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Abstract Nowadays, although the data processing ca-

pabilities of the modern mobile devices are developed

in a fast speed, the resources are still limited in terms of

processing capacity and battery lifetime. Some applica-

tions, in particular the computationally intensive ones,

such as multimedia and gaming, often require more

computational resources than a mobile device can af-

ford. One way to address such a problem is that the

mobile device can o�oad those tasks to the centralized

cloud with data centers, the nearby cloudlet or ad hoc

mobile cloud. In this paper, we propose a data o�oad-

ing and task allocation scheme for a cloudlet-assisted

ad hoc mobile cloud in which the master device (MD)

who has computational tasks can access resources from

nearby slave devices (SDs) or the cloudlet, instead of

the centralized cloud, to share the workload, in order

to reduce the energy consumption and computational
cost. A two-stage Stackelberg game is then formulated

where the SDs determine the amount of data execution

units that they are willing to provide, while the MD

who has the data and tasks to o�oad sets the price

strategies for di�erent SDs accordingly. By using the

backward induction method, the Stackelberg equilib-

rium is derived. Extensive simulations are conducted to

demonstrate the e�ectiveness of the proposed scheme.
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1 Introduction

With the rapid development of ICT industry, user equip-

ment (UE) has become an indispensable part of our

daily life and advanced mobile technologies have also

led to an explosive growth in mobile application mar-

kets. However, due to the restrictions on size, weight,

battery life, ergonomics, and heat dissipation and so on,

the computing capacity of a mobile device remains lim-

ited, which, unfortunately, may hinder the users from

fully enjoying the high speed wireless networks and may

even disturb the daily work of business users [1].

To expand the limited capabilities of the UEs, one

e�ective solution is to integrate cloud computing tech-

nology with mobile UEs to produce so called mobile

cloud computing (MCC) platform[2�4]. In MCC, the
computational-intensive application tasks or storage-

intensive jobs are transferred from the UEs to the cloud

which has rich computational resources for executing

and processing. After processing is done at the cloud

side, the �nal result will be returned back to the mo-

bile UEs. By such, MCC is able to e�ciently address

the problems of limited processing capabilities and lim-

ited battery of the UEs [5]. Meanwhile, the frequently

required images, videos or other multimedia �les, can

also be delivered to the cloud storage and then trans-

mitted to the UEs whenever they are needed. In this

way, the problem of storage limitation can be solved as

well [6]. Typically there are three types of mobile cloud

architectures, namely the traditional centralized cloud
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[7], the recently emerged cloudlet [8] and the peer-based

ad hoc mobile cloud [9].

The traditional centralized cloud (such as Amazon

EC2 cloud, Microsoft Windows Azure or Rackspace)

can provide huge storage, high computation power, as

well as reliable security. By o�oading data and tasks

of mobile application to the cloud server for execution,

the performance of mobile applications can be greatly

improved and the energy consumption of UEs can be

signi�cantly reduced. However, it is worth mentioning

that the traditional centralized cloud or data center is

usually remotely located and far away from their users.
Thus, for latency-sensitive mobile applications, such as

high quality video streaming, mobile gaming and so on,

o�oading to the centralized cloud may not satisfy the
requirement of the UEs.

To solve the problem, some researchers propose to

add an abstraction tier, named as cloudlet which is con-

sidered as an emerging paradigm for providing better

support both latency-sensitive and resource-intensive

mobile applications. A cloudlet is a set of computing

units that is well-connected to the Internet and is avail-

able for nearby mobile devices [8]. A key advantage of

cloudlets over the cloud, is that the close physical prox-

imity between cloudlets and UEs enables shorter com-

munication delays, thereby improving the user experi-

ence of interactive applications. Meanwhile, with the

increasing processing capacity of modern UEs, peer-

assisted computing is also an emerging topic that at-

tracts growing attention in the research community.

This paradigm regards users in vicinity as an ad hoc

mobile cloud [9], where neighboring UEs are able to uti-

lize and share resources in a cooperative manner. Such

a mechanism provides an advantage of having less of-
�oad latency and bandwidth consumption as compared

to traditional cloud computing, since mobile devices

could communicate with each other via device-to-device

(D2D) connections. However, the ad hoc mobile cloud

computing platform still confront some challenges such
as device mobility, workload distribution, connectivity

options, cost estimation and energy limitation and so

on, which call for a continuous research e�ort.
Given the rapid growth of mobile devices and widely

deployed cloudlets in the wireless access networks, in

this paper, we consider a cloudlet-assisted ad hoc mo-

bile cloud model which is sparely studied in the liter-

ature. With this tiered networking architecture, a UE

can o�oad its task to nearby mobile devices or to the

cloudlet, rather to the centralized cloud, in order to save

energy and maximize its revenue. The main contribu-

tion of this paper is summarized as follows:

1. In this work, we explicitly consider di�erent costs

during data o�oading and task allocation process,

such as computing cost, communications cost, and

energy consumption etc, which can thoroughly com-

plement and analyze the e�ects of cloudlet-assisted

ad hoc mobile cloud.

2. We jointly optimize the utilization of the resources

from the ad hoc mobile cloud and the cloudlet un-

der several Quality of service (QoS) constraints. A

two-stage Stackelberg game is then formulated with

realistic considerations. With the backward princi-

ple, we propose an e�cient algorithm to derive the

Stackelberg equilibrium, which is the optimal strat-

egy pro�le in the sense that no player can �nd bet-
ter strategy if he deviates from the current strat-

egy unilaterally. The solutions, obtained by using

convex optimization approach, is feasible with low
complexity.

3. Extensive simulations are conducted to evaluate the

properties and e�ectiveness of the presented schemes.

The reminder of this paper is organized as follows.

We �rst brie�y overview the recent works in Section 2.

In Section 3, we introduce the details of our proposed

architecture and formulate the problem as a two-stage

Stackelberg game. Section 4 and Section 5 proves and

solves the Stackelberg equilibrium with the backward

induction method, respectively. In Section 6, the perfor-

mance evaluations are presented to verify the proposed

schemes and �nally, we conclude our work in Section 7.

2 Related Work

In the MCC, the researches on data o�oading involve

making decisions about whether to accept the mobile

service request, where to run the mobile application

and how to allocate computing resources if the request

is accepted. The o�oading decisions are usually con-
structed by analyzing parameters, including computa-

tion speeds, bandwidths, power coe�cients, communi-

cation cost of all participating devices. Most existing

studies focused on o�oading of mobile users' tasks to

remote clouds by exploring di�erent pricing models or

di�erent e�cient energy-conserve task scheduling ap-

proaches, such as [10�16]. For example, the author of

[14] formulates the decentralized computation o�oad

decision making problem among mobile device users as

a decentralized computation o�oading game, analyzed

the structural property of the game and showed that the

game always admits a Nash equilibrium. The authors

of [15] investigates the problem of how to conserve en-

ergy for the resource-constrained mobile device, by op-

timally executing mobile applications in either the local

mobile device or the cloud. Jiang et al. of [16] present a

Lyapunov optimization-based scheme for cloud o�oad-
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ing scheduling, as well as download scheduling for cloud

execution output, for multiple applications running in

a mobile device with a multi-core CPU.

However, the average access delay between users
and remote clouds can be prohibitively long. Instead,

cloudlets deployed in the vicinities of users have been

quickly gaining recognition as alternative o�oading des-

tinations due to the short response time and capability

of reducing the energy consumption of mobile devices

[17�19]. Cloudlet based mobile computing now is also

referred to as fog computing with the aim to reduce

the access latency between mobile users and remote
clouds by providing compute, storage, and networking

services within the proximity of mobile users [19�23]. In

[19], the authors consider the multi-resource allocation

problem for the cloudlet environment with resource-

intensive and latency-sensitive mobile applications and
derive an e�cient algorithm that allows the system to

adaptively allocate an optimal amount of wireless band-

width, cloudlet computing resource, and distant cloud

computing resources. In [22] the authors propose a dou-

ble auction mechanism, which coordinates the resource

trading between mobile devices (buyer) and cloudlets

(seller), according to spatial locations of cloudlets and

their distinct capabilities or hosted resources in order

to improve resource utilization of cloudlets. In [23] the

authors propose a Markov decision process based dy-

namic o�oading algorithm for the mobile users to �nd

the optimal o�oading policy while minimizing the of-

�oading and processing cost.

To date, the ad hoc mobile cloud is a newly emerg-

ing concept in the recent years, and there are only a few

works on the design of ad hoc mobile cloud. In [24], the

authors introduce the architecture and services modes

of ad hoc mobile cloud. In [25], Chi et al. propose an ad
hoc mobile cloud-based gaming architecture, which con-

siders both progressive and collaborative downloading

of game resources as well as cooperative task process-

ing. To our best knowledge, there are few papers study-

ing o�oading data and tasks in a cloudlet-assisted ad

hoc mobile cloud. Therefore, in this paper, we study

the data and task allocating problem with game the-

ory under the considered system. However, it can be

noticed that the aforementioned papers scarcely utilize

the game theoretic approaches and take the utility into

consideration when designing the o�oading algorithm

in the cloudlet-assist platform. Moreover, one can also

�nd that the development of the ad hoc mobile cloud

platform has not received equal attention. Therefore,

in this paper, we aim to investigate the data o�oading

and task allocation problems in a cloudlet-assisted ad

hoc mobile cloud platform.

Fig. 1 Cloudlet-assisted ad hoc mobile cloud

3 System Model and Problem Formulation

3.1 System Model

The cloudlet-based ad hoc mobile cloud is presented in

Fig. 1. Hereafter we use the term master device (MD)

to refer to the originating UE which sends workload

to the nearby UEs or to the cloudlet. The UEs which

process the workload will be referred to as slave devices

(SDs). Without loss of generality, we assume that the

MD itself has no processing capacity. However, if it has

processing capacity, it can be considered as an extra

SD which incurs no communication cost to share the

workload.
As shown in Fig. 1, in the considered system, we

assume there are one MD U (David) and a set of SDs

(Frank, Grace, Elaine, Candy and so on) denoted as

D = {d1, d2, · · · dj , · · · , dm} which are willing to share

their unused resources to the MD for some extra in-

come. For simplicity, we assume that the MD has n ho-
mogeneous data units that need to be processed, which

are assumed to be independent in terms of execution

sequence and can be executed parallel. We also assume

that each data unit at the MD requires a data process

unit at a SD. The data processing unit can be speci�ed

by using the following attributes:

1. Storage consumption, which is the memory space

required in order to process the execution unit.

2. CPU unit, which is the CPU resources required in

order to compute the task.

3. Size of data sent, which is the size of the o�oading

task.

4. Size of data received, which is the size of the com-

putation results received by the MD after the task

is successfully executed.

In this paper, we assume that the size of each data

unit is h, and we also assume the size of output work-
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load data is equal to a fraction ρ of input workload

data. The MD can use computational resources that

are available on nearby SDs or cloudlet to complete the

tasks. It is assumed that the MD has to pay a relatively

expensive price pc per data processing unit if it chooses
the cloudlet which has more resource than the nearby

SDs. If the MD chooses the nearby SDs to execute tasks,

it would pay a cheaper price pj , ∀j ∈ {1, 2, · · · ,m} per

data processing unit than the cloudlet price pc. In the

perspective of the MD, it prefers to o�oad the tasks

to the nearby SDs than the cloudlet considering the

price and the communication cost. However, the MD
has to seek help from the cloudlet when the SDs have

not enough resource to process these tasks.

For each SD dj ∈ D, we assume that the maximum
amount of data processing units it maintains is Ej ,

which is the total capacity when the SD with full bat-

tery and no other tasks processing on it. Additionally,

for each SD dj , we introduce the inconvenience parame-

ter βj , which denotes the inconvenience incurred by the

resource usage of executing tasks for the MD. Here, the

resource usage can be the usage of the battery, CPU,

memory, or a combination of them. For example, if a

SD is with a very limited battery and cannot be timely

recharged, its inconvenience parameter would be very

high, as executing tasks would accelerate its power out-

age. The number of data processing units which the SD

dj can provide is ej , certainly ej ≤ Ej . The execution

speed is qj which is related to the inconvenience pa-

rameter βj and intrinsic properties of SD dj . The MD

o�ers pj as the price per data processing unit to SD

dj according to the capacity and inconvenience param-

eter it maintains. In addition, the MD o�ers di�erent

price to di�erent SDs in order to obtain the maximum
revenue.Some key notations can also be found in Table

1.

3.2 Utility and Cost Function

3.2.1 Utility Function

By o�oading ej data processing units to the SD dj ,
the MD obtains an according utility denoted by func-

tion U j
M , here we adopt the logarithmic utility function

[27], which is based on the law of diminishing marginal

utility in economics and has been widely used in the

mobile computing and wireless communications. The

utility of the MD obtained from dj can be denoted as

follows:

U j
M = αjqj log2 (1 + ej) , (1)

where αj denotes the utility level of SD dj .

Table 1 Notations

Notations Meanings
U the MD in the system
n the number of data units of the MD
h the size of data in each data unit
dj the j-th SD
pj the per data processing unit for SD dj
Ej the maximum number of data units of SD dj
ej the number of data units of SD dj providing
βj the inconvenience parameter of SD dj
ηi the per unit cost for computation of SD dj
qj the execution speed of SD dj
rd the per unit data transferring cost by D2D
ρ the data compression ratio for output data
rw the per unit data communication cost by WiFi
αj the utility level of SD dj
λc
j the per energy for execution of SD dj

λt
j the per energy for communication of SD dj

Eth
j the threshold energy of SD dj dedicating

In the perspective of SD dj , given the price pj , each
SD would determine the amount of data processing

units that it is willing to provide, by considering both

the gained rewards and incurred inconvenience. We �rst

design a utility function for dj , which should capture

the following properties:

1. The larger the value of pj , the higher the utility of

each SD, as higher price often brings higher payo�.

2. The higher the inconvenience parameter, the lower

the utility of the SD would obtain.

3. The utility function of each SD should be a concave

function of ej , when ej is no more than a certain

value (e.g., extreme point), the utility function is a

non-decreasing function of ej . Because the SD can

gain more payo� from the MD with more ej , how-
ever, when ej becomes too large, the utility will de-
crease, as the SD is also constrained with limited

resources, and executing too many tasks would sac-

ri�ce its own service and also accelerate the power

outage.

Based on these properties, we de�ne a utility func-

tion [28] for SD dj as follows:

Uj = pjEjej − βje
2
j . (2)

3.2.2 Computing Cost

Firstly, for executing the assigned data units which the

MD o�oads to SD dj , the computing cost of SD dj is

de�ned as [26]

Dj (ej) = ηj
ej
qj
, (3)

where ηj is per unit cost for computation on SD dj and

qj is the execution speed of SD dj .
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3.2.3 Communication Cost

To this end, we are able to formulate the communi-

cations cost for the data transfer between the MD and

SDs. At �rst, two assumptions are made to simplify the
formulation of communications cost [26]:

1. We assume that the workload must be completely

received on the SD before it starts processing and it

can only send results back to the MD when it com-

pletely �nishes the processing. The workload pro-

cessing can be considered as a three-phase procedure
comprising transferring the execution units from the

MD to the SD, processing the data processing units

on the SDs and returning the results to the MD.
2. We assume that the communications cost is charged

by the amount of data transferred but not by the

time the mobile devices are connecting. Indeed, as

the network bandwidth is a shared resource, many
mobile users use this shared resource at the same

time. Thus, for the same amount of execution units,

the time spent for transferring the data processing

units varies depending on the load of the network.

Let rd denotes the per unit data transmission cost

by D2D connectivity, and h denotes the data size in

each data processing unit. Thus, the communications

cost for the MD to transfer ej data units to the dj is

denoted as follows:

Cj
M (ej) = rdhej . (4)

The communications cost for the SD dj to return

the result to the MD is denoted as follows:

Cj (ej) = ρrdhej . (5)

When the MD has to o�oad some data to the cloudlet

as the SDs have no enough data processing units to

meet the demand of MD, the communications cost be-

tween the MD and the cloudlet is denoted as follows:

Cc
M = hrw

n−
m∑
j=1

ej

+

, (6)

where (.)
+

= max (., 0) and rw denotes the per unit

data communication cost by transferring the data to

the cloudlet via WiFi.

3.2.4 Energy Consumption

While accepting to process the workload ej , SD dj has
to consume energy to accomplish the task. For workload

ej , the energy consumption is denoted as follows:

Ej (ej) = λc
j

ej
qj

+ λt
j

hρej
bd

, (7)

where λc
j and λt

j are the per unit energy consumed for

processing and communication respectively, and bd is

the bandwidth of the D2D connection. In (7), the �rst

term is the total energy consumed for processing and
the second term is the amount of energy consumed for

communication. Generally, a SD may not want to drain

o� its battery for other tasks. It may set a threshold Eth
j

indicating the maximum amount of energy that it can

dedicates. Thus, the energy consumption of the SD dj
must satisfy the condition:

Ej (ej) ≤ Eth
j . (8)

3.3 Problem Formulation

Obviously, the MD needs to determine the price for the

data processing at the SDs. To reduce cost, the MD

may o�ers a lower price. However, lower price would

fail to encourage the SDs sharing the resources, and

hence, expected performance gain cannot be achieved.

In contrast, if the price sets too high, the pro�t of the

MD would decrease. Therefore, it is necessary to set a

appropriate price to balance both parties.

Combing the utility function and the de�ned cost

functions which are deduced above, we can obtain the

revenue function PM for the MD denoted as follows:

max PM =
m∑
j=1

αjqj log2 (1 + ej)−
m∑
j=1

pjej

−
m∑
j=1

rdhej − (hrw + pc)

(
n−

m∑
j=1

ej

)+ (9)

subject to

0 < pj < pc. (10)

Hence, given price pj , SD dj determines the amount

of data processing units it is willing to provide, the

objective function P j
S of SD dj is denoted as follows:

max
ej

P j
S =

(
pjEjej − βje

2
j

)
− ηj

ej
qj

− ρhrdej . (11)

subject to

0 ≤ ej ≤ Ej , (12)
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m∑
j=1

ej ≤ n, (13)

Ej (ej) = λc
j

ej
qj

+ λt
j

hρej
bd

≤ Eth
j . (14)

4 Equilibrium Analysis

As discussed above, the SDs determine the amount of

data processing units ej to provide, and the MD sets
the prices to di�erent SDs. In order to �nd the optimal

pricing setting and data processing allocation decisions,

a two stage Stackelberg game [29] is formulated based
on the considered system model, which is denoted as

follows:

Γ =
{
(U,D = {d1, d2, · · · dj , · · · , dm}) ,

(pj)
m
j=1 , (ej)

m
j=1 ,

(
PM , P j

S

)}
.

(15)

In the above formulation, {U,D} is the set of players
where MD U is the leader and SD dj (j = 1, 2, · · · ,m)
is the follower, (pj)

m
j=1 is the strategy vector for the

leader, (ej)
m
j=1 is the strategy vector for the followers.

PM and P j
S are the payo� functions for MD and SD

respectively.

As the leader, the MD chooses its strategy pj in the

�rst stage, while each follower independently decides

ej , ∀j ∈ {1, 2, · · · ,m} with pj in the second stage. Now

we speci�cally describe the two stages in the backward

induction method.

Theorem 1 (Existence of Unique Nash Equilibrium for

m-non-cooperative game) For the �nite data process-

ing units which the MD need to run, the Stackelberg

game admits a unique Nash equilibrium solution e∗ =(
e∗1, · · · , e∗j , · · · , e∗m

)
=
(
e∗j , e

∗
−j

)
and p∗ =

(
p∗1, · · · , p∗j ,

· · · p∗m), among e∗−j is the other SDs decision strategy

except SD dj, similar to p∗−j, at the point (e∗, p∗) sat-

is�es the following properties:

P j
S (e∗, p∗) ≥ P j

S

(
ej , e

∗
−j , p

∗) , j = 1, 2, · · · ,m, (16)

PM (e∗, p∗) ≥ PM

(
e∗, p∗−j , pj

)
. (17)

Proof Firstly we take the �rst derivatives of P j
S respect

to ej (j = 1, 2, · · · ,m), we obtain that:

∂P j
S

∂ej
= pjEj − 2βjej − ηj/qj − ρhrd, (18)

when
∂P j

S

∂ej
= 0, and we have

ej =
pjEj − ηj/qj − ρhrd

2βj
. (19)

Next, we add to P j
S and obtain the function PS for all

SDs:

PS (e1, e2, · · · , em; p1, p2, · · · , pm)

=
m∑
j=1

(
pjEjej − βje

2
j

)
−

m∑
j=1

(ηj/qj + ρhrd)ej .
(20)

Thus, we have ∂2PS

∂e2j
= −2βj < 0 and ∂2PS

∂eje′j
= 0. So

Hessian matrix of PS can be derived as follows:

HP =

−2β1 · · · 0
...

. . .
...

0 · · · −2βm

 . (21)

It is easy to �nd that the Hessian matrix of HP is

negative de�nite, so HP is strictly concave, which im-

plies that the m-player game has a unique Nash equi-

librium.

Similarly, we prove that there existing Nash Equi-

librium in the Stackelberg game. From (19), we can

obtain

pj =
2βjej + ηj/qj + ρhrd

Ej
. (22)

Submitting (22) into (9), we have ∂2PM

∂e2j
< 0 and ∂2PM

∂2ej
=

0.

Obviously, the Hessian of PM is negative. Therefore,

as PM is strictly concave and the constraints are linear,

which implies that the game has an unique Stackelberg

Equilibrium solution.

5 Proposed Scheme for Achieving Stackelberg

Equilibrium

In this section we will give the Nash equilibrium solu-

tion of the pricing scheme to di�erent SDs. Given the
price strategy pj ,∀j ∈ {1, 2, · · · ,m}, each SD indepen-

dently decides ej to maximize his/her revenue.

From above, we can obtain

e∗j =

(
pjEj − ηj/qj − ρhrd

2βj
, 0

)+

. (23)

To tackle this problem, we assume that e∗j ≤ ethj =
Eth

j

λc
j/qj+λt

jhρ/bd
, where ethj is the maximum number exe-

cution units that SD dj can provide under the premise

of the consuming energy does not exceed the threshold.

It is observed that when pj <
nj/qj+ρhrd

Ej
, the SDs will

not provide execution units, the occurring delay of the

MD would be relatively high, in that situation, the MD

has to improve the price in order to o�oad tasks to

other devices.
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As mentioned above, the best choice for the MD is

to o�oad its data processing units to the nearby SDs

to reduce the cost, and it can be realized under certain

situation. So we just make n −
m∑
j=1

ej = 0. Now we

substitute (19) into (22), then the optimization of the

MD can be translated as follows:

max PM =
m∑
j=1

αjqj log2

(
1 +

pjEj−ηj/qj−ρhrd
2βj

)
−

m∑
j=1

pj
pjEj−ηj/qj−ρhrd

2βj

−
m∑
j=1

rdh
pjEj−ηj/qj−ρhrd

2βj
,

s.t. 0 < pj < pc (j = 1, 2, · · · ,m) .

(24)

Let Π =
−ηj/qj−ρhrd

2βj
, which is regarded as a con-

stant for it has no relationship with the variable pj .

And we can simplify (24) as follows:

min PM =
m∑
j=1

pj

(
Ej

2βj
pj +Π

)
+

m∑
j=1

rdh
(

Ej

2βj
pj +Π

)
−

m∑
j=1

αjqj log2

(
1 +

Ej

2βj
pj +Π

)
,

s.t. 0 < pj < pc.

(25)

The �rst derivative of PM is denoted as follows:

dPM

dpj
=

Ej

βj
pj+Π+

rdhEj

2βj
− αjqjEj

ln 2 (2βj + Ejpj + 2Πβj)
,

(26)

d2PM

dp2j
=

Ej

βj
+

αjqjE
2
j

ln 2(2βj + Ejpj + 2Πβj)
2 > 0. (27)

Therefore, we can see that PM is a convex function.

Let dPM

dpj
= 0, we can obtain the optimal p∗j numerically.

Now, the Stackelberg game for the resources o�oad-

ing with di�erentiated prices is addressed. The SE for
the Stackelberg game is given as (p∗, e∗).

6 Simulation Results

In this section, we present the simulation performance

of the proposed method. In the simulation, we assume

that the MD has 20 homogeneous data units that need

be to processed and 4 SDs exist in the model who are

willing to provide their resource for extra income. We

set that the MD pays pc = 20 to the cloudlet for per

data processing unit, which is also the maximum price

it can o�er to the SDs. For each execution unit, we

assume that it contains h = 5 MB size of data, after

Table 2 the SDs Parameter

Parameter SD1 SD2 SD3 SD4

Ej 12 13 14 15
qj 182 184 183 186
nj 85 100 90 95

Fig. 2 The utility function of the SD

execution, the output size ratio is set to ρ = 0.8, which

denotes that the original data is compressed. For the

D2D network connection, the cost for transferring unit

data is rd = 20. Di�erent SDs have di�erent capacities,

execution speed, inconvenience parameter, cost of exe-

cuting data processing unit which are depicted in Table

1.

In Fig. 2, we present the SD utility with respect to ej
given price and inconvenience parameters. From Fig. 2,

we can see that the utility of each SD is non-decreasing

until a certain value has been reached. However, when

ej becomes too large, the utility will decrease, as the

SD is constrained with limited resources, and execut-

ing too many tasks would sacri�ce its own service. We

can derive that SDs would not get the optimal bene�ts

through providing too few or too many data processing
units. So it is crucial to for each SD to select a proper

ej .

We also investigate the relationship between the in-

convenience parameter βj and the data processing units

ej which is denoted in Fig. 3. For each SD, under the

given price, with inconvenience parameter increasing,

provided data processing units are decreasing, which

meets with the reality.

As discussed above, the SDs determine the amount

of data processing units ej to provide, and the MD sets

the prices pj (j = 1, 2, · · · , 4) to di�erent SDs, the link

betweenej and pj is denoted in (eq-18), we can also

display it in Fig. 4. Because of the limit capacity of

SD, the number of ej will not increase unlimitedly. In

this situation, we assume the inconvenience parameter

of each SD is β = (0.2, 0.3, 0.3, 0.2) respectively.
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Fig. 3 The e�ect of inconvenience parameter
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Fig. 4 The impact of the price and provided data processing
units

With the concept of Stackelberg equilibrium, the

adjusting of the amount of data processing units ej that
each SD willing to provide and the price pj the MD

o�ering is coupled. We assume that both MD and SDs

are rational. On one hand, in order to obtain a larger

revenue, the MD would not o�er too high price to the

SDs; on the other hand, the SDs would not provide too

many data processing units as executing too many tasks
would accelerate their power outage. Fig. 5 presents the

relations among price, provided data processing units of

a SD and the revenue of the MD. From Fig. 5, we can see

that the proper points
(
p∗j , e

∗
j

)
can be achieved at the

highest value of the total revenue function. For example,

when p = 10, with the provided data processing units

of SD increasing, we can observe that the revenue of the

MD is increased �rst, and reach its maximum when the

number of data processing units is 5 and then decreased.
The observations in Fig. 5 demonstrate the necessity of

the optimization for the considered problem.

Moreover, we compare our proposed scheme with

a modi�ed stochastic workload distribution approach

presented in [26]. As we can observe from this �gure,

our proposed scheme is able to obtain a better revenue

for the SDs. The performance gap between the pro-
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Fig. 5 The total revenue of MD vs. data processing units vs.
price
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Fig. 6 The comparison between the proposed scheme and
the stochastic workload distribution scheme

posed scheme and the stochastic workload distribution

approach increases as the number of data units of the

MD becomes larger. For example, when the number of

data units need to be o�oaded is 8, there are merely no

di�erence, while the gap becomes 50 when the number

of data units need to be o�oaded is 40. This mainly due

to the fact that when the MD has a few data to be of-
�oaded, two schemes cannot make too much di�erence

on the revenue performance.

7 Conclusion

In this paper, we focus on investigating the data o�oad-

ing and task allocation problem in cloudlet assisted ad

hoc mobile cloud. We formulate a two-stage Stackel-

berg game to bene�t both the buyer (MD) and the sell-

ers (SDs) for the data processing units, and show that

there exists one unique Stackelberg equilibrium. With

the property of objective function, we derive the Stack-

elberg equilibrium where any player cannot increase the

expected pro�t by changing its strategy unilaterally.

That is equivalent to say, the Stackelberg equilibrium
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points are the optimal strategies for either the MD or

SDs in the system when players do not cooperate with

each other. Finally, we demonstrate the e�ciency of the

proposed scheme through extensive simulations.
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