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ABSTRACT 

Many scientific, engineering and economic problems involve the optimization of a 

set of parameters. The Particle Swarm Optimization (PSO) is one of the new techniques 

that have been empirically shown to perform well. The PSO algorithm is a population-

based search algorithm based on simulating the social behavior of birds within a flock. 

Large-scale engineering optimization problems impose large computational demands, 

resulting in long solution times even on modern high-end processors. To obtain 

enhanced computational throughput and global search capability parallel algorithms and 

parallel architectures have drawn lots of attention. Parallelization of PSO has proved to 

enhance computational throughput and global search capability 

In this paper, we detail the parallelization of an increasingly popular global search 

method, the PSO algorithm using MPJ Express. Both synchronous and asynchronous 

parallel implementations are investigated. The parallel PSO algorithm’s robustness and 

efficiency are demonstrated by using four standard benchmark functions Alpine, 

Rosenbrock, Rastrigin and Schaffer.  
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1. INTRODUCTION 

Since the 19th century, evolution in optimization theory has been noticed. First in 

this field was Linear Programming, invented around 1940 [1]. Thereafter, scientists kept 

inventing new ways to optimize linear and non-linear problems. It is the arrival of 

Genetic Algorithms, which set the scientific wheel of improvement in motion. In the 

1960s and early ‘70s artificial evolution became a widely known optimization method 

and till now work is going on to improve the existing once. The Particle Swarm 

Optimization (PSO) algorithm is a recent addition to this list. It is a population based 

stochastic optimization technique developed by Dr. Eberhart and Dr. Kennedy               

[2]. PSO has been successfully applied to large-scale problems in several engineering 

disciplines. Being a population based approach, it is readily parallelizable. 

1.1.  Particle Swarm Optimization 

The initial intent of the particle swarm concept was to graphically simulate the 

unpredictable choreography of a bird flock with the aim of discovering patterns that 

govern the ability of birds to fly synchronously and to suddenly change direction with a 

regrouping to make an optimal formation. From this initial objective, the concept evolved 

into a simple and efficient optimization algorithm. In PSO individuals are referred to as 

particles. Changes to the position of particles within the search space are based on the 

social-psychological tendency of individuals to emulate the success of other individuals. 
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The changes to a particle within the swarm are therefore influenced by the experience, 

or knowledge, of its neighbors. The search behavior of a particle is thus affected by that 

of the other particles within the swarm [2]. 

1.1.1.  Basic PSO 

A PSO algorithm maintains a swarm of particles, where each particle represents 

a potential solution. A swarm is similar to a population, while a particle is similar to an 

individual. In simple terms, the particles are “flown” through a multidimensional search 

space, where the position of each particle is adjusted according to its own experience 

and that of its neighbors [2]. Initially, particles are distributed throughout the design 

space and their positions and velocities are modified based on the knowledge of the 

best solution found thus far by each particle in the ‘swarm’. Attraction towards the best-

found solution occurs stochastically and uses dynamically-adjusted particle velocities. 

Let i

kx denote the position of particle i in the search space at time step k; where k 

denotes discrete time steps. The position of the particle is changed by adding a velocity, 

i

1kv  , to the current position:  

                                 
i

k

i

1k xx  + i

1kv          (1) 

 It is the velocity vector that drives the optimization process, and reflects both the 

experiential knowledge of the particle and socially exchanged information from the 

particle’s neighborhood [2]. The experiential knowledge of a particle is generally 
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referred to as the cognitive component. The socially exchanged information is referred 

to as the social component of the velocity equation. Originally, two PSO algorithms have 

been developed which differ in the size of their neighborhoods. These two algorithms 

are the global best and local best PSO. 

1.1.2.  Global Best PSO  

For the global best PSO, or gbest PSO, the neighborhood for each particle is the 

entire swarm. The social network employed by the gbest PSO reflects the star topology. 

For the star neighborhood topology, the social component of the particle velocity update 

reflects information obtained from all the particles in the swarm. In this case, the social 

information is the best position found by the swarm, referred to as g

kp . 

For gbest PSO, the velocity of particle i is calculated as 

              ]  x- [prc + ] x- [prc + v w= v i

k

g

k22

i

k

i

k11

i

kk

i

1k                                            (2)
 

Here, subscript k indicates a (unit) pseudo-time increment, i

kp represents the best 

ever position of particle i at time k and g

kp  represents the global best position in the 

swarm at time k. c1 and c2 are positive acceleration constants used to scale the 

contribution of the cognitive and social components respectively and r1, r2 are random 

values in the range [0, 1], sampled from a uniform distribution. These random values 

introduce a stochastic element to the algorithm. The notation kw  denotes the inertia of 
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the particle. The personal best position i

kp  associated with particle i is the best position 

the particle has visited since the first time step. The pseudo code of the gbest PSO is 

shown below: 

1. Create and initialize an nx-dimensional swarm; 
2. repeat 
3.      for each particle i = 1, . . . , n //set the personal best position 

4.             if i

kp < i

bestp  then 

5.                   i

bestp  = i

kp   

6.             end         //set the global best position  

7.             if i

kp < g

bestp  then 

8.                   g

bestp  = i

kp   

9.             end 
10.       end 
11.       for each particle i = 1, . . . , n do 
12.           update velocity  
13.           update position  
14.        end 
15. until stopping condition is true 

 

1.1.3.  Local Best PSO 

The local best PSO, or lbest PSO, uses a ring social network topology where 

smaller neighborhoods are defined for each particle. The social component reflects 

information exchanged within the neighborhood of the particle, reflecting local 

knowledge of the environment [3]. With reference to the velocity equation, the social 

contribution to particle velocity is proportional to the distance between a particle and the 

best position found by the neighborhood of particles. The velocity is calculated as: 

              ]  x- [prc + ] x- [prc + v w= v i

k

l

k22

i

k

i

k11

i

kk

i

1k                 (3) 
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where l

kp  is the best position found by the neighborhood of particle i at time k. The 

pseudo code of the lbest PSO is shown below. 

1. Create and initialize an nx-dimensional swarm; 
2. repeat 
3.    for each particle i = 1, . . . , n do //set the personal best position 

4.         if i

kp < i

bestp  then 

5. 
            

i

bestp  = i

kp   

6.         end   //set the neighborhood best position 

7.        if i

kp < l

bestp  then 

8. 
          

l

bestp  = i

kp   

9.       end 
10.    end 
11.    for each particle i = 1, . . . , n do 
12.         update the velocity  
13.         update the position  
14.    end 
15.   until stopping condition is true; 
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Start

Initialize Algorithm constants   
c1 and c2,

Set k=1,i=1

Randomly initialize all particle positions

Randomly initialize all particle velocities

Evaluate the objective function f(x) for particle i

Update particle i and swarm best values

Update velocity for particle i

Update position for paticle i

Stopping criterion satisfied?

Output 
results

Stop

Set i=1, increment k

i > total number of 
particles

Increment i

no

yes

yes

no

Figure 1.1: Serial implementation of PSO algorithm 
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2. RELATED WORK 

The task of optimization involves determining the measure of optimality, subject 

to certain constraints. This task of optimization is of great importance to many 

professions, since everyone is interested in finding the optimal value subject to 

constraints, e.g. cost and utilization. Scientists require optimization techniques when 

performing model fitting. Economists and operation researchers have to consider the 

optimal allocation of resources. Thus, optimization is of atmost importance in every field. 

The term optimization refers to either minimization or maximization. Maximization of the 

function f is equivalent to minimizing the function −f, therefore the terms minimization, 

maximization and optimization are interchangeable. Of all the available optimization 

methods, PSO is very helpful when the search space is too large to search 

exhaustively. Moreover, PSO is a stochastic optimization method often used to solve 

complex engineering problems such as structural and biomechanical optimizations [2]. 

The performance of serial PSO is affected when complex engineering optimizations are 

considered; this motivated the development of parallel optimization. Parallel 

optimization can either be synchronous or asynchronous depending on the particle 

update factor. Parallel optimization algorithms employing synchronous and 

asynchronous approaches are a potential solution to the load imbalance problem [2].  

Several authors have performed analysis to prove the performance of distributed 

PSO. Byung and Alan have performed analysis to determine the parallel performance 
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[5]. They evaluated four analytical test problems and a biomechanical test problem. 

They have calculated the parallel performance of test cases on both homogeneous and 

heterogeneous Linux clusters. 

In the asynchronous case they considered one of the processors as master and 

the remaining as slaves. The master processor is used to initialize all the optimization 

parameters and to update particle positions. The parallel asynchronous case uses First-

In-First-Out (FIFO) to evaluate particles. Communication between master and slave 

processors is achieved using a point-to-point communication scheme implemented with 

the Message Passing Interface [5].  

The analytical test problems that are evaluated are Schaffer, Corona, Griewank 

and simple 2-dimensional function. Every test problem has several local maxima and 

global maxima. On an average they used 15000 function evaluations and 0.001 as 

acceptable error. For Corona they considered design variables of 4, 8, 16. For Griewank 

they had considered 32 and 64 design variables [5]. For the Biomechanical test case 

they want to determine patient-specific parameter values that permit a three-

dimensional kinematic ankle joint model to reproduce experimental movement data as 

closely as possible.  

The evaluation metrics such as performance, robustness and parallel efficiency 

of PAPSO (Parallel Asynchronous PSO) is compared to that of PSPSO (Parallel 

Synchronous PSO). They considered a homogeneous Linux cluster of 20 identical 
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machines where each machine possessed a 1.33 GHz Athlon processor and 256MB of 

memory. The second was a group of 20 heterogeneous machines chosen from several 

Linux clusters. Convergence speed for both algorithms was statistically the same on all 

problems except Schaffer, where PSPSO performed slightly better. PAPSO parallel 

efficiency was worse than that of PSPSO for small numbers of processors but generally 

better for large numbers of processors [2].  For the biomechanical test problem, the total 

execution time decreased and the speedup increased for both algorithms as the number 

of processors increased. Communication overhead for the PAPSO algorithm was 

smaller than for the PSPSO algorithm. Finally, they concluded saying the PAPSO 

algorithm exhibits good parallel performance for large numbers of processors as well as 

good optimization robustness and performance.  
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3. APPROACHES 

3.1.  Message Passing Java 

The Message Passing Interface (MPI) was introduced in June 1994 as a 

standard message passing API for parallel scientific computing [6]. Message Passing 

Java (MPJ) is being developed as a middleware between the user program and 

communications protocols [7]. MPJ Express is a message-passing library that can be 

used by application developers to execute their parallel Java applications on compute 

clusters or network of computers. Compute clusters is a popular parallel platform, which 

is extensively used by the High Performance Computing (HPC) community for large-

scale computational work. MPJ Express is essentially a middleware that supports 

communication between individual processors of clusters. The programming model 

followed by MPJ Express is Single Program Multiple Data (SPMD). Although MPJ 

Express is designed for distributed memory machines like network of computers or 

clusters, it is possible to efficiently execute parallel user applications on desktops or 

laptops that contain shared memory or multicore processors. The MPJ Express 

software can be configured in two ways. The first configuration, known as the Multicore 

Configuration, is used to execute MPJ Express user programs on laptops and desktops. 

The second configuration, known as the Cluster Configuration, is used to execute MPJ 

Express user programs on clusters or network of computers. 
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MPJ provides initialization and finalization methods for the network connections. 

JavaComm and GridComm hold Java sockets and GridTcp sockets, respectively. These 

two classes do not provide any major functionality other than maintaining the input and 

output streams of their respective sockets. Communicator is the class that provides the 

primary communications capabilities of MPJ. Communicator contains the major 

functions like Send(), Recv(), Barrier(). MPJMessage is a wrapper around each 

message received by the Recv() functions. It holds the message’s status and the actual 

message itself. The various Datatype subclasses provide serialization and 

deserialization of their respective types for Communicator. 

 

3.1.1.  Configurations 

The MPJ Express software can be configured to work on clusters (network of 

computers) or on laptops/desktops (multicore processors). 

 

3.1.2.  Multicore Configuration 

The multicore configuration is meant for users who plan to write and execute 

parallel Java applications using MPJ Express on their desktops or laptops—typically 

such hardware contains shared memory and multicore processors. In this configuration, 

users can write their message passing parallel application using MPJ Express and it will 

be ported automatically on multicore processors. Users can first develop applications on 

their laptops and desktops using multicore configuration, and then take the same code 
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to distributed memory platforms including clusters. It might be noted that user 

applications stay the same when executing the code in multicore or cluster 

configuration. Under the hoods, the MPJ Express library starts a single thread to 

represent MPI process. The multicore communication device uses efficient inter-thread 

mechanism. 

 
 

Memory

CPU

CPU

CPU

CPU

 
 

Figure 3.1: MPJExpress multicore configuration 

3.1.3.  Cluster Configuration 

The cluster configuration is meant for users who plan to execute their parallel 

Java applications on distributed memory platforms including clusters or network of 
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computers. Application developers can opt to use either of the two communication 

devices in the cluster configuration: the communication devices including Java New I/O 

(NIO) device or Myrinet device. 

The Java NIO device driver (also known as niodev) can be used to execute MPJ 

Express programs on clusters or network of computers. The niodev device driver uses 

Ethernet-based interconnect for message passing. On the other hand, many clusters 

today are equipped with high-performance low-latency networks like Myrinet. MPJ 

Express also provides a communication device for message passing using Myrinet 

interconnect—this device is known as mxdev and is implemented using the Myrinet 

eXpress (MX) library by Myricom [3]. These communication drivers can be selected 

using command line switches. As an example, consider a cluster or network of 

computers shown in Figure 3.3 that shows eight compute nodes connected to each 

other via private interconnect. The MPJ Express cluster configuration will start one MPJ 

Express process per node, which communicates to each other using message passing. 
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Figure 3.2: MPJExpress cluster configuration 

3.2.  MPJ Methods 

3.2.1.  MPJ.Init (String[ ] args) for Java 

The Init() function establishes all to all connections using Java sockets. First, 

MPJ receives initialization commands such as rank, slave, master node, number of 

processes, etc. Such arguments are mainly used to identify each process [3]. On the 

master process, Init() creates a ServerSocket and accepts connections from slaves until 

the number of connections equals the number of processors. Following each 
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connection, the master process reads the connecting process’s rank and identifies each 

connection with that rank, storing the rank-connection information in JavaComm. Then, 

the master broadcasts the ranks and their corresponding hostname to all slave 

processes. At this point, the master process’s Init() is complete. 

 

For the slave processes, they first connect to the master process, send their 

rank, and then receive a table with other slaves’ ranks and their hostnames. Once such 

information is exchanged with the master, the slaves will connect with each other. First, 

all of the slaves except for the highest-ranking slave will create Server Sockets. 

Afterwards, the lowest ranking slave will accept connections from higher-ranking slaves. 

The lowest ranking slave will then receive a rank from the connection it received and 

update its rank connection table (much like the master). When the lowest ranking slave 

has received all connections, its Init() is complete. The second lowest ranking slave 

then accepts connections from the higher ranking slaves, and the process repeats until 

the second highest ranking slave has accepted a connection from the highest ranking 

slave, indicating all slaves are connected to all other slaves. At this point, the Init() 

process is complete for Java sockets. 
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MPI include file

Declarations,prototypes

Serial  code

Initialize MPI environment
(Parallel code begins)

Message passing calls

Terminate MPI environment
(Parallel code ends)

Serial code

Program ends

Program Begins

 

Figure 3.3: MPJ flow chart 
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3.2.2.  Communicator.Send() 

Communicator.Send(Object[ ] buf, int offset, int count, Datatype type, int dest, int 

tag) 

Buf   send buffer array 

Offset   initial offset in send buffer 

Count  number of items to send 

Datatype  datatype of each item in send buffer 

Dest  rank of destination 

Tag   message tag 

The Ssend() function takes in various parameters describing the datatype, the 

send count, the send buffer, the offset, the destination rank, and the message tag. The 

send buffer must be an array. The datatype is actually a Datatype object from MPJ. 

Before sending a message, the Ssend() function first creates a header for the message, 

including the message’s type, size in bytes, count, and the tag. Ssend() then serializes 

the message using the Datatype specified in the function parameters, and writes the 

header along with the serialized message to the output stream corresponding to the 

destination rank. 

3.2.3.  Communicator.Recv() 

Communicator.Recv(Object[ ] buf, int offset, int  count, Datatype type, int src, int 

tag) 
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Buf   receive buffer array 

Offset   initial offset in receive buffer 

Count  number of items in receive buffer 

Datatype  datatype of each item in receive buffer 

Source  rank of source 

Tag   message tag 

When a user calls the Recv() function, Recv will perform a blocking read 

operation on the input stream corresponding to the source rank. First, Recv() reads 16 

bytes of the message header and then reads the rest of the body with respect to the 

size defined in the header. Then, Recv() will deserialize the message using the correct 

Datatype. The completed message is stored in an MPJMessage, which is then checked 

against the parameters of Recv(). If the tag or datatype does not match, the message is 

stored in a message queue, and Recv() will read again for a new message. If 

MPJ.ANY_SOURCE is specified, Recv() will poll each socket and read from the first 

socket with available data, and then check the tag. If MPJ.ANY_TAG is specified, then 

Recv() will return the message if the data type matches the parameter. Recv() will crash 

if the count parameter is smaller than the actual message’s count. 

3.2.4.  Barrier() 

Barrier() is simple in that rank 0 will receive a message from all other ranks, and 

broadcast another message once it has received from all other ranks. Thus, each 

process is blocked until all processes have called Barrier(). 
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3.2.5.  Isend() 

 
Isend() spawns a thread to send a message, like send(). It is generally used for 

asynchronous communication, i.e non-blocking communication. 

public Request Isend(Object buf, int offset, int count, Datatype type, int dest, int 

tag) 

Buf   send buffer array 

Offset   initial offset in send buffer 

Count  number of items to send 

Datatype  datatype of each item in send buffer 

Dest  rank of destination 

Tag   message tag 

3.2.6.  Irecv()  

Irecv() spawns a thread to receive a message, like recv(). It is generally used for 

asynchronous communication. 

public Request IRecv(Object buf, int offset, int count, Datatype type, int src, int 

tag) 

Buf   receive buffer array 

Offset   initial offset in receive buffer 

Count  number if items in receive buffer 

Datatype  datatype of each item in receive buffer 
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Source  rank of source 

Tag   message tag 

3.3. Synchronous and Asynchronous 

Presently, day large-scale engineering optimization problems impose large 

computational demands, resulting in high-end processors. To obtain enhanced 

computational throughput and global search capability parallel algorithms and parallel 

architectures have drawn lots of attentions. PSO, like most stochastic optimization 

algorithms, can be easily implemented in a parallel distributed computing environment. 

The simplest and most common distributed PSO algorithms utilize a master-slave 

architecture, where a single controlling (master) processor runs only the optimization 

algorithm, and utilizes on external (slave) processors to compute potential solutions. 

Parallelization should have no adverse effect on algorithm operation. 

Calculations sensitive to program order should appear to have occurred in exactly the 

same order as in the original formulation. In the serial PSO algorithm, the fitness 

evaluations form the bulk of the computational effort for the optimization and can be 

performed independently. For the parallel implementation, we therefore chose to 

decompose the algorithm to perform the fitness evaluations concurrently on a parallel 

machine. The pseudo-code for a multiple iterations of sequential synchronous PSO 

algorithm is shown below: 
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1. Initialize optimization 
2. Initialize algorithm constants 
3. Randomly initialize all particle positions and velocities 
4. Perform optimization 
5.    For k=1 number of iteration 
6.            For i = 1, number of particles 
7.                  Evaluate fitness function f(x) 
8.             End 
9.            Check convergence 

10.            Update g

bestp , i

bestp , and particle positions and velocities i

kx , i

k v  

11.      End 
12. Report Results 

 

In a parallel computational environment, the main performance bottleneck is the 

communication latency between processors. This is especially true for clusters of 

computers where the use of high performance network interfaces are limited due to their 

high cost. 
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Initialize Algorithm constants   
c1 and c2,

Set k=1,i=1

Randomly initialize all particle positions

Randomly initialize all particle velocities

Update particle i and swarm best values

Update velocity for particle i

Update position for particle i

Stopping criterion satisfied?

Output 
results

Stop

Increment iteration

no

yes

F(x ) F(x ) F(x ) F(x )

Barrier synchronize

 

Figure 3.4: Parallel implementation of PSO algorithm  
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For the parallel implementation algorithm, synchronization is required to ensure 

that all of the particle fitness evaluations have been completed and results reported 

before the velocity and position calculations can be executed [1]. This is done by using 

a global synchronization or barrier function in the MPI communication library, which 

temporarily stops the coordinating node from proceeding with the next swarm iteration 

until all of the computational nodes have responded with a fitness value. This, however 

implies that the time required for a single parallel swarm fitness evaluation will be 

dictated by the slowest fitness evaluation in the swarm [1]. The majority of parallel 

particle swarm implementations are based on the synchronous model, where the 

optimization algorithm waits at the end of every iteration until all particle solutions have 

been returned before updating particle velocities and positions (known as a Parallel 

Synchronous Particle Swarm Optimization algorithm, or PSPSO). This approach can 

work quite well provided a number of conditions are met: 

1) The optimization algorithm has uninterrupted access to a homogeneous computer 

cluster. 

2) The fitness function can be evaluated in roughly constant time, regardless of the 

input parameters. 

3) The number of particles in the swarm can be evenly divided by the number of 

available nodes. 
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However, it is often difficult (or even impossible) to obtain these ideal operating 

conditions, and when this happens the parallel efficiency of the algorithm drops. This 

drop in parallel efficiency can be mitigated somewhat through the use of asynchronous 

updates. In a Parallel Asynchronous Particle Swarm Optimization (PAPSO) algorithm, 

the algorithm does not wait for all solutions to be returned before updating the velocity 

and position of solved particles and re-evaluating them. These algorithms can display 

varying degrees of synchronous behavior, ranging from 1% synchronous (or pure 

asynchronous) where particles are updated and submitted for re-evaluation as soon as 

they are solved, to 100%, at which point the algorithm becomes fully synchronous once 

more, waiting for all particles to be returned before updates are carried out [5]. Parallel 

optimization algorithms employing an asynchronous approach are a potential solution to 

the load imbalance problem. The pseudo-code for multiple iterations of the sequential 

synchronous PSO algorithm is shown below: 

1. Initialize optimization 
2. Initialize algorithm constants 
3. Randomly initialize all particle positions and velocities 
4. Perform optimization 
5.     For k = 1, number of iterations 
6.           For i = 1, number of particles 
7.           Evaluate fitness function f(x) 
8.           End 
9.     Check convergence 

10.     Update g

bestp , i

bestp , and particle positions and velocities i

kx , i

k v  

11.     End 
12. Report Results 
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Figure 3.5: Block diagrams: (a) parallel asynchronous; (b) parallel synchronous PSO 
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4. NEIGHBORHOOD STRUCTURES 

The feature that drives PSO is social interaction. Particles within the swarm learn 

from each other and, on the basis of the knowledge obtained, move to become more 

similar to their “better” neighbors. The social structure for PSO is determined by the 

formation of overlapping neighborhoods, where particles within a neighborhood 

influence one another [7]. This is in analogy with observations of animal behavior, 

where an organism is most likely to be influenced by others in its neighborhood, and 

where organisms that are more successful will have a greater influence on members of 

the neighborhood than the less successful ones. Within the PSO, particles in the same 

neighborhood communicate with one another by exchanging information about the 

success of each particle in that neighborhood. All particles then move towards some 

quantification of what is believed to be a better position. The performance of the PSO 

depends strongly on the structure of the social network. The flow of information through 

a social network depends on the degree of connectivity among nodes (members) of the 

network and the average shortest distance from one node to another. With a highly 

connected social network, most of the individuals can communicate with one another, 

with the consequence that information about the perceived best member quickly filters 

through the social network. In terms of optimization, this means faster convergence to a 

solution than for less connected networks. However, for highly connected networks, the 

faster convergence comes at the price of susceptibility to local minima, mainly due to 

the fact that the extent of coverage in the search space is less than for less connected 
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social networks. For sparsely connected networks with a large amount of clustering in 

neighborhoods, it can also happen that the search space is not covered sufficiently to 

obtain the best possible solutions. Each cluster contains individuals in a tight 

neighborhood covering only a part of the search space. Within these network structures 

there usually exist a few clusters, with a low connectivity between clusters. 

Consequently information on only a limited part of the search space is shared with a 

slow flow of information between clusters. Selection of neighborhood can be done in 

several ways. Some of them include particle indices, spatial similarity and Euclidian 

distance. Different social network structures have been developed for PSO and 

empirically studied. 

4.1.  Star Social Structure 

The star social structure, where all particles are interconnected, is illustrated in 

Figure 4.1. Each particle can therefore communicate with every other particle. In this 

case each particle is attracted towards the best solution found by the entire swarm [2]. 

Each particle therefore imitates the overall best solution. The first implementation of the 

PSO used a star network structure, with the resulting algorithm generally being referred 

to as the gbest PSO. The gbest PSO has been shown to converge faster than other 

network structures, but with a susceptibility to be trapped in local minima.  
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Figure 4.1: Star social structure 

4.2.  Ring Social Structure  

In the ring social structure, each particle communicates with its n immediate 

neighbors as illustrated in Figure 4.2. Each particle attempts to imitate its best neighbor 

by moving closer to the best solution found within the neighborhood. Neighborhoods 

may also overlap, which facilitate the exchange of information between neighborhoods 

and, in the end, convergence to a single solution. Since information flows at a slower 

rate through the social network, convergence is slower, but larger parts of the search 

space are covered compared to the star structure. This behavior allows the ring 

structure to provide better performance in terms of the quality of solutions found for 
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multi-modal problems than the star structure. The resulting PSO algorithm is generally 

referred to as the lbest PSO. 

 

Figure 4.2: Ring social structure 

4.3.  Wheel Social Structure 

In the wheel social structure, the individuals in a neighborhood are isolated from 

one another as shown in Figure 4.3. One particle serves as the focal point, and all 

information is communicated through the focal particle. The focal particle compares the 

performances of all particles in the neighborhood, and adjusts its position towards the 

best neighbor. If the new position of the focal particle results in better performance, then 
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the improvement is communicated to all the members of the neighborhood. The wheel 

social network slows down the propagation of good solutions through the swarm. 

 

Figure 4.3: Wheel social structure 
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5. BENCHMARK PROBLEMS 

In the field of optimization, it is common to compare algorithms using a large test 

set, where the tests involve function optimization. In this paper, all the different PSO 

algorithms are tested based on the four benchmark functions described below. We 

evaluated the performance, both in terms of the optimum solution and the rate of 

convergence to the optimum solution. 

5.1.  Alpine (F1) 

A nonseparable function f(x) is called m-nonseparable function if at most m of its 

parameters xi are not independent. A nonseparable function f(x) is called fully-

nonseparable function if any two of its parameters xi are not independent [12]. 

                                       ( )  ∑  (   
 
                )                             (4) 

where D ≥2 is the dimension and x = (x1, x2, …, xd) is a D-dimensional row vector (i.e., a 

1×D matrix). Test area is usually restricted to 10 ≤ xi ≤ 10, i=1,…,n. Its global minimum 

F(x)=0 is obtainable for xi, i=1,…,n. 

5.2.  Rosenbrock (F2) 

Rosenbrock’s function is also naturally non-separable and is a classic 

optimization problem, also known as banana function or the second function of De Jong 

[10]. The function has the following definition:   



 

 

32 

 

                         ( )  ∑  (   (  
      )

  (    ) )    
                                               (5) 

where D ≥2 is the dimension and x = (x1, x2, …, xd) is a D-dimensional row vector (i.e., a 

1×D matrix). Test area is usually restricted to a hypercube 2.048 ≤ xi ≤ 2.048, i=1,…,n. 

Its global minimum F(x)=0 is obtainable for xi, i=1,…,n. 

5.3.  Rastrigin (F3) 

Rastrigin function is based on the function of De Jong with the addition of Cosine 

modulation in order to produce frequent local minima and is defined as follows: 

                            ( )  ∑  (  
       (    )      

                                                      (6) 

where D is the dimension and x = (x1, x2, … , xd) is a D-dimensional row vector (i.e., a 

1×D matrix). Similarly, to make it nonseparable, an orthogonal matrix is also used for 

coordinate rotation. Rastrigin’s function is a classical multimodal problem. It is difficult 

since the number of local optima grows exponentially with the increase of dimensionality 

[10]. Test area is usually restricted to a hypercube -5.12≤ xi ≤ 5.12, i=1,…,n. Its global 

minimum F(x)=0 is obtainable for xi=0, i= 1,…,n. 

5.4.  Schaffer (F4) 

Schaffer function is also naturally nonseparable [12]. Schaffer is defined as 

follows: 



 

 

33 

 

                                        ( )      
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 )      

          (  
    

 )  
                                                   (7) 

Test area is usually restricted to a hypercube -100≤ xi ≤ 100, i=1,…,n. Its global 

minimum F(x)=0 is obtainable for xi=0, i = 1,…,n. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

34 

 

6. EXPERIMENTS AND RESULTS 

6.1.  Experimental Setup 

 As mentioned in the configuration section, the cluster configuration is used to 

execute parallel Java applications on distributed memory platforms including clusters or 

network of computers. To set up the cluster network communication, the Java New I/O 

(NIO) device named niodev has been used. The niodev device driver uses Ethernet-

based interconnect for message passing. The MPJ cluster is a 15 node cluster where 

every node is a single-core virtual machine with 512MB of RAM per node. MPJExpress 

version 0.38 has been used for the parallelization process. 

The MPJ Express cluster configuration will start one MPJ Express process per node, 

which communicates to each other using message passing. The cluster set up has 

been designed to follow a master/slave paradigm. The master processor holds the 

queue of particles ready to be sent to the slave processors and performs all decision-

making processes such as velocity/position updates and convergence checks [2]. It 

does not perform any function evaluations. The slave processors repeatedly evaluate 

the fitness function using the particles assigned to them. After receiving the fitness 

function value and corresponding particle number i from a slave processor, the master 

processor stores the particle number at the end of the queue, updates the position of 

the first particle, and sends the first particle back to the idle slave processor for 
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evaluation. The particle order changes depending on the speed with which each 

processor completes its function evaluations. 

p

k-1

k

1

2

p

k-1

k

12

i

From slave processor

1

To slave processor
 

Figure 6.1: Parallel asynchronous PSO 

The tasks performed by the master and slave processors are as follows: 

Master processor 

1. Initializes all constants and particle positions and velocities; 

2. Holds a queue of particles for slave processors to evaluate; 

3. Updates particle positions and velocities based on available information; 



 

 

36 

 

4. Sends the position i

kx  of the next particle in the queue to an available slave 

processor; 

5. Receives fitness function values from slave processors; 

6. Checks convergence. 

Slave processor 

7. Receives a particle position from the master processor; 

8. Evaluates the fitness function f(x) at the given particle position i

kx ; 

9. Sends a cost function value to the master processor. 

Once the initialization step has been performed by the master processor, 

particles are sent to the slave processors to evaluate the fitness function. 

Communication between master and slave processors is achieved using a point-to-point 

communication scheme and the communication time in the asynchronous case is 

hidden within the computation time of the slave processors. Because the master 

processor can communicate with only one slave processor at a time, each slave 

processor remains idle for a short period of time while waiting to connect to the master 

processor after completing a function evaluation [2].  

6.1.1.  General Settings 

This application has some general settings that are: 
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1. Initialization: Uniform random initialization within the search space. 

2. Termination: Terminate when reaching the maximum number of function evaluations 

(Max FEs). 

3. Global optimum: All problems have the global optimum within the given bounds, so 

there is no need to perform search outside of the given bounds for these problems. The 

optimum function values are 0.0 for all problems. 

4. Inertia Weight: Throughout the application this is constant to 0.95. 

5. Global Increment and Particle Increment are also constant to 0.9. 

6. Number of Runs: 30. 

         For the experiment four benchmark functions have been used to evaluate the 

performance of the parallelized PSO algorithms. A two-dimensional search space is 

considered for the benchmark functions, and therefore, the exploration of particles. 

Number of runs are considered as 30 so that the sample observations drawn from a 

sample population forms a normal distribution as stated by central limit theorem [8]. For 

the test case 1 Gbest PSO algorithm has been considered and for test case 2 Lbest 

PSO algorithm has been considered. For the Lbest PSO, particle indices have been 

used to bind the particles to a neighborhood. 
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6.2.  Results 

This section describes various test cases that are performed to evaluate the 

performance of basic PSO (abbreviated as Basic in the tables below) and distributed 

PSO i.e., synchronous case and asynchronous case (abbreviated as Sync and Async 

respectively in the tables below). A standard of fourteen particles is considered 

throughout the experiment while the number of iterations is being altered. 30 

independent runs were performed and the average fitness, best fitness, and the 

average time per iteration in ms are reported. 

6.3.  Test Case 1: Number of Iterations = 10,000 

In this test case, tests are performed by changing the number of iterations and 

keeping the number of dimensions = 2, number of particles = 14, inertia weight = 0.95, 

global increment = 0.9, particle increment = 0.9, number of runs = 30. Table 6.1 shows 

the average fitness for every algorithm for ten thousand iterations. 

Table 6.1: Fitness values of Alpine for 10,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 7.59815E-06 0.0 608.00 

Sync 2.30371E-20 0.0 729.20 

Async 1.22298E-20 0.0 731.00 



 

 

39 

 

As seen from Table 6.1, asynchronous produces the best results followed by the 

Synchronous and Basic algorithms. All of the algorithms were able to reach the optimal 

value of 0.0 for the Alpine benchmark function when run for 10,000 iterations. Looking 

at the average time per iteration, Basic PSO has the shortest execution time followed by 

Synchronous and Asynchronous PSO. As noticed, the average time difference between 

Synchronous is only 2 seconds. 

Table 6.2: Fitness values of Rastrigin for 10,000 iterations 

 Average Fitness Best Fitness Average 

Time(ms)/iteration 

Basic 4.71354E-04 0.0 430.00 

Sync 4.37782E-05 0.0 641.80 

Async 3.74999E-05 0.0 653.71 

 

As seen from Table 6.2, Asynchronous PSO has best value closest to the 

optimal value on the Rastrigin benchmark function. Average execution time for Basic 

PSO is less when compared to the Synchronous case. 
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Table 6.3: Fitness values of Rosenbrock for 10,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 7.64946E-06 0.0 2041.00 

Sync 6.42339E-06 0.0 2659.52 

Async 4.01656E-06 0.0 2659.08 

  
Considering 10,000 iterations for the Rosenbrock benchmark, Asynchronous 

PSO produced a far better result compared to the other two PSO algorithms. The 

average best fitness value for Basic PSO algorithm is 7.649E-06 and for Asynchronous 

algorithm is 4.01656E-06, which represents a significant increase towards the optimal 

value on the Rosenbrock benchmark function. The average execution time per iteration 

is shortest for Basic PSO followed by Synchronous and Asynchronous PSO. Also, all  

the algorithms were able to achieve the optimal value of 0.0. 

 
 As seen from Table 6.4, Asynchronous PSO produced the best results of 

2.39429E-06 followed by Synchronous and Basic PSO. All the algorithms were able to 

reach the optimal value of zero for the Schaffer benchmark function when run for 10,000 

iterations. Considering the average execution time per iteration, Basic PSO has the 

minimum execution time followed by Synchronous and Asynchronous PSO. 
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Table 6.4: Fitness values of Schaffer for 10,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 8.40341E-05 0.0 480.00 

Sync 1.99571E-06 0.0 658.92 

Async 2.39429E-06 0.0 656.68 

 

As seen from Table 6.4, Asynchronous PSO produced the best results of 

2.39429E-06 followed by Synchronous and Basic PSO. All the algorithms were able to 

reach the optimal value of zero for the Schaffer benchmark function when run for 10,000 

iterations. Considering the average execution time per iteration, Basic PSO has the 

minimum execution time followed by Synchronous and Asynchronous PSO. 

6.4.  Test Case 2: Number of Iterations = 100,000 

In this test, the number of iteration is set to 100,000 and keeping the number of 

dimensions = 2, number of particles = 14, inertia weight = 0.95, global increment = 0.9, 

particle increment = 0.9, number of runs = 30.  
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Table 6.5: Fitness values of Alpine for 100,000 thousand iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 2.07154E-06 0.0 6739.00 

Sync 2.68304E-22 0.0 18826.57 

Async 3.96508E-23 0.0 19523.86 

 

As seen from Table 6.5, Asynchronous PSO has the best fitness value when 

compared with the other two algorithms. There was a significant increase in the average 

fitness from Basic PSO to Asynchronous PSO. When compared to 10,000 iterations of 

the Alpine benchmark function, the average fitness has changed from 1.22298E-20 to 

3.96508E-23, indicating the average fitness value is getting closer to the 0.0 as the 

number of iterations increases. In both test cases of 10,000 and 100,000 iterations, the 

Alpine benchmark function was able to reach the optimum value of 0.0. The execution 

time for 100,000 iterations has increased tremendously when compared to 10,000 

iterations.  
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Table 6.6: Fitness values of Rastrigin for 100,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 6.24671E-05 0.0 6500.00 

Sync 4.64737E-06 0.0 28277.37 

Async 6.30698E-06 0.0 29014.07 

 

As seen from Table 6.6, Asynchronous PSO has the best value closest to the 

optimal value on the Rastrigin benchmark function. The average execution time for 

Basic PSO is less when compared to Synchronous and Asynchronous PSO. When 

compared to Asynchronous PSO, the execution time of Synchronous case is better by 

12 seconds for every iteration. From Table 6.2, we can see the average fitness value 

has an exponential increase when the number of iteration increased from 10,000 to 

100,000 iterations. Also, there was an exponential increase in execution time for 

100,000 iterations compared to 10,000 iterations. 

As seen from Table 6.7, Asynchronous PSO produced the best results of 

3.89245E-07 followed by Synchronous and Basic PSO. All the algorithms were able to 

reach the optimal value of 0.0 for the Rosenbrock benchmark function when run for 

100,000 iterations. When compared with Rastrigin, the average fitness value for 10,000 

iterations, 100,000 iterations has the best fitness value of 3.89245E-07. Considering the 
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average execution time per iteration, Basic PSO has the minimum execution time 

followed by Synchronous and Asynchronous PSO. 

Table 6.7: Fitness values of Rosenbrock for 100,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 5.38134E-06 0.0 45771.00 

Sync 5.01774E-07 0.0 89340.64 

Async 3.89245E-07 0.0 90568.40 

 
Table 6.8: Fitness values of Schaffer for 100,000 iterations 

 Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

Basic 3.90423E-05 0.0 4998.00 

Sync 1.66979E-07 0.0 14824.15 

Async 2.82962E-07 0.0 14892.28 

 

As noticed from Table 6.8, Asynchronous PSO has the best average fitness 

value when compared to Basic and Synchronous PSO. Also, the average fitness value 

for 100,000 iterations has a far better value when compared to the fitness value of 

10,000 iterations. 
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Table 6.9: Percentage improvement of fitness value for Alpine benchmark 

Alpine 
Percentage 

improvement [%] 

Basic 72.74 

Sync 98.84 

Async 99.68 

 

As seen from Table 6.9, the fitness value for Alpine bfunction is approaching the 

optimal value as the number of iterations is increased from 10,000 to 100,000. Also, 

there is a significant increase in the fitness value when the number of iterations is 

increased. 

Table 6.10: Percentage improvement of fitness value for Rastrigin benchmark 

Rastrigin 
Percentage 

improvement [%] 

Basic 86.75 

Sync 89.38 

Async 83.18 

As seen from Table 6.10, the fitness value is approaching the optimal value with 

increasing numbers of iterations. The fitness value of Rastrigin has increased over 83% 

for all algorithms.  
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Table 6.11: Percentage improvement of fitness value for Rosenbrock benchmark 

Rosenbrock 
Percentage 

improvement [%] 

Basic 29.65 

Sync 92.19 

Async 90.31 

 
 As seen from Table 6.11, Synchronous PSO has the highest percentage fitness 

increase followed by Asynchronous and Basic PSO. 

Table 6.12: Percentage improvement of fitness value for Schaffer benchmark 

Schaffer 
Percentage 

improvement [%] 

Basic 53.54 

Sync 91.63 

Async 88.18 

 

As seen Table 6.12, there was a significant improvement in fitness with 

increasing number of iterations for the Schaffer benchmark function. 

Overall, Asynchronous PSO was able to produce better fitness values compared 

to Basic and Synchronous PSO algorithms on all four benchmark functions considered. 

All of the algorithms were able to achieve higher fitness values when the number of 
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iterations are increased, which clearly indicates that fitness values are improving as the 

number of iterations are increasing. There was a tradeoff between the execution time 

and the optimal values. Execution time has exponential increased when the number of 

iterations was increased. This is due to the latebcy factor involved for the small cluster 

configuration. 

6.5.  Test Case 3: Different Neighborhood Structures 

6.5.1.  Star Structured Neighborhood 

In this test case, the star neighborhood is considered. There are three 

neighborhoods in total in which each neighbor has five particles. For every iteration, the 

best value from the neighborhood is chosen. Tables 6.17, 6.18, 6.19, and 6.17 show the 

average fitness for Basic PSO when the star neighborhood is considered. 

 

 
Table 6.13: Fitness values of Basic PSO for Alpine benchmark 

Iterations Average Fitness Best Fitness Average 

Time(ms)/iteration 

10,000 4.51E-06 0.0 565.00 

100,000 8.34E-07 0.0 6002.00 
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Table 6.14: Fitness values of Basic PSO for Rastrigin benchmark 

Iterations Average Fitness Best Fitness Average 

Time(ms)/iteration 

10,000 5.40E-03 0.0 437.00 

100,000 2.10E-05 0.0 4514.00 

 
Table 6.15: Fitness values of Basic PSO for Rosenbrock  benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 2.93E-04 0.0 3765.00 

100,000 1.10E-05 0.0 45638.00 

 
 
Table 6.16: Fitness values of Basic PSO for Schaffer benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 2.49E-03 0.0 466.00 

100,000 4.16E-06 0.0 4915.00 

 
As seen from Tables 6.13, 6.14, 6.15 and 6.16, the average fitness value has 

always increased when the number of iterations has increased from 10,000 to 100,000. 

Rastrigin has the highest percentage increase in the average fitness towards the 

optimal value when iteration count has been increased. Rastrigin has 99.61% increase 
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followed by Schaffer, Rosenbrock and Alpine with 96.55%, 99.16%, and 81.52% 

increases, respectively. 

6.5.2.  Circular Structured Neighborhood 

In this test case, the circular neighborhood is considered. In total there are five 

neighborhoods in which each neighborhood has three particles. Particles in the 

neighborhood communicate with each other and the best value is chosen for every 

iteration. Table 6.17 shows the Average fitness for Basic PSO algorithm when circular 

neighborhood is considered. 

Table 6.17: Fitness values of Basic PSO for Alpine benchmark 

Iterations Average Fitness Best Fitness Average 

Time(ms)/iteration 

10,000 5.22E-06 0.0 592.00 

100,000 8.51E-07 0.0 6648.33 

 
Table 6.18: Fitness values of Basic PSO for Rastrigin benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 3.32E-01 0.0 436.00 

100,000 2.20E-05 0.0 4520.00 
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Table 6.19: Fitness values of Basic PSO for Rosenbrock benchmark 

Iterations Average Fitness Best Fitness Average 

Time(ms)/iteration 

10,000 4.92E-04 0.0 3468.00 

100,000 1.20E-05 0.0 43142.50 

 
 
Table 6.20: Fitness values of Basic PSO for Schaffer benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 6.51E-03 0.0 473.00 

100,000 8.10E-06 0.0 5017.00 

 
As seen from Tables 6.17, 6.18, 6.19 and 6.20, the average fitness value has 

always increased when the number of iterations has increased from 10,000 to 100,000. 

Rastrigin have the highest percentage increase in the average fitness value towards the 

optimal value followed by Schaffer, Rosenbrock and Alpine when the iteration count has 

been increased. 

6.5.3.  Wheel Structured Neighborhood 

In this test case, the wheel structured neighborhood is considered. There are 

three neighborhoods in total in which each neighbor has five particles. In the wheel 

social structure, individuals in a neighborhood are isolated from one another. One 
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particle serves as the focal point, and all information is communicated through the focal 

particle. The focal particle compares the performances of all particles in the 

neighborhood, and adjusts its position towards the best neighbor. If the new position of 

the focal particle results in better performance, then the improvement is communicated 

to all the members of the neighborhood. Tables 6.21, 6.22, 6.23, and 6.24 show the 

average fitness for Basic PSO algorithm when the wheel neighborhood is considered. 

 

Table 6.21: Fitness values of Basic PSO for Alpine benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 1.14E-05 0.0 551.00 

100,000 9.77E-07 0.0 5244.00 

 
Table 6.22: Fitness values of Basic PSO for Rastrigin benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 4.98E-01 0.0 440.00 

100,000 3.92E-05 
 

0.0 4504.00 
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Table 6.23: Fitness values of Basic PSO for Rosenbrock benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 5.13E-03 0.0 3992.00 

100,000 2.09E-04 0.0 44595.00 

 
Table 6.24: Fitness values of Basic PSO for Schaffer benchmark 

Iterations Average Fitness Best Fitness 
Average 

Time(ms)/iteration 

10,000 9.42E-02 0.0 469.00 

100,000 3.25E-03 0.0 4924.00 

 
As seen from Tables 6.21, 6.22, 6.23, and 6.24, the average fitness has been 

approaching the optimal values for the benchmark functions as the number of iterations 

has increased. Rastrigin have the highest percentage increase in the average fitness 

value towards the optimal value followed by Schaffer, Rosenbrock and Alpine. Of all the 

neighborhood structures considered, the star structure neighborhood has the average 

fitness value close to the optimal value due to larger interconnectivity of neighborhood 

particles.  
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7. CONCLUSION AND FUTURE WORK  

PSO is an extremely simple algorithm that has proven to be effective for the 

optimization of a wide range of functions. It is a stochastic optimization method used to 

solve complex engineering problems. Recent advances in computer and network 

technologies provide an option to do parallelization and helps in solving complex 

engineering problems. In this paper, parallelization has been applied to PSO to 

determine its efficiency. Based on the results obtained, we can conclude that the 

parallelization of PSO has provided better results. We were able to compare the results 

on standard benchmark functions and determine the parallelization efficiency. Overall, 

the parallelization using Asynchronous PSO has provided the best results compared to 

Synchronous and Basic PSO. 

Since this paper serves only as a preliminary study into the parallelization of the 

PSO algorithm, much more comprehensive experiments need to be conducted. For 

example, only 2-dimensional benchmark functions were investigated. However, the 

complexity arising from higher dimensionality needs to be looked at. Furthermore, since 

our MPJ cluster only consisted of 15 nodes, more intensive experiments with a larger 

number of nodes need to be performed. Further parameters to look at are the PSO 

specific values such as the swarm size, global increment, local increment, etc.  
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