−)−1

// V
η

ℑ

V

// ℑV

(272)

Using that ℑ preserves products (by Prop. 2.26) and using the naturality of its unit transformation ηℑ (48), this
Cartesian square on the left is equivalent to the total rectangle shown on the right. By the pasting law (Prop. 2.23),
this is the pasting of two Cartesian squares, the right one of which exhibits the local neighborhood TeV (Def. 3.28)
as shown. To see what the Cartesian property of the left square on the right says, consider pasting to it the top
square appearing in the diagram (105) which exhibits the group division (−) · (−)−1 in Example 2.77:

TV //

(pb)
��

TeV

��
V ×V
pr1 ��

(−)·(−)−1 //

(pb)

V

��
V // ∗

(273)

Since both squares are Cartesian, the pasting law (Prop. 2.23) says that the total rectangle is Cartesian. This is the
equivalence (271). �

Proposition 4.33 (Canonical framing on group is equivariant under group automorphisms). Consider an elastic
∞-topos H (Def. 3.21), V,G ∈ Groups(H) (Prop. 2.74). with 0-truncated V ' τ0V and (V,ρG) ∈ GActions(H)
(Prop. 2.79) acting by group-automorphisms (Prop. 2.102) hence by restriction ρG =Bi∗ρAutGrp (Prop. 2.85) along

a group homomorphism G i // Aute(V ) , to the group-automorphism group AutGrp(V ) (Def. 2.101). Then the
canonical framing fr` on V from Prop. 4.32 is G-equivariant (Def. 2.83), in that it lifts to a morphism of G-actions
(Prop. 2.79) of the form

(TV,T ρ)
fr` // (V,ρ)× (TeV,Teρ) ∈ GActions(H) ,

where T ρ is the induced action on TV from Prop. 4.22, and Teρ is the induced action on TeV from Prop. 4.23
(which exists since group-automorphisms of V are in particular pointed automorphisms of V (Def. 2.100).
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Proof. Consider the following diagram:

TV // //

��

(TV )�G
φ3

**

φ2

  

  

TV

''

��

φ1 // (V �G) ×
∗�G

(
(TeV )�G

)
**

��

TeV� _

��

// (TeV )�G� _

��

V ×V

(−)·(−)−1

''pr1

��

// (V �G) ×
∗�G

(V �G)

**

��

V //

��

V �G

��

V

((

fib(ρ) // V �G

++∗ // ∗�G

(274)

Here
• the bottom square is the Cartesian square (107) which exhibits the action on V ,
• the middle horizontal square is the Cartesian square which exhibits the equivariance under group-automorphisms

of the group division operatoin (Prop. 2.103),
• the total left rectangle is the Cartesian square from (273) which exhibits the canonical framing,
• the total front face is the pasting of

– on the bottom: the Cartesian square (107) which exhibits the action on V ,
– on the top: the Cartesian square which is the pasting of the top and the top-right squares in (266)

equibiting the action on TeV

and hence is itself Cartesian,
• the bottom and the total right squares are the defining Cartesian squares of the fiber products, and hence, by

the pasting law, also their pasting to the total right square is Cartesian,
• the total vertical rear square, with the dashed morphism φ1 on top, is the one thus induced from the universal

property of the fiber product, and is itself Cartesian, by the pasting law (Prop. 2.23), (using, by the above
items, that the left, right and front squares are Cartesian and that the diagram of squares commutes)

• the slanted square in the rear is the pasting of the Cartesian square on the left of (265), that exhibits the
induced G-action on TV , with the diagonal square on fib(ρ).

Now observe that inside this big diagram (274) we find the following solid homotopy-commutative sub-diagram

TV

����

// (TeV )�G� _

��
(TV )�G //

φ2
66

V �G .

Here the left morphism is an effective epimorphism (by Lemma 2.80) and the right morphism is (-1)-truncated by
the assumption that V is 0-truncated (Lemma xyz). Therefore, the connected/truncated factorization system (Prop.
2.66) implies an essentially unique lift φ2, as shown. This, in turn, implies the morphism φ3 in (274), again by the
universal property of the homotopy fiber product.

Now, since both the slanted as well as the vertical total rear squares are Cartesian, the diagram (274) shows
that the contravariant base change (Prop. 2.49) of φ3 along fib(ρ) is an equivalence. But since fib(ρ) is an effective
epimorphism (Lemma 2.55) , base change along it is conservative (Prop. 2.55), and hence it follows that φ3 itself
is already an equivalence.

With that identification, the total cube in (274) exhibits the G-equivariance of the framing. �
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Proposition 4.34 (Orbifolding of framed V -folds). Let H be an elastic ∞-topos H (Def. 3.21), V,G ∈ Groups(H)
(Prop. 2.74) with G' [G discrete, and (X ,ρX),(TeV,ρTeV ) ∈GActions(H) (Prop. 2.79) for X a V -fold (Def. 4.14)
equipped with a framing fr (Def. 4.30). Then the following are equivalent:

(i) The framing is G-equivariant (Def. 2.83) with respect to the induced action on T X (from Prop. 4.22) and
the product action ρX ×ρTeV on X×TeV , hence lifts to a morphism

(T X ,ρT X)
fr
'

// (X ,ρX)× (TeV,ρTeV ) ∈ GActions(H) (275)

(ii) The classifying map (268) of the frame bundle (Def. 4.26) of the orbifolded V -fold X�G (Prop. 4.21) factors
through BG as

X�G

` Frames(X�G)

((

ρX
// BG

`ρTeV

// BAut(TeV )
��

(276)

Proof. Consider the following diagram:

T X

��

fr
$$

// T (X�G)

��

fr�G
))

// (TeV )�Aut(TeV )

""

X×TeV

��

// X�G ×
BG

(TeV )�G

��

// (TeV )�G //

ρTeV

��

(TeV )�Aut
(
TeV
)

��
X fib(ρX ) //

--

` Frames(X)

44
X�G ρX //

` Frames(X�G)

,,
BG

`ρTeV

// BAut
(
TeV
)

∗

99

` fr
QY

` fr�G��

Note that here:
(a) The total outer part of the diagram exhibits the given framing fr via its classifying homotopy ` fr, according

to Remark 4.31.
(b) The front squares in the middle and on the right are the pullback squares that defines the diagonal G-action

and the classification of the ρTeV -action respectively. Hence also their pasting composite is a pullback, by
the pasting law (Prop. 2.23).

(i) First to see that G-equivariance of fr implies the factorization (276): By the characterization of G-actions (107)
G-equivariance of fr means, equivalently, that fr is the morphism on homotopy fibers over BG induced from an
equivalence fr�G on homotopy quotients. But, by (b) and Prop. 4.22, such an equivalence is classified by a
homotopy of the form (276).
(ii) Now to see that, conversely, the existence of a homotopy “ ` fr�G ” of the form (276) implies the existence of
a G-equivariant framing fr (quotation marks now since we yet have to show that the two are related in this way).
For this, we have to show that the morphism on homotopy fibers induced by fr�G is a framing fr. But, by the
nature of the G-action on T X from Prop. 4.22, the nature of the diagonal G-action exhibited by the middle front
square, and using the pasting law (Prop. 2.23), this means to show that the left front and rear squares are homotopy
pullbacks. For the front left square this follows by the factorization of ρX ◦fib(ρX) through the point, using (a),
(b) and the pasting law (Prop. 2.23). For the rear left square, this follows by Prop. 3.31, since fib(ρ) is a local
diffeomorphism by Prop. 4.21. �

G-Structures.

Definition 4.35 (G-Structure coefficients). Let H be an elastic ∞-topos (Def. 3.21) and V ∈ Groups(H) (Prop.
2.74). Then a coefficient for G-structure

(G,φ) ∈ Groups(H)/Aut(TeV )

is a group G equipped with a homomorphism of groups G φ // Aut(TeV ) to the structure group (Def. 4.24) of

V -folds. Under delooping (101) this is equivalently a morphism in H of the form BG Bφ // BAut(TeV ) .
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Definition 4.36 (G-structures on V -folds). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop. 2.74),
(G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35) and X ∈V Folds(H) (Def. 4.14).
(i) We say that

• a (G,φ)-structure on X (often just G-structure if φ is understood),
• or (G,φ)-structure on its frame bundle (Def. 4.26),
• or reduction of the structure group (4.24) along φ

is a lift (τ,g) of the frame bundle classifying map (268) through Bφ :

BG
Bφ

��
V -fold X

` Frames(X)
//

G-structure

τ

44

BAut(TeV ) structure group
of frame bundle

DL
g

(277)

(ii) We say that the G-frame bundle GFrames(X) of a V -fold X equipped with such a (G,φ)-structure is the G-
principal bundle which is classified (via Prop. 2.88): by τ , hence the object in the following diagram:

GFrames(X ,τ)

��

//

(pb)

∗

��

Frames(X)

��

//

(pb)

∗

��
X

τ
//

` Frames(X)

33
BG

Bφ

// BAut(TeV )

(278)

(iii) We write

(G,φ)StructuresX(H) := H/BAut(TeV )

(
` Frames(X) , Bφ

)
∈ Groupoids∞ (279)

for the ∞-groupoid of (G,φ)-structures on the V -fold X .

In direct generalization of Prop. 4.28 we have:

Proposition 4.37 (G-structured V -fold is G-quotient of its G-frame bundle). Let H be an elastic ∞-topos (Def.
3.21), V ∈ Groups(H) (Prop. 2.74), (G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35), X ∈ V Folds(H) (Def. 4.14) and
(τ,g) ∈ (G,φ)StructuresX(H) (Def. 4.36). Then
(i) X is equivalently the homotopy quotient (108) of its G-frame bundle (278) by G:

X ' GFrames(X ,τ)�G .

(ii) the classifying map of the G-frame bundle on X exhibits the action of G on GFrames(X ,τ) according to (107).

Proof. This is immediate from the equivalence between principal bundles and homotopy quotient projections (Re-
mark 2.89) applied to the G-frame bundle (278):

GFrames(X ,τ)

fib(ρ)'fib(τ) ��
GFrames(X ,τ)�G

ρG

44' X τ // BG
�

Example 4.38 (G-structure induced from framing). Let H be an elastic ∞-topos (Def. 3.21), V ∈Groups(H) (Prop.
2.74) and X ∈V Folds(H) (Def. 4.14). Then a framing on X (Def. 4.30) induces a (G,φ)-structure (Def. 4.36) for
any (G,φ) ∈ Groups(H)/Aut(TeV ), given by the pasting

∗ //

&&

BG

Bφ

��
X

==

` Frames(X)
// BAut(TeV )

HP
`fr

.6
(280)

of the homotopy ` fr (270) which classifies the framing (Remark 4.31) with the homotopy that exhibits the group
homomorphism φ as a morphism of pointed objects (Prop. 2.74).
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Example 4.39 (Canonical G-structure). Let H be an elastic ∞-topos H (Def. 3.21), and V ∈ Groups(H) (Prop.
2.74). Then V itself, regarded as a V -fold by Example 4.16, carries a (G,φ)-structure (Def. 4.36) for any (G,φ) ∈
Groups(H)/Aut(TeV ), induced via Example 4.38 from its canonical framing fr` (271) via left-translation (Prop. 4.32).
We call this the canonical (G,φ)-structure on V :

BG

Bφ

��
V

τV

66

// BAut(TeV )
gV

>F :=

∗ //

$$

BG

Bφ

��
V

@@

` Frames(V )
// BAut(TeV )

HP
`fr`

/7
(281)

Local isometries

Lemma 4.40 (G-structures pull back along local diffeomorphisms). Let H be an elastic ∞-topos (Def. 3.21),
V ∈ Groups(H) (Prop. 2.74) and (G,φ) ∈ Groups(H)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30). Then
pre-composition constitutes a contravariant ∞-functor (“pullback of (G,φ)-structures”)(

V Folds(H)ét
)op // Groupoids∞

X1
fét ��

7−! (G,φ)StructuresX1(H)
OO

f ∗

∈ τ ◦ fOO
_

X2 7−! (G,φ)StructuresX2(H) ∈ τ

(282)

from the ∞-category (254) of V -folds and local diffeomorphisms, which assigns to any V -fold its ∞-groupoid (279)
of (G,φ)-structres (Def. 4.36).

Proof. We need to show that for (τ,g) a (G,φ)-structure on X2, the composite
BG

Bφ��
X1 f

ét // X2

τ

33

` Frames(X2)
// BAut(TeV )

g
19

(283)

is a (G,φ)-structure on X1. For this we need to exhibit a natural equivalence

(
` Frames(X2)

)
◦ f1 ' ` Frames(X1) so that

X1
f
ét //

` Frames(X1) ))

X2

` Frames(X2)
��

τ // BG

Bφ
uu

BAut(TeV )

'
/7

g
.6

But this exists by Prop. 3.31. �

Definition 4.41 (Local isometries between G-structured V -folds). Let H be an elastic ∞-topos (Def. 3.21), V ∈
Groups(H) (Prop. 2.74) and (G,φ) ∈ Groups(H)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30).
(i) For X1,X2 ∈ V Folds (Def. 4.14) and (τi,gi) ∈ (G,φ)StructuresXi(H) (279), we say a local isometry, to be
denoted (

X1,(τ1,g1)
)

met

( f ,σ) //
(
X2,(τ2,g2)

)
is a pair

X1
f
ét
// X2 , f ∗(τ2,g2) '

σ // (τ1,g1) , (284)

consisting of a local diffeomorphism (Def. 3.26) and an equivalence of (G,φ)-structures (279) between that on its
domain V -fold and the pullback (283) of the (G,φ)-structure on its codomain V -fold.
(ii) Equivalently, by (283), a local isometry (284) is a morphism between (G,φ)-structured V -folds regarded as
objects in the iterated slice ∞-topos (Example 2.47)

(a) over BAut(TeV ) via their classifying maps of their frame bundles (268)
(b) over

(
BG,Bφ

)
via their (G,φ)-structure (277)

of this form:
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X1

##

` Frames(X
1 )

τ1 ..

f
ét // X2

τ2

%%

��

BG

BAut(TeV )
uu Bφ

g1

2:

σ
jr

g2
'/

7?
∈
(
H/BAut(TeV )

)
/(BG,Bφ)

((
X1,(τ1,g1)

)
,
(
X2,(τ2,g2)

))
. (285)

(iii) Hence we write (G,φ)StructuredV Folds(H) −!
(
H/BAut(TeV )

)
/BG ∈ Categories∞ (286)

for the sub-∞-category of this iterated slice on 1-morphisms of the form (285).

Integrability of G-structures.

Definition 4.42 (Integrable G-structure). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop. 2.74),
(G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35).
(i) Given (X ,(τX ,gX)) ∈ (G,φ)StructuredV Folds(H) (Def. 4.41), we say that (τ,g) is an integrable (G,φ)-
structure on the V -fold X if there exists a correspondence of local isometries (284) between V equipped with
its canonical (G,φ)-structure (τV ,gV ) (Def. 4.39) to (X ,(τX ,gX)):(

U,(τU ,gU)
)

met
rr

met
,, ,,(

V,(τV ,gV )
) (

X ,(τX ,gX)
) (287)

such that the right left is, in addition, an effective epimorphism (Def. 2.63), then called a (V,(τV ,gV ))-atlas of
(X ,(τX ,gX)) (100). (Underlying this, forgetting the (G,φ)-structures, is a V -atlas (252).)
(ii) We write

Integrably(G,φ)StructuredV Folds(H) �
� // (G,φ)StructuredV Folds(H) ∈ Categories∞ (288)

for the full sub-∞-category of that of (G,φ)-structured V -folds (286) on those that are integrable.

Definition 4.43 (Locally integrable G-structure). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop.
2.74), (G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35), X ∈ V Folds(H) (Def. 4.14) and (τ,g) ∈ (G,φ)StructuresX(H)

(Def. 4.36). We say that (τ,g) is a locally integrable (G,φ)-structure if, for each point ∗ x // X, there is a local
diffeomorphism φx of the local neighborhood (Def. 3.28) of ∗ e // V onto a local neighborhood of x such that
the restriction of (τ,g) along φ is equivalent to the canonical (G,φ)-structure (Def. 4.39) on TeV :

∀
∗ x // X

∃
TeV

φx

ét
// X

∗
x

AA

e

``

: φ
∗
x (τ,g) ' (τTeV ,gTeV ) .

Another way to say this: We have a correspondence of local isometries as in (287), but with the right leg
required to be an effective epimorphism only under [.

Example 4.44 (G-Structures on smooth manifolds and orbifolds).
(i) Let H = JetsOfSmoothGroupoids∞ (Example 3.24) G ∈ LieGroups ↪−! Groups

(
H
)

(see (161)) and X ∈
SmoothManifolds ↪−! H regarded as an Rn-fold according to Example 4.17. In this case, the structure group
of X (Def. 4.24) is the ordinary general linear group GLR(n) (Example 4.25). Therefore, a G-structure on X in
the sense of Def. 4.36 is (by Example 4.29) a G-structure in the traditional sense of differential geometry [St64,
VII][Kob72][Mol77]; and it is integrable according to Def. 4.42 if it is “flat” in the traditional sense of [Gu65]
and locally integrable according to Def. 4.43 precisely if it is “uniformly 1-flat” in the traditional sense of [Gu65],
namely if it is torsion-free (review in [Lot01]). Examples include:
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G
φ // GLR(n) (G,φ)-structure Locally integrable Integrable see

SpR(n)
� � // GLR(n)

almost
symplectic symplectic symplectic

[St64, VII.2]GLC(n/2) �
� // GLR(n)

almost
complex complex complex

O(n) �
� // GLR(n) Riemannian

torsion-free
Riemannian

flat
Riemannian

O(n−1,1) �
� // GLR(n) Lorentzian

torsion-free
Lorentzian

flat
Lorentzian [LPZ13]

O(n)×R �
� // GLR(n) CO(n)-structure conformal

flat
conformal [AG98]

CR(n/2−1) �
� // GLR(n) CR(n)-structure Cauchy-Riemann

flat
Cauchy-Riemann [DT06]

GLH(n/4) �
� // GLR(n) GLH(n/4)-structure hypercomplex

flat
hypercomplex [Jo95]

U(n/2) �
� // GLR(n)

hermitian
almost complex Kähler Kähler [Mor07, 11.1]

SU(n/2) �
� // GLR(n) SU(n)-structure Calabi-Yau Calabi-Yau [Pri15, 1.3]

Sp(n/4)·Sp(1) �
� // GLR(n)

almost unimodular
quaternionic quaternionic Kähler

flat
quaternionic Kähler [AM93a][AM93b]

Sp(n/4) �
� // GLR(n)

almost
Hyperkähler Hyperähler

flat
Hyperkähler

G2
� � // GLR(7) G2-structure torsion-free

G2-structure
flat/interable
G2-structure [Br05]

Spin(7) �
� // GLR(8) Spin(7)-structure torsion-free

Spin(7)-structure
flat

Spin(7)-structure
[Br87]
[Jo01]

(ii) For k > 1 and H = kJetsOfSmoothGroupoids∞ (Def. 3.24) the local integrability condition of Def. 4.43 is of
the form of the “uniformly k-flatness”-condition of [Gu65]. But beware that, according to Def. 4.36 but in contrast
to [Gu65], in this case the G-structure itself is not on the plain frame bundle but on the order-k jet frame bundle
(by Example 4.29).

Haefliger groupoids.

Definition 4.45 (Haefliger groupoid). Let H be an elastic ∞-topos (Def. 3.21) and V ∈ Groups(H) (Prop. 2.74).
(i) With no further structure,

(a) The V -Haefliger groupoid is the étale groupoid (Def. 3.35)
Haef•(V ) ∈ ÉtaleGroupoids(H)

which is the étalification (Def. 3.39) of the Atiyah groupoid (Def. 2.90) of the frame bundle (Def. 4.24) of
V regarded as a V -fold (Example 4.16):

Haef•(V ) := Atét
•
(
Frames(V )

)
. (289)

(b) The V -Haefliger stack of V is the corresponding V -fold (according to Remark 4.15):
H aef(V ) := A tét

(
Frames(V )

)
∈ V Folds . (290)

(ii) Given, in addition, (G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35), with GFrames(V )! V denoting the G-frame
bundle (278) corresponding to the canonical (G,φ)-structure on V (Example 4.39), we say

(a) the
(
V,(G,φ)

)
-Haefliger groupoid is the étale groupoid (Def. 3.35)

Haef•
(
V,(G,φ)

)
∈ ÉtaleGroupoids(H)

which is the étalification (Def. 3.39) of the Atiyah groupoid (Def. 2.90) of the G-frame bundle (278):
Haef•

(
V,(G,φ)

)
:= Atét

•
(
GFrames(V )

)
. (291)

(b) The
(
V,(G,φ)

)
-Haefliger stack of V is the corresponding V -fold (according to Remark 4.15):

H aef
(
V,(G,φ)

)
:= A tét

(
GFrames(V )

)
∈ V Folds . (292)
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Proposition 4.46 (Haefliger stack represents V -fold structure). Let H be an elastic ∞-topos (Def. 3.21) V ∈
Groups(H) (Prop. 2.74) and X ∈H. Then the following are equivalent:

(i) X is a V -fold (Def. 4.14);
(ii) X admits a local diffeomorphism to the V -Haefliger stack (Def. 4.45).

Proof. First consider the implication (i)⇒ (ii): Assuming X is a V -fold, consider a V -atlas (252) V oo ét U ét // // X .
By Prop. 3.31 (and as in the proof of Prop. 4.26) the pullbacks of the frame bundles of V and of X along this V -atlas
to U coincide there, which means that we have a homotopy-commutative square of their classifying maps (268) as
shown on the bottom left of the following diagram:

��

OO

��

OO

�� ��

OO

��

OO

��
U×X U

ét

��

OO

ét ét

��

// At1
(
Frames(V )

)
��

OO

��
U

ét
����

ét // V

` Frames(V )
����

X
` Frames(X)

// BAut(TeV )

⇔

��

OO

��

OO

�� ��

OO

��

OO

��
U×X U

ét

��

OO

ét ét

��

ét // Atét
1
(
Frames(V )

)
ét

��

OO

ét ét

��
U

ét
����

ét // V

ét
����

X //H aef(V )

(293)

By passing to nerves (Example 2.69) of the vertical morphisms, this induces a morphism of groupoids as shown
on the top left. But U• is an étale groupoid (by Prop. 3.36), and U −! V is a local diffeomorphism by definition
of V -atlases, so that the top left part of the left diagram in (293) is in the étale slice over V (Def. 3.32). Therefore,
the adjunction (168) of Prop. 3.33 implies that the top part of the diagram on the left of (293) factors through the
étalification (Def. 3.39) as shown in the top part on the right. With this we get the dashed morphism on the right
by passing to colimits over the vertical simplicial diagrams (as in Prop. 3.36).

It only remains to see that the dashed morphism on the right is itself a local diffeomorphism. For this observe
that al the horizontal morphisms are local diffeomorphisms, using the assumptions and then left-cancellability
(Lemma 3.27). Therefore the statement follows with Lemma 3.38.

For the converse implication (ii)⇒ (i): Given a local diffeomorphism as shown dashed on the right of (293),
we need to produce a V -atlas for X . So now define the bottom square on the right of (293) to be the pullback of
the étale atlas of the Haefliger stack along the griven morphism. This does make the top left span of the square a
V -atlas by the fact that the classes of local diffeomorphisms and of effective epimorphisms are both closed under
pullback (by Lemma 2.65 and Lemma 3.27). �

Proposition 4.47 (G-Structured Haefliger stack represents integrable G-structure). Let H be an elastic ∞-topos
(Def. 3.21), V ∈ Groups(H) (Prop. 2.74), (G,φ) ∈ Groups(H)/Aut(TeV ) (Def. 4.35). The

(
V,(G,φ)

)
-Haefliger

groupoid (Def. 4.45), carries a canonical integrable (G,φ)-structure (Def. 4.42)

(τH ,gH ) ∈ (G,φ)StructuresH Haef(V )(H) (294)

such that the operation of pullback of (283) along local diffeomorphism (Lemma 4.40) constitutes a natural bijec-
tion

π0 Integrably(G,φ)StructuredV Folds(H) ' π0 ÉtH aef(V,(G,φ))(
X ,(τ,g)

)
7−!

(
X
`(τ,g)
−−−!H aef

(
V,(G,φ)

)) (295)

between the sets of equivalence classes of:

( i) integrably (G,φ)-structured V -folds (Def. 4.42),
(ii) local diffeomorphisms into the

(
V,(G,φ)

)
-Haefliger stack, hence objects in its étale topos (Def. 3.32).

Proof. We proceed as in the proof of Prop. 4.46, but lifting the diagram there from H to the iterated slice(
H/BAut(TeV )

)
/BG (285).
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(i) First consider an integrably G-structured V -fold
(
X ,(τ,g)

)
. We describe the construction of a local diffeomor-

phism into the Haefliger stack from this: Pick any
(
V,(τV ,gV )

)
-atlas

(
V,(τV ,gV )

)
oomet (U,(τU ,gU)

) met// //
(
X ,(τX ,gX)

)
(287). By Def. 4.36, this is equivalently a choice of equivalence between the pullbacks to U of the G-structures on
V and on X . Regarded in the iterated slice (285), this equivalently means that we have a square in

(
H/BAut(TeV )

)
/BG

(285), as shown on the left of the following:

��

OO

��

OO

�� ��

OO

��

OO

��
U×X U

ét

��

OO

ét ét

��

// At1
(
GFrames(V )

)
��

OO

��
U

ét

����

ét // V

τV

����

` Frames(V )

��
X τX //

` Frames(X)
00

BG
%%

BAut(TeV )
gX

8@

gV
rz

⇔

��

OO

��

OO

�� ��

OO

��

OO

��
U×X U

ét

��

OO

ét ét

��

ét // Atét
1
(
GFrames(V )

)
ét
��

OO
ét ét
��

U

ét

����

ét // V

ét

����

` Frames(V )

��

τV

��

X
`(τX ,gX ) //

` Frames(X) 00

τX
--

H aef
(
V,(G,φ)

)
τH ((

` Frames(H ) --

BG Bφ

%%
BAut(TeV )

gX

19

gX�	

(296)

Now we proceed as follows:
(a) Observing (with Prop. 2.53) that fiber products in the iterated slice are actually given by the plain fiber products
in H equipped with canonical morphisms to the slicing objects, we find that passing to nerves (Example 2.69) of
the vertical morphisms on the left of (296) yields a morphism from the étale groupoid induced by the given V -cover
of X to the Atiyah groupoid of GFrames(X) (Def. 2.90) – just as in (293), but now equipped with coherent maps
to Bφ .
(b) Therefore, we obtain the factorization through the

(
V,(G,φ)

)
-Haefliger groupoid (the étalification of the Atiyah

groupoid of the G-frame bundle shown on the top right of (296)) just as in (293), but now, in addition, coherently
equipped with maps to Bφ .
(c) After this étalification we may identify these maps: Since those on V remain unchanged by étalification over
V , these still give the canonical (G,φ)-structure (τV ,gV ), as shown on the far right of (296). But since now the
vertical simplicial morphisms are all local diffeomorphisms, pullback along which preserves (G,φ)-structure (by
Lemma 4.40) and in particular preserves tangent- and frame bundles (by Prop. 3.31) it follows that all stages of the(
V,(G,φ)

)
-Haefliger groupoid in the top right are now equipped with the classifying map of their frame bundles.

(d) Since colimits in the slice are given by colimits in the underlying topos (by Example 2.52), the colimit over
the simplicial sub-diagram on the far right of (296) still yields the

(
V,(τ,g)

)
-Haefliger stack (292), as shown, now

equipped with canonical maps to Bφ .
(e) We claim that the induced map from the Haefliger stack to BAut(TeV ), denoted ` Frames(H ) in (296), is
indeed the classifying map of the frame bundle of the Haefliger stack:

` Frames(H ) ' ` Frames
(
H aef

(
V,(G,φ)

))
. (297)

This follows because:
• by (c) above, the component maps of the colimiting map classify the frame bundles of the stages of the

simplicial nerve;
• therefore, the colimiting map classifies the colimit of the frame bundles of the simplicial nerve, by Prop.

2.56,
• but the colimit of the tangent bundles of the étale cover is the tangent bundle of the corresponding étale stack,

by Prop. 3.37.
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(f) In particular, this implies that the induced homotopy which fills the bottom right part of (296)

` Frames
(
H
) gH +3 Bφ ◦ τH , (298)

canonically given by the colimit construction in the iterated slice, constitutes a (G,φ)-structure on the
(
V,(G,φ))

)
-

Haefliger stack.
(g) In conclusion, the dashed morphism on the right of (296) exists and is a local diffeomorphism, as in the proof
of Prop. 4.46; but, by construction in the iterated slice, it is now exhibited as a local isometry to the Haefliger stack
equipped with the induced (G,φ)-structure (298).
(ii) The converse construction is now immediate: Given a local diffeomorphism of the form shown dashed on the
right of (296), pulling back the étale atlas of the Haefliger stack along it yields a V -atlas for X (just as in the proof
of this converse step in Prop. 4.46) and pulling (via Lemma 4.40) the (G,φ)-structure (298) around the resulting
Cartesian square makes this a

(
V,(G,φ)

)
-atlas that exhibits X as equipped with an integrable (G,φ)-structure.

This construction is clearly injective on equivalence classes, by ∞-functoriality of the pullback construction (283)
of (G,φ)-structures; and it is surjective on equivalence classes by item (i) above. Hence this is a bijection on
equivalence classes, as claimed. �

Tangential structures. Closely akin to G-structures (Def. 4.36) are tangential structures (Def. 4.48 below) where
not the structure group itself is lifted, but only its shape:

Definition 4.48 (Tangential structure). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop. 2.74),
(G,φ) ∈ Groups(H)/SAut(TeV )

(Def. 4.35) and X ∈V Folds(H) (Def. 4.14).
(i) We say that a tangential (G,τ)-structure on X is a lift (τ,g) through Bφ of the composite of the frame bundle
classifying map (268) with the shape-unit (48):

BG
Bφ

��

V -fold X
`Frames(X)

//

tangential
structure

τ

22

BAut(TeV )
η S

// BSAut(TeV )
shape of

structure group
of frame bundle

8@

g
(299)

(ii) We write
Tangential(G,φ)StructuresX(H) := H/BSAut(TeV )

(
η

S◦ ` Frames(X) , Bφ
)

(300)

for the ∞-groupoid of (G,φ)-tangential structures on the V -fold X .

Example 4.49 (Tangential structures on smooth manifolds). Let H = JetsOfSmoothGroupoids∞ (Example 3.24)
G ∈ LieGroups ↪−! Groups

(
H
)

(see (161)) and X ∈ SmoothManifolds ↪−! H regarded as an Rn-fold according
to Example 4.17. In this case, the structure group of X (Def. 4.24) is the ordinary general linear group GLR(n)
(Example 4.25). Hence here tangential structure in the general sense of Def. 4.48 is tangential structure in the
traditional sense of differential topology (popularized under this name in [GMTW06, 5], originally introduced as
“(B, f )-structure” [La63][St68, II], review in [Ko96, 1.4]).

Example 4.50 (Cohesive refinement of tangential structure). Every (G,φ)-structure (Def. 4.36) induces tangential
(SG, Sφ)-structure (Def. 4.48) by composition with the naturality square of η S on Bφ :

BG

Bφ

��

η
S
BG // BSG

BSφ
��

V -fold X
`Frames(X)

//

(G,φ)-structure

τ

66

BAut(TeV )
η

S
BAut(TeV )

// BSAut(TeV )
shape of

structure group
of frame bundle

HP
g

(301)

Conversely, realizing a tangent structure as obtained from a G-structure this way means to find a geometric (differ-
ential) refinement.
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Example 4.51 (Orientation structure). Let H = JetsOfSmoothGroupoids∞ (Example 3.24) and X ∈ H an Rn-
fold (Def. 4.14) hence an ordinary manifold (Example 4.17) or, more generally, an ordinary étale Lie groupoid
(Example 4.18). With the general linear and the (special) orthogonal group regarded as smooth groups via (161)

SO(n)
iSO // O(n)

iO // GL(n) ∈ Groups(SmoothManifolds) // Groups(H) (302)
we have:

(i) an O(n)-structure (Def. 4.36) on X is equivalently a Riemannian structure (Example 4.44);

(ii) but a tangential SO(n)-structure (Def. 299) is equivalently no structure, since SO(n)
SiO
'
// SGL(n) is an

equivalence of underlying shapes (since O(n) is the maximal compact subgroup of GL(n)),

(iii) while a tangential SSO(n)-structure (Def. 299) is an orientation of X .

(iv) A differential refinement, in the sense of Example 4.50, of such an orientation structure is an oriented Rie-
mannian structure (via its induced volume form).

Example 4.52 (Higher Spin structure [SSS09][SSS12]). Let H = JetsOfSmoothGroupoids∞ (Example 3.24) and
X ∈ H an Rn-fold (Def. 4.14) hence an ordinary manifold (Example 4.17) or, more generally, an ordinary étale
Lie groupoid (Example 4.18). The sequence of groups (302) in Example 4.51 is, under shape, the beginning of the
Whitehead tower of SO(n) ' SGL(n). The tangential structures (Def. 4.48, Example 4.49) corresponding to the
stages in this tower are the Spin structure and its higher analogues:

��
BSFivebrane(n)

��
BSString(n)

��
BSSpin(n)

��
BSSO(n)

��
X

`Frames(X)
,,

Riemannian
structure

//

Orientation
structure

00
Spin

structure

22
String

structure

33

Fivebrane
structure

55

BO(n) η
S
BO(n)

//

��

BSO(n)

'
��

BGL(n) η
S
BGL(n)

// BSGL(n)

(303)

Flat V -folds.

Definition 4.53 (Flat V -folds). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop. 2.74) and X ∈
V Folds(H) (Def. 4.14). We say that X is flat if the classifying map (268) of its frame bundle (Prop. 4.26) factors
through the [-counit (49), hence if it carries (G,φ)-structure (Def. 4.36) for (G,φ) = ([Aut(TeV ),ε[

Aut(TeV )):

[BAut(TeV )

ε[BAut(TeV )

��
X

`Frames(X)
//

τ

55

BAut(TeV )

7?

(304)

By the universal property of ε[ and since [ commutes with B, this means equivalently that X carries G-structure
for any discrete group G' [[G.
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Proposition 4.54 (Flat frame bundles are V -folds). Let H be an elastic ∞-topos (Def. 3.21), V ∈Groups(H) (Prop.
2.74) and X ∈V Folds(H) (Def. 4.14). If X is flat (Def. 4.53), then
(i) its flat frame bundle ([Aut(TeV ))Frames(X) (278) is itself a V -fold (Def. 4.14) and
(ii) the bundle morphism is a local diffeomorphism (Def. 3.26): ([Aut(TeV ))Frames(X)

ét // X .

Proof. First consider (ii): We need to show that the left square in the following pasting diagram is Cartesian:

([Aut(TeV ))Frames(X)
η

ℑ

([Aut(TeV ))Frames(X) //

p
��

ℑ
(
([Aut(TeV ))Frames(X)

)
//

ℑp
��

(pb)

ℑ∗

��
X

η
ℑ

X

// ℑX
ℑτ

// ℑ[Aut(TeV )

Here the right square is Cartesian, by definition (278) and since ℑ, being a right adjoint, preserves Cartesian squares
(by Prop. 2.26). Hence, by the pasting law (Prop. 2.23) it is sufficient to show that the total rectangle is Cartesian.
But, by the naturality of ηℑ, the total rectangle is equivalent to that of the following pasting diagram:

([Aut(TeV ))Frames(X)

��

//

(pb)

∗

��

ηℑ
∗ //

(pb)

ℑ∗

��
X

τ
// [BAut(TeV )

η
ℑ

[BAut(TeV )

// ℑ[BAut(TeV )

Here the left square is Cartesian by the definition (278), while the right square is Cartesian since its two horizontal
morphisms are equivalences, by elasticity. Hence the total rectangle is Cartesian by the pasting law (Prop. 2.23).
Regarding (i): We need to exhibit a V -atlas (252) for the flat frame bundle. So let V oo ét U ét // // X be a V -atlas
for X , and consider the following pullback diagram:

U×
X
([Aut(TeV ))Frames(X)

ét
����

ét // //

(pb)

([Aut(TeV ))Frames(X)

ét
����

U

ét

��

ét
// // X

V
Observe that all four morphisms in the square are effective epimorphisms (Def. 2.63) and local diffeomorphisms
(Def. 3.26): The bottom one by definition, the right one by (ii) and hence the other two since both classes of
morphisms are closed under pullback (Lemma 2.65 and Lemma 3.27). Finally, since the class of local diffeomor-
phisms is also closed under composition (Lemma 3.27), the total vertical morphisms is a local diffeomorphism,
and hence the total outer diagram is a V -atlas of the flat frame bundle. �

Proposition 4.55 ([G-frame bundles are V -folds). Let H be an elastic ∞-topos (Def. 3.21), V ∈Groups(H) (Prop.
2.74) X ∈V Folds(H) (Def. 4.14), (G,φ) ∈Groups(H)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30) with G' [G
discrete, and (τ,g) ∈ (G,φ)StructuresX(H). Then the corresponding G-frame bundle (278) is itself a V -fold:

G ' [G ⇔ GFrames(X) ∈ V Folds(H) .

Proof. The proof proceeds verbatim as that for Prop. 4.54, just with the structure group restricted along [G!
[Aut(TeV ). �

In summary, we have found the general abstract version of the local model spaces of orbifolds:

Proposition 4.56 (Local orbifold model spaces). Let H be an elastic ∞-topos (Def. 3.21), G,V ∈ Groups(H)
(Prop. 2.74), with G' [G discrete, and (V,ρ) ∈GActions(H) (Prop. 2.79) a restriction (Prop. 2.85) of the action
(V,ρAut) by group-automorphisms (Prop. 2.102). Then the homotopy quotient (108)

V �G ∈ H
of V regarded with its canonical framing (Prop. 4.32)
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(i) is a flat V -fold (Def. 4.53);

(ii) with G-structure (Def. 4.36)

(iii) whose G-frame bundle (278) is G-equivariantly (Def. 2.83) equivalent to V itself:

GFrames
(
V �G

)
' V .

Proof. First observe that V�G is a V -fold, by Prop. 4.21 applied to Example 4.16. That this is flat (i) is implied by
(ii), since G is assumed to be discrete. For (ii) and (iii) observe that the canonical framing on V is G-equivariant,
by Prop. 4.33, so that Prop. 4.34 implies G-structure on V �G classified by the action morphism ρ itself. But this
means that its homotopy fiber, hence the corresponding G-frame bundle (Def. 278) is V itself, by (107) (and in
accord with Prop. 4.55). �

Example 4.57 (Ordinary orbifold singularities). Let H := JetsOfSmoothGroupoids∞ (Example 3.24) and V :=
(Rn,+) as in Example 4.17. Then a group automorphism of V is a linear isomorphism, hence AutGrp(Rn,+) '
GL(n). Therefore, in this case the assumptions of Prop. 4.56 hold precisely for V a linear representation of the
discrete group G, and thus we recover the traditional local orbifold models V �G from [Sa56] (in their incarnation
as étale groupoids).

Orbi-V -folds. Finally, we promote V -folds to orbifolds proper, in that we promote the ∞-category of étale stacks
to a proper ∞-category of higher orbifolds:

Definition 4.58 (Orbi-V -folds). Let H be a singular-elastic ∞-topos (Def. 3.51) and V ∈Groups(H ⊂). We say that
an orbi-V -fold is an object X ∈H whose purely smooth aspect (208) is a V -fold (Def. 4.14).
(i) We write V Orbifolds(H)⊂H for the full sub-∞-category on orbi-V -folds:

X ∈ V Orbifolds(H) ⇔ ⊂X ∈ V Folds(H) .

This means, equivalently, that the orbi-V -folds in H are the orbi-singularizations (208) of the V -folds in H ⊂:

V Folds(H ⊂)
oo Smth

OrbSnglr
'

//
V Orbifolds(H)

Smth(X ) oo �

:=

X:=

X � // OrbSnglr(X)

(305)

(ii) Similarly, given, in addition, (G,φ)∈Groups(H)/Aut(TeV ) (Def. 4.35), we write (G,φ)StructuredV Orbifolds(H)⊂
H for the full sub-∞-category on (G,φ)-structured orbi-V -folds (Def. 4.41):

(G,φ)StructuredV Folds(H ⊂)
oo Smth

OrbSnglr
'

//
(G,φ)StructuredV Orbifolds(H)

(Smth(X ),(τ,g)) oo �

:=

(X ,(τ,g)):=

(X ,(τ,g)) � // (OrbSnglr(X),(τ,g))

(306)

Remark 4.59 (Coefficients for orbifold cohomology). The point of Def. 4.58 is that, by regarding a V -fold in
the elastic ∞-topos H ⊂ equivalently as an orbi-V -fold in the larger singular-elastic ∞-topos H, a larger class of
coefficients for intrinsic cohomology theories (22) becomes available, notably coefficients of the form S ≺(A�G)
(see Lemma 4.7 below). This is what gives rise, in §5, to proper orbifold cohomology (Def. 5.15 below) in contrast
to the coarser cohomology of underlying étale groupoids (Def. 5.11 below).
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Remark 4.60 (The proper ∞-category of higher orbifolds). While (306) is an equivalence of abstract ∞-categories,
(i) it is not an equivalence of sub-∞-categories of the ambient singular-elastic ∞-topos H:

∞-category of
of étale groupoids

V Folds(H ⊂)s�

Smth %%

6'

proper
∞-category
of orbifolds

V Orbifolds(H)
kK

OrbSnglrxx

∈ (Categories∞)/H

H
(ii) To bring out this distinction, also in view of Remark 4.59, we call V Orbifolds(H) (Def. 4.58) the proper
∞-category of orbifolds, in contrast to the ∞-category V Folds(H ⊂) (253) of étale ∞-groupoids.
(iii) It is a happy coincidence that proper is also the technical adjective chosen in [DHLPS19] for equivariant
homotopy theories presented by ∞-presheaves over categories of orbits with compact – hence finite if discrete –
isotropy groups: In this terminology the singular-cohesive ∞-topos H is, according to Def. 3.48, indeed a proper
global equivariant homotopy theory.

Example 4.61 (V -folds). Let H be a singular-elastic ∞-topos (Def. 3.51) and V ∈ Groups(H) (Prop. 2.74) any
group object, not necessarily smooth. Then a V -fold according to Def. 4.14 is, in particular, an orbi- ⊂V -fold
according to Def. 4.58, hence a V -fold for V := ⊂V the purely smooth aspect of V :

V Folds(H) �
� // ( ⊂V )Orbifolds(H) .

But, in general, being a V -fold is a much stronger condition than being an ( ⊂V )-orbifold, even (and in particular)
if V is already smooth: For a V -fold X not only the full underlying ⊂X is required to be locally equivalent to

⊂V , but moreover, for each K ∈Groupsfin, the geometric K-fixed locus of ⊂X is required to be locally equivalent
to the geometric K-fixed locus of ⊂V .

Example 4.62 (Subcategories of smooth and of flat orbifolds). Let H be an elastic ∞-topos (Def. 3.21), V ∈
Groups(H) (Prop. 2.74) and (G,φ) ∈ Groups(H)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30). We have fully
faithful inclusions into the ∞-category of (G,φ)-structured orbi-V -folds (Def. 4.58)

(G,φ)StructuredV Orbifolds(H)

(G,φ)StructuredV Folds(H0)
' � i ⊂

smooth orbifolds
44

([G,φ ◦ ε[)StructuredV Orbifolds(H)
9 Yi[

flat orbifolds

kk
(307)

of
(i) smooth (G,φ)-structured V -folds, via Lemma 3.65;
(ii) flat ([G,φ ◦ ε[)-structured V -folds (Def. 4.53).
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5 Orbifold cohomology

With an internal ∞-topos-theoretic characterization of orbifolds in hand (from §4), we immediately obtain an
induced notion of (differential, geometric, étale) orbifold cohomology, given by the intrinsic cohomology (22) of
the ambient singular-cohesive ∞-topos. Here we discuss how this new intrinsic notion of orbifold cohomology
- subsumes proper equivariant cohomology theory (§5.1)
- and unifies it with tangentially twisted cohomology (§5.2).

5.1 Proper equivariant cohomology

Proper equivariant cohomology.

Definition 5.1 (Borel equivariant cohomology). Let H ⊂ be a cohesive ∞-topos (Def. 3.1) G ∈ Groups(H ⊂) (Prop.
2.74) and (X ,τ),(A,ρ) ∈ GActions(H ⊂) (Prop. 2.79). Then the Borel equivariant cohomology of X with coeffi-
cients in A is the intrinsic cohomology (22) in the slice H/BG (Prop. 2.46) of the homotopy quotient (108) of X
with coefficients in the shape (128) of the homotopy quotient of A:

Borel equivariant
cohomology

HBorel(X ,A) := π0 H/BG

(
(X�G) , S(A�G)

)
=


(X�G)

cocycle
c //

τ ##

A�G

ρ||
BG

t|

 (308)

Definition 5.2 (Proper equivariant cohomology). Let H be a singular-cohesive ∞-topos (Def. 3.48) G∈Groups(H[)
(Prop. 2.74) a discrete ∞-group, and (X ,τ),(A,ρ)∈GActions(H) (Prop. 2.79). Then we say that the proper equiv-
ariant cohomology of X with coefficients in A is the intrinsic cohomology (22) in the slice H/ ≺BG

(Prop. 2.46) of
the orbi-singularization (209) of the homotopy quotient (108) of X with coefficients in the shape (128) of the
orb-singularization of the homotopy quotient of A:

proper equivariant
cohomology

HG(X ,A) := π0 H/ ≺BG

(

≺(X�G) , S ≺(A�G)
)
=



≺(X�G)
cocycle

c //

≺(τ) %%

S ≺(A�G)

(
η

S
≺BG

)−1 ◦ S ≺(ρ)yy

≺BG

s{

 (309)

Recovering traditional G-equivariant cohomology. We discuss how in the case of a finite group G, traditional
G-equivariant cohomology (see §B) is a special case of proper equivariant cohomology (Def. 5.2). We take the
key observation from [Re14] (Prop. 5.6 below).

Definition 5.3 (G-equivariant cohesive ∞-topos). Let H ⊂ be a cohesive ∞-topos (Def. 3.1) and G ∈ Groupsfin a
finite group (215). We write

GH ⊂ := Sheaves∞

(
GOrbits, H ⊂

)
= Func∞

(
GOrbitsop, H ⊂

)
(310)

for the ∞-topos of H ⊂-valued ∞-sheaves on the G-orbit category (Def. B.8), to be called the corresponding G-
equivariant cohesive ∞-topos.

Remark 5.4 (Proper equivariant cohomology theory in singular ∞-toposes). In the case H ⊂ ' Groupoids∞ (35),
Def. 5.3 reduces to the ∞-category GGroupoids∞ (Def. B.4) of traditional G-equivariant homotopy theory (recalled
in §B). The intrinsic cohomology (22) of the ∞-topos GGroupoids∞ – or of its tangent ∞-topos T

(
GGroupoids∞

)
(Example 2.51) in the twisted abelian case (Remark 2.96) – is proper equivariant cohomology (following termi-
nology in [DHLPS19]), including G-Bredon cohomology [Br67a][Br67b] (review in [Blu17, §1.4][tD79, §7]),
G-equivariant K-theory [Se68][AS69] (which is proper equivariant by [AS04, A3.2][FHT07, A.5][DL98]), G-
equivariant Cohomotopy theory [Se71][tD79, §8][SS19][BSS19], etc.

Hence, by Remark 3.20, to the extent that the objects of the cohesive ∞-topos H ⊂ in Def. 5.3 are ∞-groupoids
equipped with further geometric or differential-geometric structure, the intrinsic cohomology theory (22) in GH ⊂

(310) is an enhancement of plain G-equivariant cohomology to a flavor of proper G-equivariant differential coho-
mology theory (by Remark 3.20).
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Proposition 5.5 (Cohesive Elmendorf theorem). Consider a cohesive ∞-topos H ⊂ (Def. 3.1) with an ∞-site Charts
of charts (Def. 3.9). Then for G ∈ Groupsfin a finite group, we have an equivalence of ∞-categories

GH ⊂ ' Sheaves∞

(
Charts,GGroupoids∞

)
, (311)

where GGroupoids∞ is the ∞-category of D-topological G-spaces (Def. B.4).

Proof. Consider the following sequence of ∞-functors

GH ⊂ := Sheaves∞

(
GOrbits,H ⊂

)
= Sheaves∞

(
GOrbits,Sheaves∞(Charts)

)
'
! Sheaves∞

(
GOrbits×Charts

)
'
! Sheaves∞

(
Charts,Sheaves∞(GOrbits)

)
'
! Sheaves∞

(
Charts,GGroupoids

)
.

That the first and second of these ∞-functors are equivalences follows by the product/hom-adjunction for ∞-
functors. With that, the last equivalence follows, objectwise, by Elmendorf’s theorem (Prop. B.10). �

Proposition 5.6 (G-equivariant homotopy theory embeds into G-singular cohesion). Let H be a singular-cohesive
∞-topos (Def. 3.48) over Groupoids∞ (35) and let G ∈ Grpfin be a finite group (215).
(i) Then there is a full sub-∞-category inclusion

GH ⊂

� � ∆G

'
// H/ ≺

G (312)

of the G-equivariant non-singular cohesive ∞-topos (Def. 5.3) into the slice of H (Prop. 2.46) over the generic
G-orbi singularity (213).
(ii) This is such that, when pre-composed with the cohesive Elmendorf equivalence (Prop. 5.5), a cohesive sheaf
(on Charts) of GGroupoids (353) presented (356) by D-topological G-spaces XU (Def. B.1) is sent to the presheaf
on Singularities that is given as follows:

Sheaves∞

(
Charts, GGroupoids∞

) ' // GH ⊂

∑

≺

G
∆G // Sheaves∞

(
Charts×Singularities

)
(
U 7! ShpGTop

(
XU
)) � //

((
U, ≺

K) 7! ShpTop

(( ⊔
φ∈Groups(K,G)

Xφ(K)
U

)
×
G

EG
))

(313)

where on the right we have the topological shape (36) of the Borel construction by the residual G-action on the
fixed point subspaces Xφ(K)

U ⊂ XU (349).

Proof. For H ⊂ ' Groupoids∞ this is [Re14, Prop. 3.5.1]; our expression ShpTop
(
Xφ(K)

U ×
G

EG
)

is, up to convention

of notation, the expression for BFun(H,G y XU) that is spelled out in [Re14, p. 7][Lu19, 3.2.17] (using that our
G is discrete). The generalization here follows immediately by applying this equivalence objectwise in the ∞-site
Charts. �

The following is our key class of examples:

Example 5.7 (Cohesive shape of G-orbi-singular space is G-homotopy type). In the cohesive ∞-topos H ⊂ :=
SmoothGroupoids∞ (Example 3.18) consider a 0-truncated object X ∈ H ⊂,0 equipped with a G-action (Def. 107)
of a discrete group G, and with corresponding Cohesive G-orbispace (Prop. 4.6)

X := OrbSnglr(X�G)

in H := SingularSmoothGroupoids∞ (Example 3.56), which is either of:

(i) a smooth G-orbifold: X ∈ SmoothManifolds �
� // DiffeologicalSpaces �

� // H ⊂ (Example 4.10)

(ii) a topological G-orbi space: X ∈ TopologicalSpaces
Cdfflg // DTopologicalSpaces �

� // H ⊂ (Example 4.11)
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Then the cohesive shape (208) of the G-orbi-singular space X ∈H is equivalent, under the identification of Prop.
5.6, to the G-topological shape (356) of the underlying topological G-space of X :
(i) By Prop. 4.12, comparing (250) with (313) we have:

GSmoothManifolds

form
G-topological shape ShpGTop (Dtplg(−))

��

form Fréchet-smooth orbifold

OrbSnglr((−)�G)
// SingularSmoothGroupoids∞/ ≺

G

Shp form
cohesive shape

��
GGroupoids∞

� �

include G-equivariant homotopy theory

∆G // SingularGroupoids∞/ ≺

G

(314)

(ii) By Prop. 4.13, comparing (251) with (313) we have:

GTopologicalSpaces

form
G-topological shape ShpGTop

��

form topological G-orbi space

OrbSnglr(Cdfflg(−)�G)
// SingularSmoothGroupoids∞/ ≺

G

Shp form
cohesive shape

��
GGroupoids∞

� �

include G-equivariant homotopy theory

∆G // SingularGroupoids∞/ ≺

G

(315)

Lemma 5.8 (∆G commutes with Disc). The construction ∆G from Prop. 5.6 commutes with embedding of discrete
cohesive structure (207):

Sheaves∞

(
Singularities,Groupoids∞

)
/ ≺

G
Disc

--
GGroupoids

Disc --

∆G 11

Sheaves∞

(
Singularities, H ⊂

)
/ ≺

G

GH ⊂

∆G

11

Theorem 5.9 (Cohomology of good orbispaces is proper equivariant cohomology). Consider the singular-cohesive
∞-topos H := SingularCohesiveGroupoids∞ (Example 3.56) and let G∈Groupsfin be a discrete group (215). Then
the intrinsic cohomology (22)

(i) of a G-orbi-singular space X ∈H/ ≺

G (Def. 4.4) which is either

(a) a topological G-orbi-space (Example 4.11) with universal covering space (Def. 4.5) XGtop ∈GTopologicalSpaces
(346);

(b) a Fréchet-smooth G-orbifold (Example 4.10) with universal covering space (Def. 4.5) X ∈ FréchetManifolds
and underlying G-topological space XGtop := Dtplg(X) (32);

(ii) with coefficients in a cohesively discrete G-∞-groupoid A (353) (hence the G-topological shape (356) of some
topological G-space AGtop) regarded as a geometrically discrete orbi-singular ∞-groupoid A via (312):

GTopologicalSpaces
ShpGTop // GGroupoids∞

Disc // GH ⊂

∆G // H/ ≺

G

Atop // A � // A

equals the proper G-equivariant cohomology (Def. B.6) of XGtop with coefficients in A:

H/ ≺

G
(
X , A

)
' GGroupoids∞

(
ShpGTop(XGtop), A

)
hence: πnH/ ≺

G
(
X , A

)
' H−n

G (XGtop,A)
intrinsic

equivariant differential cohomology
in ∞-topos of

singular smooth ∞-groupoids

proper
G-equivariant cohomology
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Proof. (i) By Example 4.11 the topological G-orbi space X is given by

X ' OrbSnglr
(
Cdfflg(X)�G

)
.

With this, we compute as follows:

H/ ≺

G
(
X ,A

)
= H/ ≺

G

(
OrbSnglr

(
Cdfflg(Xtop)�G

)
,∆GDisc(A)

)
'H/ ≺

G

(
OrbSnglr

(
Cdfflg(Xtop)�G

)
,Disc(∆GA)

)
' (Groupoids∞)/ ≺

G

(
Shp
(
OrbSnglr(Cdfflg(Xtop)�G)

)
,∆GA

)
' (Groupoids∞)/ ≺

G
(
∆GX ,∆GA

)
' GGroupoids

(
ShpGTop(Xtop),A

)
.

(316)

Here the first step, after unwinding the definitions, is Lemma 5.8. The second step is the Shp a Disc f c-adjunction
(207). The third step is Prop. 4.13. The last step is Prop. 5.6
(ii) By Example 4.10 the Fréchet-smooth G-orbifold X is given by

X ' OrbSnglr
(
X�G

)
.

With this, we compute just as in (316) only that now in the third step we use Prop. 4.12. �

Example 5.10 (Orientifold cohomology). Take the singular elastic ∞-topos H=SingularJetsOfSmoothGroupoids∞

(Example 3.56) and V = (Rn,+) ∈H ⊂ (259). Then a X ⊂ ∈V Folds(H ⊂) (Def. 4.14) is an ordinary n-dimensional
orbifold or, more generally, an n-dimensional étale ∞-stack (by Example 4.18) with structure group (Def. 4.24)
the ordinary general linear group Aut(TeV )'GL(n) (by Example 4.25). Hence, the composition of the delooping

(101) of the ordinary determinant group homomorphism GL(n) det
−! Z2 with the classifying map ` Frames(X ⊂)

(268) of the frame bundle of X (Def. 4.26) realizes X ⊂ as an object in the slice ∞-topos (Prop. 2.46) over BZ2.
Consequently, it realizes its orbi-singualrization X := ≺X ⊂ ∈H (3.52) as an object in the slice over ≺

Z2 (202):

X ⊂

Bdet◦ ` Frames(X ⊂)

��
BZ2

∈
(
H ⊂

)
/BZ2

⇔
X

≺

(
Bdet◦ ` Frames(X ⊂)

)
��

≺Z2

∈
(
H ⊂

)/
≺

Z2 . (317)

This is the incarnation of the orbifold as an orbi-orientifold [DFM11][FSS15, 4.4][SS19]. In particular, if the
covering space (Def. 4.5)

X := fib
(
Bdet◦ ` Frames(X ⊂)

)
happens to be an Rn-fold (Example 4.17), we have just a plain orientifold (without further orbifolding) and then the
intrinsic cohomology (22) of X regarded in the slice over ≺Z2(317) is, by Theorem 5.9 the proper Z2-equivariant
cohomology of X , such as, for instance, Real K-theory [At66] (see [Mas11] for the perspective in proper equivariant
cohomology) or Z2-Equivariant Cohomotopy [tD79, 8.4][SS19].

5.2 Proper orbifold cohomology

We introduce general étale cohomology of étale ∞-stacks (Def. 5.11), which is sensitive to geometric G-structure
and to tangential structure (Def. 5.13). Promoting this to the proper incarnation of orbifolds (Remark 4.60),
we finally obtain tangentially twisted proper orbifold cohomology (Def. 5.15) which we prove unifies tangen-
tially twisted topological cohomology away from orbifold singularities with proper equivariant cohomology at the
singularities (Theorem 5.16). As a fundamental class of examples, we construct J-twisted proper orbifold Coho-
motopy theories (Def. 5.28) and observe, as an application, that these subsume the relevant cohomology theories
for non-perturbative string theory, according to “Hypothesis H” (Remark 5.30).
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Cohomology of V -étale ∞-stacks.

Definition 5.11 (Étale cohomology). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H) (Prop. 2.74),
(G,φ) ∈ Groups(H)/Aut(TeV )

(Def. 4.35), and X ∈ Integrably(G,φ)StructuredV Folds(H) (Def. 4.42). The étale
cohomology of

(
X ,(τ,g)

)
is its intrinsic cohomology (22) when regarded (via Prop. 4.46)

Integrably(G,φ)StructuredV Folds(H) //
((

H/BAut(TeV )

)
/(BG,Bφ)

)/(
H aef

(
V,(G,φ)

)
,(τH ,gH )

)
(
X ,(τ,g)

)
7−!

((
X ,(τ,g)

) `(τ,g)
−−−!

met
H aef

(
V,(G,φ)

))
in the iterated slice of (285) over the

(
V,(G,φ)

)
-Haefliger stack (Def. 4.45) equipped with its canonical (G,φ)-

structure (τH ,gH ) (Prop. 4.46), hence is G-structure-twisted cohomology (Remark 2.94):
étale cohomology

H(τ,g)(X ,A
)

:=
((

H/BAut(TeV )

)
/(BG,Bφ)

)/(
H aef

(
V,(G,φ)

)
,(τH ,gH )

)((X ,(τ,g)
)
,
(
A, p
))

=


X

cocycle
c //

`(τ,g) $$

A

p
zz

H aef(V,(G,φ))

qy


(318)

Remark 5.12 (Étale cohomology is geometric). As the notation in Def. 5.11 indicates, étale cohomology is a
“geometric cohomology theory” in that it does depend (in general) on the G-structure g on the V -fold X , (for
instance its complex- or symplectic- or Riemannian- or Lorentzian structure structure, by Example 4.44).

Next we consider cohomology theories that are not sensitive to the metric part g of a G-structure (τ,g), but just
to its tangential structure τ .

Definition 5.13 (Tangentially twisted cohomology). Let H be an elastic ∞-topos (Def. 3.21), V ∈ Groups(H)
(Prop. 2.74), (G,φ) ∈ Groups(H)/Aut(TeV )

(Def. 4.35), (A,ρ) ∈ GActions(H) and X ∈ (G,φ)StructuredV Folds(H)
(286). Then, for A ∈H/BSG

, the tangentially twisted cohomology of V with coefficients in A is (see Remark 2.94)

tangentially twisted
cohomology

H Sτ
(
X ,A

)
:= H/SAut(TeV )

(
(X ,η S ◦ τ),(A�G,ρ)

)
=


X

cocycle
c //

η S◦τ   

(SA)�(SG)

Sρyy
BSG

v~

 (319)

Remark 5.14 (Need for G-Structure vs. tangential structure).
(i) The notion of tangentially twisted cohomology in Definition 5.13 make sense more generally for V -folds
equipped only with tangential structure (Def. 4.48) instead of full G-structure (Def. 4.36) (hence only with a
reduction of the shape of their structure group, instead of the actual structure group (Def. 4.24)) and it only need A
to be equipped with a SG-action.
(ii) We state the definition in the more restrictive form above just in order to bring out the following promotion of
this notion to its proper orbifold version (Remark 4.60), in Def. 5.15 below. The process of orbi-singularization
is in fact sensitive to the full G-structure, and not just to its tangential shape. More precisely, it is sensitive to the
geometric fixed point spaces of the G-structure and not just its homotopy fixed point spaces (as per Remark 3.68
Example 3.71).
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Tangentially twisted proper orbifold cohomology. We now promote tangentially twisted cohomology of V -folds
(Def. 5.13) to a proper orbifold cohomology theory in the sense of Def. 4.58.

Definition 5.15 (Tangentially twisted proper orbifold cohomology). Let

◦ H be a singular-elastic ∞-topos (Def. 3.51).
◦ V ∈ Groups(H ⊂) (Prop. 2.74).
◦ (G,φ) ∈ Groups(H ⊂)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30).
◦ X ⊂ ∈V Folds(H ⊂) (Def. 4.14).
◦ (τ,g) ∈ (G,φ)StructuresX ⊂

(H ⊂) (Def. 4.36).
◦ (A,ρ) ∈ GActions(H ⊂).

and set A := ≺(A�G) and X = ≺X ⊂.
The tangentially twisted proper orbifold cohomology of X with coefficients in SA is (see Remark 2.94)

H S ≺τ
(
X , A

)
:= π0 H/S ≺BG

(
(X ,η S ◦ ≺(τ)), (SA , S ≺ρ)

)
=


X

cocycle
c //

η S◦ ≺(τ) ""

S ≺

(
A�G

)
S ≺(ρ)yy

S ≺BG

/
∼

Theorem 5.16 (Tangentially twisted orbifold cohomology at and away from singularities). Consider the tangen-
tially twisted orbifold cohomology of Def. 5.15 restriction to (1) smooth and (2) flat orbifolds, according to
Example 4.62. Then (see the first diagram on p. 10):
(i) The tangentially twisted orbifold cohomology of flat orbifolds for 0-truncated coefficients A is naturally equiv-
alent to the proper equivariant cohomology (Def. 5.2) of their [G-frame bundle (278):

tangentially twisted
orbifold cohomology

H S ≺τ
(
i[X

flat
orbifold

,A
)
'

proper
equivariant cohomology

H[G
(
([G)Frames(X ⊂)

[G-frame bundle
, A
)
.

(ii) The tangentially twisted orbifold cohomology of smooth (non-orbi-singular) orbifolds is equivalently the tan-
gentially twisted cohomology (Def. 5.11) of the underlying V -folds:

tangentially twisted
orbifold cohomology

H S ≺τ
(
i ⊂X
smooth
orbifold

,A
)
'

tangentially twisted
V -fold cohomology

H Sτ
(
X ⊂

0-truncated
V -fold

, A
)
.

Proof. The case (i) means that the classifying map of the G-structure in question factors as follows, where we use
Prop. 4.37 to identify the leftmost morphism ρ as exhibiting the action (107) of [G on ([G)Frames(X):

([G)Frames(X)�[G
ρ //

`τ

22

`Frames(X)

44
B[G

ε[BG // BG // BAut(TeV ) .

Now we observe

(a) with Def. 3.48 that S acts objectwise over Singularities,

(b) with Prop. 2.39 that the pullback of presheaves over Singularities is computed objectwise,

(c) and with Lemma 4.7 that ≺(A�G) is objectwise over Singularities a homotopy quotient by G,

so that Lemma 3.6 applies objectwise over Singularities to give the pullback square shown on the right here:
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S ≺

(
A�[G

)
(pb)

��

// S ≺

(
A�G

)
��

≺

(
([G)Frames(X)�([G)

)
33

≺ρ //

η S◦ ≺τ

33≺B[G // S ≺BG

By the universal property of the pullback, this means that every cocycle factors naturally as shown by the dashed
morphism. But by Def. 5.2 this dashed morphism is equivalently a cocycle in proper equivariant cohomology, as
claimed.
The case (ii) means (using Lemma 3.65) that the orbi-singular space X is in fact smooth

X ' ⊂X ' NnOrbSnglr
(
X ⊂

)
.

Therefore, we have the following natural equivalences of spaces of dashed morphisms:

S ≺

(
A�G

)
��

⊂X 'X

::

// S ≺BG

⇔

⊂S ≺

(
A�G

)
��

⊂X
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// ⊂S ≺BG

⇔
S
(
A�G

)
��

X ⊂

;;

// SBG

∈ ∈

H/
S ≺BG

(
X , S ≺

(
A�G

))
' H/

SBG

(
X ⊂ , S

(
A�G

))
(320)

Here the first equivalence is by the adjunction NnOrbSnglr a Smth and the fully faithfulness of NnOrbSnglr (207).
The second step uses ⊂ ◦ S' S◦ ⊂ (Lemma 3.67) and ⊂ ◦ ≺ ' ⊂ (Remark 3.53) But on the right of (320) we see
the tangentially twisted cohomology of X ⊂, as claimed. �

J-Twisted orbifold Cohomotopy theory. We discuss now the example of tangentially twisted proper orbifold
cohomology (Def. 5.15) where the coefficients are (shapes of) spheres, specifically of Tate V -spheres (Def. 5.19),
In this case the tangential twist is the J-homomorphism (Def. 5.24) whence we speak of J-twisted Cohomotopy
theory (Def. 5.28).

Definition 5.17 (Complement of neutral element). Let H be an ∞-topos (Def. 2.30) and V ∈ Groups(H) (Prop.
2.74). Let (V,ρAutGrp) ∈ AutGrp(V )Actions(H) denote the group-automorphism action on V (Prop. 2.102).
(i) Consider those subobjects (Def. 2.61) of the homotopy quotient V � AutGrp (125) whose pullback along the
morphism

∗�AutGrp(V )
e�AutGrp(V ) // V �AutGrp(V ) ,

which exhibits the neutral element as a fixed point of the group-automorphism action (Prop. 2.102), is empty.
These are the subobjects forming the poset in the top left of the following Cartesian square (of ∞-categories):

SubObjectse/
(
V �AutGrp(V )

)
(pb)

//
� _

��

∗� _
∅
��

SubObjects
(
V �AutGrp(V )

)
(e�AutGrp(V ))∗

// SubObjects(∗)

(321)

(ii) Consider next the union of these subobjects, hence the colimit over the left vertical functor in (321), which we
denote as follows:(

V \{e}
)
�AutGrp(V ) := lim

−!

(
SubObjectse/

(
V �AutGrp(V )

)
↪−! SubObjects

(
V �AutGrp(V )

))
. (322)

(iii) We call the homotopy fiber V \ {e} of the canonical morphism from this object (322) to BAutGrp(G) the
complement of the neutral element of V
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V \{e}
fib
(
ρAutGrp \{e}

)
// (V \{e})�AutGrp(V )

ρAutGrp \{e}

xx

� _

��
V �AutGrp(V )

ρAutGrp
��

BAutGrp(V )

(323)

(iv) We regard the complement of the neutral element as equipped with the AutGrp(V )-action which is exhibited
by the homotopy fiber sequence (323) (by Prop. 323):(

V \{e} , ρAutGrp \{E}
)
) ∈ AutGrp(V )Actions(H) .

Proposition 5.18 (Basic properties of complement of neutral element). Let H be an ∞-topos (Def. 2.30) and
V ∈ Groups(H) (Prop. 2.74). Then the complement V \{e} of the neutral element (Def. 5.17)
(i) is a subobject (Def. 2.61) of V

V \{e} �
� // V (324)

(ii) which is disjoint from the neutral element:
∅ //

��
(pb)

V \{e}� _
��

∗ e
// V

Proof. For (i) we use the pasting law (Prop. 2.23) and the homotopy fiber characterization of the group-automorphism
action (126) to decompose (323) as the pasting of two Cartesian squares, as follows:

V \{e} //
� _

��
(pb)

(V \{e})�AutGrp(V )

ρAutGrp\{e}

yy

� _

��
V //

��

(pb)

V �AutGrp(V )

ρAutGrp
��

∗ // BAutGrp(V )

Since monomorphisms are preserved by pullback (by Prop. 2.66), this shows the first claim from the construction
(322).

For (ii) we paste to the middle horizontal morphism in this diagram the square (122) which exhibits the neutral
element as a fixed point of the group-automorphims action (Prop. 2.102) and then we pull back the right vertical
morphism along the boundary of that square, as shown in the following:

∅

��

$$

// ∅ ' lim
−!

i

∅

��

**
V \{e} //
� _

��

(V \{e})�AutGrp(V ) := lim
−!

i

Ui

� _

��
∗

e ''

// ∗�AutGrp(V ) e�AutGrp(V )

++
V // V �AutGrp(V )

Here the right square is Cartesian since colimits in an ∞-topos are preserved by pullback (54) and using the
definition (321), as indicated in the top right. Similarly the rear square is Cartesian, since pullback preserves the
initial object (this being the empty colimit, Example 2.33). With this, and since the front square is Cartesian by (i),
the pasting law (Prop. 2.23) implies that also the left square is Cartesian, which was to be shown. �
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Definition 5.19 (Tate V -sphere). Let H be an ∞-topos (Def. 2.30) and V ∈ Groups(H) (Prop. 2.74). Then we say
that the Tate V -sphere is the homotopy cofiber

SV := V/(V \{e})

of the inclusion (324) of the complement of the neutral element into V (Def. 5.17), hence the object in this
homotopy pushout square:

V \{e} �
� //

��
(po)

V

��
∗ // SV

(325)

Example 5.20 (Tate sphere in unstable motivic homotopy theory). For H := Sheaves∞

(
SchemesNis

)
and V := A1

the Tate V -sphere of Def. 5.19 is the Tate sphere in the traditional sense of (unstable) motivic homotopy theory,
see [VRO07, 2.22].

Example 5.21 (Tate spheres with shape of ordinary spheres). Let H = JetsOfSmoothGroupoids∞ (Def. 3.24) and
V := (Rn,+) as in Example 4.17. Then AutGrp(Rn,+) = GL(n) (as in Example 4.25) and the complement of the
neutral element (Def. 5.17) is the ordinary complement Rn \{0}, whose shape is that or the ordinary n−1-sphere:

S
(
Rn \{0}

)
' SSn−1. (326)

Hence the Tate Rn-sphere (Def. 5.19) is the homotopy pushout shown on the left here:

Rn \{e}

��

� � //

(pb)

Rn

��
∗ // S(R

n)

S
7−!

SSn−1

��

� � //

(pb)

∗

��
∗ // SS(Rn)

Since the shape modality (128) is left adjoint it preserves homotopy pushouts (Prop. 2.26), so that the shape of the
Tate Rn-sphere is that of the ordinary n-sphere:

SSRn ' SSn. (327)

In contrast, the Tate Rn-sphere itself is the “germ of a smooth sphere”.

Proposition 5.22 (Canonical action on Tate V -sphere). Let H be an ∞-topos (Def. 2.30) and V ∈Groups(H) (Prop.
2.74). The Tate V -sphere (Def. 5.19) inherits a canonical action (Prop. 2.79) of the group-automorphism group
AutGrp(V ) (Def. 2.101), associated (via Prop. 2.87) to a group homomorphism

AutGrp(V ) // Aut(SV ) (328)

whose homotopy quotient (108) is given by the following homotopy pushout

(V \{e})�AutGrp(V ) �
� //

�� (po)

V �AutGrp(V )

��
∗�AutGrp(V ) // SV �AutGrp(V )

(329)

of the defining morphisms in (323).

Proof. Since the forgetful ∞-functor H/BAutGrp(V ) −! H preserbes colimits (Example 2.52), the diagram (329)
extends to a diagram over BAutGrp(V ). Pulling this back along the point inclusion (103) and using that colimits
in an ∞-topos are preserved by pullback (54), we find that the homotopy fiber of SV �AutGrp(V )! BAutGrp(V ) is
given by the defining homotopy pushout (329) of the Tate V -sphere. �
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Definition 5.23 (Linear group). Let H be an elastic ∞-topos (Def. 3.21) and V ∈ Groups(H) (Prop. 2.74).
(i) We say that V is a linear group if it is equipped with an equivalence

Aut(TeV ) '
exp // AutGrp(V ) ∈ Groups(H) (330)

between (a) the plain automorphism group of the local neighborhood of the neutral element (Def. 4.24) and (b)
the group-automorphism group of V (Def. 2.101)
(ii) We write

LinearGroups(H) ∈ Categories∞

for the ∞-category of linear groups in H.

Definition 5.24 (Tate J-homomorphism). Let H be an elastic ∞-topos (Def. 3.21) and V ∈ LinearGroups(H) (Prop.
5.23).
(i) The Tate J-homomorphism is the composite

JV : Aut(TeV ) '
exp // AutGrp(V ) // Aut(SV ) (331)

of (a) the defining equivalence (330) with (b) the homomorphism (328) which reflects the canonical AutGrp(V )-
action on the Tate V -sphere (Def. 5.22).
(ii) The corresponding Aut(TeV )-actions on SV and on S(SV ), by restriction along (331) and (333) of the canonical
automorphism actions (Prop. 2.87), we denote, respectively, by

(SV ,ρJ) ∈ Aut(TeV )Actions(H) . (332)

(iii) The actual J-homomorphism is the shape of the further composite with the homomorphism Aut(η S
SV ) from

Prop. 131:
JV : SAut(TeV ) '

Sexp //

SJV

55
SAutGrp(V ) // SAut(SV )

SAut
(
η

S
Aut(SV )

)
// SAut

(
SSV
)
. (333)

Example 5.25 (Ordinary J-homomorphism). Let H= SingularJetsOfSmoothGroupoids∞ (Example 3.56) and V :=
(Rn,+) as in Example 4.17. This is a linear group in the sense of Def. 5.23, with Aut(T0Rn) ' GL(n) (Example
4.25). Via Example 5.21 the induced action on the shape of the Tate Rn-sphere (Def. 5.24) is the classical J-
homomorphism (going back to [Wh42], reviewed in [Rav86, p. 4]):

J : SO(n) ' SGL(n) // Aut
(
SSn
)

(334)

being the image under topological shape (Def. 36) of the defining action of GL(n) on Rn and hence on its one-point
compactification Sn.

Definition 5.26 (Representation spheres). Let H be a singular-elastic ∞-topos (Def. 3.51), V Groups(H ⊂) (Prop.
2.74), and (G,φ) ∈ Groups(H ⊂)/Aut(TeV ) (Prop. 2.74, Def. 2.86, Example 3.30). Then we say that the represen-
tation sphere SVφ of the G-action φ on V (via Prop. 2.87) is the shape (Def. 3.1) of the orbi-singularization (Def.
3.52) of the homotopy quotient (108) of the Tate V -sphere (Def. 5.19) by the restricted action (Prop. 2.85) along
φ of the action ρJ (332) induced by the J-homomorphism (Def. 5.24):

SVφ := S ≺

(
SV �

φ
G
)
∈H/ ≺G

.

Example 5.27 (Ordinary representation spheres). Let H = SingularJetsOfSmoothGroupoids∞ (Example 3.55) and
V := (Rn,+) as in Example 4.17, whence Aut(TeV )' GL(n) (Example 4.25). For

G � � φ // GL(n)⊂ Aut(TeV )

a finite subgroup, hence a linear G-representation, we have that the representation sphere SR
n
φ according to Def.

5.26 is the ordinary representation sphere, as an object in G-equivariant homotopy theory.
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Definition 5.28 (J-twisted proper orbifold Cohomotopy theory). Let H be a singular-elastic ∞-topos (Def. 3.51)
V ∈Groups(H) (Prop. 2.74), W ∈ LinearGroups(H) (Def. 5.23) and φ : Aut(TeW ) // Aut(TEV ) . Then J-twisted
proper orbifold Cohomotopy is the tangentially twisted proper orbifold cohomotopy (Def. 5.15) with coefficients

(A,ρ) := (SV ,ρJ)

the Tate W -sphere (Def. 5.19) with its Tate J-homomorphism action (Def. 5.24):
J-twisted

orbifold Cohomotopy

π
S ≺τ(−) :=

tangentially twisted orbifold cohomology

HS ≺τ
(
−,(SV ,ρJ)

Tate V -sphere with
J-homomorphism action

)
.

Hence for a structured orbifold (Def. 4.58)(
X ,(τ,g)

)
∈
(
Aut(TeW ),φ

)
StructuredV Orbifolds(H) ,

we have:

J-twisted
orbifold Cohomotopy

π
S ≺τ(X ) =



orbifold

X

cocycle

c //

η S◦ ≺(τ)
tangential

twist
&&

S ≺

( orbi-singularized
Tate W -sphere

SW�Aut(TeW )
)

S ≺

(
ρJ
)

twisting via
orbi-singularized
J-homomorphism

uu
S ≺BAut(TeW )

qy

/
∼

Example 5.29 (J-Twisted proper orbifold Cohomotopy of ordinary orbifolds).
Let H = SingularJetsOfSmoothGroupoids∞ (Example 3.55) and V := (Rn,+), W := (Rp,+) as in Example 4.17,
with p ≤ n, and φ : (Rp,+) ↪! (Rn,+) be the canonical inclusion. Then the corresponding J-twisted proper
orbifold Cohomotopy theory π

S ≺τ (Def. 5.28) is defined on ordinary n-dimensional orbifolds (by Example 4.18)
with GL(p)-structure (by Example 4.25) and it unifies the following two special cases (by Theorem 5.16, see the
second diagram on p. 10)):
(i) On smooth orbifolds, i.e., on ordinary manifolds (Example 4.17) it reduces to non-abelian cohomology with
coefficients the shape of the ordinary p-sphere (by Example 5.21) and tangentially twisted via the traditional J-
homomorphism (by Example 334). This is the J-twisted Cohomotopy theory considered in [FSS19b][FSS19c]
[BSS19].
(ii) On flat orbifolds, such as the vicinity of ordinary orbifold singularities Rp�G for finite subgroups G

φ

↪!GL(p)
(by Example 4.57), hence for linear G-representations φ , it reduces to proper equivariant cohomology in RO-
degree φ and with coefficients the representation sphere SR

n
φ (by Example 5.27). This is the tangentially RO-graded

equivariant Cohomotopy theory considered in [SS19][BSS19].

By way of conclusion and outlook, we highlight the following:

Remark 5.30 (Orbifold cohomology in non-perturbative string theory and Hypothesis H). Traditional discus-
sion of orbifold cohomology has been strongly motivated by its application to perturbative string theory (e.g.
[AMR02][ARZ06][ALR07][BU09][DFM11]). However, perturbative string theory is famously in need of a non-
perturbative completion (“M-theory”, see [HSS18, 2][FSS19a] for review and pointers) whose mathematical for-
mulation has remained an open problem. Therefore, it is to be expected that the historically rich interaction between
orbifold cohomology theory and string theory is just the tip of an iceberg, whose full scope is a cohomology theory
of M-theoretic orbifolds.

Elsewhere we have put forward a precise hypothesis as to what this mathematical theory should be. This Hy-
pothesis H says that:
(i) far from singularities, M-theory is controlled by twisted Cohomotopy theory [FSS19b][FSS19c][BSS19][FSS20a];
(ii) at singularities, M-theory is controlled by RO-graded equivariant Cohomotopy theory [HSS18][SS19][BSS19].
(See these references for various consistency checks of this hypothesis.)

The impact of Theorem 5.16, in its specialization to Example 5.29, is to show that these two cases are indeed
two aspects of a single unified cohomology theory: J-twisted proper orbifold Cohomotopy theory.
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A Model category presentations

We recall some basics of model categories (e.g. [GJ99, 2]) of simplicial presheaves ([Ja87][Ja96][Ja15]) as pre-
sentations of ∞-toposes ([Lu09a, A.2, A.3]).

Model categories of simplicial presheaves.

Definition A.1 (Model category of simplicial presheaves). Let C be a site. We write
(i)

sPSh(C )loc ∈ HomotopicalCategories (335)

for the category of simplicial presheaves on C , regarded as a homotopical category with weak equivalences the
local weak homotopy equivalences of simplicial sets.
(ii)

sPSh(C ) inj/
proj ,loc ∈ ModelCategories (336)

for the same category regarded as either the corresponding injective or projective model category.
(iii)

sPSh ` // LlwhesPShloc =: H (337)

for the corresponding simplicial localization.

Lemma A.2 (Cofibrancy in projective model structure [Du01, Cor. 9.4]). Let C be a site. For a simplicial presheaf
X• ∈ sPSh(C )proj,loc in the projective model structure (336) to be cofibrant it is sufficient that X• is degreewise
(i) a coproduct of representables, such that
(ii) the degenerate cells split off as a direct summand.

Lemma A.3 (Simplicial presheaf represents its own hocolim [DHI04, 2.1][Sc13, 2.3.21]). Let C be a site and
X• ∈ sPSh(C ) a simplicial presheaf (Def. A.1). Then its image under simplicial localization (337) is equivalently
the simplicial homotopy colimit over the images of its component presheaves:

`(X•) ' lim
−!

(`X)• ∈ H .

Topological mapping stacks

Example A.4 (Model category presentation of smooth ∞-groupoids). Let C = CartesianSpaces (Def. 2.5). Then
the simplicial localization (337) of sPSh(C )loc (336) is SmoothGroupoids∞ (Example 3.18):

LlwhesPSh(CartesianSpaces)loc ' SmoothGroupoids∞ .

Lemma A.5 (Mapping stack from delooping of discrete group to topological stack). In SmoothGroupoids∞ (Ex-
ample 3.18) consider
(i) a finite group embedded via (215)

G ∈ Groups Disc // Groups
(
SmoothGroupoids∞

)
, (338)

(ii) a topological groupoid, embedded via (148)

TopologicalGroupoids
Cdfflg // SmoothGroupoids∞

Xtop 7! X ⊂

(339)

Then the mapping stack (56) formed in SmoothGroupoids∞ is the degreewise image under Cdfflg (32) of the
topological groupoid representing the mapping stack of topological groupoids (which exists by [No10] since G is
finite, hence compact):

Maps
(
BG , X ⊂

)
' CdfflgMaps

(
BG , Xtop

)
. (340)
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Proof. Since (by Example 3.18)

SmoothGroupoids∞ ' Sheaves∞(CartesianSpaces)
oo L
� � ⊥ // PreSheaves∞(CartesianSpaces)

it is sufficient to show that we have an equivalence of ∞-presheaves of the form

Rn � //
PreSheaves∞

(
CartesianSpaces

)
(Rn×BG , X ⊂)

' PreSheaves∞

(
CartesianSpaces

)
(Rn , CdfflgMaps(BG,Xtop))

(341)

By Example A.4, we may model this in the global projective model structure on simplicial presheaves over
CartesianSpaces:

sPSh(CartesianSpaces) ` // LlwhesPSh(CartesianSpaces)proj ' PreSheaves∞(CartesianSpaces) (342)

with, by Lemma A.3, the following models:
(a) A model under ` (342) of the Cartesian product Rn×BG with the delooping BG' lim

−!
G×• (104), is given by

the simplicial presheaf
Rn×G×• ∈ sPSh(CartesianSpaces)proj . (343)

(b) A model under ` (342) for the image (339) of a topological groupoid Xtop is given by its nerve regarded as a
simplicial presheaf, componentwise via (147)

N•(Xtop) ∈ sPSh(CartesianSpaces)proj . (344)

Moreover:

• The object (343) is projectively cofibrant, by Lemma A.2, as is its Cartesian product with an k simplex ∆[k].

• The object (344) is projectively fibrant (objectwise a Kan complex) by the groupoid property of Xtop.

Therefore to get (341) it is, in turn, sufficient to exhibit for Rn ∈ CartesianSpaces a natural isomorphism of simpli-
cial sets of the form∫

[k]∈∆

PSh
(
Rn×

(
G×k×∆(k,•)

)
, Cdfflg(Nk(Xtop))

)
' PSh

(
Rn , Cdfflg

(∫
[k]∈∆

Nk(Xtop)
(G×k×∆(k,•))

))
, (345)

where the end
∫
[k]∈∆

(−) expresses the limit that computes the morphism of simplicial sets as a subset of the product
of the function spaces of components. We obtain this as the following composite of natural isomorphisms:∫

[k]∈∆

PSh
(
Rn×

(
G×k ×∆(k,•)

)
, Cdfflg

(
Nk(Xtop)

))
'
∫
[k]∈∆

PSh
(
Rn ,

(
Cdfflg(Nk(Xtop))

)(G×k×∆(k,•))
)

'
∫
[k]∈∆

PSh
(
Rn , Cdfflg

((
Nk(Xtop)

)(G×k×∆(k,•))
))

' PSh
(
Rn ,

∫
[k]∈∆

Cdfflg
((

Nk(Xtop)
)(G×k×∆(k,•))

))
' PSh

(
Rn , Cdfflg

(∫
[k]∈∆

(
Nk(Xtop)

)(G×k×∆(k,•))
))

.

Here the first step is the definition of function spaces (−)(−), the second step uses that Cdfflg, being a right adjoint,
preserves products (Prop. 2.26). The third step uses that the Hom-functor preserves limits (hence ends) in its
second argument, while the fourth step uses that Cdfflg, being a right adjoint, preserves limits (hence ends), again
by Prop. 2.26. �
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B Equivariant homotopy theory

For reference, we recall some basics of unstable equivariant homotopy theory (see [May96][Blu17]). We focus
here on finite groups, for simplicity and since this is what we need in the main text (Remark 3.64), but all statements
in the following, notably Elmendorf’s theorem (Prop. B.10 below) generalize to compact Lie groups.

Definition B.1 (Topological G-spaces). Let G ∈ Groupsfin be a finite group.
(i) We write

GDTopologicalSpaces �
� // GTopologicalSpaces ∈ Categories (346)

for the categories whose objects
G y X :=

(
X , G×X

ρ
−! X

)
(347)

are topological spaces X (as in Def. 2.2) or specifically D-topological spaces (as in Def. 2.2), respectively, equipped
with continuous left G-actions ρ , and whose morphisms are the G-equivariant continuous functions:

GTopologicalSpaces
(
G y X1, G y X2

)
:=

 X1 continuous

f // X2

∣∣∣∣∣∣∣∣
G×X1

f ��

ρ1 // X1
f ��

G×X2 ρ2
// X2

 . (348)

(ii) For G y X1 a (D-)topological G-space and H
ι
↪! G a subgroup, we write

XH :=
{

x ∈ X | ∀
h∈H⊂G

ρ(h,x) = x
}

(349)

for the topological subspace of H-fixed points (which, if X is D-topological, is itself again D-topological, by Prop.
2.4).

(iii) For G y X1 and G y X2 two (D-)topological G-spaces, the mapping space (28) between their underlying (D-
)topological spaces canonically becomes a G-space via the conjugation action and the corresponding fixed point
space (349)

Maps(X1,X2)
G � � // Maps(X1,X2) (350)

is the subspace on the G-equivariant functions (348).

Example B.2 (G-cells). For G ∈ Grpfin, H ⊂ G a subgroup and n ∈ N we have the G-spaces (Def. B.1)(
G/H

)
×Dn ,

(
G/H

)
×Sn−1 ∈ GDTopologicalSpaces

being the product spaces of the discrete orbit spaces with the standard topological unit disk and unit circle, re-
spectively, the latter equipped with the trivial G-action. The boundary inclusions ∂Dn = Sn−1 ιn

↪! Dn induce G-
equivariant maps

ιn,H :
(
G/H

)
×Sn−1 � � (id,ιn) //

(
G/H

)
×Dn (351)

for all n ∈ N, H ⊂ G.

Definition B.3 (G-CW-complexes).
(i) A G-CW-complex X is a D-topological G-space (Def. B.1) which is equipped with the realization as a colimit

X ' lim
−!n

Xn ∈ GDTopologicalSpaces
over a sequence

X−1 −! X0 −! X1 −! X2 −! · · · ∈ GDTopologicalSpaces

where X−1 = ∅ and where each Xn ! Xn−1 is given by a set of attachments of G-cells along (351), hence by a
pushout of the form:
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∏

H⊂G
i∈In

G/H×Sn−1

� _

(ιn,H)n,H
��

//

(po)

Xn−1� _

��
∏

H⊂G
i∈In

G/H×Dn // Xn

(ii) We write
GSets �

� // GCWComplexes �
� // GDTopologicalSpaces (352)

for the full subcategories on those D-topological G-spaces which admit the structure of G-CW-complexes.

Definition B.4 (Homotopy theory of D-topological G-spaces). The homotopy theory of topological G-spaces is
the ∞-category

GGroupoids∞ ∈ Categories∞ (353)

which has the same objects as GCWComplexes (Def. B.3), and with ∞-groupoids the topological shapes (Def. 36)
of the mapping spaces (350) of G-equivariant maps:

GGroupoids∞

(
G y X1,G y X2

)
:= ShpTop

(
Maps

(
X1,X2

)G
)
. (354)

Definition B.5 (Shape of G-topological spaces).
(i) We write ShpGTop : GCWComplexes // GGroupoids∞ (355)

for the canonical ∞-functor (topologically enriched functor) from the 1-category of G-CW-complexes (Def. B.3)
to the ∞-category of G-∞-groupoids (Def. B.4), which is the identity on objects and which on Hom-spaces is the
continuous map given by the identity fuction from the discrete set of G-equivariant maps (348) to the topological
space of G-equivariant maps (354).

(ii) For any choice of G-CW-approximation functor

GTopologicalSpaces
(−)cof // GCWComplex

we get the corresponding shape functor on all of GTopologicalSpaces (Def. B.1) and hence on GDTopologicalspaces,
which we denote by the same symbol:

ShpGTop : GTopologicalSpaces
(−)cof // GCWComplexes

ShpGtop // GGroupoids∞ . (356)

Definition B.6 (Proper G-equivariant generalized cohomology of topological G-spaces). For G ∈ Groupsfin, we
say that the proper G-equivariant cohomology of a topological G-space (Def. B.1) X ∈ GTopologicalSpaces with
coefficients in a (pointed) G-∞-groupoid (Def. B.4), A ∈ GGroupoids∞, is

H−n
G (X ,A) := πn

(
GGroupoids

(
ShpGTop(X) , A

))
,

where on the right we have the nth homotopy group (at the given basepoint) of the hom-∞-groupoid (354) from the
G-topological shape of X (356) to A.

Elmendorf’s theorem.

Definition B.7 (Orbit of action of a finite group). Let G be a finite group. If G y S is a set equipped with an action
by G, then an orbit of G in S is a subset of points {g(s)|g ∈ G} ⊂ S obtained from any single point s ∈ S by acting
on it with all elements of G.

Definition B.8 (Orbit category of a finite group). The category of G-orbits or orbit category of G

GOrbits ↪−! GSets ∈ Categories

is the category whose objects correspond to subgroup inclusions H
ι

↪−!G and whose morphisms are G-equivariant
functions, hence morphisms of G-sets (352), between the corresponding coset spaces G/H1 −! G/H2.
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Example B.9 (Systems of fixed point spaces). Consider a topological space equipped with a G-action G y X ∈
GDTopologicalSpaces (Def. B.1) and H ⊂ G a subgroup. Then a G-equivariant function G/H

f
−! X from the

corresponding G-orbit (Def. B.8) is determined by its image f
(
[e]
)
∈ X of the class of the neutral element, and that

image has to be fixed by the action of H ⊂ G of X . Therefore, the corresponding G-equivariant mapping spaces
(350)

Maps
(
G/H, X

)G ' XH :=
{

x ∈ X | ∀
h∈H⊂G

(h(x) = x)
}
⊂ X

are the topological subspaces of H-fixed points inside X (349). By functoriality of the mapping space construction,
these fixed point spaces are exhibited as arranging into a topological presheaf on the G-orbit category (Def. B.8):

X (−) : GOrbitsop Maps(−,X)G
// TopologicalSpaces

Proposition B.10 (Elmendorf’s theorem [El83][DwKa84, §1.2, 1.7 & Thm. 3.1], see [Blu17, Thm. 1.3.6 and
1.3.8]). Let G be a finite group. The functor which sends a G-space G y X (Def. B.1) to its system of H-fixed point
spaces (Example B.9) constitutes an equivalence of ∞-categories

GGroupoids∞

' // Sheaves∞

(
GOrbits

)
G y X � // X (−) = Maps

(
−,X

)G
.

(357)
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[CHM85] C. Cassidy, M. Hébert, and M. Kelly, Reflective subcategories, localizations, and factorization systems,
J. Austral. Math Soc. (Series A) 38 (1985), 287-329, [doi:10.1017/S1446788700023624].

[Cav15] E. Cavallo, Synthetic Cohomology in Homotopy Type Theory, MSc Thesis, Carnegie Mellon, 2015,
[www.cs.cmu.edu/∼rwh/theses/cavallo-msc.pdf]

[Ch01] W. Chen, A homotopy theory of orbispaces, [arXiv:math/0102020].
[Ch17] W. Chen, Resolving symplectic orbifolds with applications to finite group actions, J. Gökova Geom. Top.

12 (2018), 1-39, [arXiv:1708.09428].
[CR04] W. Chen and Y. Ruan, A New Cohomology Theory for Orbifold, Commun. Math. Phys. 248 (2004), 1-31,

[arXiv:math/0004129].
[CT05] J. Cheeger and G. Tian, Anti-Self-Duality of Curvature and Degeneration of Metrics with Special Holon-

omy, Comm. Math. Phys. 255, (2005), 391-417, [doi:10.1007/s00220-004-1279-0].
[CRi20] F. Cherubini and E. Rijke, Modal Descent, Mathematical Structures in Computer Science (2020)

[arXiv:2003.09713].
[CP14] C.-H. Cho and M. Poddar, Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric

orbifolds, J. Differential Geom. 98 (2014), 21-116, [euclid:jdg/1406137695].
[CSW13] J. D. Christensen, G. Sinnamon, and E. Wu, The D-topology for diffeological spaces, Pacific J. Math.

272 (2014), 87-110, [arXiv:1302.2935].
[CW14] J. D. Christensen and E. Wu, The homotopy theory of diffeological spaces, I. Fibrant and cofibrant ob-

jects, New York J. Math. 20 (2014), 1269-1303, [arXiv:1311.6394].
[Ci19] D.-C. Cisinski, Higher category theory and homotopical algebra, Cambridge University Press, 2019,

[doi:10.1017/9781108588737].
[Cl14] E. Clader, Orbifolds and orbifold cohomology, [www-personal.umich.edu/∼eclader/OctLect1.pdf]
[CV17] G. Codogni and F. Viviani, Moduli and Periods of Supersymmetric Curves, Adv. Theor. Math. Phys. 23

(2019), 345-402, [arXiv:1706.04910].
[CDR16] R. J. Conlon, A. Degeratu, and F. Rochon, Quasi-asymptotically conical Calabi-Yau manifolds, Geom.

Topol. 23 (2019), 29-100, [arXiv:1611.04410].
[Co20] D. Corfield, Modal homotopy type theory, Oxford University Press, 2020, [ISBN:9780198853404].
[CPRST14] V. Coufal, D. Pronk, C. Rovi, L. Scull, and C. Thatcher, Orbispaces and their Mapping Spaces via

Groupoids, Contemp. Math. 641 (2015), 135-166, [arXiv:1401.4772].
[DL98] J. Davis and W. Lück, Spaces over a Category and Assembly Maps in Isomorphism Conjectures in K- and

L-Theory, K-Theory 15 (1998), 201-252, [doi:10.1023/A:1007784106877].
[dBDHKMMS02] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. Morrison, and S. Sethi, Triples,

Fluxes, and Strings, Adv. Theor. Math. Phys. 4 (2002), 995-1186, [arXiv:hep-th/0103170].
[DHLPS19] D. Degrijse, M. Hausmann, W. Lück, I. Patchkoria, and S. Schwede, Proper equivariant stable ho-

motopy theory, Memoirs of the AMS [arXiv:1908.00779].
[DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Pub. Math. IHÉS 36
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