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Abstract

In this paper we compute the Bredon equivariant homology of representation spheres corresponding
to the orientable three dimensional representations of cyclic groups and dihedral groups, as well as the
symmetric group on three letters equipped with a permutation representation. These computations are
greatly simplified by the introduction of a splitting theorem for the Burnside ring Mackey functor A.
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1 Introduction

In this paper we present computations of the Bredon equivariant homology of representation spheres. We
first introduce the basic equivariant notions of G-CW complexes and we give a definition of representation
spheres. Because we will be computing the Bredon equivariant homology with coefficients in a specific
Mackey functor, we also give a brief introduction to Mackey functors and coefficient systems. To fully
understand the definition of the Bredon equivariant homology it is necessary to study the tensor product of
Mackey functors, so this precedes the discussion of homolgy. Once these topics are introduced we discuss
a splitting theorem for the Burnside ring Mackey functor. This decomposition, while interesting in its own
right, makes the homology computations that follow significantly easier. Finally we will compute the Bredon
equivariant homology of three representation spheres corresponding to the representations of cyclic groups,
dihedral groups, and the permutation representation on the symmetric group on three letters.

Briefly, the homotopy theory of representation spheres has appeared in recent work on the Kervaire
invariant problem [1], and these objects are generally of use in topics that employ RO(G) grading.

2 G-CW Complexes and Representation Spheres

These are some of beginnings of equivariant algebraic topology, from chapter 1 of [2].

Let X,Y, Z be compactly generated spaces and let G,H be topological groups. We equip our spaces with
a continuous G action and call these G-spaces. A map f : X → Y is equivariant if f(g · x) = g · f(x) and is
referred to as a G-map. We denote the category of G-spaces (over compactly generated spaces) and G-maps
by GU (as opposed to U for the category of compactly generated spaces). Much of the theory developed for
the category of compactly generated spaces works equally well in GU .

Remark 1. G acts diagonally on Cartesian products of spaces and if f ∈ Map(X,Y ) then g · f is given by
(g · f)(x) = g · f(g−1 · x).

Lemma 2. Just as the category of compactly generated spaces is Cartesian closed, GU is cartesian closed.
That is, Map(X × Y,Z) ∼= Map(X,Map(Y,Z)).The bijection above is not only natural, but it is a G-
homeomorphism.

We assume that subgroups of G are closed.

Definition 3. For H ⊂ G, XH = {x|hx = x for h ∈ H}.

Definition 4. For x ∈ X, Gx = {h|hx = x} is the isotropy group of x.

Remark 5. A homotopy between G-maps is defined in the usual way with the added constraint that the
homotopy map is a G map. We can construct a homotopy category hGU .

A G-CW complex is essentially a CW complex with an action of G on the cells. Formally, a G-CW
complex X is the union of G-spaces Xn formed inductively by attaching G-cells.

Definition 6. A G-cell is the product of a cell Dn and an orbit: G/H ×Dn.

In the case of G-CW complexes, to create Xn+1 we attach a G-cell G/H ×Dn+1 to a G-space Xn via
a G-map G/H × Sn → Xn. These attaching maps are determined by the restriction Sn → (Xn)H . We see
this using the adjunctions from before:

GU(G×H Sn, Xn) ∼= HU(Sn, Xn) ∼= GU(Sn,MapH(G,Xn)) ∼= GU(Sn,Map(G/H,Xn)).

Map(G/H,Xn) contains G-maps, so if f ∈ Map(G/H,Xn) then f(gH) = g · f(H) so f is determined by
where it sends the identity coset H. However, H can only be sent to an element of (Xn)H , as f(H) = h·f(H).
Therefore Map(G/H,Xn) = (Xn)H as desired. In fact one can check that if a cell in a G-CW complex is
preserved by an element of g, it must be fixed pointwise.
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Representation Spheres

An orthogonal n-dimensional real representation of a group G preserves the unit sphere Sn−1. If we restrict
the representation to Sn−1 we have a G-space which we can write as a G-CW complex.

3 Mackey Functors and Coefficient Systems

Mackey Functors

We begin with definitions of the Burnside category and Mackey functors. For a finite group G we shall
denote the Burnside category as BG. Before defining BG it is convenient to begin with an auxiliary category
B′G. Given a finite group G, B′G is the category whose objects are finite G-sets and morphisms from T to S
are isomorphism classes of diagrams

We define composition of morphisms to be the pullback of two diagrams:

If we define addition of morphisms as

it follows that Hom(S, T ) is a commutative monoid. This construction of B′G allows us to define BG:

Definition 7. Given a finite group G, the Burnside category BG is the category whose objects are the same
as the objects of B′G and for two G-sets S and T , HomBG(S, T ) is the Grothendieck group of HomB′G(S, T ).

Given a map of G-sets f : S → T , there are two corresponding morphisms in BG. The first is depicted
on the left in the figure below and is referred to as a ‘forward arrow’ (denoted by f) and the second is on

the right and is referred to as a ‘backward arrow’ (denoted by f̂).

Definition 8. A Mackey functor for a group is an additive contravariant functor from the Burnside category
BG to the category of Abelian groups. A morphism of Mackey functors is a natural transformation.
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Recall that as a consequence of additivity and functoriality we have the following:

Proposition 9. It is sufficient to define Mackey functors on G-sets of the form G/H for any subgroup H,
quotient maps between these orbits, and conjugation maps from an orbit to an isomorphic orbit.

Definition 10. Denote by πHK , the quotient map from G/K to G/H where K ⊂ H and by γx,H the conju-
gation map that maps H → xHx−1. Given a Mackey functor M , we refer to M(πHK ) as a restriction map,
M(π̂HK ) as a transfer map, and M(γx,H) as a conjugation map. We shall denote restriction maps as rHK ,
transfer maps as tHK , and conjugation maps as τ .

We present three examples of Mackey functors.

Example 11. We denote by R the representation functor defined by R(G/H) = RU(H) where RU(H) is
the complex representation ring of H. The restriction maps are restriction of representations, the transfer
maps are induction of representations, and the conjugations R(γx,H) send a vector space with an action of
H to the same vector space where the action is redefined as h · v = xhx−1v.

Example 12. Let M be an abelian group with G-action. Denote the fixed point functor by FPM . Then
FPM (G/H) = MH . Restriction maps are inclusions of MH into MK and transfer maps send m →∑
h∈H/K hm. The conjugations are maps from MH →M

xH which send m→ xm.

Example 13. The representable functor [−, X] = HomBG(−, X) is a Mackey functor. The representable
functor A = [−, e] is called the Burnside ring Mackey functor. The Burnside ring is the Grothendieck group
of finite G-sets up to isomorphism, and we specify the restriction and transfer maps under this identification.
The restriction maps πGH send G-sets to H-sets, thereby restricting the group action. The transfer maps π̂GH
send an H-set X to X ×H G = X ×G/(x, y) ∼ (xh−1, hy).

Coefficient System

A coefficient system is a functor from the orbit category of a group to the category of abelian groups. Because
the orbit category embeds in the Burnside category, and we can define a Mackey functor on orbits, we see
that a Mackey functor determines two coefficient systems: one contravariant and one covariant [3].

4 Tensor Products

Definition 14. We shall denote by ⊗̂ the ‘internal’ tensor product of Mackey functors. Let M and N be
Mackey functors, and let L, H, and K be subgroups of a group G.

(M⊗̂N)(H) =

(⊕
K⊆HM(K)⊗Z N(K)

)
/J

J is the submodule generated by:

tLK(m)⊗ n−m⊗ rLK(n) for K ⊆ L ⊆ H,m ∈M(K), n ∈ N(L)

m⊗ tKL (n)− rKL (m)⊗ n for L ⊆ K ⊆ H,m ∈M(K), n ∈ N(L)

hm⊗ hn−m⊗ n for K ⊆ H,m ∈M(K), n ∈ N(K), h ∈ H.

Proposition 15. The Burnside ring Mackey functor A serves as the identity for ⊗̂ [4].

A generalization of the same tensor product to an arbitrary G-set X is given below.

Definition 16. For any G-set X and G-maps Y
φ−→ X,

(M⊗̂N)(X) =

(⊕
Y
φ−→X

M(Y )⊗Z N(Y )
)

/L .

L is the submodule generated by:
M∗(f)(m′)⊗ n−m′ ⊗N∗(f)(n)

M∗(f)m⊗ n′ −m⊗N∗(f)(n′)

for all f : (Y, φ)→ (Y ′, φ′), a morphism of G-sets Y, Y ′ such that φ′f = φ.
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Lemma 1.6.1 in [5] proves that these definitions are equivalent. Briefly, notice that when we restrict the
second definition to G-sets of the form G/H, L = J . In this case the difference between the two definitions
is simply that in the latter, f varies over all possible morphisms G/K → G/H, not just the canonical
projection map. In the first definition this is accounted for by the third identity.

Because a Mackey functor determines two coefficient systems this discussion motivates an analogous
definition for the tensor product of two coefficient systems.

Definition 17. Let M be a contravariant coefficient system, let N be a covariant coefficient system, and let
L, H, and K be subgroups of a group G. Let pLK be the projection map G/K → G/L.

(M⊗̂N)(H) =

(⊕
K⊆HM(K)⊗Z N(K)

)
/J

J is the submodule generated by:

M∗(pLK)(m)⊗ n−m⊗N∗(pLK)(n) for K ⊆ L ⊆ H,m ∈M(K), n ∈ N(L)

hm⊗ hn−m⊗ n for K ⊆ H,m ∈M(K), n ∈ N(K), h ∈ H.

Note that this definition allows us to consider the tensor product of a Mackey functor and a coefficient
system, simply by discarding one of the coefficient systems determined by the Mackey functor. A modification
of the proof given by Buoc in [5] will show that this definition is equivalent to the definition of the tensor
product of coefficient systems given by May in [2].

For all homology computations that follow we shall use definition 17.

5 Bredon Equivariant Homology

Let X be a G-CW complex. Then we define a chain complex of coefficient systems Cn(X)(G/H) =
Hn((Xn)H , (Xn−1)H). Given a covariant coefficient system N , our cellular chains are given by CGn (X;N) =
(Cn(X)⊗̂N)(G) with boundary maps ∂ = d ⊗ 1. Because Mackey functors provide both a covariant and
contravariant coefficient system, this definition allows us to compute Bredon equivariant homology with
coefficients in a Mackey functor.

The homology of the resulting chain complex is the Bredon equivariant homology of X.

6 Z Coefficients

To compute Bredon equivariant homology with coefficients in Z we let N be the trivial coefficient system
which maps every orbit to Z and all morphisms to the identity morphism.

Proposition 18. HG
∗ (X;Z) = H∗(X/G).

Proof. We must compute the homology of the coefficient system CGn (X;N) = (Cn(X)⊗̂N)(G). To determine
the coefficient system we examine the module J in definition 17. In the first relation, N∗(p

L
K) is trivial.

M∗(pLK) : XL → XK is induced by the restriction of the L-action to K. If x ∈ XL then x ∈ XK , so
M∗(pLK)(x) = x ∈ M(L). Therefore a quotient by the first relation reduces each CGn (X;N) to the ordinary
coefficient system Cn(X)(G/e) = Cn(X;Z). The second relation allows us to quotient by the action of G on
the elements of Cn(X;Z). The resulting chain complex is C∗(X/G). The result follows.

7 Coefficients in the Burnside Mackey Functor

In the discussion that follows we will give a decomposition of the Burnside Mackey functor A, and use this
result to decompose the Bredon equivariant homology with coefficients in A.

We prove that the Mackey functor A splits as the sum of functors SH defined as SH(X) = Z
[
XH/W (H)

]
.

With appropriate choices of transfer and restriction, we can verify that SH is a Mackey functor.
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Recall that it suffices to define a Mackey functor on transitive G-sets. Let L ⊆ K. Then we have a
quotient map πKL : G/L → G/K. We wish to define transfer maps tKL = SH(π̂KL ) : SH(G/L) → SH(G/K)
and restriction maps rKL = SH(πKL ) : SH(G/K)→ SH(G/L). First identify

(G/L)H/W (H) ' MapG(G/H,G/L)/AutG(G/H)

(G/K)H/W (H) ' MapG(G/H,G/K)/AutG(G/H).

Recall that MapG(G/H,G/L) is trivial unless H is conjugate to a subgroup of L. There are three cases
to consider, up to composing with the appropriate conjugation.

Case 1: H is not a subgroup of L or K. In this case both SH(G/L) and SH(G/K) are trivial. So the trans-
fer and restriction maps are also trivial: the transfer map composes the trivial element of MapG(G/H,G/L)
with πKL to give the trivial element of MapG(G/H,G/K). The restriction map is the inverse of the transfer
map.

Case 2: H is a subgroup of K but not L. In this case SH(G/L) is trivial, so the transfer and restriction
maps must be trivial once again. The transfer map composes a trivial map with a quotient map, which gives
the trivial element of MapG(G/H,G/K). The restriction map sends all elements of MapG(G/H,G/K) to
the identity in MapG(G/H,G/L).

Case 3: H ⊆ L ⊆ K. In this case neither of SH(G/L) and SH(G/K) are trivial. The transfer is defined
as tkL(f) = πKL ◦ f . Since any element of MapG(G/H,G/K) factors through G/L, rKL (g) is the element of

MapG(G/H,G/L) obtained by taking the pullback of the diagram G/L
πKL−−→ G/K

πKH←−− G/H. In fact, just
as in the previous cases, the restriction and transfer maps are inverses of each other.

Now that the transfers and restrictions of SH have been articulated we can verify that SH is a Mackey
functor.

Proposition 19. SH is a Mackey functor.

Proof. We prove that SH satisfies the two conditions required of a Mackey functor in [6]. First we show
that if X1, X2, X3, X4 are G-sets then the commutativity of the following pullback diagram with G-maps
α, β, γ, δ implies the commutativity of the second diagram.

X1
α−−−−→ X2yβ yγ

X3
δ−−−−→ X4

SH(X1)
SH(α)←−−−− SH(X2)ySH(β̂)

ySH(γ̂)

SH(X3)
SH(δ)←−−−− SH(X4)

Notice that if we apply MapG(G/H,−) to the first diagram the result still commutes, and taking a
quotient by W (H) respects the diagram. The morphisms that result are all transfer maps for SH . Since the
restriction and transfer maps are inverse to each other, the second diagram above must commute.

Next we must verify that SH(X t Y ) ∼= SH(X)⊕ SH(Y ) is an isomorphism. Well,

(X t Y )H/W (H) ∼= (XH t Y H)/W (H) ∼= XH/W (H)⊕ Y H/W (H).

It follows that SH is indeed a Mackey functor.
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We will now verify the splitting of A on objects in BG. We introduce the notation [H] ⊆ G to refer to a
conjugacy class of subgroups of G with representative element H.

Proposition 20.
⊕

[H]⊆G Z[XH/W (H)] = A(X)

Proof. We identify the fixed point set XH with MapG(G/H,X) and note that this provides a natural action
of the Weyl group W (H) = N(H)/H = AutG(G/H) on XH . Next, recall that the Burnside ring functor A
is the representable functor [−, e]. The ring A(X) contains all isomorphism classes of spans X ← G/H → e.
Therefore we have a map XH → A(X). In fact, the Weyl group acts as the identity on equivalence classes
of spans, so there is an embedding ϕH : XH/W (H) → A(X). Let Φ =

⊕
[H]⊆G ϕH . Φ is certainly an

injection since ϕH is an embedding and the images of ϕH and ϕK are disjoint when H 6= K. Viewing A(X)
as isomorphisms classes of spans, for any span in A(X) the backwards span gives an element of XH/W (H)
for some H, so Φ is surjective.

Theorem 21. The morphisms ϕH : XH/W (H) → A(X) are natural transformations of Mackey functors,
yielding a decomposition of the Burnside ring Mackey functor A.

A ∼=
⊕

[H]⊆G

SH .

Proof. Let L ⊆ K. We must verify that the two diagrams below commute:

SH(K)
ϕK−−−−→ A(K)ySH(πKL )

yA(πKL )

SH(L)
ϕH−−−−→ A(L)

SH(K)
ϕK−−−−→ A(K)xSH(π̂KL )

xA(π̂KL )

SH(L)
ϕH−−−−→ A(L)

The diagram on top corresponds to commutativity for restrictions, and the diagram on the bottom
corresponds to transfers. We only check the restriction and transfers in the case where H ⊆ L ⊆ K.

Given f ∈ SH(K), the restriction map for SH gives a map f ′ ∈ SH(L). The isomorphism class of spans

G/K
f←− G/H → e will be sent to G/L

f ′←− G/H → e by A(πKL ), because the morphism on the left of the
span is obtained by the same pullback that determines the restriction on SH . So the diagram corresponding
to the restrictions will commute.

Let f ∈ SH(L). Then ϕH(f) equals the isomorphism classes of spans G/L
f←− G/H → e. Moving upwards

A(πKL ) applied to this span gives the spanG/L
πKL ◦f←−−− G/H → e. On the top left, tKL (f) = πKL ◦ f . Finally

we apply ϕK to see that the bottom diagram does indeed commute for the transfer maps.

Proposition 22. HG
∗ (X;A) =

⊕
[H]⊆GH∗(X

H/W (H))

Proof. The result will follow if we prove that the corresponding chain complexes are isomorphic with compati-
ble boundary maps. So we show that CGn (X;A) = (Cn(X)⊗̂A)(G) is isomorphic to

⊕
[H]⊆G Cn(XH/W (H)).

Since we are working in the case where N is the Mackey functor A, we examine J carefully, referring to
definition 17. Let M = C∗(X). First, M∗(pLK) : XL → XK is induced by the restriction of the L-action to
K. If x ∈ XL then x ∈ XK , so M∗(pLK)(x) = x ∈ XK . Next, N∗(p

L
K) is the transfer map of A, tLK . So the

first relation in definition 17 can be rewritten as

m⊗ n−m⊗ tLK(n) for K ⊆ L ⊆ H,m⊗ n ∈M(K)⊗N(K).

What is the transfer map of A? Well, tLK(K/N) = L/N . Therefore for a given H ⊆ G, the only elements
of Cn(G/H) ⊗ A(G/H) that are not in the kernel of the quotient by the relation above are of the form
m⊗ [H/H]. So each term in the summand is one dimensional.
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For the second relation we first check the G-action on C∗(X)(G/K) = C∗(X
K). This action will be

induced by the map G/K → G/gKg−1, so we get a map XK → XgKg−1

which sends x 7→ gx. In the
event that g ∈ N(K) the normalizer of K, we have a map XK → XK which sends x 7→ gx. So this relation
performs a quotient by the action of the Weyl group W (K) = N(K)/K, and it identifies Cn(G/H)⊗A(G/H)
and Cn(G/H ′) ⊗ A(G/H ′) if H and H ′ are conjugate. Therefore the two chain complexes are isomorphic
with compatible chain maps (since the chain maps are δ ⊗ 1), so the result follows for homology.

Alternatively, this result can be obtained by applying proposition 21 to the chain complex of the G-CW
complex and verifying that the boundary maps are compatible. In the proof above the compatibility of the
boundary maps comes immediately since the boundary maps of CGn (X;A) are ∂ ⊗ 1.

Corollary 23. HG
∗ (X;A) =

⊕
[H]⊆GH

W (H)
∗ (XH ;Z)

Proof. This folows immediately from proposition 18 and proposition 22.

8 Computations for G = Cn

The G-CW complex of the representation sphere of the cyclic representation of Cn is depicted below.

Given proposition 22, computations of the Bredon equivariant homology with coefficients in A becomes
algorithmic.

Proposition 24. When X is the representation sphere of G = Cn acting on S2 by rotation around a fixed
axis, HG

0 (X;A) =
⊕

H⊆G Z, HG
1 (X;A) = 0, HG

2 (X;A) = Z, and HG
n (X;A) = 0 for n > 2.

Proof. Since Cn is abelian, we must iterate over every subgroup of G. The fixed point set of any rotation is
the two antipodal points at the intersection of S2 and the axis of rotation. Therefore for every H ⊆ G, XH

is the union of two points, and for H = e XH = S2. Again, since Cn is abelian, W (H) = N(H)/H = G/H.
When H 6= e, the Weyl group acts trivially on XH . When H = e we must quotient S2 by Cn. This quotient is
homeomorphic to S2. Therefore H0(XH/W (H)) = Z for every H 6= e. When H = e, H0(XH/W (H)) = 0.
H1(XH/W (H)) = 0 for all H ⊆ G. H2(XH/W (H)) = 0 for all H ⊆ G except H = e in which case
H2(XH/W (H)) = Z. We can immediately deduce HG

∗ (X;A) using proposition 22.

HG
0 (X;A) =

⊕
H⊆G

Z

HG
1 (X;A) = 0

HG
2 (X;A) = Z
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9 Computations for G = S3

Proposition 25. When X is the representation sphere of G = S3 acting on S2 by permutation of the axes,
HG

0 (X;A) = Z⊕ Z, HG
1 (X;A) = Z, and HG

n (X;A) = 0 for n ≥ 2.

Proof. The Burnside category for G = S3 takes the following form (up to conjugations):

We must identify the G-CW complex of the sphere of this permutation representation. A general construction
for any permutation representation can be found using barycentric subdivision. We start with an octahedral
approximation of S2, and we perform barycentric subdivision on each of the octants.

The G-CW complex of the representation sphere of the cyclic representation of Cn is depicted below.

The first diagram below is a view of the simplicial approximation of the G-CW complex of S2 from the
positive side of the line x = y = z (the same view point for the sphere above). The three octants adjacent
to the octant with positive coordinates on each axis are depicted in this diagram. The second diagram is a
view from the negative side of the line x = y = z. The necessary sides are identified.
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The stabilizers of each 1-cell are shown in the diagram. We can deduce from the diagrams above that
Xe = S2, XC2 = S1, and XC3 and XG are each the union of two points (the antipodal points (1, 1, 1) and
(−1,−1,−1). When H = e, W (H) = G, and the quotient S2/G is contractible. When H = C2, W (H)
acts trivially on XH , so XC2/W (C2) = S1. When H = C3, W (H) acts trivially on the two point set, so
XC3/W (C3) is still the two point set. Similarly, XS3 is a two point set. Therefore HG

0 (X;A) = Z⊕ Z and
HG

1 (X;A) = Z and all other homology groups are zero.
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10 Computations for Dn

The dihedral group Dn has the following presentation:

Dn = 〈r, s|rn = s2 = 1, srs = r−1〉.

Let us begin by introducing the orthogonal representation of Dn in R3. Identify Dn as the symmetry
group of the n-gon where r is a rotation by 2π/n and s is a reflection across a line of symmetry.

We embed this n-gon in the xy plane so that the center point of the n-gon is at the origin and the line
of symmetry across which s reflects lies on the x-axis. Now we define the representation σ : Dn → GL3(R).
Let σ(r) be a rotation of 2π/n about the z axis, and let σ(s) be a rotation of π about the x axis. The G-CW
complex of this representation sphere has a simplicial approximation that is the suspension of the n-gon with
a 0-cell bisecting each side.

We shall take a brief aside to describe the subgroup structure of the dihedral group.

Dn

We cite the following two lemmas from [7]:

Lemma 26. Subgroups of Dn take the one of the following two forms:

• 〈rd〉 with d|n and index 2d

• 〈rd, ris〉 with d|n, 0 ≤ i < d, and index d.

Lemma 27. If n is odd and m|2n:

• If m is odd then every subgroup of Dn of index m is conjugate to 〈rm, s〉.
• If m is even the only subgroup of Dn with index m is 〈rm2 〉.

If n is even and m|2n:

• If m is odd then every subgroup of Dn of index m is conjugate to 〈rm, s〉.
• If m is even and m 6 |n then the only subgroup of Dn with index m is 〈rm2 〉.
• If m is even and m|n then any subgroup of Dn with index m is 〈rm2 〉 or is conjugate to exactly one of
〈rm, s〉 or 〈rm, rs〉.

Next we refer to the simplicial approximation of our G-CW complex and apply Proposition 14.
Suppose n is odd. Notice that if a subgroup H of G = Dn contains both a rotation rd and s the fixed

point set of the sphere X = S2 is empty because the axis of the rotation r is orthogonal to the axis of the
rotation s. Therefore if m is odd the only subgroup H with a nontrivial fixed point set XH is the group
〈s〉 which occurs when m = n. This fixed point set contains the two points where the axis of rotation for s
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intersects S2. If m is even the subgroup 〈rm2 〉 yields a nontrivial fixed point set containing the two points
where the axis of rotation of r intersects S2.

Since srs = r−1, s ∈ N(〈rm2 〉). Therefore N(〈rm2 〉) = Dn. So W (〈rm2 〉) = Dn/〈r
m
2 〉. Thus the quotient

X〈r
m
2 〉/W (〈rm2 〉) is a single point which contributes trivial homology to the Bredon equivariant homology.

The normalizer of 〈s〉 is itself, so W (〈s〉) is trivial. Therefore the quotient X〈s〉/W (〈s〉) is a two point
space which contributes a copy of Z to the 0th term of the Bredon equivariant homology. Thus, when n is
odd, the Bredon equivariant homology is supported by a single copy of Z in dimensions 0 and 2 and is zero
everywhere else.

Finally, if H = e, the quotient S2/Dn is homeomorphic to S2, so there is a Z in the second degree of the
Bredon homology.

If n is even, subgroups of the form 〈rm, s〉 and 〈rm, rs〉 give empty fixed point sets unless m = 0, in
which case X〈s〉 and X〈rs〉 yield distinct fixed point sets each containing two points. Subgroups of the
form 〈rm2 〉 still give fixed point sets with two points, however upon taking the quotient by the Weyl group
the contribution to homology is trivial. Therefore the Bredon equivariant homology has two copies of Z in
degree 0 and one copy of Z in degree 2.

The results of this section are summarized in the following theorem.

Theorem 28. Let G = Dn = 〈r, s|rn = s2 = 1, srs = r−1〉. Let σ : G → GL3(R) be the representation
such that σ(r) is rotation about the z axis by 2π/n and σ(s) is rotation about the x axis by π. Let X be the
corresponding representation sphere. Then when n is odd,

HG
0 (X;A) = Z

HG
1 (X;A) = 0

HG
2 (X;A) = Z.

When n is even,
HG

0 (X;A) = Z⊕ Z

HG
1 (X;A) = 0

HG
2 (X;A) = Z.
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