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Abstract

Physical transceiver implementations for wireless communication systems usually suffer from transmit-radio
frequency (Tx-RF) and receiver-RF (Rx-RF) impairments. In this paper, we aim to design efficient coordinated
beamforming for multicell multiuser multi-antenna systems by fully taking into account the residual transceiver
impairments. Our design objectives include both spectral efficiency and energy efficiency. In particular, we first derive
the closed-form expression of the mean square error (MSE) which includes the impact of transceiver impairments.
Based on that, we propose an alternating optimization algorithm to solve the coordinated multicell beamforming
problems with the goal of minimizing the worst user MSE, and the sum MSE. Then, by exploiting the relationship
between the minimummean square error (MMSE) and the achievable rate, we develop a new algorithm to address
the sum rate maximization problem. This approach is further generalized to solve the more intractable energy
efficiency optimization problem. We prove that all the proposed iterative algorithms guarantee to converge to a
stationary point. Numerical results show that our proposed schemes achieve a better performance than conventional
coordinated beamforming algorithms that were designed ignoring the transceiver impairments.
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1 Introduction
High inter-cell interference (ICI) is a limiting factor of
current wireless cellular networks, which would severely
degrade the performance of cell-edge users. To address
this issue, multicell cooperation has emerged as a power-
ful tool and recently has drawn a lot of research interest in
both the industry [1] and the academia [2].
Coordinated or cooperative beamforming, where multi-

antenna reprocessing at neighboring base stations (BSs)
are designed cooperatively, has been extensively studied
in the existing literatures such as [3–9] and thereof. To be
more specific, the transmit power minimization problem
subject to signal-to-interference-and-noise-ratio (SINR)
constraints at the remote users was addressed based on
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the uplink-downlink duality theorem for multicell mul-
tiuser downlink systems [3]. To maximize the minimum
user rate, we proposed an efficient iterative algorithm to
optimize the downlink beamforming and power allocation
in time-division-duplex systems [4], which only requires
limited signaling exchange between BSs. Unlike the afore-
mentioned references where a coordinated beamforming
algorithm was designed assuming a fixed coordinated BS
cluster, in [5], the authors investigated a novel multi-
cell coordinated beamforming framework with dynamic
cooperation clusters where each user is jointly served by
a small set of BSs. In [6], the number of transmitted
streams and the user scheduling in all cells were jointly
optimized in order to maximize a network utility func-
tion accounting for fairness among users. Based on a novel
virtual SINR framework, a distributed precoding design
method which needs only local channel state information
(CSI) was proposed for a coordinated joint transmission
system [7]. Recently, taking the user fairness in account,
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a decentralized coordinated beamforming algorithm was
proposed to achieve the Pareto boundary of user rate
tuples [8]. Further considering a massive MIMO case, an
efficient coordinated multicell beamforming scheme was
developed by exploiting the asymptotic behavior of mas-
sive MIMO channels, which could asymptotically achieve
the optimal performance with limited intercell coordina-
tion [9].
More recently, improving energy efficiency has become

increasingly important for cellular networks because the
growing demand of ubiquitous multimedia communica-
tions will accompany with a rapid increase of energy
consumption. Besides designing effective resource allo-
cation approaches to improve the energy efficiency, it
has been shown that coordinated MIMO transmission is
also able to greatly improve the energy efficiency while
retaining the performance of spectral efficiency [10–16],
especially when the number of transmit antennas is large.
In particular, in [10], the energy-efficient multiuser beam-
forming optimization problem was solved by approximat-
ing the objective with a convex and tight upper bound
function. In [11], the solution to the energy efficiency opti-
mization problem was achieved by solving three slightly
tractable subproblems and choosing the best one. In [12],
a zero-gradient-based energy-efficient iterative approach
was developed which was guaranteed to converge to a
local maximum for MIMO interference channel. In [13],
an uplink-downlink duality-based beamforming approach
was proposed to achieve a reasonable SE and EE tradeoff
in a multiuser downlink system. Focusing on the downlink
of multicell multiuser systems, we addressed in [14, 15]
the energy-efficient beamforming problem with per-BS
power constraints by using jointly the fractional program-
ming and the relationship between the user rate and the
minimum mean square error (MMSE). Furthermore, we
developed a distributed solution to energy-efficient mul-
ticell beamforming in [16].
Though the above developed schemes promise to

achieve huge gain in theory, the performance obtained in
practical cellular systems is limited by various nonideali-
ties, such as CSI uncertainty and transceiver impairments.
For the CSI uncertainty, some robust algorithms were
developed recently [17–21] by taking into account the
nonideal CSI in the beamforming design. In particular,
in [17], a robust coordinated beamforming algorithm was
developed with the goal of minimizing transmit power
subject to probability constraint of quality of service
(QoS). The max-min worst-case SINR optimization prob-
lem was investigated in [19, 20] and solved by the well-
known bisection method. The robust weighted sum MSE
minimization problem with per-BS power constraints was
addressed in [21] for multicell downlink joint transmis-
sion systems. As for the transceiver, impairments suf-
fered in practical systems, its effect on the performance

of MIMO orthogonal frequency division multiplexing
(MIMO-OFDM) communication systems was analyzed in
[22, 23]. Later, the effect of residual Tx-RF impairments
that defy proper compensation on channel capacity and
error-rate performance was disclosed in [24]. To com-
bat transceiver impairments, a common way is to assume
that the impairment is signal-independent and thus its
addressing methods can be devised separately from the
beamforming design in multi-antenna systems. Unfortu-
nately, physical hardware implementations of radio fre-
quency transceivers usually suffer from signal-dependent
impairments, including the impairments from nonlin-
ear power amplifier, phase noise and IQ-imbalance [25].
These impairments have a minor effect on point-to-point
systems with low-order modulation and operating at low
SNRs [26, 27]. For these reasons, transceiver impairments
have preciously attractedmuch less attention in the beam-
forming design [28, 29]. However, in contrast to point-to-
point systems, its caused peformance degrade would be
particularly severe in amulticell multiuser system [30–33].
In this paper, we focus on a coordinated beamforming

design for the multicell multiuser multi-antenna downlink
system with residual transceiver impairments. In order
to fully take into account the transceiver impairments,
we first derive the closed-form expression of its mean
square error (MSE) which includes the impact of residual
transceiver impairments. Then, we propose an iterative
beamforming scheme with proved convergence to solve
the problems including the worst user MSE minimization
problem and the sum MSE minimization problem. Fur-
thermore, we exploit the relationship between the MMSE
and the achievable rate to find an efficient solution to the
system sumrate maximization problem. This approach is
also generalized to tackle the more intractable energy-
efficient coordinated beamforming problem. Numerical
results show that our proposed schemes achieve better
performance than conventional schemes which do not
consider transceiver impairments in the beamforming
design.

2 Systemmodel
Consider M cells allowing to perform coordinated beam-
forming for the downlink system, where each cell consists
of an Nt-antenna base station (BS), and I single-antenna
users. For convenience, let User-

(
i, j
)
denote the jth user in

the ith cell, BS-i denote the BS in the ith cell. The received
signal of User-

(
i, j
)
is given by

yi,j =
M∑

m=1
hHm,i,j

( I∑
k=1

wm,kxm,k + z(t)
m

)
+ z(r)i,j (1)

where, hm,i,j ∈ C
Nt×1 denotes the channel vector from BS-

m to User-
(
i, j
)
, xi,j denotes the zero mean unit variance
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circular-symmetric complex Gaussian signal for User-(
i, j
)
, wi,j ∈ C

Nt×1 denotes the beamforming vector for
User-

(
i, j
)
, z(t)

m denotes the transmitter distortion at BS-
m, z(r)i,j denotes receiver distortion which absorbs thermal
noise at User-

(
i, j
)
. Without loss of generality, in the rest

of this paper, we assume that xi,j, z(t)
m and z(r)i,j are mutu-

ally independent, and Wm = [wm,1, · · · ,wm,I ] denotes
the cascade beamforming matrix at BS-m. Previous study
has shown that residual transceiver impairments can be
well modeled as Gaussian noise with a variance which
increases with the power of transmit signal [30], as these
impairments are usually followed by calibration and com-
pensation, behaving as the aggregate residual of many
distortions. In particular, the transmitter distortion is
modeled as z(t)

m ∼ CN (0,Cm) with1

Cm =
⎡⎢⎣ c2m,1

. . .
c2m,M

⎤⎥⎦ , cm,n = η(‖TnWm‖F) (2)

where the square matrix Tn picks out the transmit magni-
tude at the nth antenna, i.e., the nth diagonal-element of
Tn is one, while all other elements are zero. Themonoton-
ically increasing continuous function η(·) of the transmit
magnitude (in

√
mW) models the characteristics of the

impairments and is given as

η(x) = k1
100

x
(
1 +

(
x
k2

)4
) [√

mW
]

(3)

where x = ‖TnWm‖F denotes the transmit magnitude of
the nth transmit antenna of BS-m, and k1, k2 are model
parameters which are closely related to the error vector
magnitude (EVM) of corresponding hardware implemen-
tation. Usually, EVM is defined as [34]

EVMm,n =
E
{
|[ z(t)

m ]n |2
}

E
{|[∑k wm,kxm,k]n |2} =

(
η(‖TnWm‖F)

‖TnWm‖F
)2

(4)

The impairment of LTE transceiver can be accurately
modeled by (3), as shown in Fig. 1, where k1 = 0.43,
k2 = 4.6 [35]. Similarly, the receiver distortion of User-(
i, j
)
, which mainly suffers from the phase noise and I-Q

imbalance, can be modeled as z(r)i,j ∼ CN (0, σ 2
i,j), which

includes thermal noise and transceiver impairments [34],
and is given by

σ 2
i,j = σ 2 + ν2

⎛⎝
√√√√ K∑

m=1
‖hHm,i,jWm‖2F

⎞⎠ [√
mV

]
(5)

where σ 2 denotes thermal noise variance, the second
term models the receiver impairment characteristics and

is a monotonically increasing function of received signal,
defined as

ν(x) = k3
100

x
[√

mW
]

(6)

in which k3 is a model parameter and equals EVM %.

3 Beamforming design for minmizingMSE
Conventional coordinatedmulticell beamforming approa-
ches usually ignore the impact of transceiver impairment
to simplify the design. However, in practical systems,
the degrade from transceiver impairments can only be
partially compensated at the transmitter through calibra-
tion and pre-distortion, or at the receiver using sophis-
ticated compensation algorithms. The residual distortion
is severe in the multicell multiuser beamforming systems
and is signal dependent, especially at high-order modu-
lations and high SNR regime. Motivated by this, here we
design coordinated beamforming schemes based on the
above system model which properly takes the transceiver
impairment into account. Here our design objective is first
to minimize the worst user MSE or the sum MSE of all
users.

3.1 Problem formulation
Consider a linear receiver and the estimated signal of
User-

(
i, j
)
is denoted as x̂i,j = u∗

i,jyi,j with the equalizer
ui,j where “∗” denotes the conjugate operation. Thus, the
MSE of User-

(
i, j
)
can be calculated as follows

MSEi,j =E
{|̂xi,j − xi,j|2

} = E{x̂i,jx̂∗
i,j} − E{x̂i,jx∗

i,j}
− E

{
xi,jx̂∗

i,j

}
+ E

{
xi,jx∗

i,j

}
= |ui,j|2

K∑
m=1

I∑
k=1

hHm,i,jwm,kwH
m,khm,i,j

+ |ui,j|2
K∑

m=1
hHm,i,jCmhm,i,j + |ui,j|2σ 2

i,j

− u∗
i,jhHi,i,jwi,j − wH

i,jhi,i,jui,j + 1

(7)

We are now ready to present two optimization objectives
to investigate the effect of transceiver impairments on the
coordinated beamforming design. The first one is themin-
imizing maximum MSE optimization problem which is
given as

min
Wi,ui,j ,∀i,j

max∀i,j MSEi,j

s.t. tr(WiQi,kWi) + tr(Qi,kCi) ≤ qi,k , ∀i, k
(8)

and the other is the sum MSE minimization problem
which is formulated as

min
Wi,ui,j ,∀i,j

∑
i,j

MSEi,j

s.t. tr(WiQi,kWi) + tr(Qi,kCi) ≤ qi,k , ∀i, k
(9)
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Fig. 1 EVM versus output power for the LTE power amplifier HXG-122+ in [34] using 64-QAM waveforms and a state-of-the-art signal generator

where all Qi,k ∈ C
Nt×Nt are Hermitian positive semi-

definite matrices satisfying
Li∑
k=1

Qi,k 	 0Nt . Let Li denote

the number of the transmit power constraints at BS-i.
That is, if a total power constraint is adopted, we have
Li = 1 andQi,k = INt , while if per-antenna constraints are
used, we have Li = Nt andQi,k = Tk , ∀k.

3.2 Algorithm design
Note that although functions η(x) defined in (3) and
ν(x) in (6) are both convex, the expression of the MSE
becomes extremely complex if we substitute directly (3)
and (6) into (7). To obtain a tractable form of problem (8),
we reformulate it as the following form by introducing
auxiliary variables tm,n, ri,j and τ [29]:

min
Wi,ui,j ,ti,n,ri,j∀i,j,n

τ

s.t. MSEi,j ≤ τ , ∀i, j,

tr(WiQi,kWi) +
Nt∑
n=1

tr(Qi,kTn)t2i,n ≤ qi,k , ∀i, k,

η(‖TnWm‖F) ≤ tm,n,∀m, n,

v

⎛⎝
√√√√ M∑

m=1
‖hHm,i,jWm‖2F

⎞⎠ ≤ ri,j, ∀i, j

ti,n ≥ 0, ri,j ≥ 0, ∀i, j, n,

(10)

where the 3rd and 4th constraint sets are some auxiliary
constraints, tm,n = cm,n = η(‖TnWm‖F), ri,j =
v
(√

M∑
m=1

‖hHm,i,jWm‖2F
)
and MSEi,j is rewritten as

MSEi,j =
∑

(m,k) �=(i,j)
|u∗

i,jhHm,i,jwm,k|2+
M∑

m=1

Nt∑
n=1

|u∗
i,jh∗

m,i,j,ntm,n|2

+ |u∗
i,jri,j|2 + |u∗

i,jσ |2 + |u∗
i,jhHi,i,jwi,j − 1|2.

(11)

Note that functions η(·) and ν(·) defined in (3) and (6)
all are convex functions, the transmitter impairment con-
straints η(‖TnWm‖F) ≤ tm,n and the receiver impairment

constraints v
(√

M∑
m=1

‖hHm,i,jWm‖2F
)

≤ ri,j both are con-

vex constraints too. Herein, without loss of generality, we
assume that the mentioned functions are convex func-
tions. However, the optimization problem (10) is still
non-convex due to the coupling between the optimiza-
tion variables Wi and ui,j, ∀i, j. In what follows, we adopt
the alternative optimization methods to design an effec-
tive optimization algorithm to address this problem. To
proceed, we first provide the following lemma.
Lemma 1. For a given beamforming vector {wi,k}, the opti-
mal equalizer uopti,j of User-

(
i, j
)
that minimizing the MSEi,j

is given by

uopti,j = hHi,i,jwi,j

Bi,j
(12)

whereBi,j=
M∑

m=1

I∑
k=1

hHm,i,jwi,jwH
i,jhm,i,j+

M∑
m=1

hHm,i,jCmhm,i,j+σ 2
i,j.

Proof. From Lagrange KKT conditions, we obtain the
derivation of (7) with respect to u∗

i,j as follows

∂MSEi,j
∂u∗

i,j
= ui,jBi,j − hHi,i,jwi,j = 0 (13)
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where Bi,j =
M∑

m=1

I∑
k=1

hHm,i,jwi,jwH
i,jhm,i,j+

M∑
m=1

hHm,i,jCmhm,i,j+σ 2
i,j.

Based on that, the optimal equalizer for a fixed beamforming
vector, written as (12), can be readily achieved.
On the other hand, for fixed equalizer ui,j, ∀i, j, problem (10)

can be easily solved by second order conic programming
(SOCP)method. Similarly, problem (9) also can be solved using
SOCP for a given ui,j. Based on above results, an alternating
optimization algorithm is proposed to solve problem (8) and
problem (9), which is summarized as Algorithm 1 in the follow-
ing. For convenience, let τ to be the target value of problem (8)
and problem (9).

Algorithm 1 Alternating optimization algorithm for
minimizing MSE

1: Let n = 0, initialize the equalizer u(n)
i,j , beamforming

matrixW(n)
i = 0 and τ (n) = 0;

2: Given u(n)
i,j , solve problem (8) or problem (9), then

obtainW(n+1)
i and τ (n+1);

3: If |τ (n+1) − τ (n)| < δ, where δ is a stop threshold, then
stop, otherwise, let n = n+1, update the equalizer ui,j
with (12) andW(n)

i , then obtain u(n)
i,j and go to step 2.

Theorem 1. Algorithm 1 guarantees to converge.

Proof. Algorithm 1 generates a monotonic decreasing
sequence while the iteration is running, due to the fact
that the updates of the beamforming vectors and the
equalizer at steps 2 and 3 all aim to minimize the object
value. Moreover, the value of MSE is bounded in practical
wireless communication systems. Therefore, the conver-
gence of Algorithm 1 is guaranteed by the monotonic
boundary theorem [36].

4 Beamforming design for maximizing the
system sumrate

System sumrate is an important metric of wireless com-
munication systems. In this section, we design the coor-
dinated beamforming scheme to maximize the system
sumrate achieved with transceiver impairments.

4.1 Problem formulation
Consider a multicell multiuser downlink system as stated
in Section 2. The SINR for User-

(
i, j
)
is expressed as

SINRi,j =
∣∣∣hHi,i,jwi,j

∣∣∣2∑
(m,k)

∣∣∣hHm,i,jwm,k

∣∣∣2−∣∣∣hHi,i,jwi,j

∣∣∣2 +
K∑

m=1

M∑
n=1

hHm,i,jTnhm,i,jt2m,n + σ 2
i,j

(14)

Further, the data rate for User-
(
i, j
)
is defined as:

Ri,j = log2
(
1 + SINRi,j

)
(15)

As stated above, our design objective in this section is
to maximize the system sumrate. Then, the optimization
problem is formulated as

max
Wi,ui,j, ,∀i,j

∑
i,j

Ri,j

s.t. tr
(
WH

i Qi,kWi
) + tr(Qi,kCi) ≤ qi,k ,∀i, k.

(16)

4.2 Algorithm design
Compared with theMSEminimization problem, it is more
difficult to directly solve the above sumrate maximization
problem (16), due to the non-convex nature of the sum-
rate objective with respect to the beamforming vectors.
To address it, here, we resort to transforming the orig-
inal problem into a tractable equivalent form using the
following lemma [37].
Lemma 2. Assuming that d is an arbitrary integer, E ∈
C
d×d is an arbitrary matrix which satisfies the condition

of E 	 0 and det(E) ≤ 1. If we define a function given by

ϕ(S) = −Tr(SE) + log2 det(S) + d (17)

Then, we have

max
S∈Cd×d ,S	0

ϕ(Sopt) = log2 det
(
E−1) (18)

where Sopt = E−1.
In order to make use of Lemma 2 to solve the sum-

rate maximization optimization problem, we introduce a
matrix variable E ∈ CKI×KI given as

E =

⎡⎢⎢⎢⎣
MSE1,1 0

MSE1,2
. . .

0 MSEK ,I

⎤⎥⎥⎥⎦
KI×KI

(19)

where d = KI donotes the total number of data streams in
the system. Furthermore, in the considered optimizaiton
problem that has taken the transceiver impairment into
account, it is easy to understand that the mean square
error of User-

(
i, j
)
has 0 < MSEi,j ≤ E{|xi,j|2} = 1

which satisfies the restriction det |E| < 1 put forward by
Lemma 2.
Lemma 3. When using the MMSE receiver, the maximum
value of the function ϕ(S) = −Tr(SE) + log2 |S| + KI
defined in (17) is equal to the sumrate calculated as∑

i,j
Ri,j = max

S∈Cd×d ,S	0
ϕ(S) (20)

where S is auxiliary matrix variable, given as

S =

⎡⎢⎢⎢⎣
S1,1 0

S1,2
. . .

0 SK ,I

⎤⎥⎥⎥⎦ (21)
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Proof: By substituting (12) into (7), the MSE of User-(
i, j
)
is rewritten as

MSEi,j =

∑
(m,k)�=(i,j)

∣∣∣hHm,i,jwm,k

∣∣∣2 +
K∑

m=1

M∑
n=1

hHm,i,jTnhm,i,jt2m,n + σ 2
i,j

∑
(m,k)

∣∣∣hHm,i,jwm,k

∣∣∣2 +
K∑

m=1

M∑
n=1

hHm,i,jTnhm,i,jt2m,n + σ 2
i,j

(22)

From equation (7), (14), and (22), we notice that

Ri,j = log2
(
1 + SINRi,j

) = log2
(
MSE−1

i,j

)
(23)

According to Lemma 2, the max value of function ϕ(S) =
−Tr(SE)+log2 det(S)+d is obtained by Sopt = E−1. Then,
we have

ϕmax (S) = log2
∣∣Sopt∣∣ = log2

∣∣E−1∣∣ =
∑
i,j

log2MSE−1
i,j =

∑
i,j

Ri,j.

(24)

Based on the results above, the sumrate maximiza-
tion optimization problem can be transformed into the
following form:

max
Wi,Si,j ,ui,j, ,∀i,j

− Tr (SE) + log |S| + KI

s.t. tr
(
WH

i Qi,kWi
) + tr(Qi,kCi) ≤ qi,k ,∀i, k

(25)

This equivalent optimization problem is still hard to solve
due to the coupling between optimization variables Wi
and ui,j. To find a tractable form, we further introduce
auxiliary variables tm,n and ri,j to reconstruct its form,
given by

max
Wi,Si,j ,ui,j,ti,n,ri,j ∀i,j

− Tr (SE) + log |S| + KI

s.t. ti,n ≥ 0, ri,j ≥ 0 ∀i, j, n
tr
(
WH

i Qi,kWi
) +

∑
n

tr(Qi,kTn)t2i,n ≤ qi,k ∀i, k

η(‖TnWm‖F) ≤ tm,n ∀m, n

ν

⎛⎝
√√√√ M∑

m=1

∥∥∥hHm,i,jWm

∥∥∥2
F

⎞⎠ ≤ ri,j ∀i, j

(26)

where tm,n = cm,n = η(‖TnWm‖F), r2i,j =

ν2

(√∑
m

∥∥∥hHm,i,jWm

∥∥∥2
F

)
. It is easy to verify that, when

η(·) and ν(·) are convex functions, the transmitter impair-
ment constraints η(‖TnWm‖F) ≤ tm,n and the receiver

impairment constraints ν

(√∑
m

∥∥∥hHm,i,jWm

∥∥∥2
F

)
≤ ri,j are

both convex constraints.
In what follows, we leverage the block coordinate

descent method to solve problem (26). In particular, the

update of S is calculated as Sopt = E−1 by fixing other vari-
ables, and the update of the equalizer ui,j is given by (12).
Given S, ui,j, then we solve optimization problem (26)
using SOCP method to update Wi. The whole iterative
optimization process of the proposed sumrate maximiza-
tion method is summarized in Algorithm 2, as shown in
the following table, where ϕ = −Tr(SE) + log2 |S| +
KI denotes the target value of the convex optimization
problem. Threshold δ suggests the updating convergence
degree of the optimization target ϕ. The convergence of
Algorithm 2 can be guaranteed by the monotonic bound-
ary theorem similar to Algorithm 1 explained before.

Algorithm 2 Alternating optimization algorithm for
maximizing the system sumrate

1: Let n = 0, initialize the equalizer u(n)
i,j , beamforming

matrixW(n)
i and auxiliary variables S(n), ϕ(n);

2: Given u(n)
i,j , W

(n)
i , solve problem (26), then obtain

W(n+1)
i and ϕ(n+1);

3: If |ϕ(n+1) − ϕ(n)| ≥ δ, where δ is a stop threshold, let
n = n+ 1, then update the equalizer ui,j with (12) and
update S with Sopt = E−1, and go to step 2; otherwise,
stop to output bothW(n)

i and the equalizer u(n)
i,j .

5 Energy-efficient beamforming design
Energy efficiency has become increasingly important for
cellular networks because the growing demand of ubiqui-
tous multimedia communications will accompany with a
rapid increase of energy consumption. In this section, we
investigate the multicell cordinated beamforming design
aiming at maximizing the system energy efficiency with
hardware-impaired transceivers.

5.1 Problem formulation
In order to obtain a balance between the sum rate and
the total power consumption, we adopt the system energy
efficiency optimization criterion defined as

max
Wi,∀i

M∑
i=1

I∑
j=1

Ri,j

/ M∑
i=1

Pci ,

s.t.
I∑

j=1
‖wi,j‖2 + Tr (Ci) ≤ Pi,∀i

(27)

where Pci denotes the total power consumption at BS-i and
is calculated as

Pic = ϑi

I∑
j=1

‖wi,j‖2 + Tr (Ci) + MPc + P0,
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Pi is power constraint of BS-i, Pc is the constant circuit
power consumption per antenna, P0 is the basic power
consumed at the BS and is independent of the number
of transmit antennas, and ϑi ≥ 1 is a constant which
accounts for the inefficiency of power amplifier [38].
Note that the coupling of optimization variables leads

to that problem (27), becomes non-convex, and therefore
is difficult to solve directly. Moreover, the fractional form
in the objective function (27) makes the problem more
intractable.

5.2 Algorithm design
According to Lemma 3, by substituting (20) into the
objective function of problem (27), we can transform the
optimization problem into the following form:

max
Wi,Si,j ,ui,j, ,∀i,j

( −Tr (SE) + log |S| + KI
)/ M∑

i=1
Pci

s.t.
I∑

j=1
‖wi,j‖2 + Tr (Ci) ≤ Pi,∀i

(28)

Next we focus on finding the solution to problem (28),
which equivalently solves the original problem (27). It is
easy to see that problem (28) belongs to a classical frac-
tional programming problem. In addition, the works in
[15, 39, 40] have shown that it is equivalent to looking up
a value of α such that the optimal objective value of the
following optimization problem (29) equals to zero.

max
Wi,Si,j ,ui,j, ,∀i,j

( −Tr (SE) + log |S| + MI
) − α

M∑
i=1

Pci

s.t.
I∑

j=1
‖wi,j‖2 + Tr (Ci) ≤ Pi,∀i

(29)

The optimal value of α can be obtained via iteratively solv-
ing problem (29) with fixed α and updating the value of α

with gradient method [15, 39, 40].
In what follows, we attempt to develop an efficient algo-

rithm to solve the above problem with fixed α. The cost
function of problem (29) is concave in each of the opti-
mization variables Wi, ui,j, S. To address this issue, we
propose to use the block coordinate descent method to
solve (29). To be more specific, we solve the problem by
sequentially fixing two of the three variablesWi, ui,j, S and
updating the third. For givenWi, the optimal solutions of
ui,j and S are given by (12) and Sopt = E−1, respectively.
With fixed ui,j and S, by dropping the constant item and

rearranging the remaining terms using the properties of
the trace, problem (29) can be reformulated as (30),

min
Wi ,ti,n ,ri,j

∑
i,j

Si,j

⎧⎨⎩ ∑
(m,k) �=(i,j)

∣∣∣u∗
i,jhHm,i,jwm,k

∣∣∣2 +
M∑

m=1

Nt∑
n=1

∣∣∣u∗
i,jhHm,i,j,ntm,n

∣∣∣ 2

+
∣∣∣u∗

i,jri,j
∣∣∣2+ ∣∣∣u∗

i,jhHi,i,jwi,j − 1
∣∣∣2
⎫⎬⎭+α

M∑
i=1

⎛⎝ϑi

I∑
j=1

‖wi,j‖2 +
Nt∑
n=1

t2i,n

⎞⎠
s.t.

I∑
j=1

‖wi,j‖2 +
Nt∑
n=1

t2i,n ≤ Pi ∀i, η(‖TnWm‖F ) ≤ tm,n ∀m, n,

ν

⎛⎝
√√√√ M∑

m=1

∥∥∥hHm,i,jWm

∥∥∥2
F

⎞⎠ ≤ ri,j ∀i, j

(30)

where tm,n = cm,n = η(‖TnWm‖F), r2i,j =

ν2

(√∑
m

∥∥∥hHm,i,jWm

∥∥∥2
F

)
. Since η(·) and ν(·) are convex,

problem (30) is convex and can be solved by general-
purpose interior-point methods. Based on the above anal-
ysis, the detailed steps that are used to solve problem (28)
are summarized as Algorithm 3, where ρ denotes the
objective function value of problem (29).

Algorithm 3 Energy-efficient optimization algorithm

1: Choose arbitrarilyW(n)
i such that it satisfies the power

constraints, and compute u(n)
i,j and S(n) with W(n)

i ,
(12), and Sopt = E−1, respectively. Let ρ(n) = 0.

2: Compute the value of α with u(n)
i,j , S(n), and W(n)

i and
the following equation

α = ( −Tr (SE) + log |S| + MI
)/ M∑

i=1
Pci (31)

then obtain α(n).
3: UpdateWi with u(n)

i,j , S(n) and α(n) via solving
problem (30), then obtainW(n+1)

i .
4: Update ui,j with (12) andW(n+1)

i , then obtain u(n+1)
i,j .

5: Update S with Sopt = E−1, W(n+1)
i and u(n+1)

i,j , then
obtain S(n+1).

6: Compute ρ with u(n+1)
i,j , S(n+1), and W(n+1)

i , then
obtain ρ(n+1). If

∣∣ρ(n+1) − ρ(n)
∣∣ ≤ η, where η is a

predefined value, then go to 7, otherwise, let u(n)
i,j =

u(n+1)
i,j , S(n) = S(n+1), and W(n)

i = W(n+1)
i , then go to

step 3.
7: If

∣∣ρ(n+1)∣∣ ≤ η, then output W(n+1)
i and α(n), other-

wise update the value of the α(n) with u(n+1)
i,j , S(n+1),

and W(n+1)
i and (31), let u(n)

i,j = u(n+1)
i,j , S(n) = S(n+1),

W(n)
i = W(n+1)

i , and ρ(n) = ρ(n+1), then go to step 3.
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Remark. The objective value of problem (29) with fixed
α generated by the alternating maximization of steps 3–
5 in Algorithm 3 are monotonically increasing, and the
objective function can be upper-bound. Thus, the con-
vergence of the alternating maximization of steps 3–5 in
Algorithm 3 can be guaranteed with the monotonic con-
vergence theorem [41]. In the results obtained in [15, 39,
40], one can see that the convergence of Algorithm 3 is
also guaranteed. In particular, based on the conclusion
given by [41, Prop. 5], it is easy to prove that the converged
solution is a stationary point of problem (29).

6 Simulation results
In this section, the performances of the proposed coordi-
nated beamforming schemes are investigated via numeri-
cal simulations for a multicell multiuser scenario as shown
in Fig. 2. The considered system consists of 3 cells with
4 antennas at each BS (M = 3,Nt = 4). The inter-BS
distance is 1km and each user has at least 400m dis-
tance from its serving BS. The channel vector hm,i,j from
BS-m to User-

(
i, j
)
is generated based on the formula-

tion hm,i,j � θm,i,jhwm,i,j, where hwm,i,j denotes the small
scale fading coefficient and is assumed to be Gaussian dis-
tributed with zero mean and identity covariance matrix,
and θm,i,j denotes the large scale fading factor which in
decibels is given as 10 log10(θm,i,j) = −38 log10(dm,i,j) −
34.5 + ηi,j, where ηi,j represents the shadow fading in
decibels and follows the distribution N (0,8) and dm,i,j
denotes the distance between BS-m and User-

(
i, j
)
. The

Fig. 2 Simulation scenario

noise figure at each user terminal is 9dB [42]. Per-array
power constraints of 18.2 dBm per subcarrier (i.e., uni-
form allocation of 46 dBm). The system is best described
as a simplified version of Case 1 in the 3GPP LTE standard
[43].

6.1 Numerical evaluation for Algorithm 1
The performances of the proposed multicell multiuser
beamforming schemes for minimizing the worst user
MSE, minimizing the sum MSE, and maximizing the sys-
tem sumrate are investigated via numerical simulations.
For comparison, we also evaluate the performances of the
traditional optimization algorithm without considering
the transceiver impairment (k1 = 0, k2 = +∞, k3 = 0).
Figure 3a, b show the convergence behavior of Algo-

rithm 1 to solve problem (8) and problem (9) respectively
under a few random channel realizations. All simulation
results show that Algorithm 1 generates a monotonic
decreasing sequence while the iteration is running, by
which the convergence of Algorithm 1 can be guaranteed
by the monotonic boundary theorem. It is also shown that
Algorithm 1 can always converge to a stable point within
a couple of iterations.
Figure 4a, b illustrate respectively the average MSE

performance for problem (8) and average sum MSE per-
formance for problem (9) of Algorithm 1 (k3 = 3, I =
2, Nt = 4). The solid lines show the performance of
Algorithm 1 while the dotted lines show performances of
the traditional optimization algorithm without consider-
ing the transceiver impairment. Simulation results show
that the change of k1 and k2 has little effect on the average
MSE performance for problem (8) and the average sum
MSE performance for problem (9) of Algorithm 1. How-
ever, the average MSE for problem (8) and the average
sum MSE performance for problem (9) without consider-
ing transceiver impairment both decrease as the value of
k1 and k2 increases.
Figure 5 demonstrates the average sum MSE perfor-

mance of Algorithm 1 for problem (9) with Nt = 16 and
Nt = 32, respectively under varying transceiver impair-
ments and different numbers of users in each cell (k2 =
8, k3 = 3). Simulation results show that Algorithm 1
for problem (9) always outperforms the traditional algo-
rithm without considering the transceiver impairment.
The performances of these algorithms all deteriorate with
an increasing number of served users. In contrary, the per-
formances of these algorithms are improved by increasing
the number of transmit antennas for a fixed number of
served users.

6.2 Numerical evaluation for Algorithm 2
The performances of the proposed multicell mul-
tiuser beamforming schemes for maximizing the system
sumrate are investigated via numerical simulations. For
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Fig. 3 Convergence trajectories of Algorithm 1. a Convergence trajectories of Algorithm 1 for problem (8). b Convergence trajectories of Algorithm
1 for problem (9)

comparison, we also evaluate the performances of the tra-
ditional optimization algorithm without considering the
transceiver impairment (k1 = 0, k2 = +∞, k3 = 0).
Figure 6 shows the convergence behavior of Algorithm 2

for problem (26) under a few random channel realizations.
Similar to the results in Fig. 3, it is shown that Algo-
rithm 2 generates a monotonic non-decreasing sequence

when the iteration is running, thus the convergence of
Algorithm 2 can be guaranteed by the monotonic bound-
ary theorem. Moreover, one can see that Algorithm 2
can always converge to a stable point within a couple of
iterations.
Figure 7 illustrates the average system sumrate ver-

sus the coefficient k1 of Algorithm 2 (k3 = 3, δ =
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0.005, I = 2, Nt = 4). Simulation results show that
Algorithm 2 achieves a significant gain as compared with
the traditional optimization algorithm. For the traditional
scheme, the transceiver impairment becomes serious with
the increasing of k1 and decreasing of k2, which leads to a
serious deterioration of the system sumrate performance.
While, for Algorithm 2, the change of k1 and k2 shows little

effect on the system throughput which maintains a high
sumrate.
Figures 8 and 9 show the system sumrate performance

of Algorithm 2 varying with the coefficient k1 and the
user number I under configurations Nt = {32, 64}, k2 =
8, k3 = 3. Simulation results show that for the traditional
scheme, the increasing transceiver impairment, i.e., the
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increase of k1, results in an obvious performance degra-
dation. However, the proposed sumrate maximization
optimization algorithm can combat to some degree the
transceiver impairment and thus shows a better sumrate
performance.

6.3 Numerical evaluation for Algorithm 3
Finally, the performance of the proposed energy-efficient
coordinated beamforming scheme is also investigated via
numerical simulations. The circuit power per antenna is
Pc = 30 dBm, and the basic power consumed at the BS is

P0 = 40 dBm [38]. The transmit power budget is set to P
for each BS. The convergence threshold η is set to be 10−3.
In the legends of the figures, EEMax (Aware/Ignorant)

and SRMax (Aware/Ignorant) denote, respectively, the
energy efficiency maximization and sum rate maximiza-
tion with/without taking hardware-impaired transceivers
into account.
Figure 10 illustrates the average energy efficiency of

EEMax (Aware/Ignorant) and SRMax (Aware/Ignorant)
with varying value of maximum transmit powers under
1000 random channel realizations. Numerical results
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show that the EEMax (Aware) and SRMax (Aware) algo-
rithms outperform, respectively, the EEMax (Ignorant)
and SRMax (Ignorant) algorithms in terms of energy effi-
ciency, especially in the middle-high transmit power con-
straint region. This also means that the system energy
efficiency performance can be improved if the energy
efficient beamforming design takes into account the
transceiver hardware impairment. While in the high
transmit power region, it is observed that the energy
efficiency achieved by EEMax (Aware/Ignorant) is better
than that of SRMax (Aware/Ignorant). This is because in

SRMax(Aware/Ignorant) the capacity gain cannot com-
pensate for the negative impact of the maximum power
consumption, resulting in a low energy efficiency.

7 Conclusions
In this paper, we focused on the coordinated beamforming
design for the multicell multiuser downlink system with
transceiver impairments. We firstly derived the closed-
form expression of the MSE including the transceiver
impairments. Then, we proposed two alternating opti-
mization beamforming algorithms to solve the worst
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Fig. 10 Average system energy efficiency (bits/Hz/Joule) versus transmit power constraints,M = 3, Nt = 4, I = 2, κ0 = κ2 = 0.1, κ1 = 5.755
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user MSE minimization optimization problem, the sum
MSE minimization problem, and the system sumrate
maximization problem. Furthermore, we also devised an
energy-efficient coordinated beamforming algorithm for
the multicell system by taking into account transceiver
impairments. The convergence of the proposed iterative
algorithms was all proved. Numerical results showed that
our proposed schemes obtained a better performance
than the conventional algorithms which did not consider
transceiver impairments in the beamforming design.

Endnote
1Here we assume that the impairments among different

antennas are uncorrelated for simplicity, which has been
validated in [28, 31, 32].
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