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a b s t r a c t

Objective: Studies have revealed that non-adherence to prescribed medication can lead to hospital read-
missions, clinical complications, and other negative patient outcomes. Though many techniques have
been proposed to improve patient adherence rates, they suffer from low accuracy. Our objective is to
develop and test a novel system for assessment of medication adherence.
Methods: Recently, several smart pill bottle technologies have been proposed, which can detect when
the bottle has been opened, and even when a pill has been retrieved. However, very few systems can
determine if the pill is subsequently ingested or discarded. We propose a system for detecting user
adherence to medication using a smart necklace, capable of determining if the medication has been
ingested based on the skin movement in the lower part of the neck during a swallow. This, coupled with
existing medication adherence systems that detect when medicine is removed from the bottle, can detect
a broader range of use-cases with respect to medication adherence.
Results: Using Bayesian networks, we were able to correctly classify between chewable vitamins, saliva

swallows, medication capsules, speaking, and drinking water, with average precision and recall of 90.17%
and 88.9%, respectively. A total of 135 instances were classified from a total of 20 subjects.
Conclusion: Our experimental evaluations confirm the accuracy of the piezoelectric necklace for detec-
ting medicine swallows and disambiguating them from related actions. Further studies in real-world
conditions are necessary to evaluate the efficacy of the proposed scheme.

© 2016 Elsevier B.V. All rights reserved.
. Introduction

Prior research has shown that non-adherence to prescribed
edications can result in poor patient outcomes [1]. For example,

on-compliant schizophrenia patients are at significantly higher
isk for depression, arrest, and substance abuse [2]. Generally
peaking, non-adherence can result in medical complications, hos-
ital readmissions, and death [3]. Besides the risk of undesirable
ealth outcomes for patients, poor adherence can result in unnec-
ssary healthcare expenses and increased burden on the healthcare
ystem. This issue is also a concern for medical researchers, as
atients who choose not to take the appropriate dose of their med-
cation render the assessment of the treatment effectiveness to be
uch more challenging. Therefore, many methods have been pro-

osed in recent years to address these issues, including pill counts,
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self-reporting, interviews, and countless interventions intended to
increase adherence rates [4–6]. However, these methods are typi-
cally associated with low accuracy [7].

Digital technologies that operate with relative transparency to
the end user have the potential to improve accuracy compared to
manual methods, as issues of human error and intentional misre-
porting are minimized. Interest in health-monitoring devices have
therefore increased significantly in recent years, including activity
monitoring approaches such as FitBit and MisFit [8–10].

In the same vein, smart pill-bottles have recently been pro-
posed, which can detect when they have been opened and closed
[11,12]. Though this technology can be useful in a number of dif-
ferent circumstances, such as when individuals themselves have no
recollection of whether they took their pills, there are several short-
comings associated with this approach. More specifically, there is
no definitive information to suggest that the medicine has been
ingested after the bottle has been opened.
First, consider a case in which the subject opens the bottle, but
is then interrupted by an outside event such as a phone call. Subse-
quently, the subject may forget to take his or her medication, and
would benefit from a reminder a short time later. Furthermore, the

dx.doi.org/10.1016/j.artmed.2016.03.004
http://www.sciencedirect.com/science/journal/09333657
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Fig. 1. Different use cases that the system should identify when it is time for a
patient to take his or her medication. The capabilities of existing systems are shown
in green, while blue includes features unique to our system. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
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ndividual may “cheat” the system, by discarding the medication
fter removing it from the bottle. Lastly, the individual may remove
he bottle and, inadvertently or deliberately, take more pills than
ecessary.

To address these shortcomings, we propose supplementing
nformation from the smart bottle with information from a smart
ecklace, that can detect when a pill is swallowed using a piezo-
lectric sensor and associated processing algorithms. The skin
otion during the swallow of a medication has a unique pat-

ern that can be used to confirm that the medication has been
ngested after the bottle is opened. Data from the necklace is
cquired by sampling the piezoelectric sensor strip, which gener-
tes a voltage in response to the mechanical stress of deglutition
swallowing). Data acquired from the necklace is transmitted to
n Android application for processing using the low-power Blue-
ooth LE protocol, where classification algorithms are capable of
istinguishing between swallowed medication and other types of
wallows such as saliva and water. Though this classification is not
ree of errors, the necklace provides an additional layer of informa-
ion which can improve detection of noncompliance and provide
eedback.

We evaluate adherence based on two different kinds of
edicines and supplements: chewables, which are typically tar-

eted towards children in the form of vitamins, asthma medication,
ylenol, and ADHD treatment, and capsules, which are more appro-
riate for adults. Various use cases are outlined in Fig. 1. Our
roposed system extends prior work at ensuring medication adher-
nce; the figures in green represent those steps which cannot be
etected with most smart pill boxes.

This paper is organized as follows:

In Section 2, we describe related work in this field.
In Section 3, we describe the hardware architecture of the smart
necklace.
In Section 4, we elaborate on the algorithms used to detect med-

ication ingestion.
In Section 5, we describe the experimental procedure.
In Section 6, we present our results.
In Section 7, we discuss the results.
In Section 8, we provide concluding remarks.
nce in Medicine 69 (2016) 43–52

2. Related work

Though many methods of improving adherence have been pro-
posed, a recent survey by McDonald et al. has suggested that
even the most effective interventions have failed to provide sig-
nificant improvements in adherence, though many have managed
to make marginal improvements. The various methods fall under
two primary categories: indirect and direct methods [13]. Indi-
rect methods include self-reporting, interviews, pill counting, and
computerized compliance monitors [14]. Within this category, pill
counts and self-reports have shown significant overestimation
in user compliance. Direct methods include biological markers,
assessment of body fluids, and tracer compounds [15]. As direct
methods are generally unsuitable for regular use in home environ-
ment, we primarily focus our discussion and comparison on indirect
methods.

Several smartphone apps such as MyMedSchedule, MyMeds,
and RxmindMe, provide advanced functionality for medication
reminders [16–18]. These applications issue reminders, allow users
to manually enter their dosage information, and record when
they have taken their medication. However, these applications are
generally untested, and cannot verify compliance without user
involvement [17]. In [19], Sterns et al. mounted a pill bottle onto
a personal digital assistant running the RxmindMe software, and
successfully trained elderly subjects with an average age of 72 to
operate the software used to monitor adherence. This work sug-
gests that users from a variety of age groups and backgrounds have
the ability and motivation to use electronic monitoring devices if
given adequate training. In [20], Choi et al. explored the topic of
user acceptance of neckware-based health monitoring technolo-
gies for elderly populations. Their study concluded that there is a
strong possibility of seamless adoption of those population groups
which suffer from chronic illnesses, particularly if the medication
compliance system is incorporated with other health-monitoring
features.

Other works propose cell phone reminders and in-home tech-
nology to transmit reminder messages, but results are mixed [3,21].
A recent study by Bernocchi et al. [22] characterized the efficacy of
home-based telemedicine services for patients with hypertension,
using a networked blood pressure monitoring device and regu-
lar phone calls from physicians to ensure adherence. The study
concluded that telemonitoring of patient adherence can improve
patient outcomes.

The “smart blister” has been proposed as a semi-automated,
indirect method of assessing adherence. When empty blister
cards are returned to the pharmacy, information is scanned and
downloaded. This work is a step in the right direction, but the sub-
stantial error and lack of real-time features necessitate additional
refinements [23]. The work described in [7] describes a portable,
wireless-enabled pillbox suitable for elderly and those suffering
from dementia. Similar approaches for electronic detection and
smart pill boxes have also been proposed [24]. These devices gener-
ally suffer from the same shortcoming: they cannot determine if the
medication is ingested or simply removed and discarded [25,26].

One notable exception is the recently unveiled plastic sleeve
from AMIKO [27], which fits on several standard types of medicine
containers and reports if medication has been removed from the
bottle using MEMS sensors such accelerometers and gyroscopes.
They are also capable of tracking if an inhaler is used, aggregating
results on a mobile application. In another work, Valin et al. suc-
cessfully identified medication adherence using a series of images
and associated image processing algorithms [28]. Several other

digital systems have been developed for evaluation of swallow
disorders and monitoring eating habits [29]. A recent smart bot-
tle technology is the Vitality Glowcap [30]. This smart device can
detect when pills are removed, reports information to caregivers,
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Fig. 2. This figure shows the proposed system architecture. Pill swallows are iden-
tified using a wireless-enabled smart necklace coupled with a Bluetooth-enabled
H. Kalantarian et al. / Artificial In

nd can request prescription refills with the push of a button. Lastly,
system called “Proteus” [31] is currently in development. Proteus
onsists of medicine tablets with embedded sensors that transmit a
eacon to a mobile phone when dissolved in the stomach. However,
he issue of recurring expenses associated with smart pills must be
valuated, and this work is still in the early stages of development.

In [32], Sang et al. propose the use of wearable microphones
or detection of medication adherence, using neural networks for
lassifiers. Though prior work has shown that audio-based activity
onitoring has substantial battery life implications [33], classifi-

ation accuracy from 20 subjects was over 85%. Such as a system
ould also benefit from integration with a smart pill bottle, to mit-
gate the effects of false positives. A similar scheme was proposed
y Olubanjo et al. in [34]; the authors were able to classify swallow
wallows unrelated to medication adherence using an IASUS NT3
hroat microphone based on data collected from three subjects. In
35], Wu et al. designed and fabricated a necklace for detection of

edication adherence using a microphone and flex sensor, with
he addition of silicone material and 3D-printed components. The
mphasis of the work was on appropriate design choices for high
ser acceptance, as the created prototypes were not functional.

. Hardware architecture

In this section, we describe the hardware components of our sys-
em. The overall system architecture is shown in Fig. 2. Movement
rom the smart pill bottle is coupled with swallow detection algo-
ithms to detect ingestion of medication, which is then reported to a
obile application with cloud integration. Is necessary to consider

hese two events together because neither event can independently
onfirm medication adherence. As described previously, the fact
hat the bottle is opened only suggests that medication is subse-
uently taken. Similarly, a report from the necklace that medication
as been ingested may not be sufficient evidence as the event could
e a false positive. We describe this issue in greater depth in the
ext section.

.1. Smart bottle

An extensive discussion of the smart bottle technology is
ut of scope for this paper, various commercial devices imple-
ent this functionality [36–38]. Most methods for implementing

mart bottles would embed sensors using microcontrollers and RF
ransceivers (Bluetooth, Wifi, 3G, XBee) into the bottle itself. The
emoval of the cap would terminate an electric connection which,
hen replaced, would restore the circuit and indicate that the bot-

le has been opened.
It should be noted that this primary stage of the algorithm could

e implemented based on several alternate techniques that do not
nclude a smart pill bottle. For example, our prior work [39,40]
xplore the issue of gesture recognition using the smartwatch plat-
orm, applied to the issue of medication adherence. Though this
echnique is not without its challenges, it can also be integrated in
he WearSens system to improve classification accuracy. Though
arious other methods have been proposed for determining bottle
pening gestures, the standard smart-bottle technique is predom-
nantly the focus of our evaluation as it has been shown to operate

ith virtually 100% accuracy [28].

.2. WearSense necklace
The smart necklace, known as WearSens, is shown at the top
f Fig. 3, is used to detect when pills are swallowed. It is based
n a small piezoelectric sensor, also known as a vibration sensor,
hich generates a voltage in response to the mechanical stress

smart pill bottle.
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Fig. 3. This figure shows the necklace used to detect pill swallows. A piezolectric
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ensor is sampled by an Bluetooth-enabled microcontroller unit (MCU), which is
owered by a lithium-polymer (LiPo) battery. The necklace is incorporated into a
mart system consisting of a smart dispenser and a smartphone application.

aused by skin motion during a swallow event. The piezoelec-
ric strip is fastened such that it is contact with the skin of the
ower-neck, but not too tight as to restrict motion. The challenge of
lacing the piezoelectric sensor correctly is largely a function of the
pecific form-factor. The design shown in Fig. 4 shows a pendant
tyle design that requires careful placement such that the sensor
s horizontally centered and placed at the lower part of the neck.
y contrast, the design more appropriate for clinical applications
hown in Fig. 2 wraps around the neck, and a larger piezoelectric
trip can be used to make correct positioning simpler. The output
rom the piezoelectric sensor is sampled at a rate of 20 Hz by the
mall Bluetooth LE enabled microcontroller board, and transmitted

o a mobile phone for processing.

The mobile application uses several algorithms to classify the
ncoming data into broad categories: saliva swallow, medication

ig. 4. The pendant-style architecture of the necklace was designed with a greater
mphasis on aesthetics than the original neckband-style design. The piezoelectric
ensor is on the other side of the pendant. This sensor detects motions in the skin
hich are indicative of swallows.
nce in Medicine 69 (2016) 43–52

swallow, chewable-vitamin swallows, and neither. This smart-
necklace technology has previously been shown to be effective in
detecting eating behavior, and successfully classifying between a
small subset of foods [41]. Though the original design of the neck-
lace was in the form of a band placed tightly around the neck,
the technology evolved into a pendant-style design as shown in
Fig. 4. Though this new design introduced some stability issues, it
was intended to address concerns about comfort, ergonomics, and
appearance. For a more comprehensive system description of the
WearSens necklace, please refer to the work by Kalantarian et al.
[42].

The piezoelectric sensor used is the LDT0-028K, which con-
sists of a 28 �m PDVDF polymer film laminated to a 0.125 mm
substrate, which produces voltages within standard CMOS input
voltage ranges when deflected directly. The necklace can operate
under conditions ranging from 0 to 85 ◦C. The LDT0 is available with
added masses at the tip, which reduce the resonant frequency but
can greatly increase the sensitivity of the device. In the configu-
ration without an added mass at the tip, the baseline sensitivity
is approximately 50 mV/g, with sensitivity at resonance of 1.4 V/g
[43]. The necklace also includes a microcontroller for sampling data
from the sensor, and an integrated Bluetooth 4.0 LE transceiver to
transmit acquired data to an aggregator device for processing. This
Arduino-compatible board is easily programmed, compact, and fea-
tures an RFD22301 SMT module. The embedded processor is an
ARM Cortex M0 with 256 kB of flash memory and 16 kB of RAM.
The overall system includes a 225 mAh coincell battery and can
remain powered by approximately 18 h. If a rechargeable coincell
battery is used, the battery can be recharged by simply connecting
the board to a USB power source.

4. Algorithms

The system flow for the necklace is shown in Fig. 5. The process
is initiated when the bottle is first opened, using a commercially-
available smart-bottle technology. Immediately thereafter, a timer
is set which measures the interval between the opening of the bot-
tle and a swallow. In Fig. 5, the simplified finite-state-machine
shows a return to the initial condition if the timer expires. In
this case, the timer value would be set such that any detected
swallow occurs a large interval after the bottle is opened, sug-
gesting the two events are unrelated. However, in practice it is
preferred not to associate the timer with an arbitrary threshold,
and instead to use the interval �T as a classification feature as
described in subsequent sections. As the state diagram in Fig. 5
shows, the detection that a swallow occurred and that the swallow
corresponded with medication intake are entirely separate proce-
dures that we refer to as the detection and classification algorithms,
respectively. We begin our discussion by describing the detection
algorithm.

4.1. Swallow detection

Piezoelectric material exhibits the piezoelectric effect, in which
the material generates an electric charge in response to the appli-
cation of mechanical stress. When the necklace is worn such that
the piezoelectric sensor is placed flat against the lower part of the
neck, just above the collarbone, swallowing causes movement in
the skin which stresses the sensor and creates a brief spike in
the output voltage. Using the Analog-to-Digital converter of the
microcontroller housed on the necklace, we acquire signals from

the piezoelectric sensor and analyze the data for disturbances that
are indicative of swallow events. Typically, it has been shown that
sampling the piezoelectric sensor at a rate between 10 Hz and 20 Hz
is appropriate for this approach [42].
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Fig. 5. This figure shows a simplified state machine for the system flow used to
detect medication adherence. First, a lightweight swallow detection algorithm can
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e used to identify when there has been movement in the lower part of the neck.
ubsequently, a more extensive algorithm is used to determine if the swallow is
ssociated with medication or other factors.

After the piezoelectric sensor data is acquired by the microcon-
roller and transmitted to a mobile phone using the Bluetooth 4.0
E protocol, it is buffered locally until there are 2 s of data avail-
ble. Once the buffer is full, a moving-average filter of span 5 is
pplied in order to reduce the impact of high-frequency noise.
ubsequently, a sliding window of length 9, corresponding with
5 s of data, is applied to compute the standard deviation of that
oint with its neighbors. This produces a new standard deviation

aveform, to which a threshold is applied in order to detect the
eaks which correspond with swallows. This procedure is shown

n Fig. 6, in which the raw data is at the top. the standard deviation
f the raw data is shown in the middle, and the filtered, thresholded
ce in Medicine 69 (2016) 43–52 47

final waveform used in peak detection is shown at the bottom.
The particular thresholds and values used in the algorithm were
determined to be optimal based on simulations. A more extensive
description of this procedure is omitted because a comprehensive
description is available in [42,44].

The technique described in this subsection is generally shown
to be a reliable and energy-efficient approach for detecting swal-
lows from a piezoelectric sensor, consuming as little as .06 mW
of power with a sample rate of 16 Hz [33], excluding Bluetooth
transmission overhead. Though in our experimental evaluation the
swallow events were manually annotated, this approach can be
used for automatic time-series segmentation in a real-time imple-
mentation of the system. After the swallow has been identified, the
signal can be segmented and analyzed using the method described
in the next subsection.

4.2. Classification

After determining that a swallow has taken place using the pre-
viously outlined algorithm and segmenting the data into a 250 ms
window centered around the swallow peak, we are now interested
in understanding more about the swallow itself. More specifically,
we must determine if the swallow is associated with medication
intake, a saliva swallow, a sip of water, a chewable vitamin, or a
false-positive caused by talking. Rather than using a simplistic peak
detection algorithm, we must analyze complex time and frequency-
domain features of the data to correctly assign a class label to the
extracted data window.

The time-domain waveforms acquired by the piezoelectric sen-
sor, which are transmitted to the mobile application for processing,
are shown in Fig. 7 as a subject performed several actions. Clearly,
different activities such as water sips and chewable vitamin intake
can be distinguished visually. The time domain waveforms show
not only the swallows, represented clearly by a peak or a dip in the
waveform, but also show chewing in the form of low-frequency
noise. Useful features that can be extracted from the time domain
waveforms include standard deviation, maximum value, and detec-
tion of multiple swallows within a time frame. Additional features
can be extracted by producing a spectrogram, which is essentially a
heat map showing time on one axis and frequency on the other. The
color of the spectrogram at a particular time and frequency repre-
sents the magnitude of the frequency component at that time, on
a logarithmic scale. Spectrograms can clearly show changes in the
frequency spectrum over time for different food types, which are
useful features for classification and detection. The spectrograms
for several actions can be seen in Fig. 8. Visually, the differences
are quite pronounced; chewable vitamin ingestion patterns have a
relatively uniform frequency distribution over an extended period
of time, followed by a pause right before the swallow at the end of
the time sample. Otherwise, capsule swallow spectrograms show a
brief period of high frequency components (between 6 and 10 Hz)
lasting approximately 2 s centered around the swallow, followed by
primarily lower frequencies between 0 and 5 Hz between swallows.

For each one-second swallow window, the time axis was
divided into 7 bins, and the frequency axis was divided into 17
bins. A Hamming window was used of length w = 32, and an FFT
length of nfft = 32 was used with 50% overlap. A selection of fea-
tures extracted in both time and frequency domain are shown in
Table 1. After the classification model is trained, the best features
are selected using the correlation-based feature subset selection
algorithm described in [45]. This algorithm considers both the pre-

dictive ability of features as well as redundancy between them to
produce the best results. Moreover, limiting the selected features
using this algorithm ensures that the classification results are gen-
eralizable, and the model is computationally feasible in a real-time
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Fig. 6. The multi-stage algorithm for taking raw piezoelectric signal data and identifying the times at which swallows occurred is shown above. The X-axis represents the
sample number, which is acquired at a rate of 20 Hz. The Y-axis represents the output vol

Table 1
List of major features extracted.

Mean Standard deviation Skewness

Geometric mean Mean of standardized z-scores Interquartile range
Harmonic mean Kurtosis Correlation
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An online survey was conducted to determine specific habits in
Range Median absolute deviation Partial correlation

ystem. Spectrogram-based feature extraction for a piezoelectric
ensor is described in more depth in [41].

Using the WEKA Data Mining software [46], we can then evalu-
te the performance of a classifier in determining the appropriate
lass label for a particular window of data, based on the extracted
ime and frequency-domain feature set. Leave-one-subject-out
ross validation can be used to avoid biasing the data, and the
orrelation-based Feature Selection (CFS) Subset Evaluation tool

s used to reduce the feature set to avoid overfitting.

.3. Sensor fusion

When the necklace software detects a swallow and classifies it
s a pill, the probability that this classification is correct is gen-
rally a function of the precision of the classifier. However, the
recision reported by the classifier does not take into consideration
he relative likelihoods of the different events taking place. This
nformation is significant, as pill swallows are a much less com-

on event than saliva swallows and water sips. In this section, we
escribe the mathematical formulation for the probability that a
ill has been ingested, p when the classifier reports a pill swallow,

ˆ , using Bayes theorem [47].

r(p|p) = Pr(p|p) · Pr(p)
Pr(p)

= Recall(p) · Pr(p)
Pr(p)

(1)
Alternatively, the probability p given b and p̂, in which b is the
vent in which the bottle is opened, is shown below. Note that Pr(b
tage in the case of the top waveform, measured in Volts.

and p̂ is defined as the probability of detecting a pill swallow some
time � after the bottle is opened.

Pr(p|b ∧ p̂) = Pr(b ∧ p̂|p) · Pr(p)
Pr(b ∧ p̂)

(2)

This can be approximated as the following:

Pr(p|b ∧ p̂) = Recall(p) · Pr(p)
Pr(b ∧ p̂)

(3)

= Pr(p) · Recall(p)
Pr(b) · prc(p) + Pr(other) · (1 − prc(other))

(4)

Lastly, we make some simplifying assumptions. First, we define
fp and fb as the frequency of pill swallows and bottle openings. Then,
we assume that the majority of false positives for medication adher-
ence come from saliva swallows, as prior research has confirmed.
This is due to their high frequency, as well as their resemblance
to the characteristics of pill swallows. Therefore, the final equation
to describe the probability that a pill has been swallowed, given a
bottle opening event fb and a possible pill swallow fp, can be shown
below:

Pr(p|b ∧ p̂) = fp · Recall(p)
fb · prc(p) + fslv · (1 − prc(slv))

(5)

5. Experimental procedure

In this section, we describe how sensor data was collected from
the smart necklace, as well as how the online survey was conducted.
This enabled us to collect statistics on common behavioral pat-
terns associated with medication intake, which is used in algorithm
development.

5.1. Survey
medication ingestion that could be used to improve classification
accuracy. The purpose of the survey was to provide an understand-
ing of medicine timing information, that could be used to develop a
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Fig. 7. The time domain waveforms for vibration sensor data corresponding with
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Fig. 8. The spectrograms for various events reveal characteristics which can be
used to distinguish them. For example, the chewing involved in the ingestion of
everal actions is shown above: water sips, saliva swallows, capsule swallows, and
hewable vitamin chews and swallows. Each action has clearly distinguishable fea-
ures which are used for classification.

robabilistic model to improve classification accuracy. Though an
nline assessment of medicine habits may be unreliable, it was used
s a simple baseline to show that knowledge of medicine intake
atterns can be used to improve classification accuracy.

Subjects were first asked to report some basic demographic
nformation, all of which was optional. They were asked to report
he gender with which they most closely identify, their ethnic-
ty, and their age. They were then provided with a use case in

hich they were to take a tablet-based medicine. Subjects were
sked if they would remove the pill from the bottle before pour-
ng a glass of water, or after pouring the water. An option was also
rovided for individuals who would prefer to take the medication
ithout water. Several other questions in the survey asked subjects

o describe the consistency with which they take their medication
ith respect to time of day, and their best estimate of how much

ime elapses between the moment they open a pill bottle and take
heir medicine.

.2. Sensor data collection
Each subject was instructed to swallow ten empty gel capsules
nd chewable vitamins over the course of several days. An internal
ataset of 20 subjects was used for data corresponding with saliva
a chewable vitamin produces a broad range of frequencies, while the distinguishing
features between capsule swallows and saliva swallows appear to be the magnitude
of the high frequency components.

swallows and water sips to establish a baseline, while additional
data collection from five subjects were obtained for the chewable
vitamins and gel capsules. The subjects consisted of 8 females and
12 males in the first data collection, with four females and one male
participating in the second. The age ranges represented by the study
ranged from 21 to 40. Swallows were annotated using a button on

the associated Android mobile application, which modified the log
files accordingly. The subjects were instructed to take at least one
sip of water with the gel capsules, and to pause for a few seconds
before proceeding to the next capsule. The chewable vitamins were
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Table 2
Confusion matrix.

Actual Predicted

Chew Saliva Cap Speak Water Recall

Chewable 24 0 4 0 2 80%
Saliva 0 29 0 0 1 96.6%
Capsule 1 2 27 0 0 90%
Speaking 0 0 0 28 2 93.3%
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Water Sip 2 1 0 0 27 90.0%

Precision 88.8% 90.62% 87.09% 100% 84.35%

aken one at a time without water. Each session lasted approx-
mately 3 min and was typically carried over three different days.
he experiments were conducted in a laboratory environment, and
esearch assistants helped subjects wear the necklace properly.
his was necessary because the subjects had no previous expe-
ience with the WearSens necklace, and therefore required basic
upervision and instruction.

The ability to distinguish speaking samples from medicine swal-
ows is significant, because individuals spend significant amounts
f their day in conversation. Speaking can cause movement in the
kin of the lower trachea, that is occasionally similar to the motions
f the swallow. It is therefore essential that the proposed algorithm
an distinguish medicine swallows from other commonly per-
ormed activities such as vocalization. To acquire speaking samples,
ndividuals were asked to read a Wikipedia passage for a period
f 15 s. The total dataset was aggregated from all subjects, and
hirty samples were selected at random for experimental evalua-
ion. Though the audio clips were extracted automatically, several
lips were discarded, as they contained only pauses that did not
ontain any speaking.

. Experimental results

.1. Swallow detection

Five activities were classified using data acquired from the smart
ecklace. These categories as well as the classification results are
hown in Table 2. These results were achieved with the BayesNets
lassifier, which provided the strongest results. BayesNet is an
mplementation of a Bayesian-Network classifier, which is included
n the WEKA Data Mining software [46,48]. A total of 135 instances

ere classified. These results indicate that gel capsule swallows can
e reliably and consistently distinguished from saliva swallows and
ater sips. Given the thirty capsule swallows, 27 were classified

orrectly. Of the remaining three, two were misclassified as saliva
wallows, and one as a chewable vitamin. The validation technique
sed was “Leave One Subject Out” cross-validation, to avoid over-
tting the model. The Correlation-based Subset Evaluator tool was
sed for feature dimensionality reduction. This algorithm considers

ndividual predictive ability of features as well feature redundancy
o select the features best associated with the desired classification
utcomes [45].

The confusion matrix in Table 2 provides values of precision
nd recall for the following class types: chewable vitamin, saliva
wallow, gel capsule swallow, speaking, and water sips. Recall rep-
esents the percentage of instances associated with a particular
lass which were correctly labelled. On the other hand, precision
or a particular class represents the percentage of instances labelled
s such, whose labels were correct. More specifically, we define
recision and recall using Eqs. (6) and (7), respectively.
Table 2 shows that the precision of speaking is the highest,
mong all classes. That is, no instance associated with speaking was
ssigned an incorrect class label. By comparison, the recall is slightly
ower at 93.3%; two instances labelled as speaking were actually
nce in Medicine 69 (2016) 43–52

water sips. Perhaps the most significant class for this context is a
capsule swallow, which had a precision and recall of 87.09% and
90.0%, respectively. The primary errors associated with this class
were four instances which were incorrectly labelled as chewable
vitamin swallow events.

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)

6.2. Survey results

A total of 100 subjects participated in the online survey on
medication ingestion habits. The respondents included 37 men,
59 women, and 4 who preferred not to disclose. The survey par-
ticipants were primarily Caucasian (78%), with the next highest
represented demographic to be Hispanic (5%). The age of partici-
pants ranged from 14 to 50, with an average of 24 and a median
of 23. The standard deviation was 6.85 years. Subjects were com-
pletely anonymous, and allowed to skip any questions they did not
wish to answer.

In order to improve classification accuracy, we explore the util-
ity of medication timing in detecting ingestion. For example, an
item classified as a pill is much more likely to be a correct classifica-
tion if reported 10 s after the medicine bottle is opened, compared
to 3 h later. A survey was conducted to determine how much time
is typically elapsed between the bottle being opened and the pill
being swallowed. Though it would be ideal to observe an individ-
ual in real-world conditions to determine these values, a survey
was conducted online due to practical constraints. However, the
mathematical model we describe can be applied to datasets col-
lected in clinical environments. The results are shown in Fig. 9, and
reveal that most medication would be taken 4 and 8 s after open-
ing the bottle. Less than 5% of individuals reported that they would
take their medication over 40 s after opening the pill bottle. The
results indicate that most individuals take their medication several
seconds after opening the bottle, but this is not always the case.

In another survey question, 38.4% of subjects stated that they
generally remove the medicine from the bottle, and only afterwards
do they fill a glass with water. By comparison, 39.4% of respondents
reported that they would fill up the glass of water before they open
the bottle and remove the medication. Only 17.2% of respondents
reported that they would take the medication without water. These
discrepancies substantially increase timing complexity, which ren-
der a simple linear or Poisson-based probability distribution model
to be impractical.

7. Discussion

7.1. Timing analysis

We now attempt to compute the probability that the medica-
tion has been ingested, p, based on p̂� , which is the observation that
the pill bottle has been opened and that the classifier reports a pill
swallow (which may be a misclassification), some time � after b.
This is first achieved by assigning � to a predefined time epoch n.
For example, a pill taken 7 s after the bottle is opened, � = 7, this falls
within the bounds of the second epoch, 4 ≤ � ≤ 8. Based on collected
survey data, we define k as the factor by which the probability of
swallowing a pill at epoch n compares to that of the average epoch.
For example a value of k = 0.5 suggests that the probability of ingest-

ing a pill at this particular time � is one-fourth that of an epoch with
k = 2.

Recall that the probability of a pill swallow p given a pill swallow
event, p̂, is a function of the classifier precision prc, as well as the
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Fig. 9. This figure shows the time interval after opening the medicine bottle at which the subjects typically take their medication. Note that the function is not necessarily
monotonic, as some individuals stated that they fill a glass with water before they open the bottle, while others wait until after the pill is removed before filling the glass. A
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mall percentage of individuals (4%) stated that they generally do not take their me
otential pill swallows detected several minutes after the bottle is opened are likel

elative likelihood of a pill swallow, fp compared to other events
hat we refer to as fslv for simplicity, as saliva swallows are the

ost frequent events with a significant chance of misclassification.
his formulation is shown below in Eq. (8), with some simplifying
ssumptions for clarity.

r(p|p̂) = prc(p) · fp
fp · Recall(p) + fslv · (1 − Recall(slv))

(8)

The probability of p given p̂� is shown below in Eq. (9). It is
uite similar to Eq. (8), with an additional k factor to signify that
he relevant frequencies of the two events occurring has changed
ased on the collected survey data.

r(p|p̂�) = prc(p) · k · fp
kfp · Recall(p) + fslv · (1 − Recall(slv))

(9)

.2. Sensor fusion results

Based on Eq. (1), we evaluate the probability p given p̂. The recall
xperimentally has been determined to be approximately 90.0%.
e assume that the average subject takes two medications per

ay (a frequency fp of 2.3e−5 swallows/second). Prior research in
49] has shown that the average adult will swallow approximately
90 times during the course of a full day. Based on [49], swal-

ows saliva at a rate of 1.0e−2 times per second which we define
s fslv. Therefore, Eq. (1) show that the probability p given p̂ is 2.3%.
hough this equation makes several simplifying assumptions, the
esults nevertheless suggest that a reported medication swallow
s largely meaningless when taken independently, because so few
ills are consumed during the course of a day compared to saliva
wallows. Moreover, there are many alternative actions that may
ccur throughout the day that can cause false positives by creating
ibrations, such as coughing, sneezing, running, eating an apple,
r laughing positives. In general, identifying short duration events
rom sparse signals can be achieved with a two-stage classification
pproach in which the first stage has a high recall but low precision
opening the bottle), and the second stage has a high precision but
ow recall (the necklace). Using Eq. (5), we are able to represent the
nal probability:
r(p|b ∧ p̂) = .90 · 2
2 · prc + 1 · (1 − prc)

= 96% (10)

This confirms that bottle timing is a critical supplement to the
mart necklace in estimating adherence.
ion with water. This distribution can be used to improve classification accuracy, as
misclassifications.

7.3. Limitations

However, our system also has several significant limitations.
First, the histogram of timing data is based on self-report rather
than observation. Clearly, this introduces substantial reliability
issues with respect to the data, as a practical realization of this sys-
tem requires an observational study. Second, the comfort and user
acceptance of the necklace should be evaluated in a focus group
or long-term trial. Though the proposed pendant-style revision
appears to be more comfortable than the earlier design, this should
be formally validated. Furthermore, the ability of the necklace to
disambiguate between other activities beyond speaking, water sips,
and saliva swallows, should be evaluated. This is necessary because
of the wide variety of activities that an individual may undertake
throughout the course of a day. Lastly, though medication adher-
ence is an issue that affects all age groups, it would be preferred to
conduct experiments with seniors, as they would benefit the most
from such technologies.

Besides medication timing, several other questions were posed
to participants in the survey on medication adherence. Another
resource that can be used for classification is to evaluate the time of
day at which medication is taken, since it is likely that many indi-
viduals take their pills at a particular time every day. Therefore,
a possible pill swallow event p̂ is much less likely to be a correct
classification if it takes place in the middle of the night or a random
part of the day. As a future work, it may be beneficial to consider
this as an additional factor to improve classification accuracy. Our
survey results show that 40% of individuals take their medication
within 2 h of the same time every day, 45% of individuals stated that
they take the medication within an hour of the same time every
day, at least 80% of the time, and 35% stated that they take their
medication within 30 min of the same time every day, 70% of the
time.

The time of day can be used as a feature directly in the classi-
fier model used, though this would require that the experimental
data set be much more extensive as implementing this in a smaller
dataset could result in overfitting.

8. Conclusion
Patient adherence is critical to the successful treatment of many
diseases, as well as the effective assessment of treatment effective-
ness for research purposes. In this paper, we propose and evaluate
a two-step system for detecting when a pill bottle is opened using
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ommercial smart-bottle technologies, and when a pill is consumed
sing a custom-designed smart necklace using a piezoelectric sen-
or. These two mechanisms coupled with the mobile application
an passively monitor adherence and inform caregivers of patient
tatus. Results confirm that medications can be identified using the
mart necklace, and are clearly distinguishable from saliva swal-
ows and water sips. Furthermore, we show that the probability of
orrect classification can significantly vary based on the amount
f time that has elapsed between the bottle cap removal and the
wallow.
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