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ON ELEMENTARY TOPOSES

1. Introduction

The theory of elementary toposes has its ongll1S in two seperate lines of
mathematical development, that is, the one a geometric, the other a logical
aspect, which remained distinct for nearly ten years.

The earlier of t\'\'o lines begins vdth the rise of sheaf theory. The frame­
work of this first line is taken by A. Grothendieck, :\1. Artin, J. Giraud and
others in 196:3-1964, as a generalization of topological space, for the
purpose in algebraic geometry.

The starting point of this second line is taken to be F. \Y. Lawveres CoJ
in 1964, as the notion of higher order language. During the year 1969""""19
70 the two lines of mathematical development began to come together by F.
\V. Lawveres and .\1. Tierney [7J and the theory of elementary toposes was
developed by P. Freyd [2J, A. Kock and G. C. Wraith [10J, C.]. Mikkesen
and o~hers. The next major advance was made by R. Diaconescu DJ, =7,
pp. 44-59J, R. Pare [9J, W. :\1itchell C8J, and P. T. Johnstone [4J, [5J.

The purpose of this paper is to investigate some basic properties of elemen­
tary toposes. In section 2 we prove some useful principles concerning the
morphisms in elementary toposes. In section :) \ve discuss the properties
concernin~ representability for partial maps and the section 4- is devoted to
give the properties for the endofunctors in an elementary topos. Finally 111

section 5 we state some exactness properties, in particulary we prove that an
elementary topos is embedded in· the elementary topos of nbjects owr Q.

2. Equivalence relations in an elementary topos

DEFI~ITION 1. A category E is called an elementary topos(or topos) if
(i) E has all finite limits.
(ii) For each object X of E we hm'e an exponential funetar ( )X: E --4E

which is right adjoint to the funetor ( ) ~< X: E ----->E.
(iii) E has an object Q and amorphism t: 1-~Q such that for each

monomorphism G: Y-~X in E, there is a unique ~)c: X ----->0 (the classi­
fying map of (J), making

*This research was supported by the \linistry of Educ'lton Scholarship Foundatio:l, 1979.
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y ----+ 1

ur 1t
X ----+ D

q,4
a pullback diagram, where' 1 is the terminal object.

Examples. The following categories are topoaes;
(i) S, the category of sets aridfwictions.
(ii) The category of G-Sets and G-functions for a group G.
(Hi) A Grothendick topos [4J.

In a topos E if g'h=lA:A~B~Athen g is called a splitepimor-
phism and h a split m(!lnomorphism.

LEMMA 1. In a topos etJery monomorphism is an ~ualizer [10J.

PROPOSITION 1. A topos is balanced.

Proo/. Let f: A-B be a bimorphism- in'a topos E. Then by the lemma 1
/1

f is an equalizer of two morph.ms, B==tC~, Hence" g·f=hol and g=h
l

since I is an epimorphism., There is '.a unique morphism I': B --+ A
such that 1·/'=lB since golB=h'ls and I is an equalizer of If and h.
While f' °f=lA since f is a monomorphism. Therefore f is an isomorphism.
q. e. d.

If

A parallel pair X==: Y in a category C is said to be reflexive if there
. f

exists y~X such that fA = glt= ly.

"DEFINITION 2. Let R~X be a parallel pair of morphisms in a topos. ,

E. We say that (a, b) is an equivalence relation on X if
(i) R <;:it XXX is a monomorphism.

I:>
(H) The diagonal subobject X~XXX factors through (a, b).
(ill) There exists a morphism -r:R~R such that bo-r=a and O°7:=bo
(iv) If the diagram



On elementary toposes

is pullback, then (ap, bq) : T --->X X X factors through (a, b> [4J,

If the diagram in a topos E

57

A

1f..,
B

i,

is pullback then a parallel pair K ==: A of morphisms In E is called the
A,

kernel pair of f, And an equivalence relation which is a kernel pair of some
morphism is said to be effective, '

i.

LEMMA 2, The kernel pair K ==: A of amorphism f: A-B in a topos E
k,

is always an equi''{'alence relation,

Proof. (i) For xO'xl:X-->K, if ko·xo=ko·Xh then there exists a umque
1z : X--> K such that k l · h= ko·Xl' Therefore h= Xl = X2, and so ko is a mono­
morphism, Similarly kl is a monomorphism, Hence K ~ AXA is a mon­

omorphism,
(ii) Let 6:A>-------->-AXA be the diagonal subobject, Then for ko, kl:K ---> A,

11. ~

there is a unique (ko, k l >: K ~->A X A and since K ==: A is the kernel pair
11,

of f, there exists a unique k': A-K such that kl 'k'=l A and ko·k'=lA , For
the projection 1!j:AXA--->A, 1!j(ko,kl )·k')=k l ·k'=lA(i=1,2). But r.·L=
lA, and so, 6= (ko, kl >.k'.

(iii) Since the diagram

K ----->

kol
Ao ----->

f
is pullback there is a unique '1:': K - K such that kl '7:=ko and kO'7:=kl ,

(iv) If the diagram

q
T -----> K

P1 1ko
K~A

is pullback, then the diagram
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P
T---K

q 1 '1 RI
K~A

kt 1. RO 1f.
A -1J

l-
is also pullback. Therefore there exists a unique t: T-K such that kI"q=

kot and Rt"p=ktt. Since RI is a monomorphism p-.t, and so k1"q=ko·p.
Since the diagram

RI
K-A

ko 1 1f
A-B

f
is pullback and f·/eo·p f;Rl'q, there exists a unique t':T":""K such that
ko·P=ko·t' and Rl·q=kI ·t'. Hence we have p=q=t'. q.-e. d.

PROPOSITION 2. In a topos, equivalence relations are effective.

Proof. Let R~ X be iln equivalence relation. Let XXX~ 0 be the
b

classifying map of R>--XXX, and xLox its' exponential transpose.
f '

(i) If U ==t X be a pair of morphisms such that the diagram
g

f
U-X

g 1 , 1
x-ox

if)
is commutative, then we have t/J. (fXlx) =t/J. (gXlx). If we compose with

<I.,g>
u-uxx and t/J. (fx lx) , t/J. (gXlx), then we have t/J. (f,g)=t/J' <g, g).
But !i'g=(g,g) and 6.=(a,b>~a' since R is reflexive," and sO (g,g)=
<a,b)'a"g and t/J'(g,g)=t" (R-I)·Q·g.

Let the diagram

P --;-#1

hI It
u--xxx'--o

<g,g) t/J ., , '
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be pullback. Then there exists a unique morphism h':U~P such that h·h'
= Iu. Hence h' is an isomorphism since h is a monomorphism. Therefore
there is a unique morphism p: U-R such that

<a, b)·p= <f, g). (2.1)
(ii) We must show that ifi·a=ifi·b. But ifi·a=qJ·b iff q,. (aXlx) =q,. (bXlx).

Let the diagrams

~ -1 ~ -1

(2.3)

(2.4)

(2.2)</3, y) 1
RXX-XXX~ fJ

bXlx

Yt and(a, x)r
RXX-XXX- Q

aXlx
be pullback.

Since R is an equivalence relation there exists t':R--R such that

a·z-=b and b,z-=a.
From (2.2) and (2.3) we have

q,·aXlx·<a,x)=t· (Pa-I)
and (bXlx)' ('C'Xlx) =aXlx. From (2.4) we have also

if>. (bXlx)' (z-X1x)' <a, x)=t· (Pa-I)
and so, there is a unique morphism r:Pa--+Pb such that <~,Y)·r=<'Ca,x).

Similarly there is a unique morphism r':Pb~Pa such that <a,x)'r'=
<'r~,y). Since <f3,y) is a monomorphism r·r'=lpr. and r'·r=lp".

Hence Pa and Pb are isomorphic. In (2.2) since we can put Pa=Pb and
<a, x) = <f3, Y), by the condition (iii) of the definition 1 we haveif>· (aXlx)
=t/>' (bXlx). q. e. d.

DEFINITION 3. The exponential transpose of the classifying map o:XXX­
fJ of the diagonal map .4: X~ X XX is called the singleton map on X
and denote by { }x:X---Qx or simply { }.

COROLLARLY 1. A singleton map is a mononwrphism.

Proof· The diagonal map .4:X~XXX and 1z :X--X are equivalence
relations by the proposition 1. <lx, Ix) :X--xx X is the kernel pair of
{ } :X_QX. If { } 'x= { } 'y, then there exists a unique h: Y-X
such that h=x and h=y, and so, x=y. q. e. d.

3. Partial maps
f

A partial map X - Y in a category E is a diagram of the form
d
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f
X'~ Y

d1
X

We say that partial maps with oodomain Yate representable if there exists
'r _ f f

a mono Y >---J>Y such that, for any X --Y, there exists a unique X~ Y
. d

making

a pullback diagram.

L~MMA 3. Let,p: QYX Y--O classify the singleton map { }: Y>---J>OY,
11

q,:QY--OY its exponential transpose and let f>--OY the equalizer of ij) and
loY in a topos E. Then ij). { } = { } and so { } factors through. t!.

Proof. Since { } X ly'A=<{ t; lr), from the hypothesis we have the
pullback diagram

Y~l

1 lt

YX Y -",QYX Y ---+ Q.

But since o·A=t- (Y-l) we have ,p. { }X1y=o: YX Y-Q and their
exponential transposes are equal; that is,

q,.{ }={ }.

Since Y~DY is the. equalizer of q, and loY, from
unique morphism 1jy: Y--Y sUch that { }=e-1jy.

LEMMA 4. Let

f
X'-l> Y

(3.1)

(3.1) there exists a
(3.2). q. t!. d.
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be a partial map in a topos E and cp:XXX-Q be a classifying map of the

graph X'~XX Y of f. Then the diagram

f
X' -Y

dl r{}
(3.3)...

X -QY
;p

is pullback.

Proof. (i) Since the exponential transposes of ;P'd and { }·f are cp·dX
Ix and o·fXlx' respectively. We must show that

cp' (dXlx) =0' (fXlx') instead of cp·d= { } ·f.
ljJ. (dXlx) . (1x·,f)=cp· (d, f)=t(x'-l) =t(X-l) =ty-j, where y: Y-l
(j. (fXlx)' (lx" f) =o'<f, f)= (0' t::,.). f=ty·f.

Hence cp'd Xlx=o'fXlx' and cp·d= { } ·f.

(ii) Let U~XX Y such that Cf·a= { J ·b.
By transposition, we obtain

ep·aXly=o·bXly,
cp'aX1y<I, b)=o·bXly<l, b),
cp' <a, b) =0· (b, b) =0' <t::,., b) =0' t::,. ·b.

But since the diagram

Y-l

is pullback, the diagram

u- Y---l

b1 1t
Y-YXY--- Q

t::,. 0

is pullback. Therefore we have cp' <a, b) =(j. <b, b)= V-I~Q.

From the hypothesis there exists a unique morphism U~X'
such that <d,f)·u=<a,b). q.e.d:
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THEOREM In a topos. all partial maps are representable:

Proof. (i) By the lemmas 3 and 4. the diagram

f
X' ---+ Y--l

<d,f)1

is pullback.
From (3. 2) and (3. 4) we have

if>=if»·(fixh.
Hence ?J.(fi=(fi.

(3.4)

(3.5)

(3.6)

Since Y~DY is an equalizer of if> and laY. there exists a unique x~f
such that if=e·1 (3.7)

From (3.1) and (3.7) we have (fi ·d= { }.f and (e' f) ·d= (e'1jy) •f.
and so, we have I·d =7Jy' f, since e is a monomorphism.

(ii) We shall show the uniqueness of I.
Suppose that the diagrams

f
X'- Y

f
x' - y

and

X -y
11

are pullback. Put ift=e· It (i=l. 2).
From (3.4) and (3.5)

tx'=qlt· (d, f> =ifJl . (dX lr) . (lx" f>
= (CPl' (dXh» .<lx·,f) = «fil·d) .(lx-, f)

where x':X'-l.
But. by the hypothesis,'c d=7)y' f= 12· d

e(/l· d ) =e(7)y' f) =e' (12·d)
?il· d "-if2· d = { }. f
«fi2· d ) . <lx·, f) =CP2' (d, f) =tx'

CPl =CP2 and so ;PI=if2'
From (3.7) el1= e12' and 11=12 since e is a monomorphism.

(3.8)

q. e. d.
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4. Endofunctors in a topos

63

f
We can consider a partial map X ---)0 Y in E as a monomorphism <d, f>

d

:X' ~ XXY since d:x' ~.'l" is mono. Hence the equivalence classes
f

of partial maps X-- Y means the equivalence classes of the subobjects
d

(d,f>:X'~ XXY and denote it by Pt (X, Y).

Since 7}y is a monomorphism, given X~Y, we can produce a unique

partial map X~ Y and by the theorem, given a partial map X+ }", there

exists a unique morphism !:X->¥ such that

fx' -- y

dY 17}Y
v

X -- ¥
!

is pullback. Hence we haye the one-to-one correspondence A:Pt(X, Y)--..
HomE (X, f).

Let W:E->E be W(X)=X, for every XEOb(E) and W(!I)=jl:X-Y
for f1.: X- Y such that the diagram

f1.
X-Y

qX1 17}Y
X-y

f1

is pullback. Then for X~y~Z by the theorem there exists a unique--morphism );. f1. such that

f1. ).)
X ->o}' -- Z

IS pullback. And the diagram
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7)x! 7)y! 7)z!
X--Y--",Z

il v
is pullback since z~2 is a monomorphism. Hence W(v·,u) =j). it and W is
an .endofunctor in E.

Let lE be the identity functor o'} E. For Y~Y' there exists a unique
g:Y~Y' such that

g
Y- Y'

Y- y'
g

is pullback. Hence 7):IE~W is a natural transformation.
Define the composition (J: Pt (X, Y) X Pt (Y, Z) - Pt (X, Z) by

8«d,/), (d'.g» =(d, g·f).
We can define the category Pt (E) with objects the same as the objects of
E and with hom-sets Pt (X, Y).

PROPOSITION 3. Define l:E--Pt(E) by
f

l(X)=X, I(X-Y)=X-XXY
<~•.J>

and J:pt(E)-E by
J(X) =X, and J«d,f):X'~ XX Y) =J

such that the diagram

f
X'- Y

d! 17)Y

X-V
f

is pullback. Then 1 is a left adjoint of J.

Proof. Define for (X, Y) EOb(EoPXPt(E), a map

t/Jx. y: Hompt CE) (I (x), Y)-- HomE (X, Y)
\I

Pt(X, Y)
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Hence by the

For X---.U
¥

<d.f>
by c/Jx,y(X'~XXY)=f.

Then for every ii:X~YEHomE(X,Y), there exists the unique partial
k _ _

map X----;Y and if 9x,y«a,f»=<px,y«a', f», then f=f'.

theorem d· f=d"· 1', so that, CPx.y' is an onto one-one map.

of E and V'~VXYEPt(V, Y) we have
<v,g'>

<Px, y' HomPt<E) (u, ('V, g» =HomE(u, g) orjJu. v,

where g is a morphism such that the diagram

g
V' ----'" Y

ijy

is pullback, since for every (b, t) E Pt (U, V),

<px, y O HomPt<E) (u, (v, g» «b, t» =1Jx,y «a, f) )!=got oil
where (a, f) is a partial map determined by the pullback diagram by pulling
ijy along g. t u. and similarly ,

.. HomE(u, g) 'CPu,v«b, t» =1IomE;(u, iD (t) = got· u.
Therefore, 9 is a natural equivalence. q. e. a.

5. Exactness properties

Let p:EoP~E, P(X) =QX for each object X of E and P(j) be the

exponential transpose of the morphism
IIJYXf tVy

QYXX~QYXY----",Q

for each marphism f: X ---'> Y in E, where er'y is the evalution map to Y.
Then P is the contravariant functar.

We shall denote the exponential transpose of the classifying map cC!) of
IX!

the monomorphism Er----DX X XX---;.[)XX Y by 'ilf:Qx--'J>[)Y wherel;X~

Y is mona and Ex is the subobject classified by QXXX~[). EK~QXXX
is called the membership relation far X [9J. And cCf) is called an exponen­
tial adjoint of 31.
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PROPOISITION 4. Let

Chang 'Ku Itn· '- - -

z~ T
k

be a pullback diagram with h mono. Then we have
PCk) ·3h=3g·P(f) [4,9J.

COROLLARY 2. Let f:A>---+C be a monomorphism and g:B--C morphism
in E. If (AXB, it'A, it'B) is a product of (A, B) and if (E, e) is the equalizer
of f· it'A' g. it'B, then we have

peg) ·3f= (3it'B·ti) ·P(1r:A·C).

Proof. Since the diagram

1r:A'e
E----A

/'
1r:B·e1./AXB _1f

-B -.,--- c:
g

. ". .
is pullback, by the proposition 4 we complete this proof.

- f -
CoROLLARY 3. If X~ Y is a mono then P(f)·~f= laX.

Proof. The diagram

Ix
X~ X ' ..

Ix1 1f
x~ y

f
is ' pullback.

Since, the morphism P (Ix) is. the exponential transpose o( ~~,(lcf:><;lx) =
evx. Similarly 3(Ix) is the exponential transpse of s(lx ) =evx,. HenCe 3(lx)
=loX. By 'the proPOSition 4, '", '.

P(f) ·3(1) =;=3 (li) .p,(lx) =loX. q. 6. d. , .

PROPOsITION 5. ' For any mo,,-omorphism f in 'E~ PU) 'is'1iumo if the lmal-'.
uation map evA for all A of Ob (B) is monomorphism.
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Proof. Let f:A->B; then the expnnentialadjoint of P(f) is evA ·P(f) X
lA =evB·lQcXf.

By the hypothesis, e'l'B·locXf is mono. Hence PU) XIA is mono, so that­
P (f) is mono. q. e. a.

p(n - P(Al

PROPOSITION 6. Let P(X)==:P(Y) -P(Z) be a coequaIizer diagram in
- PC/l) -- f - -, ,

E. Then X ==:Y~Z is a coequali:ter EoI' if the morphism Z-Y in E
If

is the subobject classified by OX· <f. g), where Ox is the classifying map of
6 :X-XXX. -

Proof. h·g=h· f and h is an epimorphism in Eoi' because P(h) ·P(g) =_
P(hg) =P(h) ·P(f) =P(hf) and P is faithful. Since h:Z~ Y is a monom­
orphism in E, by the hypothesis it is the suhob-jectclassified by ox·<f,g).
Hence h is the equalizer of of f and g in E, so that, h in EoI' is the coe­
'lualizer of f, g in EoI'. q. e. d.

DEFINITION 4. For any category C and object A of C, the category whose

objects are morphisms with codomain A, and in which a morphism p~ q
p q

from X-A to Y--A is given by a commutative diagram

f
X - y

"" /p\. ./q
A

is called the category of objects over A, denote by C/ A, [3J.

For f:A--4B in E and the commutative-diagram

Zo - Z1

"" /"Co\., /~1
B

in E/ B, if f* (to) =po----+A such that the dIagram

Po - A
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and , 7}xr y7}A

X-'Ae

is .~1back and f~(Ifli}...-.,z~l'l·such1.La:t 1",(f;xJ"f*.fl:.t) ·f*(z-J, then f*
is a functor from ETB to ElA. The 1* is called the pullbacit funetor. In
any topos E for' any I: X-+ Y, it's pullback funcwr f* has a left adjoint
Sj:EIX-+EIY, [10J.

If we define Pj:EIA-+EIB? for amorphism I:A-+B in E by
e .

(l) Pf(X~A)=Pf(~)---+Bfor every ~EEIA, such that the diagram
Pj(';)-4J(A

1 l.ce)A
B --- AA

<P

is pullback, where <p:.B~.AA is the exponentional transpose of P:BXA --+

A; and eis so that the diagrams .

, A--A X--A

<I, lA>r . r7}A

BXA-A
q>

are pullback respectively, and

(2) for .;~e' in EIA, PfCx); Pj<';)----->;Pj(t;')
so that (Pj(e)-B)=(Pj(';')--B).Pj(x). Then Pf is a functor [10J.
The fURctor P j is a right adjoint of f* for any f:A-B in E [4J, [10J.

PROPOSITION 7. Let t:1-0 be a sub6bject classifier in an elememtary topos
E, then E is embedded in E / fJ.

Proof. For ';:X--l and·';':X'~l inB/I. if S,(e)=s,(F;') then t·e=
t·!;'. Hence e=e' since t is a monomorphism. For Xl> X2, EHomE/l (e,.;') if
S,(Xl) =8,(x2), then X1=X2. .

Hence S, is the embedding. But Ell is equivalent to E

CoROLLARY 4. If tlw functor t*; B / D-E /l for tlw subobiect classifier
t:l-D in E reflects epimorphism then E is equivalent to EID.

:' .1

Proof. For C: Z-+D and C': Z'-0, if t* CC) = t* (C') pullback diagrams t
along Cand C' are equal. Hence C=C'. Since t* has a left adjoint St, it is
faithful by the hypothesis.

Therefore t* is embedding and by the propoSition 6, E is equivalent to
E/O. q. e. d.
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Since for k: B-.l in E, Sk is a left adjoint of k* :E /1-.E / B, the functor
a·S,,:EIB-.E/l=.E, preserves epimorphism [3J, and reflects an epimorphism
since it is faithful.

Hence if C:Z-.B is an epimorphism then ~ in ElB such that

C
Z-B'" /'\. ./ IB

B

commute, is epimorphism. Therefore we have the following proposition.

PROPOSITION 8. If t:;:Z-.B is an epimorphism and the diagram

X-Z

el l'
A-B

f
is a pullback, then ~ is an epimorphism.

Proof. Since f* is a left adjoint of PI' f* Ce) is an epimorphism. But
f* CC) =e. q. e. d.

AX( )

Since the functors E ==: E are left adjoints of the functor ( ) A: E-.E,
( )xA

they reflect an epimorphism. Hence if Pi: Xr~Yj are epimorphisms for i= 0,
lx.x11 jIox lr,

1, then XoXXl""-~XoXY1 and XoX Y l - YoX Y1 are an epimorphism.
Therefore PoXPt:XOXX1-'YOXY1 is an epimorphism.

LEMMA 5. Any morphism f:X-'Y in E can be factored as an epimorphism
followed by a monomorphism. (Such a factorization is unique up to isomor­
phism.) [l1J.

f
If every morphism X - Y in a category has an image and the morphism

f':X-.lm(f) is always an epimorphism, we say that the category has
epimorphic images.

If f: X~ Y and X'~X is a monomorphism, we shall denote the image
Z f

of the composite X'-X-Y by f(X').

f
PROPOSITION 9. An elementary topos E has epimorphic images and if X~Y.

g z

Y - Z, and X'~X is a monomorphism. then

g. (f (X'» =g-feX').
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-i')4:t:;'~j.': By the'Iein~5 them~rP~'f~ -be 'facthr~ as :x~Q~ Y
":WiiW'i/ari"~pitnorphism and i a;monom()rphism. ' By the' dep'ni~(;m of' fm (/)
there is a mQrphism,h: lm (f) -? Q.such that the diagraJ:.l1·:' ' ,

• ~.., ~ '. ; " • I',. r . . '. "

f
X -----'» Y

\"'( Jul
q\Im(J) /i

\'" j',
Q.

is commutative.
But since q is an epimorphism and u is a monomorphism, h is a monom~

orphism and epimorphism, so that, by the propoSition 1 h. is an isomorphism.
Since g·f·x:X'-f(X')-gU(X'))~Z arid g·f(X')=Im(g·f·x) by
the lemma 5 we have g·f(X')=g· «((X')). q~e~,4.", . . ..
Using lemma 5. we shall define a ":Power-:-setfimdor" 'Q:E-E as follows;
~'Q(X)"'f)lf.foF each XEOb~(E} B:nd lwe'shall 'take Q(J):ax~D'fJfJt:any

!:X-?¥ in E, may be described as the morphism whose.expo1llential adjoi~t
Q(f) :Qxx Y-?(J .ilil,.th~ J:~ map-of~· image(l~X!)(Ex)~DXX

Y. that is, the image of composite €x-DxXX-DxX Y. 'where for each
.• '. ' '. : loX~f ' , ",
pair (f:X-+ Y. g: Y-?Z) of moqiliism in E the classify41g map QXXZ-+D of
,the inurge 19xXg('Ir;xxf(€x»-QxXZ is ." . .".; >:,

QXXZ' ~. JJYXZ ---'--+Qi&XZ - O. ' . .... :
Q(!'Xlz Q(g)Xlz evx

ThenbyPrc,positiort 9.'QCg· f)Q(g) ·QU)' and 'Q(lx)='eVx' "so' that.
Q(lx) =lQ(xl. . .,' '",' , -

Therefore, Q is a covariant power-set functor of E.
. . . ~

;, f' " ,
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