The short‐tailed albatross (Phoebastria albatrus) is a threatened seabird whose present‐day range... more The short‐tailed albatross (Phoebastria albatrus) is a threatened seabird whose present‐day range encompasses much of the North Pacific. Within this species, there are two genetic clades (Clades 1 and 2) that have distinctive morphologies and foraging ecologies. Due to a global population collapse in the late 19th and early 20th centuries, the frequency of these clades among the short‐tailed albatross population that historically foraged off British Columbia, Canada, is unclear. To document the species' historical genetic structure in British Columbia, we applied ancient DNA (aDNA) analysis to 51 archaeological short‐tailed albatross specimens from the Yuquot site (Borden site number: DjSp‐1) that span the past four millennia. We obtained a 141 bp cytochrome b sequence from 43 of the 51 (84.3%) analyzed specimens. Analyses of these sequences indicate 40 of the specimens belong to Clade 1, while 2 belong to Clade 2. We also identified a single specimen with a novel cytochrome b haplotype. Our results indicate that during the past four millennia most of the short‐tailed albatrosses foraging near Yuquot belonged to Clade 1, while individuals from other lineages made more limited use of the area. Comparisons with the results of previous aDNA analyses of archaeological albatrosses from Japanese sites suggest the distribution of Clades 1 and 2 differed. While both albatross clades foraged extensively in the Northwest Pacific, Clade 1 albatrosses appear to have foraged along the west coast of Vancouver Island to a greater extent. Due to their differing distributions, these clades may be exposed to different threats.
Research on the evolution of dog foraging and diet has largely focused on scavenging during their... more Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs’ tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C 4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs’ exposure to microbes, affected their gut microbiomes, and shaped long-term dog ...
Sulfur isotope (δ34S) analyses are an important archaeological and ecological tool for understand... more Sulfur isotope (δ34S) analyses are an important archaeological and ecological tool for understanding human and animal migration and diet, but δ34S can be difficult to interpret, particularly in archaeological human-mobility studies, when measured isotope compositions are strongly 34S-depleted relative to regional baselines. Sulfides, which accumulate under anoxic conditions and have distinctively low δ34S, are potentially key for understanding this but are often overlooked in studies of vertebrate δ34S. We analyze an ecologically wide range of archaeological taxa to build an interpretive framework for understanding the impact of sulfide-influenced δ34S on vertebrate consumers. Results provide the first demonstration that δ34S of higher-level consumers can be heavily impacted by freshwater wetland resource use. This source of δ34S variation is significant because it is linked to a globally distributed habitat and occurs at the bottom of the δ34S spectrum, which, for archaeologists, i...
The passenger pigeon (Ectopistes migratorius) was once the most abundant bird species in North Am... more The passenger pigeon (Ectopistes migratorius) was once the most abundant bird species in North America. Flocks of these birds witnessed in the early 19th century were so vast that they were said to darken the sky for days as they passed. Early syntheses of passenger pigeon remains in archaeological contexts in the eastern United States, in contrast, found them to be relatively rare in relation to other fowl, leading to the suggestion that the colonial‐era hyper‐abundance of passenger pigeons was a post‐European‐contact phenomenon resulting from contact‐induced demographic and ecological changes. In this paper, we provide new insights into passenger pigeon historical ecology through a synthesis and GIS‐based analysis of zooarchaeological data on skeletal remains from 157 Late Woodland (ca. 900–1650 CE) sites in Ontario, Canada. Our results reveal that passenger pigeon bones are common, and often abundant, in Late Woodland archaeological assemblages in Ontario, which speaks to the spe...
Early overfishing in the Gulf of Mexico highlights vulnerability of one of the world’s most produ... more Early overfishing in the Gulf of Mexico highlights vulnerability of one of the world’s most productive marine fishery areas.
Resource depression and garden hunting are major topics of archaeological interest, with importan... more Resource depression and garden hunting are major topics of archaeological interest, with important implications for understanding cultural and environmental change. Garden hunting is difficult to study using traditional zooarchaeological approaches, but isotopic analyses of animals may provide a marker for where and when people exploited nondomesticated animals that fed on agricultural resources. To realize the full potential of isotopic approaches for reconstructing garden hunting practices—and the impacts of agriculture on past nondomesticated animal populations more broadly—a wider range of species, encompassing many “ecological perspectives,” is needed. We use bone-collagen isotopic compositions of animals (n = 643, 23 taxa, 39 sites) associated with the Late Woodland (~AD 900−1650) in what is now southern Ontario to test hypotheses about the extent to which animals used maize, an isotopically distinctive plant central to subsistence practices of Iroquoian-speaking peoples acros...
Despite the longstanding significance of North America's Great Lakes, little is known about t... more Despite the longstanding significance of North America's Great Lakes, little is known about their preindustrial ecology. Here, we report on when and how humans first became a main driver of Lake Ontario's nutrient dynamics. Nitrogen isotope analyses of archaeological fish show that, prior to the 1830s, Lake Ontario's nitrogen cycle and the trophic ecology of its top predators had remained stable for at least 800 yrs, despite Indigenous and historical European agricultural land management across the region. An abrupt shift in the nitrogen isotope composition of Lake Ontario's fish community is evident in the early to mid‐19th century and reflects the initiation of industrial‐scale forest clearance. These data show how the nitrogenous nutrient regimes of even the world's largest freshwater ecosystems can be highly sensitive to short‐term watershed forest cover disturbances and indicate a profound shift in the relationship between humans and their environment.
The short‐tailed albatross (Phoebastria albatrus) is a threatened seabird whose present‐day range... more The short‐tailed albatross (Phoebastria albatrus) is a threatened seabird whose present‐day range encompasses much of the North Pacific. Within this species, there are two genetic clades (Clades 1 and 2) that have distinctive morphologies and foraging ecologies. Due to a global population collapse in the late 19th and early 20th centuries, the frequency of these clades among the short‐tailed albatross population that historically foraged off British Columbia, Canada, is unclear. To document the species' historical genetic structure in British Columbia, we applied ancient DNA (aDNA) analysis to 51 archaeological short‐tailed albatross specimens from the Yuquot site (Borden site number: DjSp‐1) that span the past four millennia. We obtained a 141 bp cytochrome b sequence from 43 of the 51 (84.3%) analyzed specimens. Analyses of these sequences indicate 40 of the specimens belong to Clade 1, while 2 belong to Clade 2. We also identified a single specimen with a novel cytochrome b haplotype. Our results indicate that during the past four millennia most of the short‐tailed albatrosses foraging near Yuquot belonged to Clade 1, while individuals from other lineages made more limited use of the area. Comparisons with the results of previous aDNA analyses of archaeological albatrosses from Japanese sites suggest the distribution of Clades 1 and 2 differed. While both albatross clades foraged extensively in the Northwest Pacific, Clade 1 albatrosses appear to have foraged along the west coast of Vancouver Island to a greater extent. Due to their differing distributions, these clades may be exposed to different threats.
Research on the evolution of dog foraging and diet has largely focused on scavenging during their... more Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs’ tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C 4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs’ exposure to microbes, affected their gut microbiomes, and shaped long-term dog ...
Sulfur isotope (δ34S) analyses are an important archaeological and ecological tool for understand... more Sulfur isotope (δ34S) analyses are an important archaeological and ecological tool for understanding human and animal migration and diet, but δ34S can be difficult to interpret, particularly in archaeological human-mobility studies, when measured isotope compositions are strongly 34S-depleted relative to regional baselines. Sulfides, which accumulate under anoxic conditions and have distinctively low δ34S, are potentially key for understanding this but are often overlooked in studies of vertebrate δ34S. We analyze an ecologically wide range of archaeological taxa to build an interpretive framework for understanding the impact of sulfide-influenced δ34S on vertebrate consumers. Results provide the first demonstration that δ34S of higher-level consumers can be heavily impacted by freshwater wetland resource use. This source of δ34S variation is significant because it is linked to a globally distributed habitat and occurs at the bottom of the δ34S spectrum, which, for archaeologists, i...
The passenger pigeon (Ectopistes migratorius) was once the most abundant bird species in North Am... more The passenger pigeon (Ectopistes migratorius) was once the most abundant bird species in North America. Flocks of these birds witnessed in the early 19th century were so vast that they were said to darken the sky for days as they passed. Early syntheses of passenger pigeon remains in archaeological contexts in the eastern United States, in contrast, found them to be relatively rare in relation to other fowl, leading to the suggestion that the colonial‐era hyper‐abundance of passenger pigeons was a post‐European‐contact phenomenon resulting from contact‐induced demographic and ecological changes. In this paper, we provide new insights into passenger pigeon historical ecology through a synthesis and GIS‐based analysis of zooarchaeological data on skeletal remains from 157 Late Woodland (ca. 900–1650 CE) sites in Ontario, Canada. Our results reveal that passenger pigeon bones are common, and often abundant, in Late Woodland archaeological assemblages in Ontario, which speaks to the spe...
Early overfishing in the Gulf of Mexico highlights vulnerability of one of the world’s most produ... more Early overfishing in the Gulf of Mexico highlights vulnerability of one of the world’s most productive marine fishery areas.
Resource depression and garden hunting are major topics of archaeological interest, with importan... more Resource depression and garden hunting are major topics of archaeological interest, with important implications for understanding cultural and environmental change. Garden hunting is difficult to study using traditional zooarchaeological approaches, but isotopic analyses of animals may provide a marker for where and when people exploited nondomesticated animals that fed on agricultural resources. To realize the full potential of isotopic approaches for reconstructing garden hunting practices—and the impacts of agriculture on past nondomesticated animal populations more broadly—a wider range of species, encompassing many “ecological perspectives,” is needed. We use bone-collagen isotopic compositions of animals (n = 643, 23 taxa, 39 sites) associated with the Late Woodland (~AD 900−1650) in what is now southern Ontario to test hypotheses about the extent to which animals used maize, an isotopically distinctive plant central to subsistence practices of Iroquoian-speaking peoples acros...
Despite the longstanding significance of North America's Great Lakes, little is known about t... more Despite the longstanding significance of North America's Great Lakes, little is known about their preindustrial ecology. Here, we report on when and how humans first became a main driver of Lake Ontario's nutrient dynamics. Nitrogen isotope analyses of archaeological fish show that, prior to the 1830s, Lake Ontario's nitrogen cycle and the trophic ecology of its top predators had remained stable for at least 800 yrs, despite Indigenous and historical European agricultural land management across the region. An abrupt shift in the nitrogen isotope composition of Lake Ontario's fish community is evident in the early to mid‐19th century and reflects the initiation of industrial‐scale forest clearance. These data show how the nitrogenous nutrient regimes of even the world's largest freshwater ecosystems can be highly sensitive to short‐term watershed forest cover disturbances and indicate a profound shift in the relationship between humans and their environment.
Uploads
Papers by Eric Guiry