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Introduction

1.1 WHY GEOSTATISTICS?

Imagine the situation: a farmer has asked you to survey the soil of his farm. In
particular, he wants you to determine the phosphorus content; but he will not be
satisfied with the mean value for each field as he would have been a few years
ago. He now wants more detail so that he can add fertilizer only where the soil is
deficient, not everywhere. The survey involves taking numerous samples of soil,
which you must transport to the laboratory for analysis. You dry the samples,
crush them, sieve them, extract the phosphorus with some reagent and finally
measure it in the extracts. The entire process is both time-consuming and costly.
Nevertheless, at the end you have data from all the points from which you took
the soil—just what the farmer wants, you might think!

The farmer’s disappointment is evident, however. ‘Oh’, he says, ‘this infor-
mation is for a set of points, but I have to farm continuous tracts of land. I really
want to know how much phosphorus the soil contains everywhere. I realize
that that is impossible; nevertheless, I should really like some information at
places between your sampling points. What can you tell me about those, and
how do your small cores of soil relate to the blocks of land over which my
machinery can spread fertilizer, that is, in bands 24 m wide?’

This raises further issues that you must now think about. Can you say what
values to expect at intervening places between the sample points and over
blocks the width of the farmer’s fertilizer spreader? And how densely should you
sample for such information to be reliable? At all times you must consider the
balance between the cost of providing the information and the financial gains
that will accrue to the farmer by differential fertilizing. In the wider context
there may be an additional gain if you can help to avoid over-fertilizing
and thereby protect the environment from pollution by excess phosphorus.
Your task, as a surveyor, is to be able to use sparse affordable data to estimate,
or predict, the average values of phosphorus in the soil over blocks of land
24m� 24m or perhaps longer strips. Can you provide the farmer with
spatially referenced values that he can use in his automated fertilizer spreader?
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This is not fanciful. The technologically minded farmer can position his
machines accurately to 2 m in the field, he can measure and record the yields of
his crops continuously at harvest, he can modulate the amount of fertilizer he
adds to match demand; but providing the information on the nutrient status of
the soil at an affordable price remains a major challenge in modern precision
farming (Lake et al., 1997).
So, how can you achieve this? The answer is to use geostatistics—that is

what it is for.
We can change the context to soil salinity, pollution by heavy metals, arsenic

in ground water, rainfall, barometric pressure, to mention just a few of the
many variables and materials that have been and are of interest to environ-
mental scientists. What is common to them all is that the environment is
continuous, but in general we can afford to measure properties at only a finite
number of places. Elsewhere the best we can do is to estimate, or predict, in a
spatial sense. This is the principal reason for geostatistics—it enables us to do so
without bias and with minimum error. It allows us to deal with properties that
vary in ways that are far from systematic and at all spatial scales.
We can take the matter a stage further. Alert farmers and land managers will

pounce on the word ‘error’. ‘Your estimates are subject to error’, they will say,
‘in other words, they are more or less wrong. So there is a good chance that if
we take your estimates at face value we shall fertilize or remediate where we
need not, and waste money, because you have underestimated, and not fertilize
or fail to remediate where we should.’ The farmer will see that he might
lose yield and profit if he applies too little fertilizer because you overestimate the
nutrient content of the soil; the public health authority might take too relaxed
an attitude if you underestimate the true value of a pollutant. ‘What do you say
to that?’, they may say.
Geostatistics again has the answer. It can never provide complete information,

of course, but, given the data, it can enable you to estimate the probabilities that
true values exceed specified thresholds. This means that you can assess the
farmer’s risks of losing yield by doing nothing where the true values are less than
the threshold or of wasting money by fertilizing where they exceed it.
Again, there are analogies in many fields. In some situations the conditional

probabilities of exceeding thresholds are as important as the estimates themselves
because there are matters of law involved. Examples include limits on the arsenic
content of drinking water (what is the probability that a limit is exceeded at an
unsampled well?) and heavy metals in soil (what is the probability that there is
more cadmium in the soil than the statutory maximum?)

1.1.1 Generalizing

The above is a realistic, if colourful, illustration of a quite general problem.
The environment extends more or less continuously in two dimensions. Its
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properties have arisen as the result of the actions and interactions of many
different processes and factors. Each process might itself operate on several
scales simultaneously, in a non-linear way, and with local positive feedback.
The environment, which is the outcome of these processes varies from place to
place with great complexity and at many spatial scales, from micrometres to
hundreds of kilometres.

The major changes in the environment are obvious enough, especially when
we can see them on aerial photographs and satellite imagery. Others are more
subtle, and properties such as the temperature and chemical composition can
rarely be seen at all, so that we must rely on measurement and the analysis of
samples. By describing the variation at different spatial resolutions we can
often gain insight into the processes and factors that cause or control it, and so
predict in a spatial sense and manage resources.

As above, measurements are made on small volumes of material or areas a
few centimetres to a few metres across, which we may regard as point samples,
known technically as supports. In some instances we enlarge the supports by
taking several small volumes of material and mixing them to produce bulked
samples. In others several measurements might be made over larger areas and
averaged rather than recorded as single measurements. Even so, these supports
are generally very much smaller than the regions themselves and are separated
from one another by distances several orders of magnitude larger than their
own diameters. Nevertheless, they must represent the regions, preferably
without bias.

An additional feature of the environment not mentioned so far is that at some
scale the values of its properties are positively related—autocorrelated, to give the
technical term. Places close to one another tend to have similar values, whereas
ones that are farther apart differ more on average. Environmental scientists
know this intuitively. Geostatistics expresses this intuitive knowledge quantita-
tively and then uses it for prediction. There is inevitably error in our estimates,
but by quantifying the spatial autocorrelation at the scale of interest we can
minimize the errors and estimate them too.

Further, as environmental protection agencies set maximum concentra-
tions, thresholds, for noxious substances in the soil, atmosphere and water
supply, we should also like to know the probabilities, given the data, that the
true values exceed the thresholds at unsampled places. Farmers and graziers
and their advisers are more often concerned with nutrients in the soil and
the herbage it grows, and they may wish to know the probabilities of
deficiency, i.e. the probabilities that true values are less than certain thresh-
olds. With some elaboration of the basic approach geostatistics can also answer
these questions.

The reader may ask in what way geostatistics differs from the classical
methods that have been around since the 1930s; what is the effect of taking
into account the spatial correlation? At their simplest the classical estimators,
based on random sampling, are linear sums of data, all of which carry the same
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weight. If there is spatial correlation, then by stratifying we can estimate more
precisely or sample more efficiently or both. If the strata are of different sizes
then we might vary the weights attributable to their data in proportion. The
means and their variances provided by the classical methods are regional, i.e.
we obtain just one mean for any region of interest, and this is not very useful if
we want local estimates. We can combine classical estimation with stratifica-
tion provided by a classification, such as a map of soil types, and in that way
obtain an estimate for each type of class separately. Then the weights for any
one estimate would be equal for all sampling points in the class in question and
zero in all others. This possibility of local estimation is described in Chapter 3. In
linear geostatistics the predictions are also weighted sums of the data, but with
variable weights determined by the strength of the spatial correlation and the
configuration of the sampling points and the place to be estimated.
Geostatistical prediction differs from classical estimation in one other impor-

tant respect: it relies on spatial models, whereas classical methods do not. In the
latter, survey estimates are put on a probabilistic footing by the design of the
sampling into which some element of randomization is built. This ensures
unbiasedness, and provides estimates of error if the choice of sampling design is
suitable. It requires no assumptions about the nature of the variable itself.
Geostatistics, in contrast, requires the assumption that the variable is random,
that the actuality on the ground, in the sea or in the air is the outcome of one or
more random processes. The models on which predictions are based are of these
random processes. They are not of the data, nor even of the actuality that we
could observe completely if we had infinite time and patience. Newcomers to the
subject usually find this puzzling; we hope that they will no longer do so when
they have read Chapter 4, which is devoted to the subject. One consequence of
the assumption is that sampling design is less important than in classical
survey; we should avoid bias, but otherwise even coverage and sufficient
sampling points are the main considerations.
The desire to predict was evident in weather forecasting and soil survey in the

early twentieth century, to mention just two branches of environmental
science. However, it was in mining and petroleum engineering that such a
desire was matched by the financial incentive and resources for research and
development. Miners wanted to estimate the amounts of metal in ore bodies and
the thicknesses of coal seams, and petroleum engineers wanted to know the
positions and volumes of reservoirs. It was these needs that constituted the force
originally driving geostatistics because better predictions meant larger profits
and smaller risks of loss. The solutions to the problems of spatial estimation are
embodied in geostatistics and they are now used widely in many branches of
science with spatial information. The origins of the subject have also given it its
particular flavour and some of its characteristic terms, such as ‘nugget’ and
‘kriging’.
There are other reasons why we might want geostatistics. The main ones are

description, explanation and control, and we deal with them briefly next.
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1.1.2 Description

Data from classical surveys are typically summarized by means, medians,
modes, variances, skewness, perhaps higher-order moments, and graphs of
the cumulative frequency distribution and histograms and perhaps box-plots.
We should summarize data from a geostatistical survey similarly. In addition,
since geostatistics treats a set of spatial data as a sample from the realization of a
random process, our summary must include the spatial correlation. This will
usually be the experimental or sample variogram in which the variance is
estimated at increasing intervals of distance and several directions. Alterna-
tively, it may be the corresponding set of spatial covariances or autocorrelation
coefficients. These terms are described later. We can display the estimated
semivariances or covariances plotted against sample spacing as a graph. We
may gain further insight into the nature of the variation at this stage by fitting
models to reveal the principal features. A large part of this book is devoted to
such description.

In addition, we must recognize that spatial positions of the sampling points
matter; we should plot the sampling points on a map, sometimes known as a
‘posting’. This will show the extent to which the sample fills the region of
interest, any clustering (the cause of which should be sought), and any obvious
mistakes in recording the positions such as reversed coordinates.

1.1.3 Interpretation

Having obtained the experimental variogram and fitted a model to it, we may
wish to interpret them. The shape of the points in the experimental variogram
can reveal much at this stage about the way that properties change with
distance, and the adequacy of sampling. Variograms computed for different
directions can show whether there is anisotropy and what form it takes. The
variogram and estimates provide a basis for interpreting the causes of spatial
variation and for identifying some of the controlling factors and processes. For
example, Chappell and Oliver (1997) distinguished different processes of soil
erosion from the spatial resolutions of the same soil properties in two adjacent
regions with different physiography. Burrough et al. (1985) detected early field
drains in a field in the Netherlands, and Webster et al. (1994) attempted to
distinguish sources of potentially toxic trace metals from their variograms in the
Swiss Jura.

1.1.4 Control

The idea of controlling a process is often central in time-series analysis. In it
there can be a feedback such that the results of the analysis are used to change
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the process itself. In spatial analysis the concept of control is different. In many
instances we are unlikely to be able to change the spatial characteristics of a
process; they are given. But we may modify our response. Miners use the results
of analysis to decide whether to send blocks of ore for processing if the estimated
metal content is large enough or to waste if not. They may also use the results
to plan the siting of shafts and the expansion of mines. The modern precision
farmer may use estimates from a spatial analysis to control his fertilizer spreader
so that it delivers just the right amount at each point in a field.

1.2 A LITTLE HISTORY

Although mining provided the impetus for geostatistics in the 1960s, the ideas
had arisen previously in other fields, more or less in isolation. The first record
appears in a paper by Mercer and Hall (1911) who had examined the variation
in the yields of crops in numerous small plots at Rothamsted. They showed how
the plot-to-plot variance decreased as the size of plot increased up to some limit.
‘Student’, in his appendix to the paper, was even more percipient. He noticed
that yields in adjacent plots were more similar than between others, and he
proposed two sources of variation, one that was autocorrelated and the other
that he thought was completely random. In total, this paper showed several
fundamental features of modern geostatistics, namely spatial dependence,
correlation range, the support effect, and the nugget, all of which you will
find in later chapters. Mercer and Hall’s data provided numerous budding
statisticians with material on which to practise, but the ideas had little impact
in spatial analysis for two generations.
In 1919 R. A. Fisher began work at Rothamsted. He was concerned primarily

to reveal and estimate responses of crops to agronomic practices and differences
in the varieties. He recognized spatial variation in the field environment, but for
the purposes of his experiments it was a nuisance. His solution to the problems
it created was to design his experiments in such a way as to remove the effects
of both short-range variation, by using large plots, and long-range variation, by
blocking, and he developed his analysis of variance to estimate the effects. This
was so successful that later agronomists came to regard spatial variation as of
little consequence.
Within 10 years Fisher had revolutionized agricultural statistics to great

advantage, and his book (Fisher, 1925) imparted much of his development of
the subject. He might also be said to have hidden the spatial effects and
therefore to have held back our appreciation of them. But two agronomists,
Youden and Mehlich (1937), saw in the analysis of variance a tool for revealing
and estimating spatial variation. Their contribution was to adapt Fisher’s
concepts so as to analyse the spatial scale of variation, to estimate the variation
from different distances, and then to plan further sampling in the light of the
knowledge gained. Perhaps they did not appreciate the significance of their
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research, for they published it in the house journal of their institute, where their
paper lay dormant for many years. The technique had to be rediscovered not
once but several times by, for example, Krumbein and Slack (1956) in geology,
and Hammond et al. (1958) and Webster and Butler (1976) in soil science. We
describe it in Chapter 6.

We next turn to Russia. In the 1930s A. N. Kolmogorov was studying
turbulence in the air and the weather. He wanted to describe the variation and
to predict. He recognized the complexity of the systems with which he was
dealing and found a mathematical description beyond reach. Nowadays we
might call it chaos (Gleick, 1988). However, he also recognized spatial correla-
tion, and he devised his ‘structure function’ to represent it. Further, he worked
out how to use the function plus data to interpolate optimally, i.e. without bias
and with minimum variance (Kolmogorov, 1941); see also Gandin (1965).
Unfortunately, he was unable to use the method for want of a computer in
those days. We now know Kolmogorov’s structure function as the variogram
and his technique for interpolation as kriging. We deal with them in Chapters 4
and 8, respectively.

The 1930s saw major advances in the theory of sampling, and most of the
methods of design-based estimation that we use today were worked out then
and later presented in standard texts such as Cochran’s Sampling Techniques, of
which the third edition (Cochran, 1977) is the most recent, and that by Yates,
which appeared in its fourth edition as Yates (1981). Yates’s (1948) investiga-
tion of systematic sampling introduced the semivariance into field survey. Von
Neumann (1941) had by then already proposed a test for dependence in time
series based on the mean squares of successive differences, which was later
elaborated by Durbin and Watson (1950) to become the Durbin–Watson
statistic. Neither of these leads were followed up in any concerted way for
spatial analysis, however.

Matérn (1960), a Swedish forester, was also concerned with efficient
sampling. He recognized the consequences of spatial correlation. He derived
theoretically from random point processes several of the now familiar functions
for describing spatial covariance, and he showed the effects of these on global
estimates. He acknowledged that these were equivalent to Jowett’s (1955)
‘serial variation function’, which we now know as the variogram, and men-
tioned in passing that Langsaetter (1926) had much earlier used the same way
of expressing spatial variation in Swedish forest surveys.

The 1960s bring us back to mining, and to two men in particular. D. G.
Krige, an engineer in the South African goldfields, had observed that he could
improve his estimates of ore grades in mining blocks if he took into account the
grades in neighbouring blocks. There was an autocorrelation, and he worked
out empirically how to use it to advantage. It became practice in the gold mines.
At the same time G. Matheron, a mathematician in the French mining schools,
had the same concern to provide the best possible estimates of mineral grades
from autocorrelated sample data. He derived solutions to the problem of
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estimation from the fundamental theory of random processes, which in the
context he called the theory of regionalized variables. His doctoral thesis
(Matheron, 1965) was a tour de force.
From mining, geostatistics has spread into several fields of application,

first into petroleum engineering, and then into subjects as diverse as hydro-
geology, meteorology, soil science, agriculture, fisheries, pollution, and envir-
onmental protection. There have been numerous developments in technique,
but Matheron’s thesis remains the theoretical basis of most present-day practice.

1.3 FINDING YOUR WAY

We are soil scientists, and the content of our book is inevitably coloured by our
experience. Nevertheless, in choosing what to include we have been strongly
influenced by the questions that our students, colleagues and associates have
asked us and not just those techniques that we have found useful in our own
research. We assume that our readers are numerate and familiar with
mathematical notation, but not that they have studied mathematics to an
advanced level or have more than a rudimentary understanding of statistics.
We have structured the book largely in the sequence that a practitioner

would follow in a geostatistical project. We start by assuming that the data are
already available. The first task is to summarize them, and Chapter 2 defines the
basic statistical quantities such as mean, variance and skewness. It describes
frequency distributions, the normal distribution and transformations to stabilize
the variance. It also introduces the chi-square distribution for variances. Since
sampling design is less important for geostatistical prediction than it is in
classical estimation, we give it less emphasis than in our earlier Statistical
Methods (Webster and Oliver, 1990). Nevertheless, the simpler designs for
sampling in a two-dimensional space are described so that the parameters of
the population in that space can be estimated without bias and with known
variance and confidence. The basic formulae for the estimators, their variances
and confidence limits are given.
The practitioner who knows that he or she will need to compute variograms

or their equivalents, fit models to them, and then use the models to krige can go
straight to Chapters 4, 5, 6 and 8. Then, depending on the circumstances, the
practitioner may go on to kriging in the presence of trend and factorial kriging
(Chapter 9), or to cokriging in which additional variables are brought into play
(Chapter 10). Chapter 11 deals with disjunctive kriging for estimating the
probabilities of exceeding thresholds.
Before that, however, newcomers to the subject are likely to have come

across various methods of spatial interpolation already and to wonder whether
these will serve their purpose. Chapter 3 describes briefly some of the more
popular methods that have been proposed and are still used frequently for
prediction, concentrating on those that can be represented as linear sums of
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data. It makes plain the shortcomings of these methods. Soil scientists are
generally accustomed to soil classification, and they are shown how it can be
combined with classical estimation for prediction. It has the merit of being the
only means of statistical prediction offered by classical theory. The chapter also
draws attention to its deficiencies, namely the quality of the classification and
its inability to do more than predict at points and estimate for whole classes.

The need for a different approach from those described in Chapter 3, and the
logic that underpins it, are explained in Chapter 4. Next, we give a brief
description of regionalized variable theory or the theory of spatial random
processes upon which geostatistics is based. This is followed by descriptions of
how to estimate the variogram from data. The usual computing formula for the
sample variogram, usually attributed to Matheron (1965), is given and also
that to estimate the covariance.

The sample variogram must then be modelled by the choice of a mathema-
tical function that seems to have the right form and then fitting of that function
to the observed values. There is probably not a more contentious topic in
practical geostatistics than this. The common simple models are listed and
illustrated in Chapter 5. The legitimate ones are few because a model variogram
must be such that it cannot lead to negative variances. Greater complexity can
be modelled by a combination of simple models. We recommend that you fit
apparently plausible models by weighted least-squares approximation, graph
the results, and compare them by statistical criteria.

Chapter 6 is in part new. It deals with several matters that affect the
reliability of estimated variograms. It examines the effects of asymmetrically
distributed data and outliers on experimental variograms and recommends
ways of dealing with such situations. The robust variogram estimators of
Cressie and Hawkins (1980), Dowd (1984) and Genton (1998) are compared
and recommended for data with outliers. The reliability of variograms is also
affected by sample size, and confidence intervals on estimates are wider than
many practitioners like to think. We show that at least 100–150 sampling
points are needed, distributed fairly evenly over the region of interest. The
distances between sampling points are also important, and the chapter
describes how to design nested surveys to discover economically the spatial
scales of variation in the absence of any prior information. Residual maximum
likelihood (REML) is introduced to analyse the components of variance for
unbalanced designs, and we compare the results with the usual least-squares
approach.

For data that appear periodic the covariance analysis may be taken a step
further by computation of power spectra. This detour into the spectral domain is
the topic of Chapter 7.

The reader will now be ready for geostatistical prediction, i.e. kriging.
Chapter 8 gives the equations and their solutions, and guides the reader in
programming them. The equations show how the semivariances from the
modelled variogram are used in geostatistical estimation (kriging). This chapter
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shows how the kriging weights depend on the variogram and the sampling
configuration in relation to the target point or block, how in general only the
nearest data carry significant weight, and the practical consequences that this
has for the actual analysis.
A new Chapter 9 pursues two themes. The first part describes kriging in the

presence of trend. Means of dealing with this difficulty are becoming more
accessible, although still not readily so. The means essentially involve the use of
REML to estimate both the trend and the parameters of the variogram model of
the residuals from the trend. This model is then used for estimation, either
where there is trend in the variable of interest (universal kriging) or where the
variable of interest is correlated with that in an external variable in which there
is trend (kriging with external drift). These can be put into practice by the
empirical best linear unbiased predictor.
Chapter 10 describes how to calculate and model the combined spatial

variation in two or more variables simultaneously and to use the model to
predict one of the variables from it, and others with which it is cross-correlated,
by cokriging.
Chapter 11 tackles another difficult subject, namely disjunctive kriging. The

aim of this method is to estimate the probabilities, given the data, that true
values of a variable at unsampled places exceed specified thresholds.
Finally, a completely new Chapter 12 describes the most common methods of

stochastic simulation. Simulation is widely used by some environmental
scientists to examine potential scenarios of spatial variation with or without
conditioning data. It is also a way of determining the likely error on predictions
independently of the effects of the sampling scheme and of the variogram, both
of which underpin the kriging variances.
In each chapter we have tried to provide sufficient theory to complement

the mechanics of the methods. We then give the formulae, from which you
should be able to program the methods (except for the variogram modelling in
Chapter 5). Then we illustrate the results of applying the methods with
examples from our own experience.
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