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Abstract

Macrophytes play a crucial role in the functioning of lake ecosystems. Until now most macrophyte models neglected the
fact that the majority of macrophyte species expand clonally during the growing season. Inclusion of a detailed description of
clonal growth in models can facilitate our understanding of space occupation and patch expansion and predict future macrophyte
development. “CLOMO” is an individual-based model which includes a detailed, spatially explicit description of rhizome
formation and clone expansion as well as a realistic description of photosynthesis including light limitation and temperature.
The model also accounts for transfers of energy or resources between different parts of the clone (“clonal integration”).

Although the clonal growth of macrophytes is complex and poorly known, the first model results for the macrophyte species
Potamogeton perfoliatus were promising and compared well with the field data. The model can produce growth networks very
similar to those found in the field. A Monte Carlo sensitivity analysis showed systematically which parameters have the largest
effect on the architecture and expansion of the clones.

The application of the model provided new insights into growth dynamics and patch development: (1) the model showed
that a lack of branching will lead to the extinction of the clone after a certain number of years. This is due to the fact that
the reproductive organs (turions) are formed at the end of a branch and even a small turion mortality will cause a reduction in
surviving plant numbers; (2) the growth of rhizome axes relative to those in the previous year determines the patch density and
patch expansion rate. Reversing rhizomes lead to compact patch growth whereas continuing rhizomes lead to loose aggregates
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction has, to our knowledge, never been modelled in detalil,
including architectural, spatial, environmental, tempo-
The majority of submersed macrophytes form raland demographic components. For terrestrial plants,
clones which are connected by below-ground rhi- only a few of such detailed models existdefben
zomes. Observed from above, a macrophyte patchand Suzuki, 2002; Oborny and Kun, 2Q0Zhe facts
appears like a simple collection of shoots, but a closer that photosynthesis in water has fundamentally other
look into the sediment reveals a complex network of restrictions than in air and that light submissionin water
“ramets” (=potentially independent units with leafy is far more complex require separate models for sub-
shoot and roots) interconnected by “rhizomes” (=hori- mersed species.
zontal shoots lacking chlorophyll). One plantRfta- Here we present the individual-based model
mogeton perfoliatus can, for example, consist of more  “CLOMO” (“clonal module”), a spatially explicit
than 15 ramets connected by more than 1 m of rhizome model that combines a stochastic description of clonal
(Wolfer and Straile, 2004aExperiments have shown expansion with a ramet-based calculation of primary
that ramets exchange energy or resources through thes@roduction and respiration using physiological rules of
rhizomes Hartnett and Bazzaz, 198% process called  the non-clonal model Charism#gn Nes et al., 2002,
“clonal integration”. Furthermore, rhizomes are mobil- 2003. Clonal integration was described as simple as
ity units, as a clone can move slowly by creating possible, since transport between ramets is a poorly
new rhizomes. The architectural growth of main rhi- understood process. We applied the model to describe
zome axes, rhizome branchings, rhizome angles andthe spatial architecture & perfoliatus L. in Lake Con-
rhizome “spacers” (=rhizome connection between two stance.
neighbouring shoots) follows species-specific clonal ~ Special analyses were performed with regard
rules Callaghan et al., 1990; Evans and Cain, 1995 to branching frequency and rhizome growth direc-
Nonetheless, spacer lengths and branch angles alsaion. Furthermore, a Monte Carlo sensitivity analysis
show considerable variatio&in et al., 1995; Wolfer ~ (Klepper et al., 1994was applied to show systemat-
and Straile, 2004a)bsometimes in response to their ically which parameters have the largest effect on the
growth conditions De Kroon and Hutchings, 1995 architecture and expansion of the clones.
aiming at the effective exploitation of local resources
such as light and nutrient€allaghan et al., 1990
Clonal growth architecture is important for macro- 2. Methods
phyte fitness, because it determines propagation,
growth and survival, space occupation and patch expan-2.1. Model description
sion. Also the sharing of resources such as carbohy-
drates or nutrients increases fitne¥gijésinghe and 2.1.1. Overview
Handel, 1994; Stuefer et al., 1996; Hutchings and  CLOMO is an extension of the model Charisma
Wijesinghe, 199Y. (Van Nes et al., 2002, 2093Although CLOMO uses
Our objective was to develop a model which can the biomass growth unit of Charisma, its new com-
improve our understanding of mechanisms that could ponents make it fundamentally different from the ear-
cause the observed field patterns of clonal architecturelier version (se€Table 1. While the biomass model
and patch expansion. It does not aim at replacing exist- Charisma is non-clonal and uses super-individuals to
ing models of aquatic macrophytes, but rather adds a cope with large numbers of individualSc¢heffer et al.,
supplementary application. On the long run it could be 1995, the current model is truly individual-based
used to predict future macrophyte development and the and operates on a smaller spatial scale. Clones are
impact of environmental variation. modelled as a set of ramets (nodes with shoots)
Although there are many detailed dynamical models interconnected by rhizomes. The model is explicitly
of macrophytesollins and Wlosinski, 1989; Scheffer  spatial, describing patches of plants growing on a
etal., 1993; Hootsmans, 1994; Chen and Coughenour,grid.
1996; Muhammetoglu and Soyupak, 2000; Van Neset  The basic units of the calculations are the ram-
al., 2003, the clonal growth of submerged macrophytes ets. Each ramet has an exacandy coordinate and
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Table 1
An overview of the main differences between non-clonal macrophyte model€@ligs and Wlosinski, 1989; Scheffer et al., 1993; Hootsmans,
1994; Chen and Coughenour, 1996; Muhammetoglu and Soyupak, 2000; Van Nes et3lariththe clonal growth model CLOMO

Non-clonal macrophyte models Clonal macrophyte model

Shoots are the basic unit for photosynthesis (self-) shading is calculated Ramets are the basic unit for photosynthesis
for each shoot
From each seed or tuber emerges a maximum of one shoot in spring; noFrom each tuber emerges one ramet in spring; additional ramets

further shoot emergence during the growth season are formed during the growth season if there is enough biomass

accumulated

Individual shoots, no clones Several ramets form a clone

(Almost) all shoots are assumed to be of equal age and length Each ramet has a different age and length

Spacer lengths and number of ramets per clone are ignored Spacer lengths and number of ramets per clone are important
components

No patch expansion within a season Position of new ramets is determined stochastically and leads to
patch expansion within a season

Transfer of energy between shoots and roots/reproductive organs only Additional transfer of energy between ramets

is associated with one grid cell. A clone can expand 2.1.2. Production and respiration

over more than one grid cell. The biomass growth Most rules for production and respiration are taken
of each ramet is calculated with time steps of 1 day from the Charisma modeVMan Nes et al., 2003 but

and depends on photosynthesis and local environmen-bicarbonate is not assumed to be limiting, and senes-
tal conditions. During their growth, the shoots reserve cence is described in a more detailed way.

an increasing part of their net production for creat- The daily growth of each shooA(W) depends onthe
ing rhizomes and new ramets. The positioning of new photosynthesisH), the maintenance respiratioR{),
ramets is determined by the length of the rhizome the import from previous rametg() and export to
and a stochastic component. Above a certain shoot subsequent ramet%4) (Fig. 1):

length, part of the production will be transferred to

neighbouring ramets (clonal integration). During one AWs= WsP — WRm + 11 — T2 )
season, apical growth of rhizomes and ramets and
branching leads to the origin of a large clonal system
(“plant”). At the end of the growth season, part of the
biomass is redirected to overwintering organs (“turi-
ons”) in the sediment, and the rest of theabground
biomass dies. The turions will develop new sprouts at

Maintenance respiratiomRf,) is arbitrarily taken in the
middle of the range of values published Madsen
and Adams (1989and lkusima (1970)for miscel-
laneous submerged plantsod=0.024ggld-! at

a preset day in spring. Many of the default parame-
. . temperature light limitation
ters have been derived from Lake Constance field data
(Table 2. l l .
_ _ _ _ , "
Each grid cell has environmental variables associ- respiration p”&?%%’;i?}.&%f’" h—  senescence
ated with it (vertical light attenuation, water level and
nutrients). The grid dimensions can be defined by the \ /
user. previous ramets net production rhizomes,
. . . or turion P megetedover day 1ot ramets
In the following, we will describe the model focus- and shoot lengt

1

shoot biomass shoot length

ing on the new features and summarizing the parts that
are taken from the earlier version of the modéhif

Nes et al., 2002, 2003 The model is implemented ool blomass
in Delphi 5.5, an object oriented version of Pascal.
Itis _freEIy available Omttp://WWW'dOW'WEiu‘nl/aeW/ Fig. 1. Schematic overview of the factors that determine the growth
charisma/ of each shoot.
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Table 2
Default parameters for the clonal modelReftamogeron perfoliatus in Lake Constance
Parameter Description Unit Value
HAge Half saturation for senescence day 300
PAge Exponent in Hill function for senescence a2
pMax Maximal gross photosynthesis ~h 0.008
010 Q10 for maintenance respiration €2
Resp20 Respiration at 2@ day?! 0.00206
MaxLength Maximum shoot length m a5
MaxWeightLenRatio Mean weight of 1 m young shoot gm 0.8
RootShootRatio Proportion of shoot allocated to the roots Fraction 20.06
FracPeriphyton Fraction of light reduced by periphyton Fraction 0.2
hPhotoLight Half-saturation light intensity (PAR) for photosynthesis pEm2s1 3¢
hPhotoTemp Half-saturation temperature for photosynthesis °C 1€
pPhotoTemp Exponent in temperature effect (Hill function) for photosynthesis ¢ 3
sPhotoTemp Scaling of temperature effect for photosynthesis €1.35
HTurbReduction Half saturation biomass of light attenuation reduction “Im 10C¢°
pTurbReduction Power in Hill function of light attenuation reduction ¢ 1
Plantk Light attenuation of plant tissue ‘gt 0.0%
cTuber Fraction of turion weight lost daily when sprouts start growing Fraction ¢ 01
MaxTurionWeight Maximum weight of turions g G2
MeanTurionWeight Mean (initial) weight of turions g 6.2
MinTurionWeight Minimum weight of turions g 0
TurionFraction Fraction of biomass allocated to turions Fraction b0.05
TurionGerminationDay Day of turion sprouting ¥4
TurionMortality Annual mortality of turions yrt 0.12
TurionReproDay Formation day of turions 250
Alpha Parameter that determines the biomass allocation to subsequent 0.6°
rhizomes and ramets
MeanRhiAngle Mean rhizome angle rad do
NewRametLength Length of the ramet at which it creates a new rhizome and ramet m b 0.15
PBranchingLong Branching probability of rhizomes Fraction d0.1
RhizomeWeightPerM Average weight of 1 m rhizome g'm 0.5°
SDRhiAngle Standard deviation of rhizome angle rad /9
TurionAngle Angle of the turion with the parent rhizome rad 74
TurionAngleRange Range in the angle of the turion with the parent rhizome rad d 0

2 Estimated from field observations (S. Wolfer, Unpublished results).

b Calibrated.

¢ Assumed to be the same Byectinatus (Scheffer et al., 1993; Van Nes et al., 2003

d Wolfer and Straile (2004b)
€ Wolfer and Straile (2004a)

20°C). Temperature dependence of the respiration is The parametePmax represents the specific daily pro-

formulated using @10 formulation (default value 2):

_2
Rm = r2001, 0/10 2

Only the shoots take partin the primary productiBh (
The maximum photosynthesiB{ay) is limited by the
in situ light intensity at plant leaved)( temperature
(7), and the age of the ramet)(

I 1357°  H?
I+ H T3 + 143 H} + A2

P = Pmax ©))

duction of the plant top at 2GC not having light limita-
tion. Light limitation is described by a Monod function,
H, is the half-saturation constant. Irradiance follows a
daily as well as a yearly cycle and light is attenuated in
the water column both by the water and the vegetation
(Van Nes et al., 2003

Temperature dependence of photosynthesis was fit-
tedto values oPoramogeton pectinatus (Scheffer etal.,
1993. As field observations indicate that older ramets
are often covered with periphyton that reduces irradi-
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ance and consequently production, a factor for aging ramet
was added as a Hill functioff(y is the half-saturation shoot

constant of aging).
In the present analyses we assumed that the plants
are not limited by phosphorus, nitrogen or carbon in
the water, but the model can optionally account for
such limitations.
As light varies during the day and with water
depth, we integrated photosynthesis over the day and S Te, o f\ls: 7, °*f 153 T, ™ [

over the length of each shoot by three-point Gaussian X o - X growth'
integration Goudriaan, 1986 The in situ light con- < root < thizome spacer ' ooy

ditions were averaged for each grid cell taking self-
shading into account (see below). As accounting for Fig.2. Scheme of the clonal growthBfperfoliatus. S; is the surplus
self-shading can be very computer intensive and as theproduction of shoot, 7; is the transfer to shoat « is a parameter
biomass changes are relatively slow, we calculated the that determines which part of the transf&)(goes to the next shoot.
light attenuation in each grid cell once in 7 days (at 15 ) ) )
depths distributed evenly over the water column) and with shoot height. The biomass is assumed to be trans-
interpolated linearly between the calculated points. ~ Ported acropetally from older to younger ramétsgns

For vertical light attenuation, temperature and water @nd Whitney, 1992; Mawbet al., 2002 Each younger
level we used 10 years of interpolated data from Lake Shoot adds a partq of the transferred biomass to its
Constance. For more theoretical questions we averaged€t production. The remainder goes to the next shoot
these years to avoid stochastic differences between(Fig. 2). Thus, the transport to the shoot of ramf;)

years. sums up to:
We also included water clarification by macrophytes ;
(Scheffer, 1998; Van Nes et al., 203 Lake Con- T, = ZSikat(oz _t s (4)
stance this effect is probably not important as the water P
is usually rather clear, but this effect is essential for the . ) . o
existence of alternative stable stat&sffeffer, 1998;  in whichsS; is the surplus production of shoofi =1 is
Van Nes et al., 2002 the oldest shoot). For simplicity we assume that there
In most simulations we used a grid of QL0 cells is no cost for transport. Biomass which is transferred to

grew beyond the border of the grid were coupled to the transferred further to the next ramet. In case of branch-
opposite grid cells. ing, the transported biomass is divided equally over

both branches. The surplus production of the last ramet

2.1.3. Biomass allocation, clonal growth and goes into the growth of the new rhizome, which has a
clonal integration (transfer) fixed weight—lengthratio. If the last shoot reaches a cer-

The produced biomass is allocated to shoots, rhi- tain fixed height, the growth of the rhizome is ceased
zomes and roots. The root is a fixed proportion of the @nd a new daughter ramet is created.
shoot that does not take part in photosynthesis. The  The mainrhizome may have a (usually small) angle
height of the young shoots increases proportionally with the previous rhizome, which is drawn from a nor-
with their biomass until the water surface or a pre- mal distribution. Each ramet has a certain probability
defined maximum height has been reached. If the net Of branching, which is drawn from a Bernoulli distri-
production of a shoot is positive, a part is allocated bution. The angle of the branch with the main rhizome
to the rhizomes. The proportion of the production that is also drawn from a predefined normal distribution.
is allocated depends on the height of the plant: very
small shoots add nothing, whereas fully-grown shoots 2.1.4. Mortality
add all their production to the rhizomes. Betweenthese = The model accounts for (a) a fixed background
extremes, the allocated proportion increases linearly mortality and (b) mortality at the end of the season.
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Turion

L (optional) reversion of
growth direction next year

Turion

-— .

(optional) reversion

of growth direction next year

Fig. 3. Schematic representation of a clone and the transport of energy from the ramets (circles) to the turions (triangles). At the end of the seaso
the turions get a proportional part (same color) of the accumulated biomass in the rhizomes and shoots. If enough biomass is accumulated, th
turion produces a new clone in the next season in which the growth direction is optionally reversed.

Background mortality results either in a weight loss or small import of turions prevented total extinction of the
in a stochastic loss of the complete shoot depending onplants. If the model has alternative stable states it will
whether it has already reached the surface or ian ( show a hysteresis in the response, i.e. the vegetation
Nes et al., 2008 At a pre-set day in autumn, all shoots will recolonise at a lower turbidity than the turbidity at
die, and their biomass is reallocated to the rhizomes. At which they disappeared.

the last (youngest) ramet of each branch of the clone,

aturion is createdWolfer and Straile, 2004bSince it 2.3. Monte Carlo sensitivity analysis

has been shown that turion production often depends

on plant biomassSpencer et al., 1993the turion We applied a Monte Carlo sensitivity analysis
receives a proportional part of the accumulated energy to select the parameters which have the strongest
in each rameﬂ-’(ig_ 3) The amount ofenergy (biomass) impact on clonal architecture. We generated 20,000
that is transported to each turion is a fixed part of the sets of parameters, drawing all parameters randomly
rhizome biomass up to a fixed maximum. The turionis and independently from uniform probability distribu-
only created if the rhizome biomass exceeds a certain tions within ranges o£10% around the default values.
minimum weight. The growth direction ofthe clonecan Three years were simulated with each parameter set-

be continuing, reversed or stochastic in the next season.ting, and the model results (mean shoot length, mean
spacer length, fraction below-ground biomass, mean

2.2. Scanning of asymptotic regimes number of ramets per clone, approximate expansion
area, mean expansion per clone) were stored at three
In the previous version of the model we showed dates (days 189, 219 and 249) of each year. At the end
that there can be two alternative stable states in the of each simulation, the model was reset to the start-
model due to a feedback of vegetation on their light ing number of turions per grid cell (5T). Sensitivity
climate {an Nes et al., 2002, 2093In the current coefficients were defined by linear regression between
more detailed model, we show whether the model still the parameter values and each model output value,
has alternative stable states, by analysing of the effectscaled by the ranges used for each paramgtepper,
of increasing and decreasing light attenuation on the 1989. Cluster analysis (average linkage) was used to
equilibrium biomass of?. perfoliatus. Vertical light form groups of parameters that had the same or oppo-
attenuation was slowly increased in small steps, while site effect on the qualitative model results. As similarity
the model was not reset. After a period of stabilis- measure the absolute sine of the angle between the vec-
ing, the biomass at the end of the growth season wastors of sensitivity coefficients was used. As measure of
plotted for 5 years. When the water had reached maxi- the total sensitivity the length of this vector was used
mum vertical light attenuation, and the vegetation had (Klepper, 1989%.
disappeared, the same procedure was repeated back- In a Monte Carlo analysis there is a probability
wards (i.e. vertical light attenuation was reduced). A that a parameter has a positive sensitivity coefficient
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5 Shoot length (m) B more or less exponentially, peak in August, and fall
0] T back to 0 after September. With regard to area, there
2.0 j ! is a net patch growth each year (difference between
T-fg’ \ = end-of-season and before-season turion numbers). In a
% 08> g ‘ \ 20-year-simulationKig. 5b), biomass, ramet number
04> : — 16 2.0 and total patch size initially increase and then stabi-
0.0‘8O 04 98 = lize after 10-15 years; ramet number per plant and

rhizome length decrease slightly, spacer length, shoot
length, belowground biomass and limitation stay about
the same.

because it is related to the model outcomes by chance. The values of simulated growth parameters such as
To determine the significance level of the sensitivity shoot length, rhizome spacer length, rhizome length,
coefficients, we added 100 dummy parameters that hadetc. are in the range of the field dat&/dlfer and

no effect on the modeMan Nes et al., 2003 These Straile, 2004bTable 3. In general, growth parame-
dummy parameters were arbitrarily setto 1. As the real ters of macrophytes are extremely variable and also
model parameters, the dummy parameters were drawnthe cited reference only covers a small part of the reper-
from uniform distributions, and their “sensitivity coef-  toire. The simulated biomass and ramet densities occur
ficients” were calculated. The 0.02 significance level of frequently in situ (Wolfer, Unpublished observation);
the sensitivity coefficients was estimated by the 98% for the cited field work, lower densities were deliber-
percentile of the sensitivity coefficients of the dummy ately chosen. The simulated number of ramets per plant
parameters. In the cluster analyses we only included is rather low, but this is partly due to the high equilib-
parameters with a significant sensitivity coefficient. rium density of ramets, implying strong light limitation.
Atlower ramet densities the number of ramets per plant
is quite realistic Fig. 6).

Fig. 4. Example of a generated pattern (clone growth during 1 year).

3. Results Stabilization of biomass and ramet number after an
initial colonization phase is common in aquatic macro-
3.1. Architecture and growth parameters phytes Duarte and Sand-Jensen, 13%®amet number

per plant and total rhizome length decrease because of

The simulation produces complex architectural pat- higher density and the resulting light limitatioolfer
terns of shoot and rhizome connectiofgy( 4) which and Straile, 2004a
compare well with field data from Lake Constance Average spacer length, shoot length and below-
(Wolfer and Straile, 2004bFor example, the observed ground fractions do not change much during the 20
increase in length of younger rhizomes during one sea- simulated years. The behaviour of spacer length does
son \olfer and Straile, 20044a)lis reproduced by the  not comply with observations which show that average
model. spacer length decreases with increasing light limitation

A 20-year simulation starting with 5propagu- (Wolfer and Straile, 2004aThis decrease must be an
les m2 yielded the following results: annual curves of —active lightforaging strategy of the plants (shoot growth
most growth parameterBig. 5a) startin May, increase  for light capturing at the expense of rhizome growth),

Table 3

Model results of growth parameters in comparison to in situ and mesocosm assessments (average site values)

Parameter Model result In sitWMplfer and Straile, 2004b Mesocosm\(Volfer and Straile, 200)a
Biomass (g dw m?) 280 17-200 na

Ramets (m?) 350 90-210 na

Ramets per plant 5.5 5-8 7-13

Shoot length (cm) 100 12-66 na

Rhizome spacer length (cm) 8.5 7.6-8 7-10

Rhizome length (m) 0.4 0.4-0.63 0.6-1.25
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is due to the exponential phase of the growth in macrophytes.

which could not be reproduced by the simplified plant
strategy in the model.

As in (Wolfer and Straile, 2004awe found lower
patch expansion at low plant density and at higher den-
sity, and highest patch expansion at medium density.
Long-term stabilization of patch sizes under model
conditions (no disturbance, homogeneous environ-
ment) is probably related to field observations, where
patches appear at the same site and in a very simi-
lar size from year to yeaMalser, 1996; Gafny and
Gasith, 1991. In situ, patches may even keep their dis-
tinct shape over long time periods, although, according
to expectations, they should expand until they fill up
homogeneous lake compartments. The growth curves
suggest, that this could be a result of the stabilization
of biomass and ramet number which in turn are due to
light limitation in a dense patch.

3.2. Branchings

A variation of the branching probability per plant
from 0 to 1 reveals strong consequences for equilib-
rium summer biomasses and total number of ramets
(Fig. 7). Plants with zero branching die. Due to the
clonal growth architecture @t perfoliatus, each plant
with zero branching produces exactly one turion at the
end of the rhizome axisWolfer and Straile, 2004b
Under the assumption of zero mortality, the number
of plants will remain the same forever. However, turi-
ons are usually subjected to waterbird foraging, fungus
infection, or mortality due to stochastic reasons. Addi-
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Fig. 7. Modelling results on the influence of branching probability
on summer biomass (a) and number of ramets (I} perfoliatus
after a simulation period of 20 years.

tionally, it is assumed that turions also fail to propagate
if their weight is too low (for example due to bad shoot
biomass growth in the previous season). The model
shows that, if there is no branching, even the lowest
turion mortality will eventually lead to the extinction
of the plant.

Maximum summer biomass and maximum density
are achieved at the (relatively low) branching inten-
sity of 0.1-0.2. At higher branching rates, biomass
and number of ramets decrease again. The optimum
branching probabilities found by the model are equal to
those found in the field in patches with favourable plant
growth Wolfer and Straile, 20049b and lower than
those found under experimental conditiond/offer
and Straile, 2009a probably because of lower water
level and more light in the experimental water basin.
The decreasing biomass at higher branching is due
to our assumption that energy reserves at the end of
the growing season are equally divided up into the
number of turions. Branching increases the number
of turions, therefore individual turions will not have
enough reserves to sprout successfully in the next
season.
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3.3. Spatial expansion with and without reversing The model allowed us to compare the influence
turions of random, continuing, and reverse rhizome growth.
There are dramatic effects on patch density and expan-
The main rhizomes axes @btamogeton perfolia- sion after a 20-year simulatiofig. 8). Reversal leads

tus usually grow relatively straight and terminate with to a very compact patch with high densityiq. 8a).
aturion at the end of the season. During winter, the rhi- Continuation of growth into last years direction cre-
zomes decompose and only the turion remains intact. ates a larger, sparser patéig. 8c) and random growth

In the following year, the growth of the new rhizome direction lies in between the twéig. 8).

can theoretically (a) be random, (b) continue in the These model results show that not only extrin-
direction of the previous year, or (c) reverse its direc- sic growth conditions but also intrinsic architectural
tion. In practice however, the growth direction of the growth rules are of major importance for the patch
new rhizome is probably not random but rather deter- characteristics. There are intra-specific feed-backs of
mined by the alignment of the meristeétson and patch density and structure such as modification of
Cook, 1982. There is some indication of growth rever-  light, nutrients, and sediment detritu€dbran and
sal, since turions grow basipetally in the sediment in a Duarte, 200}, regulation of flowering Thompson et
hook-like fashion {\Volfer and Straile, 2004b al., 1990, or susceptibility against wave attackqops

20~ "
(@) (b)

15+

10- ?ﬁ

meter

20+ 4
(c)

15-

10-

Fig. 8. Patch density and expansion in dependence on rhizome growth direction relative to the previous year. (a) Common starting condition,
(b) growth reversal, (c) random growth and (d) continuing growth (simulation period 20 years).
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et al., 199). The observed differences in patch size, pMax, sPhotoTemp and hAgEif). 10. These param-
pattern and density will have impacts on processes in eters have a strong effect on the expansion area and
the littoral ecosystem, such as element cycksrko the number of ramets per clongig. 11). In an earlier
and James, 1997as well as on littoral food webs analysis, they also had the strongest effect on biomass
(Lauridsen et al., 1996and the distribution and age- and numbers in the model Charism&( Nes et al.,
characteristics of littoral fishfeaver et al., 1997and 2003.
macro-invertebratedNebster et al., 1998 A second smaller clusterF{g. 10 includes the
parameter Alpha, which determines the fraction of
3.3.1. Scanning of asymptotic regimes transported biomass that is used for the growth of sub-
Although the new model “CLOMO” is much more sequen_t rametd~(g. 2). The parameters _determlnlng_
complex than the original model Charisma, the results the weight-length relationship of the rhizomes (Rhi-
were quite similar{an Nes and Scheffer, 20pBtart- ~ 20meWeightPerM) and the length of the shoots at
ing from the turbid state? perfoliatus growth tolerates ~ Which @ new ramet is created (NewRametLength) are
less turbidity, than starting from the clear state. We can @S0 included in this clusteF{g. 10. These parameters
therefore show thaPotamogeton influences its own ~ Nave a strong effect on the clonal expansion because
environment through feedback mechanisms and that ey determine total rhizome length, but also on rhi-
the system can have two alternative stable states atZ0Me spacer lengttF{g. 11). Furthermore there are
higher turbidity: one with vegetation and one with litle  SOmMe parameters that belong to no cluster, but also
or no vegetation. The main difference is that the zone have asignificant effect. It seems plausible that the day
with alternative equilibria is much smaller in the clonal  ©f turion germination (TurionGerminationDay) influ-

model Fig. 9), which is due to the fact thdt perfolia- ences the growth of the clones, because any additional
tus is assumed to have a smaller effect on water clarity 92y Of growth increases the biomass. The importance
thanP pectinatus. of earlier germination is also confirmed by experiments

and in situ observation$pencer and Rejmanek, 1989;
Spencer et al., 2000In the model, it strongly affects
all variables in the first year, but has much less effect
in the following years.

3.3.2. Monte Carlo sensitivity analysis of clonal
architecture

Cluster analysis of the sensitivity coefficients shows
that there are only two clear clusters of parameters that
determine the clonal architecture. The strongest effect
is due to a group of parameters with a strong impact

on photosynthesis. This group includes hPhotoTemp, 4l C . 1 oth el
. omparison wiin oiner moaets

4. Discussion

Biomass (g m2) The models available for clonal plant growth can be
classified into empirical models and mechanistic mod-
4001 els Carr et al., 199).

500

300 1 (1) The majority of aquatic plant models are mecha-
nistic biomass models that calculate plant growth
2001 from physiological processes such as photosynthe-
sis but disregard clonal architecture. These mod-
els can be (a) non-spatiaCéllins and Wlosinski,
1989; Scheffer et al., 1993; van Dijk and Janse,
0 1 2 3 4 1993; Davis and McDonnell, 1997; Hootsmans,
Vertical light attenuation (m-1) 1999; Asaeda and Karunaratne, 2000; Calado and

Fig. 9. Simulation of the response & perfoliatus biomass to Duarte, 2000; Best et al., 20DDr (b) spatial

increasing and subsequently decreasing turbidity without resetting (Wortmann et al., 1997; Van Nes et al., 29-03
the model. Compared to such models our model needs many

100 1




78

Dendrogram using Average linkage

0.624 RootShootRatio
0.431 PBranchingLong
0.968 MaxWeightLenRatio
0.675 MaxTurionWeight
0.661 pPhotoTemp

1.586 NewRametlLength —_— H

5.245 Alpha

1.907 RhizomeWeightPerM } B
0.574 PlantK
0.413 Resp20
2.037 HAge

6.518 hPhotoTemp
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5.979 pMax
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Fig. 10. Cluster analysis of the sensitivity parameters of the model. Parameters with the same or opposite effect on the model results of four
subsequent years at three points in time (days 189, 219 and 249). Sensitivity was based on the following model output: mean spacer length
mean shoot length, fraction below-ground biomass, mean number of ramets per clone, approximate expansion area, mean expansion per clon
All parameters shown have a significant effect on model requit9(01).

extra parameters that have to be assessed or cali-  specieslflolenaar et al., 2000 Empirical models
brated. Complex rules have to be set up which make use the ranges and standard deviations of rhizome
the model complex and prone to uncertainties. The lengths, branching frequency, branching angles,
advantage of our modelis, that it gives more insight etc. and generate simulations of growth patterns.
into plant growth strategies than non-architectural They provide insights into possible variability of
mechanistic models. The model allows us to study patterns but cannot explain the underlying mech-
the effects and implications of specific growth anisms nor simulate the patterns under different
rules for growth characteristics. For example: is environmental conditions. In contrast, our rhizome
branching necessary for successful propagation? architecture is growth related and consequently
It also allows for insights into patch formation and ruled by environmental factors.
growth. (3) Deterministic and stochastic spatio-temporal mod-
(2) In contrast to mechanistic models, there are some els (cellular automata) are also used for clonal
empirical “design models” of clonal architecture plants in competition modelsCplasanti and

(Bell, 1976; Bell etal., 1979including submersed Grime, 1993; Chiarello and Barrat-Segretain,
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Fig. 11. Time course of the relative sensitivity coefficients of various representative parameters (expressed as sensitivity coefficients) on model
outcomes.
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1997; Balzter et al., 199®ut they describe clonal  beyond the weight required for sprouting. More-

expansion on a grid basis using simple empirical over, the model does not include biomass allocation
rules, or random processes. They can be used tostrategies and foraging by means of rhizome length
predict patterns on a larger scale, but being empir- control, as we lack sufficient knowledge of these
ical, they do not provide mechanistic insight. processes.

(4) A range of models, mainly for terrestrial plants, We tried to manage the complexity of the model
takes into account both mechanistic and empiri- by implementing detailed visualisation of the results,
cal aspectsGain and Cook, 1988; Callaghan et which we regard as essential for keeping track of the
al., 1990; Cain, 1994; Oborny, 1994; Cain et al., complexity Grimm, 2002. Our modelling environ-
1995, 1996; Evans and Cain, 1995; Klimes, 2000 ment could visualise the clones and the various fea-
but neither of these models deals with submersed tures of the ramets, including shoot length, roots and

macrophytes nor clonal integration. rhizomes, transport between shoot and rhizomes and
(5) Models of clonal integration exist for theoretical between rhizomes and patch expansion in 2D and 3D
plants and are usually non-spati&tefer et al., graphs. Furthermore it was essential that the generated

1998; Suzuki, 2002 Only a few spatial models  patterns could be compared with real dataPefa-
include clonal integration@borny et al., 2000;  mogeton perfoliatus in Lake Constance at the same
Chesson and Peterson, 2002; Herben and Suzuki,level of detail Wolfer and Straile, 2004a)bKeep-
2002; Oborny and Kun, 2002but in contrast to ing track of several properties of the clones (spacer
our model these models are not truly mechanistic, length, biomass, number of ramets) simultaneously,
ignore clonal architecture or have a rigid architec- we could reduce the probability of getting realistic
ture, i.e. do not assume any plastic adjustment of results for wrong reasons. Finally, we compared our
clonal architecture to resource availability. results with a simpler version of the mod&ah Nes
) and Scheffer, 2005 namely the original Charisma
To our knowledge there is no other model that qqe|. This way we could show that some behaviour
includes all following components: submersed species, o the model, like the existence of alternative sta-

mechanistic biomass growth (dependent on environ- e giates, is not sensitive to the complexity of clonal
ment), individually based, spatially concise, non-rigid growth.

clonal architecture, and clonal integration. The benefits of our model approach are detailed eco-

logical insights through qualitatively correct results.
4.2. Controlling complexity of the model The model has also provided first insights into the
understanding of growth architecture and patch expan-
Being complex and detailed, our model has also sion of submersed macrophytes. The strong graphical
several drawbackd/an Nes and Scheffer, 20p5The user interface makes it possible to analyse the existing
model includes many unknown parameters and pro- patterns and find the underlying mechanisms. In future,
cesses, resulting in a high uncertainty of the results. the model will be used for more detailed analyses and
Although our results were qualitatively correct, we can- for the generation of hypotheses about macrophyte
not be sure that we get good results for the correct growth rules which can be tested experimentally. It can
reason. Therefore, it is not sure whether this model can easily be extended by additional parameters and pro-
also be applied to other lakes and sites. cesses, for example wave mortality or heterogeneous
In particular, the results of the simulation of grid cellsin order to provide an improved picture of the
branching variability are sensitive to some parameters growth of submersed macrophytes.
for which we do not have good field data, such as
fraction of biomass allocated to turions or minimum
turion weight for sprouting. The description of poorly Acknowledgement
known processes was kept as simple as possible in
the model, ignoring more flexible plant strategies like We gratefully acknowledge financial support by the
the avoidance of small side branches or the formation Special Collaborative Project (SFB) 454 Bodenseeli-
of a few big turions in order to avoid propagules toral and RIZA/Lelystad.
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