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Abstract
Bioenergy with carbon capture and storage (BECCS) is a crucial element in most modelling studies
on emission pathways of the Intergovernmental Panel on Climate Change to limit global warming.
BECCS can substitute fossil fuels in energy production and reduce CO2 emissions, while using
biomass for energy production can have feedback effects on land use, agricultural and forest
products markets, as well as biodiversity and water resources. To assess the former pros and cons of
BECCS deployment, interdisciplinary model approaches require detailed estimates of technological
information related to BECCS production technologies. Current estimates of the cost structure and
capture potential of BECCS vary widely due to the absence of large-scale production. To obtain
more precise estimates, a global online expert survey (N = 32) was conducted including questions
on the regional development potential and biomass use of BECCS, as well as the future operating
costs, capture potential, and scalability in different application sectors. In general, the experts
consider the implementation of BECCS in Europe and North America to be very promising and
regard BECCS application in the liquid biofuel industry and thermal power generation as very
likely. The results show significant differences depending on whether the experts work in the
Global North or the Global South. Thus, the findings underline the importance of including
experts from the Global South in discussions on carbon dioxide removal methods. Regarding
technical estimates, the operating costs of BECCS in thermal power generation were estimated in
the range of 100–200 USD/tCO2, while the CO2 capture potential was estimated to be
50–200 MtCO2yr−1 by 2030, with cost-efficiency gains of 20% by 2050 due to technological
progress. Whereas the individuals’ experts provided more precise estimates, the overall distribution
of estimates reflected the wide range of estimates found in the literature. For the cost shares within
BECCS, it was difficult to obtain consistent estimates. However, due to very few current alternative
estimates, the results are an important step for modelling the production sector of BECCS in
interdisciplinary models that analyse cross-dimensional trade-offs and long-term sustainability.

1. Introduction

Global greenhouse gas (GHG) emissions are continu-
ing to increase, further exacerbating global warm-
ing (IPCC 2023). The goals of the Paris Agreement
aim to limit global warming to well below 2 ◦C
above pre-industrial levels and ideally to 1.5 ◦C. To

achieve this, net-zero, and for some countries even
net-negative, emissions targets for CO2 need to be
realized, and other GHG emissions, e.g. methane, sig-
nificantly reduced by the end of the century (Rogelj
et al 2018a, IPCC 2023). In addition to reducing emis-
sions, carbon dioxide removal (CDR) methods are
vital for removing existing CO2 emissions from the
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atmosphere and counterbalancing residual emissions
in the medium term (Minx et al 2018, Rogelj et al
2018b, 2018a, IPCC 2023). If removal exceeds emis-
sions, CDRmethods could achieve net-negative emis-
sions in the long term (IPCC 2023). The focus is
primarily on the use of bioenergy with carbon cap-
ture and storage (BECCS), since BECCS is a cru-
cial element in integrated assessment models (IAMs)
that model emission pathways to limit global warm-
ing to 1.5 ◦C or well below 2 ◦C, which are a basis
for the reports of the Intergovernmental Panel on
Climate Change (IPCC) (Rogelj et al 2018a, Riahi
et al 2022, Zhao et al 2024). In scenarios with aver-
age global temperature increases below or equal to
1.5 ◦C, BECCS deployment is estimated to achieve
reductions of 3.4–6.8 GtCO2yr−1 by 2050. By 2100,
this could increase to 5.7–14.9 GtCO2yr−1, depend-
ing on the scenario and the possibility of temporar-
ily exceeding temperature targets (Rogelj et al 2018a).
When accounting for sustainability criteria, emission
reductions throughBECCSdeployment could be lim-
ited to 0.5–5 GtCO2yr−1 by 2050 according to Fuss
et al (2018).

Until now, both research and industry have
mainly focused on applying BECCS in industries that
use biomass for producing electricity and heat, pulp
and paper, or in energy conversion plants that pro-
duce liquid biofuel or biogas (Fajardy et al 2019, Rosa
et al 2021). There has also recently been increasing
research on the technical and economic feasibility of
using BECCS in carbon-intensive industries produ-
cing cement and steel (Tanzer et al 2020, Cavalett et al
2021, Lopez et al 2022, Agora Industry andWuppertal
Institute 2023). CO2 released by converting biomass
to bioenergy is captured using carbon capture tech-
nology, compressed, transported, and stored in geo-
logical formations, preventing it from being released
into the atmosphere (Bui et al 2018, Claire et al 2018,
Fajardy et al 2019).

By substituting fossil fuels in energy produc-
tion, BECCS reduces CO2 emissions and simul-
taneously offsets residual emissions from hard-to-
abate sectors by generating negative emissions (Rogelj
et al 2015, Bui et al 2018, Claire et al 2018).
However, the use of biomass for energy production
can have feedback effects on land use, the agricul-
tural and forest products markets, as well as biod-
iversity (Fajardy et al 2018, Hof et al 2018, Smith
et al 2020, Babin et al 2021, Hanssen et al 2021).
Furthermore, BECCS might put pressure on water
resources since CCS technology is water-intensive
and the irrigation of energy crops leads to additional
water use (Byers et al 2015, Rosa et al 2020, Stenzel
et al 2021, Zhipin et al 2021). On the other hand,
studies have concluded that under specific condi-
tions (e.g. type of feedstock, length of rotation, land-
scape), land use change to biomass production might
lead to positive effects on ecosystem services and

benefit biodiversity (Holland et al 2015, Donnison
et al 2020, 2021, Englund et al 2020, Hanssen et al
2021, Hirata et al 2024). These trade-offs and co-
benefits along with other aspects of uncertainty,
e.g. costs and public acceptance of BECCS, fuel dis-
cussions among researchers, policymakers, and the
public on the appropriateness of BECCS as a cli-
mate change mitigation measure (Fajardy et al 2018,
Creutzig et al 2019, Haikola et al 2021, Donnison
et al 2023).

The first operating BECCS plants are located in
North America and Northern Europe. Information
on the specific application concepts for these
advanced projects is available (Global CCS Institute
2024). One example of a project in an advanced
planning stage in the Global South, is the Brazilian
biorefinery plant operated by Fueling Sustainability
in Lucas do Rio Verde (PR Newswire 2024). Future
model assessments support the establishment of large
numbers of BECCS production sites in, e.g. sub-
Saharan Africa, as this region possesses vast areas that
could provide biomass energy and storage capacities
(see e.g. Ricci and Selosse 2013, Hanssen et al 2020a).
Given the broad range of possibilities and uncer-
tainties, it is challeging to assess exactly how BECCS
might develop over the next decades. It is yet unclear
in which countries and areas of application BECCS
will be implemented, and sustainability of BECCS
might vary by country and sector. It is thus important
to obtain additional information to, e.g. differentiate
more strongly between the use of different biomass
types whenmodelling BECCS technologies, to be able
to capture region-specific effects on biomass demand
and production more accurately.

Taking the aforementioned into account, interdis-
ciplinary numeric modelling approaches can serve as
tools to effectively assess potential trade-offs arising
from the large-scale implementation of BECCS.
Using economic models, it is possible to analyse
future market developments and policy impacts
which are difficult to grasp in their complexity (Schier
et al 2022). However, these models require tangible
information on the sectoral representation of BECCS
and related production factors, e.g. biomass feedstock
used, carbon capture potential, operating costs, and
scalability as input to carry out cross-regional and
cross-sectoral trade-off analysis, There are import-
ant differences in the estimates of technical aspects
of BECCS across the published literature (Daioglou
et al 2020), mainly because BECCS sites are cur-
rently pre-commercial and only a few pilot pro-
jects exist, mainly in North America and Northern
Europe (Rosa et al 2021, Global CCS Institute
2022). Morris et al (2019) published production
costs in the USA for BECCS in power generation
fueled by non-specified biomass. These estimates
are used by Fajardy et al (2021), for instance, to
model the role of BECCS in achieving different
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global warming scenarios in the Economic Projection
and Policy Model framework of the Massachusetts
Institute of Technology. Furthermore, the Lawrence
Livermore National Laboratory provides projections
for BECCS deployment and production costs in
California (Baker et al 2020) and the USA (Pett-Ridge
et al 2023). Abegg et al (2024) conducted expert inter-
views with scholars on the costs and scalability of
BECCS in which the experts assumed higher costs
and lower scalability than the International Energy
Agency forecasts (IEA 2021) but without differenti-
ating in feedstock, BECCS technology or region.

In addition, literature reviews in several recent
papers present cost estimates and capture potential
of BECCS (Fuss et al 2018, Rueda et al 2021, Freer
et al 2022, Abegg et al 2024). Due to uncertainties in
operational factors, the future mitigation potential of
BECCS is also increasingly questioned (Grubler et al
2018, Riahi et al 2021). Fuss et al (2018) find large
variations in estimates due to uncertainties relating
to assumed biomass feedstock and BECCS techno-
logy. Finally, Creutzig et al (2019) and Zhao et al
(2024) both argue that BECCS net CO2 removal effi-
ciency depends mainly on the life-cycle emissions of
the respective feedstock and the efficiency of BECCS
plants.

An option for deriving information on future
BECCS implementation refers to the projections
made in climate change mitigation modelling, which
rely mostly on IAMs (Calvin et al 2021). IAMs
contribute to the assessment of climate policies
and enhance the understanding of the importance
of cost-effectiveness information for new technolo-
gies, amongst other things (Weyant 2017). However,
uncertainties and diverging assumptions across mod-
elling studies give rise to differences in estimates of
BECCS potential (Calvin et al 2021). Daioglou et al
(2020) provide a concise overview of the deploy-
ment of bioenergy technologies in IAMs and dis-
cuss the techno-economic assumptions. In particu-
lar, the increase in capital costs in bioenergy sys-
tems caused by implementing CCS technologies vary
across IAMs, ranging from 2%–242%, and 10%–
315% for electricity and liquid biofuels respectively
(Daioglou et al 2020). Based on sensitivity analyses,
Muratori et al (2020) found that uncertainties in tech-
nical assumptions in particular affect the timing and
rate of deployment of BECCS. IAMs supply projec-
tions of biomass feedstock result from an interplay
of biomass production characteristics and bioenergy
demand, which themselves are influenced by numer-
ous model characteristics (Rose et al 2022). In addi-
tion, IAMs may differ considerably regarding energy
crop yields (Rose et al 2022,Whitaker et al 2018, Slade
et al 2014), which could be exacerbated by uncertain-
ties regarding the impact of climate change (Smith
et al 2019). Land-use competition also affects the
costs and supply of biomass feedstock (Smith et al

2016, Kalt et al 2020), alongside significantly varying
factors (see Rose et al 2022 for an overview), leading
to divergent BECCS projections.

Retrospective reviews of technological forecasts
show that many of these tend to be imprecise and
overconfident (Savage et al 2021). Experts can be sub-
ject to biases that may affect the selection of para-
meters and values used in forward-looking mod-
elling exercises (Bonaccorsi et al 2020). Thus, the
widely divergent and imprecise information in the lit-
erature regarding estimates on biomass use, scalab-
ility, and operating costs of BECCS is an obstacle to
the sound integration of this technology in numer-
ical simulation models (Daioglou et al 2020). This
study aims to determine which parameter values
from the current literature can be reasonably used
for model-based assessments and which parameters
require further research. To address this, we con-
ducted an online survey with international industry,
research, and policy experts active in the field of
BECCS. The objective of the survey was to gain more
precise estimates on the technical aspects of differ-
ent BECCS technologies, focusing on future operat-
ing costs, capture potential, scalability, and biomass
use. This survey provides an expert assessment of
the current literature, including estimates and pro-
jections that have recently been published, to deliver
justifiable parameters to be used in economic mod-
elling. Moreover, we asked for expert opinions on
the future technological development of BECCS to
narrow down the wide range of estimates found in
the literature, thus obtaining more consistent res-
ults to be able to refine economic modelling and
trade-off analyses. While most IAMs present BECCS
model results for 2050 onwards, we also requested
estimates for 2030 and 2040, and for potential learn-
ing rates to allow for dynamic modelling when con-
ducting trade-off analyses using computable general
equilibrium or partial equilibrium models. Finally,
we highlight areas in which experts’ opinions are
still incongruent, call for additional research, and
identify the parameters that should be subject to rig-
orous sensitivity analyses when included in economic
models.

2. Method

For this survey we invited experts with technical
expertise from the value chains of CCS, BECCS,
or bioenergy production. To find suitable experts,
we screened scientific papers, searched for contacts
at universities, scientific institutes, and consultan-
cies, and approached companies conducting or plan-
ning BECCS field trials. The survey was conduc-
ted anonymously, and the initial invitation and two
reminders were sent by email to 145 international
experts in December 2021 with a response rate of
16% (N = 25). Further information on survey design
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Table 1. Overview of survey questions and answer options.

Questions Answer options

Potential of BECCS
- How would you estimate the potential for market development of
BECCS for regions in Europe, Asia, Australia and Oceania,
America, Middle East and Africa until 2040?

Rating scale: very high potential, high
potential, low potential, very low
potential, no potential

- Rank the following location factors according to their importance
for deploying BECCS: closeness to biomass feedstock, closeness to
key market for produced products, closeness to CO2 storage site,
usage of existing energy production infrastructure.

Ranking: 1= very important to 4= least
important

Suitable biomass sources for BECCS
- Please rank the following energy crops according to their
importance as biomass sources for BECCS: roundwood, wood
residues, wood pellets, short-rotation coppice, grasses, sugar crops,
oil crops.

Ranking: 1= very important to 7= least
important

- How likely is it that the production of the following biomass types
(vegetable oils/lignocellulose/grains/ sugarcane) for the biofuel
industry will be coupled with CCS by 2030?

Rating scale: very likely, rather likely,
rather unlikely, very unlikely

- Please rank the following areas of application (liquid biofuel
industry/thermal power generation/pulp and paper industry)
according to their suitability for using short rotation coppice.

Ranking: 1= very suitable to 3= least
suitable

Cost estimations of BECCS
- Please indicate your estimate for the total costs of CCS applied in
the liquid biofuel industry, biomass-fueled thermal power
generation and pulp and paper industry.

Estimates in USD/tCO2

- What cost efficiency gains due to technological progress do you
expect for CCS in the liquid biofuel industry, biomass-fueled
thermal power generation and pulp and paper industry compared
to your estimated current costs until 2030/2040/2050?

Estimates for each industry and each year
in %

- What are the total cost shares of CCS for the liquid biofuel
industry, biomass-fueled thermal power generation and pulp and
paper industry?

Estimates for capital, labor, energy
requirements, external services and
maintenance. Shares must total 100%.

Application of CCS and capture potential
- How likely is it that CCS will be applied in the liquid biofuel
industry, biomass-fueled thermal power generation and pulp and
paper industry?

Rating scale: very likely, rather likely,
rather unlikely, very unlikely

- Which share of the total carbon content of biomass used for the
liquid biofuel industry (corn ethanol, lignocellulosic ethanol,
biodiesel), biomass-fueled thermal power generation and pulp and
paper industry can be captured by CCS?

Estimates in %

- Please indicate your estimate for the global CCS potential of the
liquid biofuel industry, biomass-fueled thermal power generation
and pulp and paper industry by 2030/2040/2050.

Estimates in MtCO2

can be found in the supplementary material (S1).
Despite looking for experts on the global level, coun-
tries of the Global South were underrepresented in
our expert pool. Sovacool (2023) has already high-
lighted how the discourse on carbon removal poten-
tial has been limited mainly to the Global North
without adequately representing countries of the
Global South. After noticing the bias in our first sur-
vey, we conducted an additional survey round invit-
ing further experts only from countries of the Global
South. The survey was sent to 37 additional experts
in October 2023, of which seven experts responded
(for a total of N = 32 and a response rate of 18% for
both surveys). In the additional survey, we specific-
ally aimed to include experts from China, given the

number of recent relevant publications by Chinese
scholars (e.g. Huang et al 2020, Xing et al 2021, Weng
et al 2021). More than half of the emails were not
transmitted and the remaining invitees did not reply.
Thus, regrettably, we were unable to include expertise
from China.

Table 1 provides an overview of the survey ques-
tions presented to the experts. Most answer options
entailed either rating scales (e.g. ‘very suitable’ to
‘very unsuitable’), in order to assess the attitudes and
opinions of the experts, or ranking options (‘1= very
important’ to ‘7= least important’), to classify prefer-
ences (Moors et al 2016, Del Grande and Kaczorowski
2023). For the questions on technical estimates, the
experts could choose from several possible answers of
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Table 2. Number of respondents by disciplinary background and region.

Humanities
and business
administration

Environmental
science

Chemical
engineering

Other
engineering

Other natural
sciences Na

North America 3 1 2 1 1 5
Europe 4 2 2 4 2 11
Rest of the World 2 2 1 1 7 9
Not stated 3 3 3 3 4 7

Total 12 8 8 9 14 32
a Multiple answers on disciplinary background were possible, so that the sum of columns is not equal to N. North American nations

represented in this survey are Canada and the USA; Europe includes the UK, Norway, Sweden, the Netherlands, and Germany; the Rest

of the World includes India, Saudi Arabia, and Brazil, which are further defined as countries in the Global South, and South Korea.

‘Humanities and business administration’ includes economics, business administration, political sciences and psychology; ‘Chemical

engineering’ and ‘Environmental science’ include only chemical engineering and environmental science, respectively; ‘Other

engineering’ includes mechanical engineering, material science, energy engineering, techno-economic system dynamics, and

environmental engineering; ‘Other natural sciences’ includes natural science, agriculture science, and geography.

estimates from the literature. More detailed inform-
ation on each question and its answer option is
provided in the supplementary material (S1).

Table 2 lists the geographical location of primary
employment and the disciplinary background of the
respondents. Further information on the experts,
i.e. their expertise and working experience, are
presented in the supplementary material (S1).

3. Results

3.1. Expectations regarding the implementation of
BECCS
As shown in figure 1, respondents consider the
highest development potential for implementing
BECCS by 2040 in the USA, Canada, and the
European Union (EU), followed by the United
Kingdom (UK), Brazil, and China. At least 40% of the
respondents rate the potential for each of the regions
as high or very high. Whereas the EU, UK, USA
and Canada have the lowest variation in the assess-
ment and the lowest share of respondents answer-
ing ‘do not know,’ the opposite is true for China.
Here, the variance in responses and the share of
respondents choosing the ‘do not know’ option is
among the highest of all regions, thus demonstrat-
ing a high degree of uncertainty. For all regions
besides the European countries, Brazil, the USA, and
Canada,more than 40%of the respondents are uncer-
tain regarding development potential. Development
potential relates only to the establishment of a BECCS
production site because biomassmay be sourced from
other regions, and carbon can be transported to other
regions. However, transport costs for biomass and
carbon may affect the assessment of the regional
development potential for establishing BECCS pro-
duction sites.

Related to this, figure 2 presents the relevance
of distance to biomass production and carbon stor-
age for the location of a BECCS production site, and

shows that there is no consensus on which location
factor plays the most important role for BECCS sites.
A paired t-test confirms that there are no signific-
ant preferences between ‘Usage of existing energy
production facilities’ over ‘Closeness to CO2 storage
sites’ and ‘Closeness to biomass feedstock.’ However,
whereas the importance of ‘Usage of existing energy
production facilities’ and ‘Closeness to biomass feed-
stock’ have the highest ranking for 1 and 3 (not statist-
ically differentiable), ‘Closeness to CO2 storage sites’
has one median for 2. Differences between respond-
ents from the Global North and Global South are
observed in preferences for ‘Closeness to CO2 storage
site’ and ‘Usage of existing energy production facilit-
ies.’ In contrast to the experts from the Global North,
those from countries in the Global South significantly
(p< 0.05) rate ‘Closeness to CO2 storage site’ as more
relevant than ‘Usage of existing energy production
facilities.’ All respondents agree that proximity to con-
sumers of energy or fuels is significantly (p < 0.01)
least relevant.

The importance of the respective cultivated feed-
stocks for BECCS by all respondents is presented in
figure 3. A relatively wide range of sources could
potentially supply biomass for BECCS. Three main
categories can be distinguished worldwide: muni-
cipal and industrial wastes, agricultural, forest and
wood residues (secondary biomass), and bioenergy
crops (primary biomass) (Balaman 2019, Zhang et al
2020, Wu et al 2024). The list of feedstocks is ori-
ented towards the products typically modelled in
partial or general equilibrium models. Apart from
wood residues, secondary biomass was not included
in the survey due to uncertainties in sustainable avail-
ability, feedback links, and prices (Hanssen et al
2020b). Including these feedstocks would require
additional clarification that exceeds the range of
this study, because integrating secondary biomass
use in economic models is a challenge on its
own.
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Figure 1. Region-specific potential for market development of BECCS by 2040 (N = 32). Note: regions are listed in descending
order of mean potential (excl. ‘do not know’).

Figure 2. Importance of different location factors for BECCS deployment (1= very important to 4= least important) (N = 31,
one expert did not answer the question).

The Kruskal–Wallis test (see Kruskal and Allen
Wallis 1952) shows significant differences in the
feedstock assessment between respondents from the
Global North and Global South. In contrast to
respondents from the Global South, experts from
the Global North value wood residues and pellets as
significantly more important than sugar crops and
grains. However, the Wilcoxon signed-rank test (see
Wilcoxon 1945) reveals that all respondents agree

that grasses, roundwood, and oilseeds are signific-
antly assumed to be least important.

Whereas for most feedstocks the area of applica-
tion is obvious, there are some uncertainties consid-
ering short-rotation coppice (SRC), which is ranked
in the group of important feedstocks. We therefore
asked the experts which possible area of applica-
tion for BECCS (thermal power generation, liquid
biofuel, or pulp and paper industry; see Fuss et al
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Figure 3. Importance of different energy crops as a biomass feedstock or product for BECCS (1= very important to 7= least
important) (N = 25, seven experts did not answer the question). Note: feedstocks are ordered by mean of responses, starting with
the lowest mean on the left (excl. ‘do not know’).

Figure 4. Likelihood of BECCS implementation by area of application.

2018, Rosa et al 2021) could be the most suitable
for SRC. Considering all respondents, no significant
ranking was observed; however, taking into account
only respondents from the Global North shows that
SRCs are preferably used in thermal power generation
than in the pulp and paper industry.

3.2. Production technology and costs of BECCS
This section presents estimates for the production
costs of BECCS. As mentioned above, based on Rosa
et al (2021), we identified three areas of applica-
tion for BECCS: thermal power generation, the liquid

biofuel industry, and the pulp and paper industry.
The experts were requested to self-identify their
expertise andwere only asked those questions relating
to these self-identified areas of expertise. The ques-
tions on production technology and costs contained
the same questions for each area of application.

We first asked respondents to assess the likelihood
of BECCS being deployed in each application area
(see figure 4). Around 60% of the respective experts
estimate that BECCS is very likely to be implemen-
ted in thermal power generation and the liquid bio-
fuel industry. The experts from the pulp and paper
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Figure 5. Cost efficiency gains due to technical progress for CCS in biomass-fuelled thermal power generation by 2030, 2040, and
2050 (N = 16).

industry viewed the implementation of BECCS in
this sector as likely as not since they chose the two
answer categories ‘rather likely’ and ‘rather unlikely’
with equal frequency. However, only a minority of
respondents identified themselves as experts in the
liquid biofuel (N= 7) and the pulp and paper (N= 2)
industries. Only some of these experts (N ⩽ 5) were
able to answer the questions on production costs and
development potential, leading to a sample too small
for statistical analyses. We therefore only present res-
ults for BECCS in thermal power generation here. The
results for the liquid biofuel industry are given in the
supplementary material (tables S1–S8).

All experts indicate that BECCS in thermal
power generation will cost 100–200 USD/tCO2,
with two medians at 100–120 USD/tCO2 and 181–
200 USD/tCO2. To obtain more precise estim-
ates within the 100–200 USD/tCO2, we offered
answer intervals in 20 USD increments; however, the
responses show an almost equal distribution across
the intervals. According to two experts, uncertainties
in the cost estimates provided might be related to the
expected large spread in costs between individual pro-
jects and the feasibility of economies of scale given the
chain of logistics. Besides opportunities for econom-
ies of scale, expected technical progress is also import-
ant when assessing future technologies. Figure 5 dis-
plays expected cost efficiency gains by 2030, 2040, and
2050, respectively. More than half the experts expect
less than 10% cost efficiency gains by 2030, half the
experts indicate an efficiency gain of 10%–20% by
2040, and around one-third assume more than 20%
by 2050. These numbers do not differ between experts
from the Global North and Global South.

Figure 6 shows the cost shares of CCS production
technology in biomass-fueled thermal power plants.
Whereas all experts indicate that the technology is
capital-intensive, the estimates for capital share are
most widely spread compared to the other costs. This
includes outliers that have a comparably low capital
intensity. According to one expert, operating costs

depend on the set-up of the supply chain for BECCS,
which is difficult to forecast. The median (mode)
share of costs for CCS are 52.5% (60%) capital, 12.5%
(15%) labour, 20% (20%) energy, and 10% (15% and
10%) external service and maintenance. The aggreg-
ated share of costs do not equal 100% due to the dis-
tribution in responses for each individual cost.

Finally, the experts were asked to (a) state the
share of total carbon content of biomass used for
thermal power generation that can be captured by
CCS, and (b) estimate the global CCS potential of
thermal power generation by 2030 and 2040 (see
tables 3 and 4). Most experts expect carbon leakage in
the CCS process to be less than 10%. Unfortunately,
the distribution of replies does not lead to a more
exact appraisement. For BECCS CO2 capture poten-
tial, most respondents agree on 50–200 MtCO2yr−1

until 2030, while the estimates diverge for 2040.
Most experts assume a capture potential of 500–
1000 MtCO2yr−1 by 2050.

4. Discussion

The results of the survey provide information regard-
ing experts’ expectations of future BECCS deploy-
ment. The experts’ assessments help contextualize the
current literature on BECCS development and the
respective BECCSpotential for the various feedstocks,
geographical location, and sectors of implementa-
tion, and therefore provide crucial information elab-
orating on BECCS sector development in economic
models. Whereas several studies emphasize the sus-
tainability of using grasses for bioenergy production
(Morales et al 2015, Robertson et al 2017, Zhao et
al 2022, Domingues et al 2022), the experts assume
the importance of grass as a feedstock for BECCS as
medium to low. They consider the use of woody bio-
mass and sugar crops as more suitable. Moreover, for
regions other than Europe, Northern America, Brazil,
andChina, regional potential for BECCS is assessed to
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Figure 6. Boxplot of total share of costs for BECCS in thermal power generation (N = 10, six experts did not answer this
question). Note: boxes are bounded by the upper and lower quartiles; the line inside the boxes indicates the median, whiskers
denote the min. and max. within the 1.5 interquartile range, and dots represent outliers.

Table 3. Global CCS potential of thermal power generation by 2030, 2040, and 2050 in MtCO2yr−1 Note: N= 11, five experts answered
‘do not know’; Mt= 106t.

Year\Mt CO 2 <50 50–200 200–350 350–500 500–1000 >1000

2030 2 7 1 1
2040 1 1 3 4 1
2050 2 5 3

Table 4. Share of total carbon content of biomass used in thermal power generation captured by CCS Note: N= 14, two experts
answered ‘do not know’.

Capture rate % <85 85–89 90–94 95–99

Number of experts 1 5 4 4

be low or uncertain in practice, despite the biomass
potential of these areas (Ricci and Selosse 2013).

Although experts from different backgrounds
were invited to participate, most of the experts who
responded to the survey have expertise in BECCS for
thermal power generation. Considering the applic-
ation sectors of BECCS, around two-thirds of the
experts rate the application of BECCS in the liquid
biofuel industry and thermal power generation as
very likely. However, this assessment could have been
influenced by the technical and geographical back-
ground of the respondents. Bonaccorsi et al (2020)
discuss the relevance of expert biases in techno-
logical foresight surveys, suggesting the concurrent
use of various methodologies. Bowling (2005) also
argues that the mode of questionnaire distribution
has a biasing effect on data quality. For this study
we intended to employ the Delphi method, which
is widely used for technology foresight studies and

eliminates some bias (Bolger et al 2011, Ecken et al
2011, Bonaccorsi et al 2020, Belton et al 2022), but
only a few experts participated in the second Delphi
round, with no experts adjusting previous estimates.
Experts’ willingness to participate needs to be con-
sidered when developing more complex and time-
consuming survey approaches.

In accordancewith the technological background,
we mainly obtained costs and deployment estimates
for BECCS in thermal power generation. The experts
estimated the operating costs of BECCS in thermal
power generation at 100–200 USD/tCO2, which is
confirmed by Fuss et al (2018) and is within the range
of other studies (20–340 USD/tCO2) (Abegg et al
2024). Whereas the individual experts provided more
narrow estimates than those in the literature, the
almost equal distribution of expert responses within
this interval reflects the high degree of uncertainty
regarding operating costs.
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Since, to the best of our knowledge, estimates
on the share of costs of BECCS used in thermal
power generation are scarce, the estimates given by
the experts provide an important input for BECCS
economic models that require specific cost-share
information on production factors and intermedi-
ate inputs. The mode share of cost for capital for
CCS thermal power generation with biomass is 60%,
which confirms the assumptions of Morris et al
(2019). However, responses do not indicate a uniform
pattern in the shares of the remaining costs. Once
the already established pilot projects have matured
and more experience has been accumulated, further
research should be conducted to derive more pre-
cise estimates for operating costs and production cost
shares.

In addition to the share of costs, the estimates
obtained on technological progress deliver valuable
information for enhancing the numerical modelling
of future trade-offs, costs efficiency, and competit-
iveness of BECCS. Given the remaining uncertain-
ties, additional sensitivity analyses when investigating
trade-offs could increase the reliability of such assess-
ments (Muratori et al 2020). Considering capture
potential, several experts expect a CO2 capture poten-
tial of 50–200 MtCO2yr−1 for BECCS until 2030 and
assume that technological progress will increase the
cost efficiency of carbon sequestration by 20% by
2050. This is an important assumption when model-
ling the costs of future BECCS production and com-
petitiveness in CO2 markets. The estimated capture
potential for BECCS by 2030 meets projections of
the IEA (IEA 2023b) of 60 MtCO2yr−1, but is below
Consoli (2019) andGrant et al (2021) of up to 800 and
430 MtCO2yr−1, respectively. Experts interviewed by
Abegg et al (2024) estimate lower capture potential
until 2030 with 0.1–35 MtCO2yr−1.

The sample sizes obtained for the liquid biofuel
industry and the pulp and paper industry were too
small for statistical analysis. The pulp and paper sec-
tor was particularly challenging for obtaining inform-
ation. Although previous studies highlight the poten-
tial of BECCS in this sector in Europe, seemingly
little is known about production costs, sequestra-
tion potential, and carbon capture efficiency (Rosa
et al 2021). It is highly recommended, therefore, to
obtain the opinion of practitioners and their assess-
ment of the potential for BECCS, and a further expert
study focusing on the pulp and paper industry is con-
sequently needed.

In this study, we assessed the use of various
biomass feedstocks for BECCS. Since the use of
primary biomass (bioenergy crops) raises sustainab-
ility concerns (Vaughan et al 2018), it seems import-
ant to capture experts’ expectations for their poten-
tial use. There is also the question of whether bio-
mass feedstock for BECCS is locally sourced or
imported. Favero and Masetti (2014) expect large
incentives for the international trade in biomass,

so that important biomass-producing countries (e.g.
Latin and North America, Central Asia, China, and
sub-Saharan Africa) are not necessarily themain con-
sumer countries of BECCS feedstocks (e.g. OECD
countries) (Ricci and Selosse 2013). Finally, second-
ary biomass (municipal and industrial wastes, as well
as agricultural residues) have been discussed for use
in bioenergy production (Kalt et al 2020, Hanssen
et al 2020b) or BECCS (Wu et al 2023, 2024) but were
not included in this survey. Because this is a highly
relevant topic on its own, experts’ opinions on the
feasibility and sustainability of using organic waste,
manure, and agricultural residues for BECCS should
be addressed in a separate study.

Responses regarding suitable feedstocks and pro-
duction factors for BECCS indicate that respondents
from the Global North and Global South might focus
on different sectors. Although the respondents were
not asked to answer the questions with respect to
the geographic area they worked in, it seems they
intuitively did this. Whereas respondents from coun-
tries in the Global South value sugar crops and grains
and the liquid biofuel industry as the most relevant
feedstocks and industry sector for BECCS, respond-
ents from the Global North prefer wood residues as
feedstock, and thermal power generation as the most
promising sector. There are also various assump-
tions on which biomass will be used in prospective
BECCS projects in the Global South (Jaschke and
Biermann 2022). Here, our study contributes to the
research suggesting that established (primary) bio-
mass feedstock such as sugar crops and grains are
expected to be employed, rather than lignocellulosic
feedstock. Further, the experts’ statements show that
the regional availability of biomass presumably plays
a crucial role in the use of BECCS in a region, regard-
less of the existence of international trade.

Using existing energy-production infrastructure
to minimize capital costs is less relevant for respond-
ents from countries in the Global South, who value
proximity to CO2 storage as more important. This
outcome could potentially differ if Chinese experts
had contributed to the survey, since retrofitting coal
power plants for BECCS is likely to be a key ele-
ment in Chinese BECCS development (Xing et al
2021, Fan et al 2023, Sammarchi et al 2024). Experts
from countries in the Global North also prefer to
reduce costs by using existing energy production
infrastructure and reducing the distance to biomass
feedstocks (see figure 2). The range in the experts’ rat-
ings reflects this ongoing debate of centralized versus
decentralized bioenergy production (Guest et al 2011,
Mangoyana and Smith 2011, McGovern and Klenke
2018, Albanito et al 2019, Donnison et al 2020). For
instance, Freer et al (2022) show that, for the UK,
the non-optimal location of BECCS, e.g. by using
pre-existing production sites, can adversely affect
the emission balance through increased supply chain
emissions from biomass and/or carbon transport.
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Distance to markets for energy produced is the least
important factor, likely due to already established
transport modes for energy, e.g. via electricity grids.

Although the survey was distributed globally,
most of the respondents were primarily employed in
Europe. As discussed in Wähling et al (2023), includ-
ing one or more globally networked partners in the
distribution of a survey could achieve a higher global
response rate. The survey results underline the state-
ment by Sovacool (2023) that including scholars and
experts from the Global South in scientific and tech-
nological debates about CDR methods is important.
A large share of the respondents did not feel confid-
ent in assessing the potential of BECCS for countries
in the Global South, although global modelling stud-
ies predict high development potential for BECCS in
the Global South, with Latin America, Asia and sub-
Saharan Africa identified as promising regions (Ricci
and Selosse 2013, Nemet et al 2018, Hanssen et al
2020b, Roe et al 2021, Nabuurs et al 2022), given the
availability of important areas that could provide bio-
mass energy and storage capacities (see, e.g. Ricci and
Selosse 2013, Hanssen et al 2020b).Moreover, the res-
ults show that without approaching more respond-
ents from the Global South in the third survey round,
we would have a strong geographic bias in the results,
marked by an underrating of grains and sugar crops
as biomass feedstock used for BECCS in the biofuel
industry (Tanzer et al 2021). BECCS in bioethanol
production is assumed to have considerable devel-
opment potential in Brazil where biofuel production
and consumption are likely to further increase in
future (Moreira et al 2016, de Andrade Junior et al
2019, IEA 2023, Restrepo-Valencia and Walter 2023).
In contrast, from 2035, the EU plans to only allow
the registration of new vehicles powered by fully CO2-
neutral fuels (see EU 2023). China, however, remains
a blind spot in this research as we were unsuccess-
ful in including Chinese experts in the survey. Given
the important BECCS potential projected for China
(Nemet et al 2018, Xing et al 2021), refining estimates
for China could be decisive for the contributions of
BECCS to climate mitigation efforts.

The forest sector is increasingly being integrated
into various policies that could compete with or
support each other, depending on local conditions
and policy implementation specificities (Nabuurs
et al 2022). Considering the high relevance of wood
residues in BECCS in thermal power generation,
Hanssen et al (2020b), Babin et al (2021), and Rosa
et al (2021) argue that more research on the repres-
entation ofwood residues in IAMs and their increased
use in bioenergy production is needed to clarify
the related impacts on forests and their other eco-
system services. Wood residues are used energetic-
ally and materially (Saal et al 2017, Grebner et al
2022). The increased energy use of wood residuesmay
lead to trade-offs or synergies with other wood uses

depending on local conditions (Cowie et al 2021).
Using wood residues for bioenergy could improve the
financial returns of harvest activities, thereby pro-
moting forestmanagement over other land uses (Dale
et al 2017, Favero et al 2020). At the same time, it may
cause competition in feedstock use (Lauri et al 2017,
Daioglou et al 2020) and increase the removal intens-
ities of forest biomass with possible repercussions for
biodiversity (Costanza et al 2017), carbon sequestra-
tion in different pools (Favero et al 2020, Lan et al
2024), and forest productivity (Cowie et al 2021).
IAMs usually rely on average shares of sustainably
available residues to reflect and limit such trade-offs
with other ecosystem services (Daioglou et al 2016,
Hanssen et al 2020b). Revising their representation by
accounting for local conditions might increase costs
and affect the availability of wood residues (Hanssen
et al 2020b, Babin et al 2021). In return, this could
influence the deployment of BECCS.

Considering these trade-offs, the compatibility of
an increased use in wood residues for BECCS to the
extent projected in climate mitigation scenarios con-
sistent with the Paris Agreement, in policies promot-
ing a circular bioeconomy (e.g. EU 2022), or biod-
iversity protection (e.g. EU 2020), is questionable
(Cowie et al 2021, Funk et al 2022). Given the limited
availability of forest biomass and land, policies must
be science-based and carefully balanced to optimize
the use of feedstock while enhancing or preserving
other ecosystem services (Nabuurs et al 2022) and
addressing equity issues (Reisinger et al 2024). Here,
interdisciplinary modelling studies considering sec-
toral impacts on forest-based ecosystem services and
cross-sectoral substitution effects of raw materials
could deliver valuable insights for coordinating these
policy targets.

SRC was viewed as a promising feedstock for
BECCS by all respondents. Although the literature
underlines the potential of SRC, e.g. growth on mar-
ginal land and reducing competition with other agri-
cultural activities (McElroy andDawson 1986, Spiegel
et al 2018, Fernández et al 2020), investment costs,
economic risks, and farmer inertia lead to a slow
adoption of SRC cultivation (Alexander et al 2014,
Matthias and Oliver 2014, Pereira and Costa 2017,
Spiegel et al 2018, Ranacher et al 2021), so that real-
izing its potential remains uncertain. In line with the
respondents, also the literature mainly highlights the
potential of SRC in electricity and heat production
(Alexander et al 2014, Spiegel et al 2018, Fernández
et al 2020)

5. Conclusions

This study aims to obtain predictions relating to
BECCS development and technical estimates, includ-
ing operating costs, capture potential, scalability, and
biomass use, to provide more consistent information
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for economic modelling and trade-off analysis. The
survey conducted provides an expert evaluation of
estimates for BECCS production stated in the current
literature and derives assumptions that can be used
in economic models (e.g. CGE models) for future
regional and global BECCS production and the feed-
back effects on the industrial and agricultural sec-
tors, trade, welfare, CO2 pricing, and GHG emis-
sions. Whereas the survey reflects to some extent the
degree of uncertainty for the long-term development
of BECCS, it provides valuable information for the
prospects over the next 20 years and enables trade-
off analyses for the first phases of BECCS deploy-
ment. Over time, as new technologies that can be
used in BECCS production processes enter the mar-
ket, new technological forecast studies need to be con-
ducted to stay up to date. Gaps remain, especially con-
cerning (a) specific regions and countries, including,
e.g. China and other areas in the Global South, (b)
the relevance of specific biomass sources and sectors,
e.g. the use of secondary biomass, and (c) specific
components of the applied technology, e.g. the oper-
ating cost of facilities.

In terms of the use of biomass and applica-
tion area for BECCS, we find significant differences
depending on the geographical background of the
respondents. The study affirms that BECCS technolo-
gies using secondary wood biomass in thermal power
generation will play a major role in the Global North,
while high relevance is given to BECCS using sugar
crops and grains in the liquid biofuel industry in
the Global South. Even though the pulp and paper
industry is considered a key sector for BECCS in the
literature, we were unable to collect additional empir-
ical information on BECCS in this sector. Therefore,
additional expert studies concentrating on BECCS in
the pulp and paper industry are recommended.
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