FIELDS ADMITTING NONTRIVIAL STRONG ORDERED
EULER CHARACTERISTICS ARE QUASIFINITE

THOMAS SCANLON

1. INTRODUCTION AND BACKGROUND

The note contains the details of an assertion made in [1] to the effect that fields
admitting a nontrivial strong ordered Euler characteristic are quasifinite. In this
section we recall the relevant definitions and in the next section we complete the
proof.

Recall that a field K is quasifinite if K is perfect and its absolute Galois group is
isomorphic to the profinite completion of Z. In particular, a finite field is quasifinite.
A strong ordered Euler characteristic on the field K is a function x : Def(K) — R
from the set of definable (in the language of rings) subsets of (any Cartesian power)
of K to a partially ordered ring R having image amongst the nonnegative elements
of R and satisfying x(X) = x(Y) for X and Y definably isomorphic, (X x Y) =
X(X) - x(Y), x(XUY) = x(X)+x(Y) for XNY = @, and x(F) = ¢- x(B) if
f: E — B is a definable function and ¢ = x(f~1{b}) for every b € B. The Euler
characteristic is nontrivial if 0 < 1 in R and the image of x is not just {0}.

The main theorem of this note is the following:

Theorem 1. Any field admitting a nontrivial strong ordered Euler characteristic
s quasifinite.

2. PROOFS

As the conclusion of Theorem 1 holds for finite fields, we may restrict attention
to infinite fields. Throughout the rest of this note K denotes an infinite field given
together with a nontrivial strong ordered Euler characteristic x : Def(K) — R.

Lemma 1. K is perfect.

Proof. If K has characteristic zero, then there is nothing to prove. So we may
assume that the characteristic of K is p > 0. The map x — 2P on K is a definable
bijection so x([K]) = x([KP]). The inclusion K? — K shows that x([K?]) < x([K])
with equality only if K = KP. Thus, K = KP. That is, K is perfect as claimed. 0O

We now aim to show by a counting argument that for each positive integer n
there is a unique extension of K of degree n. We need a simple combinatorial
lemma.

Lemma 2. For a multiinder o € Z,% define w(c) := > -~ na,. Then for any

natural number N we have Z{a:w(a):N} H;’:’:l m =1.
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Equating the coéfficients of XV we obtain the statement of the lemma. (Il

Lemma 3. Let R ;= R® Q. There is a unique structure of a partially ordered
ring on R’ for which v : R — R’ is morphism of partially ordered ring. Moreover,
R #0.

Proof. The positive elements in R’ are exactly those of the form x ® r with x > 0
in R and 7 > 0 in Q. The rest of the proof is routine. O

We let x :=vox:Def(K)— R
We define I, := {(ag,...,an_1) € K" : X" 4+ Z?;()l a; X is irreducible over K'}.

Lemma 4. For any positive integer n we have X([I,,]) = LX([K])"+O(x([K])" ).

Proof. We prove the lemma by induction on n with the case of n = 1 being trivial
as [ = K.

For each n-tuple a = (ag,...,an—1) € K", let a(a) : Zy — w be defined by
(@), = the number of irreducible factors of X™ + Z;Zol a; X" of degree m. Let
B(a) : Z3 — w be defined by B(a)(m,r) := the number of irreducible factors of
X"+ Z?;Ol a; X' of degree m appearing with multiplicity exactly 7.

For a given function f : Z; — w with w(f) =n, let Py :={a € K" : a(a) = f}.
Likewise, for a given g : Z3 — w with w(g) := Z:le,r:l r-m-g(r,m) = n, let
Qg :={a€ K" : f(a) = g}. We define u(g) := Y 77 ., m-g(r,m).

Given g with w(g) = n, let ¢, : Hmrlﬁfm’r) — K™ be the coéfficient map
associated to the composition of multipli,cation of polynomials with exponentia-
tion of polynomials to the power r. Note that the image of 9, is @);. More-
over, ¥, is [[,,, . g(m,7)!-to-one over it image. Therefore, ([, , g(m,m))x([Q4]) =

[l X(En)? ™ = T1,,., ey (D)) + O(x (K)o 2.
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We have K™ = I, U [1(,.0(9)=n.g(n,1)—0} @g- Thus,

W) = XK - Y (0] e (KD + O(([K)" )

|
{g:0(g)=rmg(n,1)=0} m.r (g(m. )

1
= - Y e RN+ G
{fw(f)=n,f(n)=0} m(m)(f(m)!)

= XKD +O(K)"™)

as claimed. 0

Lemma 5. Let L/K be an extension of degree n. Let S := {a € K™ : X" +
Z?:_Ol a; X" is the momnic minimal polynomial of some a € L}. Then X([S]) >
XKD + Ox([K])™ ).

Proof. Let B:={be L: K(c) # L}. As the extension L/K is finite and separable,
B =|JK <M < LM where the union runs over the finitely many proper subfields
of L containing K. Each of these is a finite dimensional vector space over K of
dimension strictly less than n. Thus, Y([L\ B]) = x([K]))" + O(x([K])"1).
Foreach 1 < s <mnlet E; := {a € L\ B : a has exactly s conjugates in L over K }.
Let f: (L\ B) — K" be defined by f(a) = (bo, . ..,b,_1) where X" + 37 ' b, X

is the monic minimal polynomial of a over K. Note that when restricted to F, the
function f is s-to-one. Then S = [[_, f(E,). Thus, x([S]) = >0, 1x([Es]) >

Semr wX([B]) = 5x([L\ B)) = 5 X([K])" + O(X([K])" ™) as claimed. 0

Proof of main theorem: Combining the last two lemmata we see that there is a

unique (Galois!) field extension of each degree. 4
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