Abstract
We present an analysis of the role that the quark-gluon plasma (QGP) resolution length, the minimal distance by which two nearby colored charges in a jet must be separated such that they engage with the plasma independently, plays in understanding the modification of jet substructure due to interaction with QGP. The shorter the resolution length of QGP, the better its resolving power. We identify a set of observables that are sen- sitive to whether jets are quenched as if they are single energetic colored objects or whether the medium that quenches them has the ability to resolve the internal structure of the jet. Using the hybrid strong/weak coupling model, we find that although the ungroomed jet mass is not suitable for this purpose (because it is more sensitive to effects coming from particles reconstructed as a part of a jet that originate from the wake that the jet leaves in the plasma), groomed observables such as the number of Soft Drop splittings nSD, the momentum sharing fraction zg, or the groomed jet mass are particularly well-suited to discriminate the degree to which the QGP medium resolves substructure within a jet. In order to find the optimal grooming strategy, we explore different cuts in the Lund plane that allow for a clear identification of the regions of Soft Drop phase space that enhance the differences in the jet substructure between jets in vacuum and quenched jets. Comparison with present data seems to disfavor an “infinite resolution length”, which is to say the hypothesis that the medium interacts with the jet as if it were a single energetic colored object. Our analysis indicates that as the precision of experimental measurements of jet substructure observables and the control over uncertainties in their calculation improves, it will become possible to use comparisons like this to constrain the value of the resolution length of QGP, in addition to seeing how the substructure of jets is modified via their passage through it.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J.C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].
A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].
J. Casalderrey-Solana, E.V. Shuryak and D. Teaney, Conical flow induced by quenched QCD jets, J. Phys. Conf. Ser.27 (2005) 22 [hep-ph/0411315] [INSPIRE].
R.B. Neufeld, B. Müller and J. Ruppert, Sonic Mach cones induced by fast partons in a perturbative quark-gluon plasma, Phys. Rev.C 78 (2008) 041901 [arXiv:0802.2254] [INSPIRE].
F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum broadening in weakly coupled quark-gluon plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP05 (2013) 031 [arXiv:1211.1922] [INSPIRE].
A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett.B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].
F. D’Eramo, K. Rajagopal and Y. Yin, Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid, JHEP01 (2019) 172 [arXiv:1808.03250] [INSPIRE].
J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J.C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].
K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett.116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].
J. Brewer et al., Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma, JHEP02 (2018) 015 [arXiv:1710.03237] [INSPIRE].
J. Casalderrey-Solana et al., Angular structure of jet quenching within a hybrid strong/weak coupling model, JHEP03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys.A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].
G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys.E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].
R. Baier et al., Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys.B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett.63 (1996) 952 [hep-ph/9607440] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys.B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys.B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys.B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].
X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys.A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP06 (2002) 030 [hep-ph/0204343] [INSPIRE].
C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev.D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].
S. Jeon and G.D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev.C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].
P. Jacobs and X.-N. Wang, Matter in extremis: ultrarelativistic nuclear collisions at RHIC, Prog. Part. Nucl. Phys.54 (2005) 443 [hep-ph/0405125] [INSPIRE].
I.P. Lokhtin and A.M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J.C 45 (2006) 211 [hep-ph/0506189] [INSPIRE].
J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon.B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].
K. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo implementation of the non-abelian Landau-Pomerantschuk-Migdal effect, Phys. Rev. Lett.103 (2009) 152302 [arXiv:0812.3888] [INSPIRE].
K. Zapp et al., A Monte Carlo model for ‘jet quenching’, Eur. Phys. J.C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].
I.P. Lokhtin et al., Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs), Comput. Phys. Commun.180 (2009) 779 [arXiv:0809.2708] [INSPIRE].
N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J.C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].
B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev.C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].
A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys.66 (2011) 41 [arXiv:1002.2206] [INSPIRE].
J. Casalderrey-Solana, J.G. Milhano and U.A. Wiedemann, Jet quenching via jet collimation, J. Phys.G 38 (2011) 035006 [arXiv:1012.0745] [INSPIRE].
X.-N. Wang and Y. Zhu, Medium modification of γ-jets in high-energy heavy-ion collisions, Phys. Rev. Lett.111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].
K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J.C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys.E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].
J.-P. Blaizot and Y. Mehtar-Tani, Jet structure in heavy ion collisions, Int. J. Mod. Phys.E 24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].
Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, JHEP05 (2016) 023 [arXiv:1509.07257] [INSPIRE].
JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev.C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].
F. Arleo, Quenching of hadron spectra in heavy ion collisions at the LHC, Phys. Rev. Lett.119 (2017) 062302 [arXiv:1703.10852] [INSPIRE].
J. Casalderrey-Solana et al., A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP10 (2014) 019 [Erratum ibid.09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
J. Casalderrey-Solana et al., Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching, JHEP03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
Z. Hulcher, D. Pablos and K. Rajagopal, Resolution effects in the hybrid strong/weak coupling model, JHEP03 (2018) 010 [arXiv:1707.05245] [INSPIRE].
J. Casalderrey-Solana et al., Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev.C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].
P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett.120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP04 (2009) 065 [arXiv:0902.4154] [INSPIRE].
J. Casalderrey-Solana, J.G. Milhano and P. Quiroga-Arias, Out of medium fragmentation from long-lived jet showers, Phys. Lett.7B 10 (2012) 175 [arXiv:1111.0310] [INSPIRE].
C. Shen et al., The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun.199 (2016) 61 [arXiv:1409.8164] [INSPIRE].
P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev.D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].
P.M. Chesler and K. Rajagopal, On the evolution of jet energy and opening angle in strongly coupled plasma, JHEP05 (2016) 098 [arXiv:1511.07567] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett.106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett.B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].
J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP08 (2011) 015 [arXiv:1105.1760] [INSPIRE].
J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, New picture of jet quenching dictated by color coherence, Phys. Lett.B 725 (2013) 357 [arXiv:1210.7765] [INSPIRE].
Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil, Phys. Rev.C 91 (2015) 054908 [Erratum ibid.C 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions, Phys. Lett.B 777 (2018) 86 [arXiv:1704.03648] [INSPIRE].
Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev.C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].
Y. He et al., Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions, Phys. Rev.C 99 (2019) 054911 [arXiv:1809.02525] [INSPIRE].
C. Park, S. Jeon and C. Gale, Jet modification with medium recoil in quark-gluon plasma, Nucl. Phys.A 982 (2019) 643 [arXiv:1807.06550] [INSPIRE].
N.-B. Chang, Y. Tachibana and G.-Y. Qin, Nuclear modification of jet shape for inclusive jets and γ-jets at the LHC energies, arXiv:1906.09562 [INSPIRE].
Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression of jets in QCD media, Phys. Rev.D 98 (2018) 051501 [arXiv:1707.07361] [INSPIRE].
ALICE collaboration, First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC, Phys. Lett.B 776 (2018) 249 [arXiv:1702.00804] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-ktjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
CMS collaboration, Modification of jet shapes in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett.B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
CMS collaboration, Measurement of the splitting function in pp and Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett.120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, JHEP10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, arXiv:1905.02512 [INSPIRE].
STAR collaboration, Measurement of the shared momentum fraction zgusing jet reconstruction in p+p and Au+Au collisions with STAR, Nucl. Part. Phys. Proc.289-290 (2017) 137 [arXiv:1703.10933] [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP08 (1997) 001 [hep-ph/9707323] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, inthe proceedings of the Monte Carlo generators for HERA physics, April 27–30, Hamburg, Germany (1998), hep-ph/9907280 [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev.D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
F.A. Dreyer, G.P. Salam and G. Soyez, The Lund jet plane, JHEP12 (2018) 064 [arXiv:1807.04758] [INSPIRE].
H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, arXiv:1808.03689 [INSPIRE].
C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir meets Poisson: improved quark/gluon discrimination with counting observables, JHEP09 (2017) 083 [arXiv:1704.06266] [INSPIRE].
Y.-T. Chien and I. Vitev, Probing the hardest branching within jets in heavy-ion collisions, Phys. Rev. Lett.119 (2017) 112301 [arXiv:1608.07283] [INSPIRE].
N.-B. Chang, S. Cao and G.-Y. Qin, Probing medium-induced jet splitting and energy loss in heavy-ion collisions, Phys. Lett.B 781 (2018) 423 [arXiv:1707.03767] [INSPIRE].
Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung, JHEP04 (2017) 125 [arXiv:1610.08930] [INSPIRE].
J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic branching and wave turbulence, Phys. Rev. Lett.111 (2013) 052001 [arXiv:1301.6102] [INSPIRE].
K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP03 (2013) 080 [arXiv:1212.1599] [INSPIRE].
R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
G. Milhano, U.A. Wiedemann and K.C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett.B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].
P. Caucal, E. Iancu and G. Soyez, Deciphering the zgdistribution in ultrarelativistic heavy ion collisions, JHEP10 (2019) 273 [arXiv:1907.04866] [INSPIRE].
R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge Monographs in Particle Physics Nuclear Phyics and Cosmology volume 8, Cambridge U.K. (1996).
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J.C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1907.11248
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Casalderrey-Solana, J., Milhano, G., Pablos, D. et al. Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma. J high energy phys 2020, 44 (2020). https://doi.org/10.1007/JHEP01(2020)044
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)044