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ON ELEMENTARY TOPOSES

By Cuaxc Ku In*

1. Introduction

The theory of elementary toposes has its origins in two seperate lines of
mathematical development, that is, the one a geometric, the other a logical
aspect, which remained distinct for nearly ten years.

The earlier of two lines begins with the rise of sheaf theory. The frame-
work of this first line is taken by A.Grothendieck, M. Artin, J.Giraud and
others in 1963-1964, as a generalization of topological space, for the
purpose in algebraic geometry.

The starting point of this second line is taken to be F.W.Lawveres [ 6]
in 1964, as the notion of higher order language. During the year 1969~19
70 the two lines of mathematical development began to come together by F.
W. Lawveres and M. Tierney [7] and the theory of elementary toposes was
developed by P.Freyd [27, A.Kock and G.C. Wraith [10], C.J.Mikkesen
and others. The next major advance was made by R.Diaconescu [ 13,17,
pp- 44-597, R.Pare (97, W.Mitchell 787, and P.T. Johnstone {47,571

The purpose of this paper is to investigate some basic properties of elemen-
tary toposes. In section 2 we prove some useful principles concerning the
morphisms in elementary toposes. In section 3 we discuss the properties
concerning representability for partial maps and the section 4 is devoted to
give the properties for the endofunctors in an elementary topos. Finally in
section 5 we state some exactness properties, in particulary we prove that an
elementary topos is embedded in the elementary topos of objects over Q.

2. Equivalence relations in an elementary topos

DEFINITION 1. A category E is called an elementary topes(or topos) if

(i) & has all finite limits.

(ii) For each object X of K we have an exponential functor ( )¥: E—F
which is right adjoint to the functor ( )X X:E—E.

(iii) E has an object 2 and a morphism 2:1-—Q such that for each
monomorphism ¢: Y—>X in E, there is a unique ¢,: X——Q (the classi-
fying map of ¢), making

*This research was supported by the Ministry of Educaton Scholarship Foundation, 1679.
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Y — 1
o |
X — 0
bq

a pullback diagram, where 1 is the terminal object.

Examples. The following categories are toposes;

(i) 8, the category of sets and functions.

(i) The category of G-Sets and G-functions for a group G.
(iii) A Grothendick topos [4].

In a topos E if g-h=14:A—2+>B-*> A then g is called a spht epimor-
phism and % a split menomorphism.

LEMMA 1. In a topos every monomorphism.is an equalizer [107. '

PROPOSITION 1. A topos is balanced.

" Proof. Let f: A—B be a bimorphism in'a topos E. Then by the lemma 1
f is an equalizer of two morpbisms. B“E“’CL Hence g-f=hof and g=h

since f is an epxmorphlsm There is a unique morphism f': B— A
such thatff’——lB since g-1z=h-1g and f is an equalizer of g and h.
While f’-f=1, since f is a monomorphism. Therefore f is an isomorphism.
g.e. d.

A parallel pair X——3 Y in a category C is said to be reflexive if there
exists Y-—X such that Sfh=gh=1y.

DEFINITION 2. Let R"“"X be a parallel pair of morphisms in a topos

E. We say that {(a,5) is an equlvalence relation on X if
() R_;2 XXX is a monomorphism.

(i) The diagonal subobject X >?——>X X X factors through {a, 5.
(iii) There exists a morphism 7:R—>R such that -7=a and a-r=5.
(iv) If the diagram

q

T —
r|
R —

N*‘;‘z
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-

is pullback, then {ap,bq): T—>X XX factors through {a, &) [47.
If the diagram in a topos E

b
K— A
b | f
A—

f

is pullback then a parallel pair X __"k__," A of morphisms in E is called the

kernel pair of £. And an equivalence relation which is a kernel pair of some
morphism is said to be effective.

ko
LEMMA 2. The kernel pair K_—k_;’ A of a morphism f:A—B in a topos E

1s always an equivalence relation.

Proof. (i) For xy-xy:X—K, if ky-29=k¢-z;, then there exists a unique
h:X—K such that %,-h=#ky-z,. Therefore A=x,=x,, and so %, is a mono-
morphism. Similarly %, is a monomorphism. Hence K —— A XA is a mon-

< ko, k1>
omorphism.
(i) Let A:A>—>AXA be the diagonal subobject. Then for k¢, &,: K — A4,

b
there is a unique (ko %) : K—>AX A and since K ——Tj A is the kernel pair
of f, there exists a unique #': A—K such that %,-k'=1, and ky-#=1,. For
the projection 7;:AXA — A, 7;({kg, by k) =k-F'=1,(i=1,2). But -/ =
1A1 and 80, A=<k0, k1>'k,.

(i11) Since the diagram

by
K— A
N
Ag—‘)B
f

is pullback there is a unique 7: K — K such that %,-v=£%, and %,-7=4,.
(iv) If the diagram

=

~
e
o
>

—>
ky

is pullback, then the diagram
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i»

T
q

-
P
R

K

|
b

1)
s N

o Raqereand
M‘

f
is also pullback. Therefore there exists a unique ¢: T—K such that k-g=
kot and k,-p=kt. Since k; is a monomorphism p=¢, and so k-g=£ky-p.
Since the diagram

| =

ko f

B e N

-

ye—

is pullback and f-k-p=f-k;-q, there exists a unique ¢': T—K such that
ko-p=ky-t! and k,-g=Fk,-¢’. Hence we have p=g=¢'. g.e.d.

PROPOSITION 2. In a topos, equivalence relations are effective.
L » . e
Proof. Let R—3 X be an eqmvalence relation. Let XXX —— Q be the

classifying map of R>— XXX, and xX*, ¢ 0% its’ exponential transpose.
G If U—3 — X be a pair of morphlsms such that the diagram

f
U— X

J

X — QX

is commutative, then we have ¢- (fX1x) =¢-(gX1x). If we compose with

U——~+U><X and ¢- (fX1x), ¢-(gX1y), then we have ¢-{f,g>=¢-<{g,2>*
But A- g (g, gy and A={a,by-a" since R is reflexive, and so {g,g)=

{a,b)-d'-g and ¢-{g, g)=¢t-(R—1)-a-g.
Let the diagram

ki,

b"——“‘

P
B |
U-— XXX —
g, 2> ¢ S
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be pullback. Then there exists a unique morphism A’: U—P such that %-4’
=1y. Hence &’ is an isomorphism since » is a monomorphism. Therefore
there is a unique morphism g: U—R such that
a,b) - u=<f, 8)- (2.1)
(ii) We must show that ¢-a=¢-b. But g-a=¢-b iff §- (aX1x) =¢- (bX1x).
Let the diagrams

P, > 1 Py ]
(@) | [e and G| lt e
RXX— XXX —> Q RxX— XX X--— 0
Xmx lex
be pullback.
Since R is an equivalence relation there exists 7: R—— R such that
2-7=b and b-T=a. (2.3)
From (2.2) and (2.3) we have
$-aX1x-<a, z)=t- (P,—1) 2.4

and (bX1y) (zX1lx) =aXlx. From (2.4) we have also
¢ (bX1x) - (zX1x) <&, z)=2- (P,—1)

and so, there is a unique morphism y:P,— P, such that {8,y -r=<ra, z}.

Similarly there is a unique morphism y’:P,—>P, such that {a,z)-7'=
{zB,y)>. Since {(B,y) is a monomorphism y-7'=1p, and 7' -r=1p,.

Hence P, and P, are isomorphic. In (2.2) since we can put P,=P, and
{a, z)={B,¥), by the condition (iii) of the definition 1 we have - (aX1x)
=g (bX1x). g.e. d.

DEFINITION 3. The exponential transpose of the classifying map 6: XX X—
Q of the diagonal map 4:X >— XXX is called the singleton map on X
and denote by { }x:X—>0QX or simply { }.

COROLLARLY 1. A singleton map is a monomorphism.

Proof. The diagonal map 4:X>—XXX and 1.:X—X are equivalence
relations by the proposition 1. {ly,1x):X—>XXX is the kernel pair of
{ 1:X—Q% I { }-z={ }-y, then there exists a unique A:Y—X
such that k=z and h=y, and so, z=y. q.e. d.

3. Partial maps

. f . . .
A partial map X —-—;—*Y in a category E is a diagram of the form
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f
X — Y

4
X
We say that partial maps with codomain Y are representable if there exists

L3 S 5 . . Fi
a mono Y >—Y such that, for any X ——;—>Y, there exists a unique X>— ¥
making

f
X — Y

le

X — ¥
f

a pullback diagram.
LEMMA 3. Let ¢ : QY X Y—>Q classify the :ringleton map | }: Yo—QF,

6:QY——QY jts exponential transpose and let Y>——~>QY the equalizer of ¢ and
1gv in a topos E. Then ¢-{ }=1{ | and soe { } factors through e.

Proof. Since { }X1y-d=<{{ },1y), from the hypothesis we have the
pullback diagram
1y

Y— Y —1

a L

YXY QXY Q.

But since 8-d=¢-(Y—>1) we bave ¢-{ }X1y=6:YXY—Q and their
exponential transposes are equal; that is,

31 1=1 }. | 3.1

Since ¥—0Y is the}requalizer of @ and 1pr, from (3.1) there existé a
unique morphism 7y: Y——Y such that { }=¢e-7. 8.2). g.e.d

LEMMA 4. Le
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be a partial map in a topos E and : XX X—Q be a classifying map of the
graph X2 xxy of f. Then the diagram

f
X — Y

a0

X — ¥

3.3

is pullback.

Proof. (i) Since the exponential transposes of ¢-d and { }-f are ¢-dX
1x and 8-fX1x  respectively. We must show that
(/)' (dx:lx) =g- (fXIX') instead of Jd= { } 'f.
- (@X1x) Qx fr=¢-{d, fr=t(zx"—1)=t(X—1) =ty f, where y: Y—1
0-(fX1x) - Qx, )=0-{f, [o=(0-A) - f=ty-f.
Hence ¢-d X1x=08-fX1x and ¢-d={ }-f.

<a,b>

(ii) Let U—=5XXY such that ¢-a={ }-b.
By transposition, we obtain

$-axX1ly=5-bX1y,
d-aX1y{l, b)=6-6 X151, &),
gb-(a, b>=5' <b9 b>=5' <A, b>=5' AN -b.

But since the diagram

Y — 1

sl e

YXY— Q
0

is pullback, the diagram

U—s Y —»

1

bi it

Y —>YXY— @
A o

is pullback. Therefore we have ¢-{a, b) =0-<b, b)=U—>1—>Q.

From the hypothesis there exists a unique morphism U—— X’
such that {d, f)-u={a,b). g.e.d.
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THEOREM In a topos, all partial maps are representable:

Proof. (i) By the lemmas 3 and 4, the diagram

f
X — Y ——1

@nl x| 3.0
XXY— QYXY—Q
¢X1y ¢
is pullback.
From (3.2) and (3.4) we have
=0 X1y. (3.5)
Hence &-=4¢. (3.6)
Since ¥—207 is an equalizer of ¢ and 1gr, there exists a unique X——¥
such that g=e-f 3.7

From (3.1) and (38.7) we have {-d={ }-f and (e-f)-d=C(e-7) f,
and so, we have f-d =7%5y-f, since ¢ is a monomorphism.

(ii) We shall show the uniqueness of f.
Suppose that the diagrams

f f
X — Y X — Y
JT l‘ﬂy and d\f lﬂy
X — Y X — ¥
fi f2

are pullback. Put ¢;=e-f; (i=1,2).
From (3.4) and (3.5)
te! =gy -{d, fy=¢1- dX1y) -Adx, £
= (¢1' (dxll’)) '<1X’,f>= (al'd) '<1X'a f>
where 2/: X'-1.
But, by the hypothesis,
fl'd=ﬂY'f=f2'd
e(fx‘d) =e(ny- f) =8’(fz’d)
$yd=gy-d=1{ }-f 3.8
(Pa-d) - Qx, Fr=¢a-{d, Fy=1t2’
¢1=¢» and so s751=552-

From (3.7) efi=efs, and fi=F, since ¢ is a monomorphism. g.e.d.
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4. Endofunctors in a topes

We can consider a partial map X —-f—>Y in F as a monomorphism {d, f)
: X' >— XXY since d:x' > 1 is ;]nono. Hence the equivalence classes
of partial maps X——:—» Y means the equivalence classes of the subobjects
{d, £Y:X’ > XXY and denote it by P:(X,Y).

Since 7y is a monomorphism, given X—!-—»Y’, we can produce a unique
partial map X~§-—>Y and by the theorem, given a partial map X—;;—’ Y, there

exists a unique morphism f:X—Y such that

is pullback. Hence we have the one-to-one correspondence A: Pt (X, Y) —-

Home(X, ¥).
Let W:E — E be W(X)=X, for every XcOb(E) and W()=j:X — ¥
for y:X—Y such that the diagram

17
X —Y

WXT IWY

X —Y
i
is pullback. Then for X——Y—>Z by the theorem there exists a unique
morphism v such that

7 v
X — Y — Z

T 1/ Tm
X — Z

X
ey
is pullback. And the diagram
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7 v
X— Y —Z

wl wl w]

-~

X—Y —Z

i 5
is pullback since Z—Z is a monomorphism. Hence W(v-g)=5-fi and W is
an endofunctor in K.

- '3
Let I be the identity functor of E. For Y——Y’ there exists a unique
#:¥-¥" such that

g
Yy — Y

Wl |m

Y — Y
g
is pullback. Hence 7:Jg— W is a patural transformation.
Define the composition 8:Pt(X, Y) XPt(Y,Z)—Pt(X,Z) by
0(d, 1), {d', g)) =d, g .
We can define the category Pz(E) with objects the same as the objects of
E and with hom-sets P:(X,Y).

PROPOSITION 3. Define I: E— Pt (E) by
I(X)=X, I(X—oY)=X—XxY

< >
and J:Pt(E)—FE by
J(X)=X, and J({d, f): X >— XXY)=F
such that the diagram

f :
X — Y

g |

X— ¥
f
is pullback. Then I is a left adjoint of J. )
Proof. Define for (X, Y)<Ob(E?XPt(E), a map
SbX,Y:HomP:(E‘?‘) (I(z), Y)—> Homg(X,¥)

Pr(X,Y)
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<d,f> -
by ¢x,y (X'>—XXY)=f.
Then for every h: X—— Y cHomg(X,¥), there exists the unique partial
& - -
map X——;—»Y and if ¢y y({d, f))=¢x y({d’, f7), then f=f'. Hence by the
theorem d- f=d’- f’, so that, ¢xy is an onto one-one map. For X—U

of K and V’}—:Vx YePt(V,Y) we have

(z‘sX, Y- HomPt (E) (Zl, <Z’, g>) =H0mE (us é) ) S‘bU, Vs
where g is a morphism such that the diagram

£
Vi — Y

v

é Ty
Ty l
1%

3
— ¥
g

is pullback, since for every {(b,t)Pt(U, V),

Jx,y-Homp, g, (u, {v, g)) ({b, D) =¢x,y ({d, ) f=g-tu
where {(d, f) is a partial map determined by the pullback diagram by pulling
7y along 2+t «. and similarly

Home (4, 2) ¢, 5 (<6, £9) =Yom (u, ) (7) =
Therefore, ¢) is a natural equivalence. g.e.d.

5. Exactness properties

Let P:Ee*——FE, P(X)=0X for each object X of £ and P(f) be the
exponential transpose of the morphism
10vx f ev
XXX XY—50
for each morphism f:X—Y in E, where evy is the evalution map to Y.

Then P is the contravariant functor.
We shall denote the exponential transpose of the classifying map e(f) of

xf
the monomorphism ¢y —— QX X XX——0X X Y by df: Q¥ ——0Y where f: X>—
Y is mono and ¢y is the subobject classified by QXXX—EB»Q €, >?—>QX><X

is called the membership relation for X [9] And £(f) is called an exponen-
tial adjoint of df,
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PROPOISITION 4. Let

be a pullback diagram with h mono. Then we have
P(k)-dh=4g-P(f) [4,91

COROLLARY 2. Let f: A>—C be a monomorphism and g:B——C marphzsm
in E. If (AXB, ma,7g) is a product of (A, B) and if (E,e) is the equalizer

of f.74s, g-Tp, then we have
P(e) - Af= (Fnp-e) -Pae).

Proof. Since the diagram

is pullback, By the proposition 4 we .comﬁleie this pfoof

COROLLARY 3. If X——-—+Y is @ mono then P(f)- ﬂf ].DX- '

Proof. The diagram

1x
X — X

lxj' J;f A
X — Y
- f _
is pullback. o ‘

‘Since. the morphism P(1x) is_the expohentml transpose wax (1gxX1x) =
evx. Similarly H(1x) is the exponential transpse of s(lx) =evx: Hence E[(lx)
=1¢x. By ‘the proposition 4,

P(f)-A(f)=4(1yg) - P(x)=1px. q.e.d.

PROPOSITION 5. " For any monomorphism f in 'E,- P(f Y is m(mo i tke eval-'.

uation map evy for all A of Ob(E) is monomorphism. ‘
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Proof. Let f:A—B, then the exponentlal adjoint of P(f) is evy- P(f) X
Ia=evg-1ge X .

By the hypothesis, evg-1o¢Xf is mono. Hence P(f ) X1, is mono, so that-
P(f) is mono. q.e.d. .

PROPOSITION 6. Let P (X) P ( Y) -———)P(Z) be a coequalz zer dz’agramh in

E. Then X _"’Y———»Z is a coequalwer E”P if the morphism Z——Y in E

is the subob_)ect classified by 6x- {f.g), where ox is the classifying map of
A X— XXX )

Proof. h-g=h-f and A is an epimorphism in JE°# because P(h)-P(g)=
P(hg)=P(h)-P(f)=P(hf) and P is faithful. Since h:Z——Y is a monom-’
orphism in E, by the hypothesis it is the subobject -classified by dx-(f, g).
Hence % is the equalizer of of f and g in E, so that, & in E° is the coe-
qualizer of f,g in E°¢. g.e.d.

DEFINITION 4. For any category C and object A of C, the category whose
objects are morphisms with codomain A, and in which a' morphism p— ¢
14 q
from X——A to Y——A is given by a commutative diagram

f
X — Y

AN s
P~ g
A

is called the category of objects over A, denote by C/A, 3.

For f:A——-RB in E and the commutative diagram

Zy — 7,

N S

Lo V& \
| B ‘ ‘

in E/B, if f*({,)=P,—A such that the diagram

Py — A '

Ll

Zo ey B

Co
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is pullback and f*(s)=Fop—P,; sach that F*L)=r*{L) -f*(z), then f*
is a functor from E/B to E/A. The f* is called the pullback functor. In
any topos K for any f:X—Y, it’s pullback functor f * has a left adjomt
Sy E/X—E/Y, [10)

If we deﬁne Py: E/A~+E/B for a morphlsm f A——*B in E by

¢))] P;(X~—»A) =P;(§)—B for every écE/A, such that the dlagram

Pr®—>X4
| &
B —— A
¢

is pullback where ¢: B—-——*AA is the exponentlonal transpose of gD BXA —
4 and & is so that the diagrams

A— A X— A
S, 1‘4>\I K TﬂA and ,,ﬂxI. , YﬂA
BxA— A X —2

are pullback respective]&, and '

(@) for E-¢ in E/A, Pi(a); P;(E)—Ps(&)
so that (P;(§) —B)=(P;(§’)—>B). Ps(z). Then P; is a functor [10].
" The functor P, is a right adjoint of f* for any f:A—Bin E [4],[10].

PROPOSITION 7. Let t:1—>Q be o subobjcct dasst ﬁer in an elememtary topos
E, then E is embedded in E/Q. \

Proof. For £: X—1 and €:X"——1 in E/1, if §,(§)=8,(&’) then¢-&=
. Hence =&’ since ¢ is a monomorphism. For x;, z2, €Homex (€, &) if
Sc (1‘1) S;(z2), then z;=u,.
Hence S; is the embedding. But E/1 is eqmvalent to E

COROLLARY 4. If the functor t*; E/Q**E/l for the subobject classifier
:1-Q in E reflects epimorphism then E is equivalent to E/Q.

Proof. For [:Z—Q and U':Z'—-Q, if t*({Q=t*() pullback diagrams ¢
along { and {’ are equal. Hence [={'. Since ¢t* has a left adjoint S, it is
faithful by the hypothesis.

Therefore t* is embedding and by the proposition 6, E is equivalent to
E/Q. qg.e.d.
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Since for k:B—1 in K, S; is a left adjoint of %*:E/1—E/B, the functor
a-S;:E/B—E/1=F, preserves epimorphism [ 3], and reflects an epimorphism
since it is faithful.

Hence if {:Z—B is an epimorphism then  in E/B such that

¢
Z — B

N/
N1
B

commute, is epimorphism. Therefore we have the following proposition.

PROPOSITION 8. If {:Z—B is an epimorphism and the diagram
X —2Z

el e
A — B
is a pullback, then & is an epimorphism.
Proof. Since f* is a left adjoint of P;, f*(§) is an epimorphism. But
FrO=£ gq.ed.
AX
Since the functors E ___—(3: E are left adjoints of the functor ( )4:E—E,

( IXA
they reflect an epimorphism. Hence if P;: X;—Y,; are epimorphisms for i=0,

IxoXp poXiry .
1, then X0><X1—f—>1X0>< Y; and X XY;—>YyXY; are an epimorphism.
Therefore poXp1: XoX X3—Y (X Y] is an epimorphism.

LEMMA 5. Any morphism f:X—Y in E can be factored as an epimorphism
followed by a monomorphism. (Such a factorization is unique up to isomor-

phism.) [117].

f
If every morphism X——7Y in a category has an image and the morphism
f:X—Im(f) is always an epimorphism, we say that the category has
epimorphic images.

If fX—Y and X’ Z X is a monomorphism, we shall denote the image

= s
of the composite X'——X—Y by fF(X’).

!
PROPOSITION 9. An elementary topos K has epimorphic images and if X—Y,

Y——g—+Z, and X’>—X is a monomor phism, then
g (F (X)) =g-f(X").
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b ‘Praof By the 'Temma 5 the. ﬁmrphxsm f can be factored as X———rQ—»Y
“with ¥’ an “epimorphism and i a moromorphism. - By the deﬁnmon of Tm( f )
there is a morphlsm b Im £ ——>Q such that the dlagram

s Y

q:{r;(f{//
- Q

is commutative.

But since g is an epimorphism and # is a monomorphism, % is a monom-
orphism and epimorphism, so that, by the proposition 1 £, is an isomorphism.
Since g-f-z: X' —f(X') —>g(f(X))>—Z atd g-f(X')=Im(g-f-z) by
the lemma 5 we have g-f(X")=g- (f(X")). .q.e.d..

Using lemma 5, we shall define a “power-set fanctor” Q: E—FE as follows,
boQUX)=0% for each XcOb(E) and 'we shall take @(F):0%+QY for'any
F:X—Y in E, may be described as the morphism whose .exponential 4djoint
Q(f): XX Y02 is-the classifying map-of the image- (1xX f) (€x) >—>0%X
'Y that is, the 1mao'e of composite €x *QX_X}II JX;QX XY, where for each
pau- (f X——»Y g: Y—>Z) of morplnsm in E the cl:lxssdymg map QX ><Z->Q of
the' image IQXXg(IDXXf(ex))»—»QXXZ is- sl

QXX Z —s Q¥XZ — QX Z————>Q t

Q(f)x]z Q(l)xlz evy
Then by Proposxtlon 9 QCg f) =Q(g) -Q( f) and Q(lx) evx‘ so that,

Q) =1lox-
Therefore, Q is a covariant power-set functor of E.

Lo

s e
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