Edit page in Livemark
(2024-04-25 06:45)

Livemark

Build Coverage Registry Codebase Support

Data presentation framework for Python that generates static sites from extended Markdown with interactive charts, tables, scripts, and other features.

Purpose

Examples

Features

  • Open Source (MIT)
  • Full Markdown compatibility
  • Markdown extensions such as tables and charts
  • Straight-forward command-line interface
  • Much faster than many competitors
  • Livereload development server

Logic

https://jinja.palletsprojects.com/en/3.0.x/templates/

Livemark processes your document using the Jinja templating language. Inside templates, you can use Frictionless Framework as a frictionless variable to work with tabular data. This is a high-level data preprocessing framework so you can combine Logic with other syntax, such as Table or Chart:

{% for car in frictionless.Resource('data/cars.csv').read_rows(size=5) %}
- {{ car.brand }} {{ car.model }}: ${{ car.price }}
{% endfor %}

Table

https://datatables.net/manual/index

Livemark supports CSV table rendering using DataTables, which you can see in the example below (replace the single quotes with back ticks). The data property will be read at the build stage so in addition to DataTables options you can pass a file path as data property (CSV/Excel/JSON are supported). Use columns property to customize fields or their order:

'''yaml table
data: data/cars.csv
width: 600
order:
  - [3, 'desc']
columns:
  - data: type
  - data: brand
  - data: model
  - data: price
  - data: kmpl
  - data: bhp
'''
type brand model price kmpl bhp
Sedan Volkswagen Vento 785 16.1 104
Sedan Hyundai Verna 774 17.4 106
Sedan Skoda Rapid 756 15.0 104
Sedan Suzuki Ciaz 725 20.7 91
Sedan Renault Scala 724 16.9 98
Sedan Suzuki SX4 715 16.5 103
Sedan Fiat Linea 700 15.7 112
Sedan Nissan Sunny 699 16.9 98
Sedan Fiat Linea Classic 612 14.9 89
Sedan Toyota Etios 603 16.8 89
Sedan San Storm 595 16.0 59
Sedan Chevrolet Sail 551 18.2 82
Hatchback Volkswagen Polo 535 16.5 74
Hatchback Hyundai i20 523 18.6 82
Sedan Honda Amaze 519 18.0 87
Sedan Suzuki Swift DZire 508 19.1 86
Sedan Ford Classic 506 14.1 100
Hatchback Skoda Fabia 503 16.4 75
Hatchback Toyota Etios Liva 500 17.7 79
Hatchback Fiat Punto Evo 499 15.8 67
Sedan Tata Indigo 499 14.0 65
Sedan Hyundai Xcent 496 19.1 82
Sedan Tata Zest 481 17.6 89
Hatchback Chevrolet Sail Hatchback 468 18.2 82
Hatchback Suzuki Swift 462 20.4 83
Hatchback Renault Pulse 446 18.0 74
Hatchback Suzuki Ritz 442 18.5 86
Hatchback Chevrolet Beat 421 18.6 79
Hatchback Honda Brio 421 19.4 87
Hatchback Hyundai i10 418 19.8 68
Hatchback Ford Figo 414 15.3 70
Hatchback Nissan Micra 413 19.5 67
Hatchback Suzuki Celerio 392 23.1 67
Hatchback Suzuki Wagon-R 363 20.5 67
Hatchback Volkswagen Up 360 21.0 74
Hatchback Chevrolet Spark 345 16.2 62
Hatchback Suzuki Estilo 338 19.0 67
Hatchback Suzuki Alto 315 24.1 67
Hatchback Nissan Datsun GO 312 20.6 67
Hatchback Hyundai EON 302 21.1 55
Hatchback Suzuki Alto 800 248 22.7 47
Hatchback Tata Nano 199 23.9 38
type brand model price kmpl bhp

Chart

https://vega.github.io/vega-lite/

Livemark supports Vega Lite visualisations rendering (to try this example, replace the single quotes with back ticks):

'''yaml chart
data:
  url: data/cars.csv
mark: circle
selection:
  brush:
    type: interval
# other options are omitted
width: 500
height: 300
'''

Script

https://www.python.org/

Livemark supports Python/Bash script execution inside Markdown. We think of this as a lightweight version of Jupyter Notebooks. Sometimes, a declarative Logic/Table/Chart is not enough for presenting data so you might also want to include the scripts. This example uses Frictionless Framework code to transform the dataset:

from pprint import pprint
from frictionless import Resource, transform, steps

brands = transform(
    Resource("data/cars.csv"),
    steps=[
        steps.table_normalize(),
        steps.table_aggregate(group_name="brand", aggregation={"price": ("price", max)}),
        steps.row_sort(field_names=["price"], reverse=True),
        steps.row_slice(head=5),
    ],
)
pprint(brands.read_rows())
[{'brand': 'Volkswagen', 'price': 785},
 {'brand': 'Hyundai', 'price': 774},
 {'brand': 'Skoda', 'price': 756},
 {'brand': 'Suzuki', 'price': 725},
 {'brand': 'Renault', 'price': 724}]

Markup

https://getbootstrap.com/docs/5.0/getting-started/introduction/

With Livemark you can use HTML inside Markdown with Bootstrap support. Here is an example of creating a responsive grid of cards (note that if we set a livemark-markdown class we can use markdown inside html):

'''html markup
<div class="w-50">
<div class="container">
<div class="row">
<div class="col-sm">
  <div class="markdown">![Package](assets/data-package.png)</div>
  <div class="text-center">
  <p><strong>Data Package</strong></p>
  <p>A simple container format for describing a coherent collection of data in a single package.</p>
  </div>
</div>
<!-- other columns are omitted -->
</div>
</div>
</div>
'''

Data Package

A simple container format for describing a coherent collection of data in a single package.

Data Resource

A simple format to describe and package a single data resource such as a individual table or file.

Table Schema

A simple format to declare a schema for tabular data. The schema is designed to be expressible in JSON.


Please read the full Feature Reference to learn about all of Livemark's features.

Data presentation framework for Python that generates static sites from extended Markdown with interactive charts, tables, scripts, and other features